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Abstract. The latest hot stamping processes can enable efficient production of complex shaped 

panel components with high stiffness-to-weight ratios. However, structural redesign for these 

intricate processes can be challenging, because compared to cold forming, the non-isothermal 

and dynamic nature of these processes introduces complexity and unfamiliarity among 

industrial designers. In industrial practice, trial-and-error approaches are currently used to 

update non-feasible designs where complicated forming simulations are needed each time a 

design change is made. A superior approach to structural redesign for hot stamping processes is 

demonstrated in this paper which applies a novel deep-learning-based optimisation platform. 

The platform consists of the interaction between two neural networks: a generator that creates 

3D panel component geometries and an evaluator that predicts their post-stamping thinning 

distributions. Guided by these distributions the geometry is iteratively updated by a gradient-

based optimisation technique. In the application presented in this paper, panel component 

geometries are optimised to meet imposed constraints that are derived from post-stamping 

thinning distributions. In addition, a new methodology is applied to select arbitrary geometric 

regions that are to be fixed during the optimisation. Overall, it is demonstrated that the 

platform is capable of optimising selective regions of panel component subject to imposed 

post-stamped thinning distribution constraints. 

1.  Introduction 

The latest hot stamping processes are key enablers for realising vehicle lightweighting and therefore 

reducing use-phase emissions [1]. For example, the HFQ® process for high strength aluminium alloys 

developed by Lin et al. [2] improves material formability and addresses the springback issues of cold 

forming. Current research on these processes largely focuses on characterising the material behaviour 

under designed elevated temperature conditions to develop material constitutive models [3,4]. These 

models are to be embedded into high-fiedality finite element (FE) simulations to assess the stamping 

feasibility of designed panel components without actually producing a physical prototype, e.g. [5]. 

Nevertheless, these FE simulations occur late in design processes, as discussed in [6], require 

significant forming process and numerical experties, and are computationally expensive to evaluate. 

When coupled with the insufficient knoweldge that designers have of the latest hot stamping processes 

[6], the aforementioned challenges make finding optimum panel component geometries particularly 

difficult.  

An effective alternative to iterative FE simulation runs is to employ surrogate-based numerical 

optimisation techniques. These techniques have been widely adopted in stamping applications for 

optimising scalar-based parameters, such as process parameters for fixed geometries, e.g., [7–9]. 
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However, optimum process parameters cannot compensate for inadequately designed component 

geometries. Furthermore, unlike process parameters, geometries are significantly more complex and 

frequently evolving during design phases. 

A deep-learning-based optimisation platform, recently developed by Attar et al. [10], opened the door 

to optimisation of arbitrary panel component geometries for stamping processes. Image-based 

surrogate models of a hot stamping process simulator (i.e., FE simulator) [11] were employed to 

rapidly assess the stamping performance of geometries that were being optimised. These surrogate 

models are agnostic to the geometry parameterisation as they process image-based representations of 

the design. Consequently, the geometric complexity is decoupled from the optimisation problem and a 

single predictive model can be trained with a large dataset of simulations that naturally accumulate in 

industrial settings. However, greater variation of geometries in the training dataset for the optimisation 

platform may result in the optimum geometry being significantly different from an initial geometry.  

The purpose of this paper is to demonstrate novel engineering applications of the aforementioned 

optimisation platform [10] that extends its capability. Firstly, constraints on the thinning spatial 

gradients are introduced which explicitly regulate the post-stamping thickness uniformity during 

optimisation. Secondly, a new methodology is applied to selectively fix arbitrary regions of a panel 

component geometry to prevent them from changing during optimisation. These applications offer 

practical guidance for researchers and industrial engineers who are planning to use the platform to 

develop geometries that are optimised for stamping applications. 

2.  Overview of the optimisation platform 

This section presents a high-level overview of the optimisation platform that was discussed in the 

introduction and presented in figure 1. For further details on the platform and neural network training 

and architectures, the reader is referred to the original paper by Attar et al. [10]. 

 
Figure 1. Optimisation platform overview. Symbols on 𝑓𝜃1

 and 𝑔𝜃2
 denote fixed network parameters. 

The platform was based on the interaction of two pre-trained neural networks 𝑓𝜃1
 and 𝑔𝜃2

. The former 

network 𝑓𝜃1
 took as input a latent vector 𝒛 and a regular grid 𝑿 of arbitrary resolution and generated a 

signed distance field (SDF) value [12], that was conditioned on 𝒛, for every grid point 𝒙 ∈ 𝑿. The 

generated SDF implicitly represented the geometry that was encoded in 𝒛 by the zero-level-set of the 

SDF. Marching Cubes [13] was used to convert the zero-level-set into an explicit mesh-based 

representation of the geometry. The latter network 𝑔𝜃2
 took as input a 2D projected height map of this 

mesh and predicted the associated manufacturing performance distributions. Here, post-stamped 

thinning was the distribution considered. Further details on 𝑔𝜃2
 are given in Section 3.   

The aim of the optimisation platform was to iteratively update the geometry (by updating 𝒛) to 

minimise the function ℒtask. This function was a summation of an objective function ℒobjective and a 

constraint function ℒconstraint. These functions were task specific and were formulated based on the 

considered optimisation problem (see below). A forward pass through the platform occurred at each 
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optimisation iteration to compute ℒtask and update 𝒛, as shown by the red arrows in figure 1. 𝒛 was 

iteratively updated by the Adam optimiser [14] by using a variation of the simplified gradient descent 

shown in Equation (1) where the subscript 𝑖 denotes the 𝑖th optimisation iteration and 𝜂 is a constant. 

𝒛𝑖+1 = 𝒛𝑖 − 𝜂
𝜕ℒtask

𝜕𝒛𝑖
 (1) 

A backward pass occurred at each iteration, shown by the green arrows in figure 1, to compute 

𝜕ℒtask 𝜕𝒛⁄  to perform the 𝒛 updates. The chain rule was used to compute 𝜕ℒtask 𝜕𝒛⁄  as shown in 

Equation (2). Details on the computation of these gradients are given by Attar et al. [10]. 

𝜕ℒ𝑡𝑎𝑠𝑘

𝜕𝒛
= (

𝜕ℒ𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒

𝜕𝑽
+

𝜕ℒ𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

𝜕𝑴
∙

𝜕𝑴

𝜕𝑰
∙

𝜕𝑰

𝜕𝑽
) ∙

𝜕𝑽

𝜕𝑓𝜃1
(𝒛, 𝑿)

∙
𝜕𝑓𝜃1

(𝒛, 𝑿)

𝜕𝒛
 (2) 

3.  Manufacturing performance evaluator model 

An overview of the manufacturing performance evaluator model 𝑔𝜃2
 is presented and further details 

can be found by Attar et al. [11,15]. This model was a CNN based surrogate of the HFQ process [2] 

and was able to predict the post-stamped thinning distribution associated with an input die geometry.  

3.1. Geometry definitions 

The geometries considered in this study were two subclasses of deep drawn box corners. These 

subclasses were parameterised individually and are presented in figure 2. Using these parametric 

models together with the Latin Hypercube design of experiments technique [16], 1000 CAD variants 

of these geometries were generated and prepared for the subsequent forming simulations. 

 
Figure 2. Parametric models of two symmetric deep drawn box corner geometry subclasses (standard 

corners and stepped sidewalls) considered in this study. (a) 3D CAD views with labelled corner 

parameters and (b) section views with labelled sidewall parameters. Box half side length was 500 mm 

for all geometries.  

3.2. HFQ forming simulations 

Forming simulations were required to generate the post-stamping thinning distributions that were 

associated with each CAD geometry variant. These distributions were used as the targets for the 

training and testing data for 𝑔𝜃2
. Non-isothermal simulations of the HFQ forming process [2] were 

conducted in PAM-STAMP. The Python programming language was used to automate the meshing 

and loading of each geometry variant into PAM-STAMP and launch the simulations. The processing 

parameters were kept constant and set according to [10]. The temperature and strain rate dependent 

material model for AA6082 under HFQ conditions which was presented in [17] was used. 

3.3. Model overview 

The Res-SE-U-Net image-based architecture [11,15] was used for 𝑔𝜃2
 and an overview of the 

manufacturability assessment technique using this model is presented in figure 3. The model was 

trained on 2D height map images of the input geometries and corresponding 2D thinning distributions 

plotted on the undeformed blank shape that were pre-processed from the forming simulation results. 
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Figure 3. Overview of the manufacturing performance assessment approach. (a) 2D projection of 3D 

die geometry. (b) Thinning field prediction using CNN based surrogate model given the input height 

map. 

To predict the manufacturing performance of a geometry that was being optimised, a 2D projection 

was first performed to obtain its height map, shown in figure 3(a). The 2D projection was possible 

without information loss since stamping geometries must be undercut-free to avoid collision with the 

forming tools. The projection was performed by the differentiable rasteriser available from the 

PyTorch3D python library [18]. The output of 𝑔𝜃2
 was a predicted post-stamped thinning distribution 

that was plotted on the 2D undeformed blank shape, shown in figure 3(b).  

3.4. Manufacturability constraints 

Two manufacturability constraints were formulated based on the predicted thinning distribution and 

were used to define ℒconstraint for the optimisation platform, as shown in Equation (3). 

ℒconstraint = 𝜆1ReLU(max(𝑴(𝒛)) − 𝑡max) + 𝜆2ReLU(max(‖𝛻𝑴(𝒛)‖2
∗ ) − 𝑡max

′ ) (3) 

The first and second terms were concerned with imposed constraints on the maximum thinning 𝑡max 

level and maximum thinning spatial gradient level 𝑡max
′  respectively and the 𝜆 terms were weighting 

scalars. The function ReLU(𝑥) ∶= max(0, 𝑥) was used in Equation (3) to make each of the two terms 

in ℒconstraint inactive when their max(∙) terms were below their set constraint level (𝑡max or 𝑡max
′ ) 

and active otherwise. 𝑴(𝒛) is the predicted post-stamping thinning field defined as in Equation (4) 

𝑴(𝒛) = 𝑔𝜃2
(𝜙 (𝑓𝜃1

(𝒛, 𝑿))) (4) 

where 𝜙 is the combined marching cubes [13] and differentiable rasteriser [18] steps in figure 1. Here, 

𝜙 can be thought of as a differentiable function that converts the volumetric SDF 𝑓𝜃1
(𝒛, 𝑿) into a 2D 

height map of the geometry encoded in 𝒛. ‖𝛻𝑴(𝒛)‖2
∗  is the masked norm of the spatial gradient (i.e., 

in the 𝑥 and 𝑦 directions) of the generated 2D thinning field and defined as in Equation (5). 

‖𝛻𝑴(𝒛)‖2
∗ = 𝑚𝑎𝑠𝑘 (√(

𝜕𝑴(𝒛)

𝜕𝒙
)

2

+ (
𝜕𝑴(𝒛)

𝜕𝒚
)

2

) (5) 

Figure 4 shows an illustration of ‖𝛻𝑴‖2
∗ . To obtain ‖𝛻𝑴‖2

∗ , the spatial gradient of the predicted 

thinning distribution in figure 4(a) was calculated to obtain the distribution in figure 4(b). To eliminate 

false areas of thinning gradient (for example at the border of the blank shape in figure 4(b)), the 

distribution was masked by setting pixel values corresponding to thinning < 0 to zero. The constraint 

on the maximum thinning gradient was used to constrain the thickness uniformity due to thinning. As 

an intuitive example, consider superplastic forming [19] where large values of maximum thinning may 

be deemed acceptable if spread across a large enough area.  
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Figure 4. Illustration of a 

thinning distribution that was 

predicted from 𝑔𝜃2
 and its spatial 

gradients. 

4.  Design optimisation 

This section presents details on two optimisation tasks that were performed using the optimisation 

platform that was presented in figure 1.  

4.1. Optimisation Task 1 

4.1.1.  Task description. Task 1 was to optimise the initial stepped sidewall geometry shown in figure 

5(b)(top). The objective function ℒ𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 of task 1 was formulated according to Equation (6). 

ℒobjective =
𝜆3

|𝒛|
‖𝒛0 − 𝒛‖2

2 + 𝜆4|𝐻 − 𝐻ref| (6) 

The first term was a latent similarity loss and the second term was a height loss, and the 𝜆 terms were 

weighting scalars. The former was formulated in terms of the latent vectors 𝒛0 (which was constant) 

and 𝒛  which were vector representations of the initial geometry and geometry being optimised, 

respectively. Details on 𝒛0 are given by Attar et al. [10]. Minimising this similarity loss ensured that 

the optimum geometry had geometric features that closely resemble the ones of the initial geometry 

(e.g., maintaining the stepped sidewall). Minimising height loss ensured that the height of the 

geometry being optimised 𝐻 was as close as possible to a reference height 𝐻ref. Here, 𝐻ref was taken 

to be the height of the initial geometry and was 110 mm. The 𝑡max and 𝑡max
′  constraints were set to 0.1 

and 0.0075 mm-1 respectively and were used to formulate ℒconstraint in Equation (3).  

4.1.2.  Optimisation results and discussion. The results of task 1 are shown in figure 5 and the history 

is plotted in figure 5(a). The maximum thinning steadily decreased from 0.24 to the set constraint level 

of 0.1 in the first 340 iterations. The maximum thinning gradient decreased from 0.0145 mm-1 to 

below the set constraint level of 0.0075 mm-1 in the first 245 iterations. Consequently, at iteration 340, 

both constraints were inactive according to Equation (3). After iteration 340, the remainder of the 

optimisation was driven by minimising the latent similarity and height losses while satisfying the 

constraints. A relatively large value of 𝜆4 was used in the objective function (see Equation (6)) to 

enforce the recovery of the desired height of 110 mm at the end of the optimisation. Concurrently, the 

radii geometric featured became larger to accommodate the height gain and this resulted in the latent 

similarity loss increasing from iteration 650 onwards. 
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Figure 5. Optimisation task 1 results. 

4.2. Optimisation Task 2 

4.2.1. Task description. The optimisation performed in task 1 enabled the entire geometry to change. 

In contrast, task 2 was to optimise the initial stepped sidewall geometry shown in figure 7 while 

keeping selective geometric regions fixed. The objective function ℒ𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  to be minimised was 

formulated to penalise geometric deviations from the regions to be fixed. The procedure for measuring 

these geometric deviations and computing ℒ𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 is summarised in figure 6. An example case for 

fixing the top 50 mm of the initial geometry is shown for illustration, but the same procedure can be 

applied for fixing any arbitrary geometric region (for example, in figure 7). 

 

Figure 6. Procedure for measuring the geometric deviations from a region to be fixed during 

optimisation. Example case for fixing the top 50 mm is shown. Red arrows occur once per 

optimisation iteration. Blue points are vertices of the reconstructed mesh that was the output of 

Marching Cubes (see figure 1).  

The surfaces for a region to be fixed were first selected on the CAD model and sampled with points 

using functionality from the PyTorch3D library [18]. These points are shown by the orange point set 

in figure 6 and denoted as 𝑷1 and were fixed during optimisation. At each optimisation iteration, these 

points were overlayed with vertices of the reconstructed mesh that was the output of Marching Cubes 
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(see figure 1). To identify the nearest mesh vertices, a search was performed to find all mesh vertices 

within a small radius 𝑟 = 8 mm of every point in 𝑷1 and any duplicates were removed. In practice, this 

search was efficiently performed using a KD-tree from the SciPy library [20]. The identified mesh 

vertices are shown by the blue point set 𝑷2 in figure 6(right). The chamfer distance between 𝑷1 and 

𝑷2, weighted by the scalar 𝜆5, was set as the objective function ℒobjective according to Equation (7). 

Minimising this function promoted the two point sets, and therefore the surfaces that they were 

sampled from, to be as close as possible (i.e., fixed since 𝑷1 does not change) during optimisation.  

ℒobjective = 𝜆5 ( ∑ min
𝒙𝑗∈𝑷2

‖𝒙𝑖 − 𝒙𝑗‖
2

2

𝒙𝑖∈𝑷1

+ ∑ min
𝒙𝑖∈𝑷1

‖𝒙𝑖 − 𝒙𝑗‖
2

2

𝒙𝑗∈𝑷2

) (7) 

Two cases for task 2 were considered in this study, both using the same initial geometry but with 

different regions to be fixed during optimisation, as shown in figure 7. The unselected regions shown 

in grey in figure 7 were free to change during optimisation to meet the manufacturing constraints.  

 

Figure 7. Fixed geometry regions 

shown in orange. Top 50 mm fixed for 

case 1 and bottom 30 mm fixed for 

case 2.  

The constraints on maximum thinning 𝑡max and maximum thinning gradient 𝑡max
′  were set to 0.15 and 

0.01 mm-1 respectively for case 1, and 0.1 and 0.0075 mm-1 respectively for case 2 and were used to 

formulate ℒconstraint in Equation (3).  

4.2.2. Optimisation results and discussion. The results of these cases 1 and 2 for this optimisation task 

are shown in figure 8 and figure 9 respectively. Similar to task 1, the maximum thinning and 

maximum thinning gradient fell below the set manufacturing constraints during optimisation. For both 

cases, the chamfer loss in Equation (7) remained approximately constant, which suggests that the 

regions to be fixed did not change during optimisation. This suggestion was confirmed when viewing 

the geometry evolutions during optimisation, seen in figures (b) and by viewing the sectional views in 

figures (c). Particularly for case 2, the stepped feature was removed and transitioned into a standard 

corner in order to maintain the tight radii in the fixed region. Overall, it was seen that the proposed 

methodology enabled selective geometric regions to be fixed during optimisation. 
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Figure 8. Optimisation task 2 results: case 1. 

 
Figure 9. Optimisation task 2 results: case 2. 

5.  Conclusion 

Novel applications of a deep-learning-based platform for iteratively optimising panel component 

geometries subject to hot stamping performance constraints were presented. The platform consisted of 

the interaction between two neural networks: a generator that created 3D panel component geometries 

and an evaluator that predicted their post-stamping thinning distributions. Based on these distributions, 

a constraint function was formulated that enabled both constraints on maximum thinning and 

maximum thinning spatial gradient to be incorporated into the geometric optimisation procedure. In 
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addition, a new methodology was applied to select arbitrary geometric regions, as desired design 

features to be kept unchanged, during optimisation. Based on this methodology, an objective function 

was formulated to penalise deviations from these selected regions. Overall, it was demonstrated that 

geometric changes that are driven by both maximum thinning and maximum thinning gradient are 

possible using the optimisation platform. It was further demonstrated that selective panel component 

regions can be fixed during optimisation while the rest of the geometry was free to be optimised. The 

applications presented here offer practical guidance for researchers and engineers who are planning to 

use the platform to develop optimum panel component geometries for stamping processes. 
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