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ABSTRACT
At the northern Hikurangi margin (North Island, New Zealand), shallow slow slip 

events (SSEs) frequently accommodate subduction-interface plate motion from landward 
of the trench to <20 km depth. SSEs may be spatially related to geometrical interface 
heterogeneity, though kilometer-scale plate-interface roughness imaged by active-source 
seismic methods is only constrained offshore at <12 km depth. Onshore constraints are 
comparatively lacking, but we mapped the Hikurangi margin plate interface using receiver 
functions from data collected by a dense 22 × 10 km array of 49 broadband seismometers. 
The plate interface manifests as a positive-amplitude conversion (velocity increase with 
depth) dipping west from 10 to 17 km depth. This interface corroborates relocated earth-
quake hypocenters, seismic velocity models, and downdip extrapolation of depth-converted 
two-dimensional active-source lines. Our mapped plate interface has kilometer-amplitude 
roughness we interpret as oceanic volcanics or seamounts, and is 1–4 km shallower than 
the regional-scale plate-interface model used in geodetic inversions. Slip during SSEs may 
thus have different magnitudes and/or distributions than previously thought. We show 
interface roughness also leads to shear-strength variability, where slip may nucleate in 
locally weak areas and propagate across areas of low shear-strength gradient. Heteroge-
neous shear strength throughout the depth range of the northern Hikurangi margin may 
govern the nature of plate deformation, including the localization of both slow slip and 
hazardous earthquakes.

INTRODUCTION
Constraints on plate-boundary fault geome-

try inform slip inversions and studies of seismic 
hazard and geodynamics. In active subduction 
zones, the plate interface is usually imaged at a 
resolution of tens to hundreds of meters using 
multichannel active-source seismic (MCS) sur-
veys to ∼10 km depth (Barker et al., 2009) 
and at lower (kilometer-scale) resolution and 
greater depth onshore using passive seismic 
methods (e.g., Audet and Schaeffer, 2018). We 
present a detailed onshore three-dimensional 
(3-D) plate-interface geometry using com-
mon conversion point (CCP)–stacked receiver 
functions (RFs) from a 22 × 10 km array of 
49 Guralp 6TD seismometers deployed dur-
ing the NZ3D experiment (Bell et al., 2018) at 
the northern Hikurangi margin, New Zealand 
(Fig. 1). We provide the first detailed 3-D seis-
mic images of a subduction plate interface at 

10–17 km depth, deeper than traditional MCS 
imaging and at higher resolution than most pas-
sive methods.

The northern Hikurangi margin represents a 
significant earthquake and tsunami hazard for 
North Island, New Zealand (e.g., Shaw et al., 
2022). It hosts recurring slow slip events (SSEs) 
<100 km from the trench (Wallace, 2020), likely 
associated with fluid migration and subducted 
seamounts (Shaddox and Schwartz, 2019). 
Incoming seafloor topography and centimeter- 
to kilometer-scale protolith variability likely 
cause locally variable fluid pressures (Ches-
ley et al., 2021), transitional frictional stabil-
ity (Rabinowitz et al., 2018), geometrical com-
plexity and upper-plate damage (Shaddox and 
Schwartz, 2019; Sun et al., 2020), and heteroge-
neous stresses within the deforming zone (Beall 
et al., 2019), possibly aiding accommodation of 
the plate-boundary strain budget through aseis-

mic creep and slow slip (Barnes et al., 2020). 
Direct imaging of the plate interface near the 
cumulative SSE slip peak allows reevaluation 
of geodetically inverted slip distributions, fluid 
content and role in slip, and controls on SSE 
generation and elastic strain accumulation.

TECTONIC SETTING
At the northern Hikurangi margin, the 

Pacific plate subducts beneath the Austra-
lian plate at 4–5 cm/yr (Fig. 1; Wallace et al., 
2009). Compared to the southern Hikurangi 
margin, the northern Hikurangi margin cur-
rently has low interseismic coupling, a his-
tory of Mw ≤7.1 tsunamigenic earthquakes, 
more frequent shallow M 5 + earthquakes in 
the past 20 years, and regular SSEs at <20 km 
depth (Wallace et al., 2009; Wallace, 2020). 
The ∼12-km-thick subducting Hikurangi Pla-
teau (Mochizuki et al., 2021) is geometrically 
rough; seamounts and volcanic cones comprise 
porous volcaniclastics and seafloor volcanics 
atop the oceanic basement and protrude locally 
through variably thick basin sediments (Barnes 
et al., 2020). Offshore, low-electrical-resistiv-
ity volumes within seamounts locally extend 
≤5 km into the Hikurangi Plateau (Chesley 
et al., 2021). Landward, an underthrust sea-
mount imaged in MCS surveys at 8–10 km 
depth (Barker et  al., 2018) also shows low 
resistivity (Chesley et al., 2021). The northern 
Hikurangi plate interface has been imaged to 
<12 km depth, has locally variable dip (Barker 
et al., 2009), and locally overlies regions with 
a high seismic reflectivity, interpreted as fluid-
rich sediments (Bell et al., 2010). A regional 
plate-interface model, extrapolated from off-
shore seismic data and relocated earthquake 
hypocenters, dips northwest with dip varia-
tions over distances of ≥10 km (Williams 
et al., 2013). The NZ3D seismometer array 
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was arranged where the plate interface is geo-
detically unlocked, downdip of the maximum 
cumulative SSE slip area (Fig. 1) and updip of 
a localized area of increased coupling (Heise 
et al., 2017; Wallace, 2020).

METHODS
We calculated teleseismic RFs using a 

transdimensional Bayesian framework and a 
reversible-jump Markov chain Monte Carlo 
method (Akuhara et al., 2019) on time series 
bandpass filtered with corner frequencies 0.04 
and 5 Hz (≥0.7 km wavelength at 3.5 km/s) 
and windowed 3 s before and 60 s after the 
predicted P wave. RFs were depth converted 

for Ps, PpPs, and PpSs phases by 3-D linear 
interpolation and ray-path calculation using 
velocities from Yarce et al. (2021). CCP stack-
ing projected RF amplitudes into a trench-
perpendicular volume of 100 × 24 × 90 km 
with 0.5 × 1 × 0.5 km spacing (Fig. 1). Fol-
lowing Audet and Schaeffer (2018), we aver-
aged and summed amplitudes in each grid 
cell using phase-weighted stacking, masking 
contrasting amplitudes between phases; PpPs 
and PpSs amplitudes were weighted at 3× Ps 
amplitudes. CCP amplitudes were smoothed 
perpendicular to the trench using a Gaussian 
kernel with standard deviation of 2.5 km. We 
delineated seismic units on 24 trench-perpen-

dicular sections following contrasting or con-
sistent amplitude horizons (Fig. 2A) to form 
continuous surfaces (Figs. 3A and 3B). Full 
processing details are provided in the Supple-
mental Material1.

1Supplemental Material. Details of seismic 
arrivals, RF processing, CCP stacking, synthetic 
CCP tests, and shear strength modeling. Please visit 
https://doi .org /10 .1130 /GEOL.S.20465385 to access 
the supplemental material, and contact editing@
geosociety .org with any questions.

Figure 1. The study area at the northern Hikurangi margin, New Zealand. Shown are NZ3D 
seismic-network stations (inverted triangles), common conversion point (CCP) volume area 
(blue fill), trench-normal sections through the CCP volume (thin black lines labeled as y indicate 
lateral distance within the volume in kilometers), the Hikurangi margin thrust toe (red-toothed 
black line), SHIRE (Gase et al., 2021) and 05CM-04 (Barker et al., 2009) multichannel active-
source seismic lines (thick dark-gray lines), relocated seismicity (gray points; Reyners et al., 
2011; Yarce et al., 2019, 2021; Warren-Smith et al., 2019), cumulative slow-slip magnitude for 
2002–2014 CE (red fill; Wallace, 2020), depth of plate interface from Williams et al. (2013; black 
contours), seamounts (green lines; Bell et al., 2010), historic tsunami earthquake hypocenters 
(orange stars), Pacific-Australian relative plate motion (black arrow; Wallace et al., 2004), and 
seismicity area used in Figure 2 (gray outline). Inset: North Island, New Zealand; red rectangle 
indicates main panel area.
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Figure 2. Trench-perpendicular common con-
version point (CCP) sections along y = 12 km 
transect (see Fig. 1 for location). Positive 
amplitudes (red) show velocity increases with 
depth; negative amplitudes (blue) show veloc-
ity decreases with depth. Black lines show 
interpreted boundaries between seismic units. 
(A) Smoothed CCP section. (B) Unsmoothed 
CCP section. (C) Interpreted seismic units. 
Red solid line is mean plate interface; dashed 
red line, plate interface from Gase et al. (2021); 
red dotted line, plate interface of Williams et al. 
(2013). Gray dots are seismicity within 10 km 
laterally of the section line (gray box in Fig. 1; 
Reyners et al., 2011; Yarce et al., 2019, 2021; 
Warren-Smith et al., 2019).
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Surfaces bounding the top and bottom of 
plate-interface conversions were depth aver-
aged to a mean plate interface (Figs. 2C, 3, 
and 4G). We evaluated roughness by subtract-
ing mean plate-interface depths from those 
on a 3-D plane fitted to mean plate-interface 
depths using a least-squares approach (Fig. 3D). 
Shear strength of sliding initiation was calcu-
lated assuming fault strength is governed by the 
Mohr-Coulomb failure criterion using isotropic 
stress at interface depths (Bletery et al. 2017) 
calculated from estimated density structure with 
a single friction coefficient of 0.35 (Rabinow-
itz et al., 2018). Because we concentrate on 
stress distribution rather than magnitude, we 
use several convergence azimuths and plunges 
antithetic to the plate interface, an overburden 
density of 2300 kg/m3 (Wallace et al., 2019), and 
pore-fluid factors (fluid pressure/vertical stress) 
of 0.4, 0.7, and 0.95 (Fig. 4D). Offshore, we 
used apparent dips on MCS lines (Barker et al., 
2009; Gase et al., 2021) and interpolated a mar-
gin-perpendicular line from the Williams et al. 
(2013) model. Strike of the plate interface was 
assumed to be perpendicular to MCS lines and 
margin parallel (30°) in the CCP volume. Dip 
in the CCP volume was calculated on a 5 km 
rolling average of depth in the margin-normal 
dimension (parallel to y in Fig. 1) to smooth 
interface steps produced by CCP resolution.

PLATE INTERFACE GEOMETRY
We interpret the plate interface from a west-

dipping positive-amplitude volume (increas-
ing velocity with depth; light red in Fig. 2C) 
bounded by negative-amplitude volumes. The 
top (9.5–15 km) and bottom (12–17 km depth) 
of the plate-interface volume deepen to the 
northwest from shallow bulges in the east of 
the study area (Figs. 3A and 3B). Though spac-
ing of the bounding surfaces implies a finite 
plate-interface thickness, quantifying this and 
identifying structure within the plate-interface 
volume requires higher-frequency analysis than 
used here (conversion amplitudes occur over a 
0.5–4 km depth range; see the Supplemental 
Material text, and Figs. S6–S8), so we use mean 
depth at each CCP coordinate to describe plate-
interface geometry.

Our mean plate interface is 1–4 km shallower 
than the interface of the Williams et al. (2013) 
plate-interface model, which does not coincide 
with any clear horizon within 5–10 km thickness 
of patchy negative amplitudes in the lower plate 
(Fig. 2C). This is likely because the Williams 
et al. (2013) interface was fitted to Vp-sensitive 
MCS data and seismicity likely concentrated 
in the lower plate (Reyners et al., 2011), not 
Vp- and Vs-sensitive RFs which image discon-
tinuities. High Vp/Vs ratios or lower Vs in the 
wedge would decrease interface depth in our 

CCP volume. Our mean plate interface bounds 
the top of relocated seismicity (Reyners et al., 
2011; Yarce et al., 2019, 2021; Warren-Smith 
et al., 2019) and agrees well with the down-
dip extent of plate-interface depths from recent 
two-dimensional MCS data (Fig.  2C; Gase 
et al., 2021). The best-fit plane has a strike/dip 
of 182°/22°W, ∼40° counterclockwise from the 
strike of the Williams et al. (2013) interface, and 
is 1–2 km deeper than the mean interface in the 
east and west and ≤1 km above the mean inter-
face in the study-area center (Fig. 3D). Rough-
ness on the mean interface has wavelengths of 
10–20 km and amplitudes of 2–4 km (Fig. 3D); 
both strike and roughness are consistent with 
subducting volcanic topography such as sub-
ducted seamounts imaged offshore (Bell et al., 
2010; Barnes et al., 2020).

The plate interface is thought to exist 
between siliciclastics and calcareous pelagic 
sediments in the hanging wall and Hikurangi 
Plateau volcaniclastics in the footwall (e.g., 
Barnes et al., 2020), consistent with a velocity 
increase with depth (Fig. 2). Negative ampli-
tudes below the interface are consistent with low 
electrical resistivity (Chesley et al., 2021), Vp/
Vs >1.83 (Yarce et al., 2021), and low seis-
mic-attenuation (Q) ratios (Qs/Qp <0.75; Nakai 
et al., 2021) offshore, which suggest the upper 
3–5 km of the Hikurangi Plateau hosts fluid-rich 
locally fractured or porous volcanic basement 
beneath the plate interface (lowermost boundary 
in Figs. 2 and 4G). Similar low Qs/Qp ratios in 
regional data extend downdip across the study 
area (Fig. 4G), and Vp/Vs >1.83 70–90 km 
from the trench suggests abundant fluids exist 
(Eberhart-Phillips et al., 2017; Yarce et al., 2021; 
Mochizuki et al., 2021).

MECHANICAL IMPLICATIONS OF 
A SHALLOWER, ROUGH INTERFACE

Wallace et al. (2016) inverted slip distribu-
tions at the Hikurangi margin assuming a deeper, 
smoother plate interface geometry from the 
Williams et al. (2013) model. The shallower, 
rougher, mean plate interface presented here 
may require lower accumulated elastic strain 
and SSE slip magnitudes in more complex 
distributions to fit observed geodetic displace-
ments (Wallace et  al., 2016; Williams and 
Wallace, 2018; Perez-Silva et al., 2022), com-
mensurate with greater complexity and slip in 
fast earthquakes (Shaw et al., 2022). Complex 
slip distributions would also arise from heter-
ogenous shear strength on a rough plate inter-
face with varied effective normal stress and dip 
(Fig. 4B; Sun et al., 2020). Interface roughness 
therefore remains rough to ∼16 km landward 
of the trench, possibly smoothing downdip of 
the study area with increased shear strain. Fric-
tional parameters may vary more and locally 
reduce shear strength where roughness con-
trols the lithology hosting sliding, such as in 

A

B

C

D

Figure 3. (A–C) Contoured plate-interface geometry. (D) Depth from the mean plate interface 
to the best-fit plane. The mean plate interface is shallower in the red areas and deeper in the 
blue areas. Fitted plane strike and dip (182°/22°W) is shown in the lower left. Inverted triangles 
are NZ3D seismic-network stations.
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smectite-rich altered basalts in the lower plate 
(Wallace et al., 2019; Barnes et al., 2020). Slip 
on faults with heterogeneous shear strength and 
frictional slip behaviors nucleates in, and propa-
gates from, the weakest or highest-stress areas 
(Fig. 4; Luo and Ampuero, 2018; Beall et al., 
2019). Our variable geometry could facilitate 
slow slip by limiting slip nucleation and accel-
eration locally to weak or high-stress areas. 
Heterogeneous strength and (locally) elevated 
pore-fluid factors (e.g., Luo and Ampuero, 2018) 
mean multiple distinct areas are likely close to 
failure (Figs. 4B and 4D), allowing sequential 
local slip nucleation in several areas or load-
ing from slip elsewhere to trigger slip across 
large areas of the plate interface (Perez-Silva 
et al., 2022).

The 2014 CE Gisborne SSE initiated atop a 
subducted seamount 20–35 km from the trench 
and propagated downdip, where the great-
est slip magnitudes occurred (Fig. 4; Wallace 
et al., 2016; Yohler et al., 2019). Maximum slip 
magnitudes occurred where low megathrust dip 
causes low shear-strength gradients normal to 
the trench, conducive to slip propagation (see 
the Supplemental Material text; Fig. 4; Bletery 
et al., 2017). A shallower plate interface would 
have less overburden and lower effective nor-
mal stress than the Williams et al. (2013) model, 
making seismic and/or slow slip weaker and 
more sensitive to pore-fluid pressure changes 
reducing the range in shear stress (Fig. 4D; 
Shaddox and Schwartz, 2019; Warren-Smith 
et al., 2019). We speculate that variable shear 
strength from plate roughness may link to vari-
able fault slip style along this margin. High-reso-
lution studies are needed across plate boundaries 
that do and do not experience slow slip to test 
correlations between roughness and slip style.
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