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Abstract   

Summary 
EpiCompare combines a variety of downstream analysis tools to compare, quality control and 
benchmark different epigenomic datasets. The package requires minimal input from users, can 
be run with just one line of code and provides all results of the analysis in a single interactive 
HTML report. EpiCompare thus enables downstream analysis of multiple epigenomic datasets 
in a simple, effective and user-friendly manner.    

Availability and Implementation  
!"#$%&"'()*#+*','#-'.-)*%/*0#%1%/2314%(*56*,789:;< 
https://bioconductor.org/packages/release/bioc/html/EpiCompare.html  
All source code is publically available via GitHub: 
https://github.com/neurogenomics/EpiCompare  
Documentation website 
https://neurogenomics.github.io/EpiCompare  
EpiCompare DockerHub repository: 
https://hub.docker.com/repository/docker/neurogenomicslab/epicompare  
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Introduction 
Epigenetic processes are crucial regulators of gene expression and transcriptional activity (Allis 
& Jenuwein, 2016). There is an increasing interest towards understanding disease mechanisms 
with epigenetic factors, especially in cancer (Cheng et al., 2019), autoimmune diseases 
(Mazzone et al., 2019) and brain disorders (Hannon et al., 2019; Roussos et al., 2014). In 
response to this, a variety of novel epigenomic profiling technologies have emerged in recent 
years (Cazaly et al., 2019; Mehrmohamadi et al., 2021). Yet, how the performance of these new 
methods compare with traditional approaches and how they differ from one another is largely 
unknown. Therefore, we need a way of systematically comparing and analysing epigenomic 
data generated by different methods to contrast their strengths and weaknesses. This would 
help researchers to choose the appropriate method when designing epigenomic studies and to 
establish the optimal experimental protocols and data analysis workflows. 
  
Typically, epigenomic data analysis consists of two parts: (1) data processing, where 
sequences are mapped and peaks are called; and (2) downstream analysis, where peaks are 
visualised and annotated. There have been movements to standardise and simplify data 
preprocessing steps through workflow-based pipelines (Ewels et al., 2020) such as nf-
core/chipseq (Patel et al., 2021) and nf-core/cutandrun (Cheshire et al., 2022), which require 
just one line of code to run. However for the downstream analysis, the tools are currently 
scattered in many different packages and platforms, with some requiring idiosyncratic input 
formats. This makes the latter part of the analysis challenging and time-consuming, especially 
for those with little or no computational experience.     
  
To address these issues, we introduce EpiCompare, a Bioconductor (Huber et al., 2015) R 
package for the comparison and quality control of epigenomic data. EpiCompare is able to 
perform a variety of downstream analysis on multiple epigenomic datasets simultaneously, 
which can be executed with just one line of code. Some of the main functionalities include 
precision-recall and functional annotations, which help to assess the extent of overlapping 
peaks between files and to check if peaks annotate to the same genomic features. The 
package also generates a single report collating all results of the analysis into a single 
interactive report file, making it easy for users to view and interpret the results. 

Implementation  
EpiCompare was implemented using the R programming language (v4.2)  (R Core Team, 2021) 
in accordance with all Bioconductor (Huber et al., 2015) coding and documentation standards. 
In addition, every time an update is pushed to EpiCompare, extensive checks and unit tests 
are automatically launched on three OS platforms (Unix, Mac, Window) via continuous 
integration workflows using both GitHub Actions and Bioconductor. The package EpiCompare 
can launch all analyses using a single master function (eponymously named EpiCompare). 
Users need only to supply peak files of interest as a named list of GenomicRanges objects 
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(Lawrence et al., 2013) or as paths to BED files to be automatically imported as 
GenomicRanges. It also includes several Boolean parameters, allowing users to decide which 
analyses to perform. When the function is executed, it parses the parameters into an R 
markdown file, which is ultimately rendered into an HTML document.   
  
First, EpiCompare runs three quality control and standardisation checks on all input peak files. 
The first step involves removal of blacklisted genomic regions containing well-known irregular 
or anomalous signals (Amemiya, Kundaje & Boyle, 2019). Filtering out these peaks is 
recommended for quality measures and thus, EpiCompare requires that users specify a 
‘blacklist’ peak file. The second control step uses BRGenomics (v1.1.3) tidyChromosomes 
(DeBerardine, 2022) feature to remove peaks that are found in non-standard or mitochondrial 
chromosomes. Lastly, the final check ensures that all input peak files are based on the same 
reference genome build. Users must specify the genome build used to generate the peak files 
and if needed, EpiCompare uses rtracklayer (v1.56.0) liftOver (Lawrence, Gentleman & Carey, 
2009) function to translate the genomic coordinate of peak files across builds.  

Usage 
EpiCompare can be installed on any Unix, Mac, or Windows OS using BiocManager. 
Alternatively, EpiCompare can be installed using its dedicated Docker or Singularity container 
(hosted on DockerHub), which greatly alleviates common challenges with installation and 
reproducibility. Once EpiCompare is installed, the package can be used with a single line of 
code or one function call (EpiCompare). The function requires two inputs: a list of peak files of 
interest and a ‘blacklist’ peak file containing genomic regions of irregular signals. All peak data 
can be specified as GenomicRanges objects or as paths to BED files. To ensure that genome 
builds of peak files agree, users must also state the genome build that was used to generate 
the peak, reference and blacklist files, which can be supplied as a single genome build (e.g. 
genome_build=”hg19”) or a named list of mixed genome builds (e.g. 
genome_build=list(peakfiles=”hg19”, reference=”hg38”, blacklist=”hg38”)). In addition to 
human genome builds (hg19, GRCh38), EpiCompare can ingest and/or output files aligned 
mouse (mm9, mm10) genome builds using interspecies chain files.  
  
In addition, EpiCompare offers a suite of  analysis tools and plot options to choose from, 
allowing users to tailor their downstream analysis of epigenomic data. The two optional inputs 
include reference peak file and duplicate summary outputs from Picard (Broad Institute, 2019). 
The plot options are summarised in Table 1. Once all analyses are complete, the rendered 
HTML file can be automatically launched in any web browser, or within Rstudio (RStudio Team, 
2022). All data and plots produced by the analyses are also stored in a subfolder called 
“EpiCompare_files”. 
 
EpiCompare can also call consensus peaks from groups of peak files via the function 
compute_consensus_peaks. Multiple methods for calling consensus peaks are offered, 
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including a fast but simplistic overlap strategy (method=“granges”), and a slower but more 
accurate strategy that incorporates modelling of peak distributions 
(method=”consensusseeker”) (Samb et al., 2015). This can be helpful as a pre-step for 
reducing the number of samples being input to EpiCompare, and making files more 
comparable to “replicated peaks” files in databases like ENCODE. 
 
All of the core functions used internally by the main function EpiCompare are exported so that 
they can be used in custom workflows as they may be more generally useful to the 
bioinformatics community (e.g. compute_consensus_peaks, gather_files, plot_precision_recall, 
compute_corr, rebin_peaks, overlap_heatmap, plot_enrichment liftover_grlist). See here for 
documentation on all exported functions: 
https://neurogenomics.github.io/EpiCompare/reference 
 
Table 1. Summary of plot options in EpiCompare 

Plot Description 

Upset Plot Upset plot of the number of overlapping peaks between files. 

Stat Plot Box plot showing the distribution of statistical significance (q-
values) of sample peaks that are overlapping and non-
overlapping with the reference peak file. 

Precision-recall plot Computes precision-recall curves across different peak strength 
thresholds. Metadata columns to be used for thresholding can be 
automatically inferred based on known relevant columns 
generated by SEACR, MACS2/3 and HOMER. 

Correlation plot Standardises all peak files by rebinning them into tiles of a user-
defined width across the genome, and then compute pairwise 
correlation statistics between all peak files. 

ChromHMM Plot Heatmap of ChromHMM(6) annotation of peaks. 

Chipseeker Plot Bar chart of ChIPseeker(7) annotation of peaks. 

Enrichment Plot Dot plot of KEGG pathway and GO enrichment analysis of peaks. 

TSS Plot Peak frequency around (+/-3000bp) transcriptional start site.  
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Output 
EpiCompare generates an interactive HTML report containing all results of the analysis. The 
exact code used to generate each section is embedded within the report (collapsed by default). 
The report is organised into three parts: General Metrics, Peak Overlap and Functional 
Annotation. All sections are easily navigated by an interactive table of contents. The General 
Metrics section presents information on individual peak files, including the number of peaks, 
percentage of peaks in blacklisted regions and non-standard chromosomes, distribution of 
peak width, and duplication rate of mapped fragments. The Peak Overlap section provides the 
frequency, percentage, statistical significance, precision-recall and correlation of overlapping 
and non-overlapping peaks between the sample and reference peak files. Finally, the 
Functional Annotation section  contains the functional annotation of peaks. These are 
ChromHMM (Ernst & Kellis, 2017), ChIPseeker (Yu, Wang & He, 2015), enrichment analysis 
(KEGG pathway and GO) and the frequency of peaks around the transcriptional start site.             
  
To demonstrate the functionalities, we used EpiCompare to contrast the profiling of open 
chromatin regions of human K562 cells using ATAC-seq and DNase-seq. Several of the figures 
included in the report can be seen in Figure 1 (see 
https://neurogenomics.github.io/EpiCompare/inst/report/EpiCompare_example.html for the full 
report). The two ATAC-seq (ENCFF558BLC and ENCFF333TAT) and DNase-seq 
(ENCFF274YGF and ENCFF185XRG) datasets were obtained from ENCODE (ENCODE Project 
Consortium, 2012). Using EpiCompare, we can see a difference between the two methods, 
especially in ChromHMM annotations and precision-recall plot (Figure 1d&1e).   
 

 
Figure 1. Flowchart demonstrating the use of EpiCompare. This example compares the open 
chromosome regions of human K562 cells profiled using ATAC-seq and DNase-seq. (a) Peak 
files are input into the master function (EpiCompare). (b) The function outputs an HTML report 

EpiCompare(peakfiles = peaklist,
genome_build = list(peakfiles="hg19",

reference="hg38",
blacklist="hg19"),

genome_build_output = "hg19",
blacklist = hg19_blacklist,
picard_files = picard,
reference = reference_peak,
upset_plot = TRUE,
stat_plot = TRUE,
chromHMM_plot = TRUE,
chromHMM_annotation = "K562",
chipseeker_plot = TRUE,
enrichment_plot = TRUE,
tss_plot = TRUE,
interact = TRUE,
save_output = TRUE,
output_dir = "/path/to/output")
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containing all results of the analysis. (c) Upset plot showing the number of overlapping peaks 
between peak files. (d) ChromHMM annotation of peak files. (e) Plot showing the precision-
recall score across the peak calling stringency thresholds.  

Conclusion  
Here, we presented EpiCompare, a Bioconductor R package for the comparison and quality 
control of epigenomic data. The package offers a selection of downstream analysis tools, 
enables processing of multiple epigenomic datasets in parallel and allows users to tailor their 
analyses. All of this can be executed with just one R function with minimal input from users, 
making the usage less demanding for those with little computational experience. Lastly, it 
generates a single report containing all results of the analysis, providing a simple, efficient and 
user-friendly way of comparing epigenomic datasets. EpiCompare will continue to be 
optimised and enhanced over time, with new features such as API access to thousands of 
peak files stored on public databases already underway.  
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EpiCompare(peakfiles = peaklist,
genome_build = list(peakfiles="hg19",

reference="hg38",
blacklist="hg19"),

genome_build_output = "hg19",
blacklist = hg19_blacklist,
picard_files = picard,
reference = reference_peak,
upset_plot = TRUE,
stat_plot = TRUE,
chromHMM_plot = TRUE,
chromHMM_annotation = "K562",
chipseeker_plot = TRUE,
enrichment_plot = TRUE,
tss_plot = TRUE,
interact = TRUE,
save_output = TRUE,
output_dir = "/path/to/output")
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