Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

The rworkflows suite: automated continuous
integration for quality checking, documentation
website creation, and containerised deployment of
R packages

Brian M. Schilder

Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK, W12 0BZ; UK
Dementia Research Institute at Imperial College London, London, UK, W12 0BZ https://orcid.org/0000-
0001-5949-2191
Alan E. Murphy

Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK, W12 0BZ; UK
Dementia Research Institute at Imperial College London, London, UK, W12 0BZ https://orcid.org/0000-
0002-2487-8753
Nathan G. Skene (% n.skene@imperial.ac.uk)

Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK, W12 0BZ; UK
Dementia Research Institute at Imperial College London, London, UK, W12 0BZ https://orcid.org/0000-
0002-6807-3180

Article

Keywords: continuous integration, reproducibility, FAIR, containers, Docker, Singularity, workflows, GitHub,
R packages, documentation, CRAN, Bioconductor

Posted Date: January 5th, 2023
DOI: https://doi.org/10.21203/rs.3.rs-2399015/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Page 1/18

https://doi.org/10.21203/rs.3.rs-2399015/v1
https://orcid.org/0000-0001-5949-2191
https://orcid.org/0000-0002-2487-8753
mailto:n.skene@imperial.ac.uk
https://orcid.org/0000-0002-6807-3180
https://doi.org/10.21203/rs.3.rs-2399015/v1
https://creativecommons.org/licenses/by/4.0/

Abstract

Reproducibility is essential to the progress of research, yet achieving it remains elusive even in
computational fields. Continuous Integration (Cl) platforms offer a powerful way to launch automated
workflows to check and document code, but often require considerable time, effort, and technical
expertise to setup. We therefore developed the rworkflows suite to make robust Cl workflows easy and
freely accessible to all R package developers (https://github.com/neurogenomics/rworkflows).
rworkflows consists of 1) a CRAN/Bioconductor-compatible R package template, 2) an R package to
quickly implement a standardised workflow, and 3) a centrally maintained GitHub Action. Each time it is
triggered by a push to a GitHub repository, it automatically creates virtual machines across multiple OS,
installs all dependencies, runs code checks, builds/deploys a documentation website, and builds/deploys
version-controlled containers with a built-in RStudio interface.

Additional analyses demonstrate that >50% of all R packages are only available via GitHub, highlighting
the need for accessible solutions. Thus, rworkflows greatly reduces the barriers to implementing robust
and reproducible best practices.

Introduction

Reproducibility is essential to the progress of research. Yet, >70% of researchers reported being unable to
reproduce previously published results, according to a 2016 survey by Nature. There are a variety of
reasons contributing to this including pressure to publish, selective reporting, and methods not being
reported in sufficient detail to replicate. Due to the computational nature of data analysis, there are
unique opportunities to systematically maximise reproducibility and methodological transparency in this
domain. Despite this, surveys of PubMed and GitHub have revealed that between 28-70% of
bioinformatics software were never used beyond the original publication, and 68% have fewer than five
citations 23. Contributing factors may include a lack of coding standards, insufficient documentation, and
discontinued maintenance post-publication. While general guidelines have been proposed for making
bioinformatics software FAIR (Findable Accessible Interoperable Reusable) 4, exclusively placing the
burden on individual developers to design and implement FAIR solutions is insufficient to stimulate
substantial progress in this direction °. Instead, providing tools that can be easily applied to a wide variety
of software applications with minimal effort and maximal reward for the individual developer are more
likely to receive widespread adoption by the scientific community.

Within the sciences, especially bioinformatics and computational biology, R © has become one of the
most commonly used programming languages 3. Initiatives such as The Comprehensive R Archive
Network (CRAN), Bioconductor (Bioc) 8%, rOpenSci 1917, and R-Forge have made great strides towards
improving the accessibility and robustness of R packages through establishing centralised repositories
that require certain coding/reproducibility standards. There are R functions to check whether a given R
package meets best-practice coding standards include remdcheck::recmdcheck() (for CRAN standards

Page 2/18

https://github.com/neurogenomics/rworkflows

when using the ‘~as-cran’ flag) 2, BiocCheck::BiocCheck() (for Bioc standards) '3, and
pkgcheck::pkgcheck() (for rOpenSci standards) 4. However, initially learning how to set up R packages
such that they are compatible with these standards, and manually rerunning checks to ensure they
continue to meet these standards, incur non-trivial costs in terms of both time and effort. Even if all
checks pass on one€'s local machine, this does not guarantee that the same software will run as expected
on a different Operating System (0OS) (e.g. due to version/availability conflicts across many software
dependencies). As most journals, funders, and institutions do not currently require or systematically
enforce any standards regarding passing quality tests, it is therefore usually left to each research group
to decide how rigorously they test their software. Presently, many softwares are exclusively distributed
through GitHub (e.g. via the function remotes::install_github()), due to the ease of doing so and the
perceived challenges of submitting to dedicated R package repositories such as CRAN/Bioc/rOpenSci.
Unlike these dedicated R package repositories, GitHub does not require R packages (or any other
software) to meet any quality standards, or even install or run. In the absence of additional safeguards,
this leaves even more opportunities for such softwares to fail or produce erroneous results.

A prevalent culture of openly sharing software source code and study-specific analysis scripts on freely
available repositories has helped move the scientific computing community closer to the goals of FAIR.
Over the last decade, GitHub has rapidly overtaken all other code repositories as by far the most widely
used in the fields of bioinformatics and computational biology (>90% in 2017) 3. At the same time, there
have been considerable developments in the scope and depth of tools built directly into the GitHub
architecture, including the relatively recent addition of GitHub Actions (GHA). GHA allows any user to run
customised Continuous Integration (CI) workflows directly on GitHub servers for free and can be triggered
simply by pushing updates to one's GitHub repository as usual. These workflows can call upon other
bundled scripts hosted elsewhere on GitHub to perform sets of related steps, called “actions”. These
actions can be triggered to automatically launch by user-selected events, including pushes and pull
requests. This ensures that every time a change is made to the underlying code, the software continues to
work as expected across multiple OS with a fresh install of all dependencies. However, setting up these
workflows currently takes considerable time, effort, and technical expertise.

In an effort to promote FAIRness, as well as enhance software usability and longevity, we developed
rworkflows:. a robust, reusable, flexible and automated CI suite specifically for the development of R
packages. rworkflows includes three main components: 1) templateR template: a CRAN/Bioc-compatible
R package template that automatically generates essential documentation using package metadata, 2)
rworkflows R package: a lightweight CRAN package to automatically setup short, customisable
workflows that trigger the rworkflows action, and 3) rworkflows action: an open-source action available
on the GHA Marketplace (see Methods for a more detailed description of each step in the rworkflows
action). Importantly, the rworkflows action is designed to work with any R package out-of-the-box and can
be set up by a one-time call to the R function rworkflows::use_workflow(). This means users do not need
to manually edit any workflow scripts, obviating the need to invest time in learning GHA-specific syntax or
configuration. In addition, the rworkflows action produces three main resources. First, a fully

Page 3/18

containerized installation of the R package and all of its dependencies are automatically created and
pushed to Docker Hub so that users can easily install local copies of the fully setup environment as either
Docker or Singularity containers. Second, it creates a dedicated documentation website entirely from
README files, in-code roxygen notes '° and vignettes '¢, and then deploys the website to the associated
GitHub repository via GitHub Pages. Finally, a variety of status reports can be directly displayed in the
README/\anding page of the GitHub repository as badges (e.g. whether all GHA have been passed, code
coverage reports, number of downloads, last commit date) '/, allowing maintainers and users to
immediately assess the current state of the software package.

In an effort to assist the development community in adopting rworkflows and make it a de facto standard
for R package maintainers, we have already begun to expand its user base by making Pull Requests to
GitHub repositories of R packages. In particular, we have focused on R packages that have a large user
base (e.g. Seurat '479) or are core Bioc dependencies that thousands of other softwares rely upon (e.g.
GenomicRanges 20, rtracklayer?’, RSamtools %2, VariantAnnotation 2%). We also present novel evidence
that over 52% of all R packages currently in existence are exclusively distributed via GitHub. This further
emphasises the need for robust, GitHub-based quality control/documentation standards that can be
frictionlessly utilised by non-experts.

Results
rworkflows adoption

To date, rworkflows has been successfully implemented in over 11 R packages hosted on GitHub. This
includes packages both internal and external to our own research group, as well as the rworkflows R
package itself. To illustrate this, we created a graph illustrating all R packages that currently use
rworkflows, or depend on packages that do (i.e. second-order dependents) (Fig. 2). As a proxy of
rworkflows's downstream impact on the R development community, metadata was systematically
gathered from GitHub. Totals across all 40 dependents (excluding rworkflows itself) there were: 145 stars,
93 unique clones, 70 forks, 287 unique views, and 8,182 downloads (across all distribution repositories).

An interactive and continuously updated version of this graph on the dedicated rworkflows
documentation website (see Data availability section). This online version also displays the metadata for
each repository when users hover the cursor over the respective node.

GitHub as a package distributor

Many developers who distribute their R packages through dedicated repositories like CRAN, Bioc or
rOpensSci still maintain a copy of their software on GitHub for the purposes of development, collaboration
and transparency. However many packages go through a lengthy period of development (months to
years) before being eventually accepted to one of the dedicated R package repositories. In fact, many

Page 4/18

developers may never submit their packages to these dedicated repositories, and depending on where
and if they publish their work, these packages can be introduced into the scientific community without
ever being thoroughly tested. As more software becomes exclusively distributed on GitHub, there is an
increased need for GitHub-native solutions which make Cl seamless. Since there are currently few to no
set standards imposed by journals or GitHub, it is incumbent upon the R developer community to provide
tools which not only make best-practice coding, documentation and Cl easy to implement, but
immediately beneficial enough to incentivise researchers to widely adopt these practices.

To evaluate the magnitude of need for GitHub-based solutions in the R community, we gathered
comprehensive data on which repositories R packages are hosted on (Fig. 3). An upset plot was
generated to visualise how many R packages are distributed via one or multiple repositories. Of the
49,469 R packages we identified, 38.2% (18,911) are available via CRAN, 7.13% (3,526) are available via
Bioc, 0.613% (303) are available via rOpenSci, 4.37% (2,162) are available via R-Forge, and 63.9%
(31,592) are available on GitHub. Of particular note, 52% (25,713) of all R packages are exclusively
distributed through GitHub. This is likely a very conservative underestimate, as the data on GitHub R
packages comes from a static snapshot previously collected in February 2018, whereas all the
CRAN/Bioc/rOpenSci/R-Forge data is fully up-to-date. Thus, over half of all R packages are currently not
vetted by dedicated R package distributors and are instead left to the developers to determine their own
standards and strategies for reproducibility.

Comparisons with biocthis

It should be noted that there has been at least one other effort to implement reproducible workflows for R
package development via GHA, namely through the Bioc R package biocthis %*. While rworkflows was
heavily influenced by biocthis, there are several key differences. First, rworkflows operates primarily as an
action which is merely called upon by a short workflow script that supplies certain parameters, whereas
biocthis::use_bioc_github_action() generates a static workflow script that dictates each step of the
workflow in the file itself. This distinction becomes important when updates need to be made (e.g. new
system dependencies, changes to R function implementations, deprecation of certain actions). Actions
such as rworkflows need only be updated on the centralised Github repository (see Code availability
section), which then propagates to all users who call the rworkflows action, even if they implemented
rworkflows in their package prior to the changes. In contrast, the static biocthis workflow scripts must be
updated by every user individually. In some cases, it may take a while for the user to infer that the errors
they're experiencing are due to changes in the VM provided by the GHA server (for example), rather than
something the user is doing wrong, or eventually abandon using the workflow entirely. That said, if users
wish to create a more customised workflow that diverges from the rworkflows action (and only use it as
an initial basis for their script), a full workflow version can be created with
rworkflows::use_workflow(name="rworkflows_static”), which offers functionality analogous to that of
biocthis::use_bioc_github_action().

Page 5/18

Second, rworkflows is more flexible in several regards. Users can easily control which version of the
rworkflows action to use with the tag argument to indicate a branch (e.g. “master” for the latest version)
or release tag (e.g. “v1” for a stable release version tied to a specific commit). biocthis does not currently
provide the ability to use different versions of the same workflow, unless users install a different release
of Bioc (and all Bioc packages) each time they wanted to use a different version of the workflow.
Furthermore, rworkflows offers greater customisability with additional flags (e.g. as_cran, on, branches,
run_vignettes, cache_version) as well as optionals to support act %, a separate software for running and
troubleshooting actions locally before launching them to GitHub.

Finally, rworkflows obviates the need for a user-supplied Dockerfile as it creates one on the fly instead
(see section Container usage). This level of abstraction serves to expand the usage of containers to those
who do not know how to successfully set them up manually, or are unfamiliar with the Docker-specific
syntax necessary to do so. None of this is to say that the biocthis package is obsolete, but rather that it
offers other complementary features such as more fine-grained control over template creation than the
all-in-one strategy adopted by templateR, as well as automated code styling.

Comparisons with Bioconductor servers

The rworkflows suite is not mutually exclusive to the package checking services provided by Bioc, which
regularly run standardised checks on multiple OS. To the contrary, rworkflows fills an important gap for
developers of Bioc packages who wish to comprehensively test their package before pushing to the
upstream Bioc copy, as the upstream copy can take several days to rerun checks. Having an intermediate
checking solution via GitHub provides feedback within minutes or hours, as opposed to days, thus greatly
accelerating the development cycle. While Bioc does provide a dedicated Docker container with several
prerequisite software installed (e.g. BiocManager, BiocCheck), these containers do not have any other
Bioc packages installed. rworkflows in fact uses the Bioc Docker container as a base and then builds
upon it to generate a package-specific containerised environment ready for distribution to users. This
greatly speeds up the time it takes for any given user to successfully install and start using the
developer's R package.

Discussion

Most researchers would agree that FAIR principles are noble goals and something the field as a whole
should strive for over time. However, the costs associated with putting these principles into practice (e.g.
time, learning curve, lack of computational resources) often deter researchers from ever effectively
implementing them. Therefore, there is a dire need to reduce the burden put on individual researchers by
automating reproducibility-promoting strategies, while at the same time increasing the amount of useful
output generated by such strategies. This will greatly improve the overall cost/benéefit ratio of highly
reproducible science, which will ideally incentivise widespread adoption of best practices in
reproducibility and open science. rworkflows aims to do exactly this, by enabling the implementation of a

Page 6/18

robust GHA through a single R function that is usable by even novice programmers and requires minimal
local computing power.

Peer-reviewed journals, as well as repositories like CRAN, Bioc, and rOpenSci, rely almost entirely on
volunteer community members to review and approve software packages for official release 126, Each
additional cycle in the review-response process due to common and avoidable issues can incur
substantial and unnecessary delay. This is only exacerbated by the limited time and considerable
demands both parties are faced with 2728 rworkflows serves to significantly reduce the burden of back-
and-forth troubleshooting by decreasing the prevalence of installation errors (through containerisation),
coding bugs (through package checks), and miscommunications (through documentation). As the
exponentially expanding scientific literature continues to outpace the proportion of qualified researchers

28 making this process more efficient will become increasingly critical

willing to volunteer as reviewers
for the sustainability of timely, high-quality peer-reviewed research 262°. Therefore, journals may wish to
consider requiring tools such as rworkflows to be implemented as a prerequisite for progressing the

review process.

Providing containerised environments with all necessary dependencies pre-installed and an interactive
development platform (i.e. RStudio) virtually eliminates the troubleshooting installation. This also helps
reduce the burden of maintaining software across hundreds to thousands of users, each with one or more
slightly different computing environments. As an additional incentive to developers, continued
maintenance of bioinformatics tools post-publication is associated with several metrics of impact 2.
rworkflows also allows users to control which versions of R and Bioc they wish to have installed within
the container. By default, it uses the most up-to-date development versions of R/Bioc so that developers
can stay ahead of the curve and identify issues in future versions before they have been released to the
public. This is important, as it prevents situations where developers are suddenly faced with many bugs
that are already affecting a large number of users and must be fixed urgently.

Beyond the initial publication of an R package, rworkflows offers a variety of benefits for different
stakeholders. Automating clean and consistent documentation website generation without any additional
effort encourages developers to keep their documentation up to date and accessible. Having thorough
documentation is not only an invaluable resource for new users, but also trainees in the developers’ own
lab, or even when reteaching themselves after a long period of not being active on the project.

To conclude, the rworkflows suite offers essential tools for developers and users at any level of
experience. This includes developers who 1) currently (or plan to) distribute their R packages through
repositories like CRAN/Bioc/rOpenSci and want to run quality checks before resubmitting a new version
for official release, 2) wish to exclusively distribute their code through GitHub while maintaining a high
level of coding standards, 3) want to keep the documentation updated without constant manual upkeep
of a website, 4) want to distribute their software in a fully reproducible Docker/Singularity container.
Therefore, rworkflows fills a gap that an increasing number of R developers find themselves in by

Page 7/18

reducing the burden of FAIR practices, and increasing its immediate benefits for developers and users
alike.

Methods
templateR template

For users who are creating a new R package from scratch, we have provided a CRAN/Bioc-compatible
template (templateR). To get started, one simply forks the template by navigating to the GitHub repository
(see Code availability section), clicking “Use this template”, and cloning a copy of the new R package to
begin editing it (Fig. 1a). The user need only replace key metadata fields (e.g. Package, Title, Description,
URL) in the DESCRIPTION file (a required file for all R packages). What makes this template unique is that
all other components of the package (README, vignettes, unit test setup scripts) are programmatically
autofilled based on the DESCRIPTION file. This strategy greatly minimises redundant and error-prone
aspects of R package documentation.

Alternatively, users can start with any pre-existing R package and skip directly to the next step: using
rworkflows R package. In either case, we have created a companion Wiki page to help guide users who
are unfamiliar with the Bioc standards and offer a variety of tips and tricks to make this process easier,
which we continue to maintain (see Code availability section).

rworkflows R package

The rworkflows R package is available on both CRAN and GitHub (see Code availability). Workflow scripts
(written in yam/ format) placed within a specific subdirectory within the GitHub repository
(.github/workflows/*yml), dictate which actions are triggered under which conditions. For those not
familiar with creating GHA workflows, learning the GHA-specific expressions and idiosyncrasies can be a
time-consuming and iterative process. Instead, we have abstracted this step away by autogenerating
workflow scripts from a single R command in the dedicated R package: rworkflows::use_workflow(). This
creates a fully functional workflow file in the correct subdirectory even with no arguments supplied, and
only needs to be run once per R package (Fig. 1b). For greater flexibility, users can supply the function
with their preferred arguments to generate (or regenerate) a customised workflow script to trigger the
rworkflows action. By default, the workflow will trigger the rworkflows action (see rworkflows action
section below) upon pushes or pull requests to the remote GitHub repository. For minor pushes (e.g. fixing
a typo in the README text), one can avoid triggering the action by simply adding the string “[skip ci]” to
the commit message. Triggers can be set to activate for specific GitHub branches only (e.g. “main”,
“master”) or even regex expressions (e.g. “RELEASE_**"), which can be quite helpful for developing Bioc
packages with regular release updates without having to modify the workflow script each time. Finally,
the rworkflows::use_workflow() allows users to control exactly which specific release of the rworkflows

Page 8/18

action they wish to trigger (via the tag argument). For a full description of all arguments of the
rworkflows::use_workflow() function, please refer to Table S1.

In addition, the rworkflows R package contains other useful functions for developers, including
rworkflows::use_badges(), which dynamically generates badges indicating various aspects of the
software package's status to the documentation pages (e.g. the README file). It also provides the
function rworkflows::use_dockerfile(), which writes a Docker recipe file (i.e. Dockerfile) to create a Docker
image with the user's R package (and all of its dependencies) pre-installed). Note that this same function
is called automatically in step 8 of the rworkflows action, but if a pre-existing Dockerfile in the current
working directory is detected, this step is skipped and the pre-existing Dockerfile is used instead. Thus, if
preferred, users can have more customised control over how their Docker container is configured. Finally,
rworkflows::use_readme(), rworkflows::use_vignette_docker() and rworkflows::use_vignette_getstarted()
can generate autofiled templates for each of these R package documentation components respectively.

rworkflows action

Once triggered by a workflow, the rworkflows action launches three virtual machines (VM) in parallel to
test the R package across multiple OS, including Linux, Mac, and Windows. Within each VM, the following
steps are performed (Fig. 1d):

1. Install system: Installs all 0S-specific system dependencies that account for a variety of different
functionalities that R users may .

2. Install R: Installs all R dependencies for the R package being tested. Three rounds dependency
installation are attempted using slightly different methods to ensure robustness of this procedure
without requiring the user to manually troubleshoot this step.

3. CRAN checks: Run CRAN checks via remdcheck::recmdcheck(). When run_rcmdcheck=TRUE, all
checks must pass in order for the GHA to succeed. This step uses CRAN standards by default, but
can run remdcheck without CRAN standards by setting the argument as_cran=FALSE.

4. Bioc checks: Run Bioc checks via BiocCheck::BiocCheck(). When run_bioc=TRUE, all checks must
pass in order for the action to succeed.

5. Unit tests: Runs unit tests implemented via the testthat®® and/or RUnif' R packages and generates a
downloadable report of the results.

6. Code coverage: Runs code coverage tests and uploads the results to Codecov.

7. Build website: (Re)builds the documentation website from README files, in-line roxygen notes, and

vignettes using the pkgdown'®. It then deploys the website via GitHub Pages in a new branch named
“gh-pages” in the same repository. Deploying the website via a separate branch is advantageous as it
avoids accidentally adding large HTML/CSS/JavaScript source files and libraries to the R package
itself (which can slow down its installation and performance in some situations).

Page 9/18

8. Push container: Pushes a container to Docker Hub with your R package, all of its dependencies, and
an interactive Rstudio interface pre-installed. Included in templateR is an auto-filled vignette for how
to create a local Docker or Singularity container. This step requires a valid DockerHub authentication
token, which can be stored as a GitHub Secrets variable. This ensures that only users with
appropriate push permissions to a given Docker Hub account can update the container there.

Steps 6-8 are only run on the Linux VM to avoid redundancy and avoid conflicts due to simultaneous
pushes to their respective repositories (i.e. Codecov, GitHub, Docker Hub).

Container usage

Containerisation is especially useful when distributing R packages to many users using a wide variety of
0S platforms, including high-performance computing (HPC) clusters which may have software
installation restrictions for non-root users. Once the rworkflows action has successfully completed at
least once on the Linux VM, both developers can create Docker and/or Singularity images from the
container hosted on Docker Hub. If templateR was used as a template, a vignette detailing a step-by-step
reproducible example is autogenerated. A rendered version of this vignette can be accessed via the
dedicated GitHub Pages site, and a link to this vignette is automatically rendered within the templateR
template README file (see Code availability section) under the “Documentation — Docker/Singularity”
subheader.

rworkflows adoption

Metadata was gathered from the GitHub application programming interface (API) for each repository
using the R packages echodeps 2. This was used to both identify which packages are currently using the
rworkflows action (i.e. dependents), and to gather relevant metadata on each of the repositories. Of
particular interest were the following metrics; stars (the number of users that bookmarked the GitHub repo
with a star), unique clones (the number of unique instances that the GitHub repo was downloaded from
Github), and unique views (the number unique instances the GitHub repo was viewed in a web browser).
Here, “unique” means the number of distinct internet protocol (IP) addresses. Sums of each of these
metrics across all were computed to represent the total downstream impact of rworkflows. All dependents
were visualised as nodes in a directed graph, connecting to an additional node representing the
rworkflows action (Fig. 2).

To identify the R packages with the highest potential for downstream impact on other packages, we
collected data on the number of downloads for every packages in CRAN and Bioc using
echogithub(Schilder et al. 2021). We then selected the packages with the greatest numbers of downloads
and prioritised them for making Pull Requests on their respective GitHub repos to implement rworkflows.

Page 10/18

An R markdown script to fully reproduce these analyses, as well as an interactive version of the graph
with additional metadata, is available as a vignette on the official rworkflows GitHub Pages
documentation website (See the Code availability section for link).

GitHub as a package distributor

To comprehensively assess which repositories R packages are distributed via, we collected metadata on
all known R packages from base R, CRAN, Bioc, rOpenSci, R-Forge, and GitHub using the package

echogithub®?. The total and intersection between packages in each of these repositories were then
computed and visualised using the R package UpSetR®? (Fig. 3).

It should be noted that the data on GitHub-hosted R packages comes from a static snapshot previously

collected in February 2018 via the echogithub dependency githubinstall °# whereas all the
CRAN/Bioc/rOpenSci/R-Forge data is fully up-to-date. This means that our estimates of the proportion of
R packages that are distributed exclusively through GitHub are almost certainly an underestimate. An R
markdown script to fully reproduce these analyses is available as a vignette on the rworkflows
documentation website (See the Code availability section).

Declarations
Acknowledgements

The authors would like to thank the development/maintenance teams at GitHub, Bioconductor, and
CRAN, as well as the respective contributors of the GitHub Actions that rworkflows depends on.

For the purpose of open access, the authors has applied a creative commons attribution (CC BY) licence
(where permitted by UKRI, ‘open government licence’ or ‘creative commons attribution no-derivatives (CC
BY-ND) licence’ may be stated instead) to any author accepted manuscript version arising.

Funding

This work was supported by a UK Dementia Research Institute (UK DRI) Future Leaders Fellowship
[MR/T04327X/1] and the UK DRI which receives its funding from UK DRI Ltd, funded by the UK Medical
Research Council, Alzheimer's Society and Alzheimer's Research UK.

Data availability

Up-to-date data on rworkflows adoption:

https://github.com/neurogenomics/rworkflows/network/dependents

Page 11/18

https://github.com/neurogenomics/rworkflows/network/dependents

Wiki page on creating a Bioconductor package:
https://github.com/neurogenomics/labwiki/wiki/Creating-a-Bioconductor-package

Bioconductor Guidelines for Mentors and Mentees:

https://bioconductor.github.io/bioc_mentorship_docs

Code availability

Each component of rworkflows is freely available on GitHub and/or Docker Hub:
templateR R package template:
https://github.com/neurogenomics/templateR

rworkflows R package:

https://github.com/neurogenomics/rworkflows

rworkflows GitHub Action:
https://github.com/marketplace/actions/rworkflows

rworkflows Docker container:
https://hub.docker.com/repository/docker/neurogenomicslab/rworkflows
rworkflows Docker/Singularity container vignette:
https://neurogenomics.github.io/rworkflows/articles/docker

rworkflows dependency graph vignette:
https://neurogenomics.github.io/rworkflows/articles/depgraph

R package repository distribution vignette:

https://neurogenomics.github.io/rworkflows/articles/repos
Supplementary Materials

Links

act.

Page 12/18

https://github.com/neurogenomics/labwiki/wiki/Creating-a-Bioconductor-package
https://bioconductor.github.io/bioc_mentorship_docs
https://github.com/neurogenomics/templateR
https://github.com/neurogenomics/rworkflows
https://github.com/marketplace/actions/rworkflows
https://hub.docker.com/repository/docker/neurogenomicslab/rworkflows
https://neurogenomics.github.io/rworkflows/articles/docker
https://neurogenomics.github.io/rworkflows/articles/depgraph
https://neurogenomics.github.io/rworkflows/articles/repos

https://github.com/nektos/act

Codecov:

https://codecov.io

Docker Hub:

https://hub.docker.com

GitHub Actions documentation:

https://github.com/features/actions

GitHub Pages:

https://pages.github.com

References

1.
2.

10.

11.

Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452-454 (2016).

Duck, G. et al. A Survey of Bioinformatics Database and Software Usage through Mining the
Literature. PLoS One 11, e0157989 (2016).

. Russell, P. H.,, Johnson, R. L., Ananthan, S., Harnke, B. & Carlson, N. E. A large-scale analysis of

bioinformatics code on GitHub. PLoS One 13, e0205898 (2018).

. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship.

Sci Data 3,160018 (2016).

. Clarke, D. J. B. et al. FAIRshake: Toolkit to Evaluate the FAIRness of Research Digital Resources. Cell

Syst9, 417-421 (2019).

. Ihaka, R. & Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 5,

299-314 (1996).

. Giorgi, F. M., Ceraolo, C. & Mercatelli, D. The R Language: An Engine for Bioinformatics and Data

Science. Life 12, (2022).

. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and

bioinformatics. Genome Biol. 5, R80 (2004).

. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12,

115-121 (2015).

Boettiger, C., Chamberlain, S., Hart, E. & Ram, K. Building software, building community: Lessons
from the rOpenSci project. J. Open Res. Softw. 3, 8 (2015).

Ram, K. et al. A Community of Practice Around Peer Review for Long-Term Research Software
Sustainability. Comput. Sci. Eng. 21, 59-65 (2019).

Page 13/18

https://github.com/nektos/act
https://about.codecov.io/
https://hub.docker.com/
https://github.com/features/actions
https://pages.github.com/

12.
13.

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.
31.

32.

Hornik, K. Are There Too Many R Packages? AJS 41, 59-66 (2012).

Bioconductor, Shepherd, L. & Ramos, M. BiocCheck: Bioconductor-specific package checks. (2022).
doi:doi:10.18129/B9.bioc.BiocCheck.

Wujciak-Jens, M. P. M. S. pkgcheck: Check whether a package is ready for submission to rOpenSci’s
peer-review system. (rOpenSci, 2022).

Wickham, H., Danenberg, P, Csardi, G. & Eugster, M. roxygen2: In-Line Documentation for R, 2020. R
package version.

Wickham, H. & Hesselberth, J. Pkgdown: Make static html documentation for a package. R package
version.

Yu, G. badger: Badge for R Package. (2022).
Hao, V. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.€29 (2021).

Satija, R,, Farrell, J. A, Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene
expression data. Nat. Biotechnol. 33, 495-502 (2015).

Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9,
e1003118 (2013).

Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome
browsers. Bioinformatics 25, 1841-1842 (2009).

M Morgan, H Pageés, V Obenchain, N Hayden N. Rsamtools: Binary alignment (BAM), FASTA, variant
call (BCF), and tabix file import. (2022).

Obenchain, V. et al. VariantAnnotation: a Bioconductor package for exploration and annotation of
genetic variants. Bioinformatics 30, 2076-2078 (2014).

Collado-Torres, L. biocthis: automate package and project setup for Bioconductor packages. (2022).
doi:10.18129/B9.bioc.

Lee, C. act: run your GitHub actions locally. (2022).

Vesper, |. Peer reviewers unmasked: largest global survey reveals trends. Nature Publishing Group UK
http://dx.doi.org/10.1038/d41586-018-06602-y (2018) doi:10.1038/d41586-018-06602-y.

Woolston, C. How burnout and imposter syndrome blight scientific careers. Nature Publishing Group
UK http://dx.doi.org/10.1038/d41586-021-03042-z (2021) doi:10.1038/d41586-021-03042-z.
Milojevi¢, S., Radicchi, F. & Walsh, J. P. Changing demographics of scientific careers: The rise of the
temporary workforce. Proc. Natl. Acad. Sci. U. S. A. 115, 1261612623 (2018).

Petrescu, M. & Krishen, A. S. The evolving crisis of the peer-review process. Journal of Marketing
Analytics 10, 185-186 (2022).

Wickham, H. Testthat: Get started with testing. R J. 3, 5 (2011).

Matthias Burger, Klaus Juenemann, Thomas Koenig, Roman Zenka. RUnit: R Unit Test Framework.
(2018).

Schilder, B. M., Humphrey, J. & Raj, T. echolocatoR: an automated end-to-end statistical and

functional genomic fine-mapping pipeline. Bioinformatics (2021)
Page 14/18

doi:10.1093/bioinformatics/btab658.

33. Conway, J. R, Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets
and their properties. Bioinformatics 33, 2938-2940 (2017).

34. Makiyama, K. githubinstall: A Helpful Way to Install R Packages Hosted on GitHub. (2018).

Figures

rworkflows
GitHub Action

W Linux W Mac '

Install system Install system Install system
Install R Install K Install A
CRAN checks CRAN checks CRAN checks
- ' .
Biof checks Bioc checks Bioc checks
Unit tests Uinit tests Uinit tests

Code Coverage
Bulld website

Push container

2. push1l [(/]] []] [o]

push 2 | 2 J | @ J [@]

last commit last saturday
() rworkflows | passing

g

—

' O > Documentation
. Gt P website

— devel version 0.99.1

docker &= o

= Docker/Singularity
containers

Figure 1

Page 15/18

The rworkflows suite

Example usage of rworkflows. a. Create package: create a new R package by forking and cloning the
templateR template, or use an existing R package. b. Add workflow: Install the rworkflows R package and
use the use_workflows() command to generate a workflow yam/file in the correct folder structure.
Arguments to customise the workflow are detailed in Table S1. c. Trigger action: trigger the rworkflows
GitHub Action by pushing to GitHub. d. Run the R package through the workflow on three different 0S
platforms in parallel, e. Inspect the results of the workflow run. If one or more workflows fail, an email is
automatically sent to the user. f. If issues are found, make fixes to the software and push again to
retrigger the rworkflows action. g. When all workflows have passed, the documentation website is built
using pkgdown 1 and deployed via GitHub Pages. The containerised R package is then deployed to
Docker Hub. Badges embedded into markdown or HTML files (e.g. README documentation) will also be
automatically updated to reflect the R package's current status.

echofinemap; = 3
. v EWCE
lechocondal
MAGMA.Celltyping
echoannot.
phenomix]
& 1.{}
N . :
rworkflows EpiCompare.
& ~
& o

' Fechodane]
' ' LEL UL LS

: @

Page 16/18

https://paperpile.com/c/sLTdZE/juhi

Figure 2

Reverse dependency graph.

A reverse dependency graph showing all R package GitHub repositories that currently utilise the
rworkflows action at the time of this article’s publication (blue nodes), or are dependent on a package that
does (grey nodes). Each graph node size is scaled to the number of times that package has been
downloaded. An interactive, continuously updated version of this graph is also available online (see Data
availability section).

25713
20000
(0]
N
1)
=
.
°
(4b]
@
Q9
< 10000
780
. 3176 85 34 13 4 1 239140 9 1 1 4
| base ® Y
I rOpenSci @
M R-Forge @ I [
I Bioc]]

s CRAN @ I I
e GitHub o ®
30000 20000 10000 O

Set Size
Figure 3

Repositories through which R packages are distributed.

Page 17/18

Upset plot of how R packages are distributed through base R, dedicated R packages repositories (CRAN,
Bioc, rOpenSci, R-Forge), or code repositories (GitHub). Rows indicate the total number of R packages
available through a given distributor. Columns with single dots indicate the number of R packages that
are exclusively available through one repository. Columns with multiple dots indicate the number of R
packages available via two or more repositories. The number of R packages exclusively distributed
through GitHub is highlighted in red.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

e glossary.xlsx

e tablel.xlsx

Page 18/18

https://assets.researchsquare.com/files/rs-2399015/v1/bce405e5519367cb76e09a3b.xlsx
https://assets.researchsquare.com/files/rs-2399015/v1/6b04ae8ce5ebc735fa818c9b.xlsx

