
Page 1/18

The rwork�ows suite: automated continuous
integration for quality checking, documentation
website creation, and containerised deployment of
R packages
Brian M. Schilder

Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK, W12 0BZ; UK
Dementia Research Institute at Imperial College London, London, UK, W12 0BZ https://orcid.org/0000-
0001-5949-2191
Alan E. Murphy

Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK, W12 0BZ; UK
Dementia Research Institute at Imperial College London, London, UK, W12 0BZ https://orcid.org/0000-
0002-2487-8753
Nathan G. Skene (n.skene@imperial.ac.uk)

Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK, W12 0BZ; UK
Dementia Research Institute at Imperial College London, London, UK, W12 0BZ https://orcid.org/0000-
0002-6807-3180

Article

Keywords: continuous integration, reproducibility, FAIR, containers, Docker, Singularity, work�ows, GitHub,
R packages, documentation, CRAN, Bioconductor

Posted Date: January 5th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2399015/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2399015/v1
https://orcid.org/0000-0001-5949-2191
https://orcid.org/0000-0002-2487-8753
mailto:n.skene@imperial.ac.uk
https://orcid.org/0000-0002-6807-3180
https://doi.org/10.21203/rs.3.rs-2399015/v1
https://creativecommons.org/licenses/by/4.0/

Page 2/18

Abstract
Reproducibility is essential to the progress of research, yet achieving it remains elusive even in
computational �elds. Continuous Integration (CI) platforms offer a powerful way to launch automated
work�ows to check and document code, but often require considerable time, effort, and technical
expertise to setup. We therefore developed the rwork�ows suite to make robust CI work�ows easy and
freely accessible to all R package developers (https://github.com/neurogenomics/rwork�ows).
rwork�ows consists of 1) a CRAN/Bioconductor-compatible R package template, 2) an R package to
quickly implement a standardised work�ow, and 3) a centrally maintained GitHub Action. Each time it is
triggered by a push to a GitHub repository, it automatically creates virtual machines across multiple OS,
installs all dependencies, runs code checks, builds/deploys a documentation website, and builds/deploys
version-controlled containers with a built-in RStudio interface.

Additional analyses demonstrate that >50% of all R packages are only available via GitHub, highlighting
the need for accessible solutions. Thus, rwork�ows greatly reduces the barriers to implementing robust
and reproducible best practices.

Introduction
Reproducibility is essential to the progress of research. Yet, >70% of researchers reported being unable to
reproduce previously published results, according to a 2016 survey by Nature 1. There are a variety of
reasons contributing to this including pressure to publish, selective reporting, and methods not being
reported in su�cient detail to replicate. Due to the computational nature of data analysis, there are
unique opportunities to systematically maximise reproducibility and methodological transparency in this
domain. Despite this, surveys of PubMed and GitHub have revealed that between 28-70% of
bioinformatics software were never used beyond the original publication, and 68% have fewer than �ve
citations 2,3. Contributing factors may include a lack of coding standards, insu�cient documentation, and
discontinued maintenance post-publication. While general guidelines have been proposed for making
bioinformatics software FAIR (Findable Accessible Interoperable Reusable) 4, exclusively placing the
burden on individual developers to design and implement FAIR solutions is insu�cient to stimulate
substantial progress in this direction 5. Instead, providing tools that can be easily applied to a wide variety
of software applications with minimal effort and maximal reward for the individual developer are more
likely to receive widespread adoption by the scienti�c community.

Within the sciences, especially bioinformatics and computational biology, R 6 has become one of the
most commonly used programming languages 3,7. Initiatives such as The Comprehensive R Archive
Network (CRAN), Bioconductor (Bioc) 8,9, rOpenSci 10,11, and R-Forge have made great strides towards
improving the accessibility and robustness of R packages through establishing centralised repositories
that require certain coding/reproducibility standards. There are R functions to check whether a given R
package meets best-practice coding standards include rcmdcheck::rcmdcheck() (for CRAN standards

https://github.com/neurogenomics/rworkflows

Page 3/18

when using the ‘--as-cran’ �ag) 12, BiocCheck::BiocCheck() (for Bioc standards) 13, and
pkgcheck::pkgcheck() (for rOpenSci standards) 14. However, initially learning how to set up R packages
such that they are compatible with these standards, and manually rerunning checks to ensure they
continue to meet these standards, incur non-trivial costs in terms of both time and effort. Even if all
checks pass on one’s local machine, this does not guarantee that the same software will run as expected
on a different Operating System (OS) (e.g. due to version/availability con�icts across many software
dependencies). As most journals, funders, and institutions do not currently require or systematically
enforce any standards regarding passing quality tests, it is therefore usually left to each research group
to decide how rigorously they test their software. Presently, many softwares are exclusively distributed
through GitHub (e.g. via the function remotes::install_github()), due to the ease of doing so and the
perceived challenges of submitting to dedicated R package repositories such as CRAN/Bioc/rOpenSci.
Unlike these dedicated R package repositories, GitHub does not require R packages (or any other
software) to meet any quality standards, or even install or run. In the absence of additional safeguards,
this leaves even more opportunities for such softwares to fail or produce erroneous results.

A prevalent culture of openly sharing software source code and study-speci�c analysis scripts on freely
available repositories has helped move the scienti�c computing community closer to the goals of FAIR.
Over the last decade, GitHub has rapidly overtaken all other code repositories as by far the most widely
used in the �elds of bioinformatics and computational biology (>90% in 2017) 3. At the same time, there
have been considerable developments in the scope and depth of tools built directly into the GitHub
architecture, including the relatively recent addition of GitHub Actions (GHA). GHA allows any user to run
customised Continuous Integration (CI) work�ows directly on GitHub servers for free and can be triggered
simply by pushing updates to one’s GitHub repository as usual. These work�ows can call upon other
bundled scripts hosted elsewhere on GitHub to perform sets of related steps, called “actions”. These
actions can be triggered to automatically launch by user-selected events, including pushes and pull
requests. This ensures that every time a change is made to the underlying code, the software continues to
work as expected across multiple OS with a fresh install of all dependencies. However, setting up these
work�ows currently takes considerable time, effort, and technical expertise.

In an effort to promote FAIRness, as well as enhance software usability and longevity, we developed
rwork�ows: a robust, reusable, �exible and automated CI suite speci�cally for the development of R
packages. rwork�ows includes three main components: 1) templateR template: a CRAN/Bioc-compatible
R package template that automatically generates essential documentation using package metadata, 2)
rwork�ows R package: a lightweight CRAN package to automatically setup short, customisable
work�ows that trigger the rwork�ows action, and 3) rwork�ows action: an open-source action available
on the GHA Marketplace (see Methods for a more detailed description of each step in the rwork�ows
action). Importantly, the rwork�ows action is designed to work with any R package out-of-the-box and can
be set up by a one-time call to the R function rwork�ows::use_work�ow(). This means users do not need
to manually edit any work�ow scripts, obviating the need to invest time in learning GHA-speci�c syntax or
con�guration. In addition, the rwork�ows action produces three main resources. First, a fully

Page 4/18

containerized installation of the R package and all of its dependencies are automatically created and
pushed to Docker Hub so that users can easily install local copies of the fully setup environment as either
Docker or Singularity containers. Second, it creates a dedicated documentation website entirely from
README �les, in-code roxygen notes 15 and vignettes 16, and then deploys the website to the associated
GitHub repository via GitHub Pages. Finally, a variety of status reports can be directly displayed in the
README/landing page of the GitHub repository as badges (e.g. whether all GHA have been passed, code
coverage reports, number of downloads, last commit date) 17, allowing maintainers and users to
immediately assess the current state of the software package.

In an effort to assist the development community in adopting rwork�ows and make it a de facto standard
for R package maintainers, we have already begun to expand its user base by making Pull Requests to
GitHub repositories of R packages. In particular, we have focused on R packages that have a large user
base (e.g. Seurat 18,19) or are core Bioc dependencies that thousands of other softwares rely upon (e.g.
GenomicRanges 20, rtracklayer 21, RSamtools 22, VariantAnnotation 23). We also present novel evidence
that over 52% of all R packages currently in existence are exclusively distributed via GitHub. This further
emphasises the need for robust, GitHub-based quality control/documentation standards that can be
frictionlessly utilised by non-experts.

Results

rwork�ows adoption
To date, rwork�ows has been successfully implemented in over 11 R packages hosted on GitHub. This
includes packages both internal and external to our own research group, as well as the rwork�ows R
package itself. To illustrate this, we created a graph illustrating all R packages that currently use
rwork�ows, or depend on packages that do (i.e. second-order dependents) (Fig. 2). As a proxy of
rwork�ows’s downstream impact on the R development community, metadata was systematically
gathered from GitHub. Totals across all 40 dependents (excluding rwork�ows itself) there were: 145 stars,
93 unique clones, 70 forks, 287 unique views, and 8,182 downloads (across all distribution repositories).

An interactive and continuously updated version of this graph on the dedicated rwork�ows
documentation website (see Data availability section). This online version also displays the metadata for
each repository when users hover the cursor over the respective node.

GitHub as a package distributor
Many developers who distribute their R packages through dedicated repositories like CRAN, Bioc or
rOpenSci still maintain a copy of their software on GitHub for the purposes of development, collaboration
and transparency. However many packages go through a lengthy period of development (months to
years) before being eventually accepted to one of the dedicated R package repositories. In fact, many

Page 5/18

developers may never submit their packages to these dedicated repositories, and depending on where
and if they publish their work, these packages can be introduced into the scienti�c community without
ever being thoroughly tested. As more software becomes exclusively distributed on GitHub, there is an
increased need for GitHub-native solutions which make CI seamless. Since there are currently few to no
set standards imposed by journals or GitHub, it is incumbent upon the R developer community to provide
tools which not only make best-practice coding, documentation and CI easy to implement, but
immediately bene�cial enough to incentivise researchers to widely adopt these practices.

To evaluate the magnitude of need for GitHub-based solutions in the R community, we gathered
comprehensive data on which repositories R packages are hosted on (Fig. 3). An upset plot was
generated to visualise how many R packages are distributed via one or multiple repositories. Of the
49,469 R packages we identi�ed, 38.2% (18,911) are available via CRAN, 7.13% (3,526) are available via
Bioc, 0.613% (303) are available via rOpenSci, 4.37% (2,162) are available via R-Forge, and 63.9%
(31,592) are available on GitHub. Of particular note, 52% (25,713) of all R packages are exclusively
distributed through GitHub. This is likely a very conservative underestimate, as the data on GitHub R
packages comes from a static snapshot previously collected in February 2018, whereas all the
CRAN/Bioc/rOpenSci/R-Forge data is fully up-to-date. Thus, over half of all R packages are currently not
vetted by dedicated R package distributors and are instead left to the developers to determine their own
standards and strategies for reproducibility.

Comparisons with biocthis
It should be noted that there has been at least one other effort to implement reproducible work�ows for R
package development via GHA, namely through the Bioc R package biocthis 24. While rwork�ows was
heavily in�uenced by biocthis, there are several key differences. First, rwork�ows operates primarily as an
action which is merely called upon by a short work�ow script that supplies certain parameters, whereas
biocthis::use_bioc_github_action() generates a static work�ow script that dictates each step of the
work�ow in the �le itself. This distinction becomes important when updates need to be made (e.g. new
system dependencies, changes to R function implementations, deprecation of certain actions). Actions
such as rwork�ows need only be updated on the centralised Github repository (see Code availability
section), which then propagates to all users who call the rwork�ows action, even if they implemented
rwork�ows in their package prior to the changes. In contrast, the static biocthis work�ow scripts must be
updated by every user individually. In some cases, it may take a while for the user to infer that the errors
they’re experiencing are due to changes in the VM provided by the GHA server (for example), rather than
something the user is doing wrong, or eventually abandon using the work�ow entirely. That said, if users
wish to create a more customised work�ow that diverges from the rwork�ows action (and only use it as
an initial basis for their script), a full work�ow version can be created with
rwork�ows::use_work�ow(name=”rwork�ows_static”), which offers functionality analogous to that of
biocthis::use_bioc_github_action().

Page 6/18

Second, rwork�ows is more �exible in several regards. Users can easily control which version of the
rwork�ows action to use with the tag argument to indicate a branch (e.g. “master” for the latest version)
or release tag (e.g. “v1” for a stable release version tied to a speci�c commit). biocthis does not currently
provide the ability to use different versions of the same work�ow, unless users install a different release
of Bioc (and all Bioc packages) each time they wanted to use a different version of the work�ow.
Furthermore, rwork�ows offers greater customisability with additional �ags (e.g. as_cran, on, branches,
run_vignettes, cache_version) as well as optionals to support act 25, a separate software for running and
troubleshooting actions locally before launching them to GitHub.

Finally, rwork�ows obviates the need for a user-supplied Docker�le as it creates one on the �y instead
(see section Container usage). This level of abstraction serves to expand the usage of containers to those
who do not know how to successfully set them up manually, or are unfamiliar with the Docker-speci�c
syntax necessary to do so. None of this is to say that the biocthis package is obsolete, but rather that it
offers other complementary features such as more �ne-grained control over template creation than the
all-in-one strategy adopted by templateR, as well as automated code styling.

Comparisons with Bioconductor servers
The rwork�ows suite is not mutually exclusive to the package checking services provided by Bioc, which
regularly run standardised checks on multiple OS. To the contrary, rwork�ows �lls an important gap for
developers of Bioc packages who wish to comprehensively test their package before pushing to the
upstream Bioc copy, as the upstream copy can take several days to rerun checks. Having an intermediate
checking solution via GitHub provides feedback within minutes or hours, as opposed to days, thus greatly
accelerating the development cycle. While Bioc does provide a dedicated Docker container with several
prerequisite software installed (e.g. BiocManager, BiocCheck), these containers do not have any other
Bioc packages installed. rwork�ows in fact uses the Bioc Docker container as a base and then builds
upon it to generate a package-speci�c containerised environment ready for distribution to users. This
greatly speeds up the time it takes for any given user to successfully install and start using the
developer's R package.

Discussion
Most researchers would agree that FAIR principles are noble goals and something the �eld as a whole
should strive for over time. However, the costs associated with putting these principles into practice (e.g.
time, learning curve, lack of computational resources) often deter researchers from ever effectively
implementing them. Therefore, there is a dire need to reduce the burden put on individual researchers by
automating reproducibility-promoting strategies, while at the same time increasing the amount of useful
output generated by such strategies. This will greatly improve the overall cost/bene�t ratio of highly
reproducible science, which will ideally incentivise widespread adoption of best practices in
reproducibility and open science. rwork�ows aims to do exactly this, by enabling the implementation of a

Page 7/18

robust GHA through a single R function that is usable by even novice programmers and requires minimal
local computing power.

Peer-reviewed journals, as well as repositories like CRAN, Bioc, and rOpenSci, rely almost entirely on
volunteer community members to review and approve software packages for o�cial release 11,26. Each
additional cycle in the review-response process due to common and avoidable issues can incur
substantial and unnecessary delay. This is only exacerbated by the limited time and considerable
demands both parties are faced with 27,28. rwork�ows serves to signi�cantly reduce the burden of back-
and-forth troubleshooting by decreasing the prevalence of installation errors (through containerisation),
coding bugs (through package checks), and miscommunications (through documentation). As the
exponentially expanding scienti�c literature continues to outpace the proportion of quali�ed researchers
willing to volunteer as reviewers 28, making this process more e�cient will become increasingly critical
for the sustainability of timely, high-quality peer-reviewed research 26,29. Therefore, journals may wish to
consider requiring tools such as rwork�ows to be implemented as a prerequisite for progressing the
review process.

Providing containerised environments with all necessary dependencies pre-installed and an interactive
development platform (i.e. RStudio) virtually eliminates the troubleshooting installation. This also helps
reduce the burden of maintaining software across hundreds to thousands of users, each with one or more
slightly different computing environments. As an additional incentive to developers, continued
maintenance of bioinformatics tools post-publication is associated with several metrics of impact 3.
rwork�ows also allows users to control which versions of R and Bioc they wish to have installed within
the container. By default, it uses the most up-to-date development versions of R/Bioc so that developers
can stay ahead of the curve and identify issues in future versions before they have been released to the
public. This is important, as it prevents situations where developers are suddenly faced with many bugs
that are already affecting a large number of users and must be �xed urgently.

Beyond the initial publication of an R package, rwork�ows offers a variety of bene�ts for different
stakeholders. Automating clean and consistent documentation website generation without any additional
effort encourages developers to keep their documentation up to date and accessible. Having thorough
documentation is not only an invaluable resource for new users, but also trainees in the developers’ own
lab, or even when reteaching themselves after a long period of not being active on the project.

To conclude, the rwork�ows suite offers essential tools for developers and users at any level of
experience. This includes developers who 1) currently (or plan to) distribute their R packages through
repositories like CRAN/Bioc/rOpenSci and want to run quality checks before resubmitting a new version
for o�cial release, 2) wish to exclusively distribute their code through GitHub while maintaining a high
level of coding standards, 3) want to keep the documentation updated without constant manual upkeep
of a website, 4) want to distribute their software in a fully reproducible Docker/Singularity container.
Therefore, rwork�ows �lls a gap that an increasing number of R developers �nd themselves in by

Page 8/18

reducing the burden of FAIR practices, and increasing its immediate bene�ts for developers and users
alike.

Methods

templateR template
For users who are creating a new R package from scratch, we have provided a CRAN/Bioc-compatible
template (templateR). To get started, one simply forks the template by navigating to the GitHub repository
(see Code availability section), clicking “Use this template”, and cloning a copy of the new R package to
begin editing it (Fig. 1a). The user need only replace key metadata �elds (e.g. Package, Title, Description,
URL) in the DESCRIPTION �le (a required �le for all R packages). What makes this template unique is that
all other components of the package (README, vignettes, unit test setup scripts) are programmatically
auto�lled based on the DESCRIPTION �le. This strategy greatly minimises redundant and error-prone
aspects of R package documentation.

Alternatively, users can start with any pre-existing R package and skip directly to the next step: using
rwork�ows R package. In either case, we have created a companion Wiki page to help guide users who
are unfamiliar with the Bioc standards and offer a variety of tips and tricks to make this process easier,
which we continue to maintain (see Code availability section).

rwork�ows R package
The rwork�ows R package is available on both CRAN and GitHub (see Code availability). Work�ow scripts
(written in yaml format) placed within a speci�c subdirectory within the GitHub repository
(.github/work�ows/*.yml), dictate which actions are triggered under which conditions. For those not
familiar with creating GHA work�ows, learning the GHA-speci�c expressions and idiosyncrasies can be a
time-consuming and iterative process. Instead, we have abstracted this step away by autogenerating
work�ow scripts from a single R command in the dedicated R package: rwork�ows::use_work�ow(). This
creates a fully functional work�ow �le in the correct subdirectory even with no arguments supplied, and
only needs to be run once per R package (Fig. 1b). For greater �exibility, users can supply the function
with their preferred arguments to generate (or regenerate) a customised work�ow script to trigger the
rwork�ows action. By default, the work�ow will trigger the rwork�ows action (see rwork�ows action
section below) upon pushes or pull requests to the remote GitHub repository. For minor pushes (e.g. �xing
a typo in the README text), one can avoid triggering the action by simply adding the string “[skip ci]” to
the commit message. Triggers can be set to activate for speci�c GitHub branches only (e.g. “main”,
“master”) or even regex expressions (e.g. “RELEASE_**”), which can be quite helpful for developing Bioc
packages with regular release updates without having to modify the work�ow script each time. Finally,
the rwork�ows::use_work�ow() allows users to control exactly which speci�c release of the rwork�ows

Page 9/18

action they wish to trigger (via the tag argument). For a full description of all arguments of the
rwork�ows::use_work�ow() function, please refer to Table S1.

In addition, the rwork�ows R package contains other useful functions for developers, including
rwork�ows::use_badges(), which dynamically generates badges indicating various aspects of the
software package’s status to the documentation pages (e.g. the README �le). It also provides the
function rwork�ows::use_docker�le(), which writes a Docker recipe �le (i.e. Docker�le) to create a Docker
image with the user’s R package (and all of its dependencies) pre-installed). Note that this same function
is called automatically in step 8 of the rwork�ows action, but if a pre-existing Docker�le in the current
working directory is detected, this step is skipped and the pre-existing Docker�le is used instead. Thus, if
preferred, users can have more customised control over how their Docker container is con�gured. Finally,
rwork�ows::use_readme(), rwork�ows::use_vignette_docker() and rwork�ows::use_vignette_getstarted()
can generate auto�led templates for each of these R package documentation components respectively.

rwork�ows action
Once triggered by a work�ow, the rwork�ows action launches three virtual machines (VM) in parallel to
test the R package across multiple OS, including Linux, Mac, and Windows. Within each VM, the following
steps are performed (Fig. 1d):

1. Install system: Installs all OS-speci�c system dependencies that account for a variety of different
functionalities that R users may .

2. Install R: Installs all R dependencies for the R package being tested. Three rounds dependency
installation are attempted using slightly different methods to ensure robustness of this procedure
without requiring the user to manually troubleshoot this step.

3. CRAN checks: Run CRAN checks via rcmdcheck::rcmdcheck(). When run_rcmdcheck=TRUE, all
checks must pass in order for the GHA to succeed. This step uses CRAN standards by default, but
can run rcmdcheck without CRAN standards by setting the argument as_cran=FALSE.

4. Bioc checks: Run Bioc checks via BiocCheck::BiocCheck(). When run_bioc=TRUE, all checks must
pass in order for the action to succeed.

5. Unit tests: Runs unit tests implemented via the testthat30 and/or RUnit31 R packages and generates a
downloadable report of the results.

�. Code coverage: Runs code coverage tests and uploads the results to Codecov.

7. Build website: (Re)builds the documentation website from README �les, in-line roxygen notes, and
vignettes using the pkgdown16. It then deploys the website via GitHub Pages in a new branch named
“gh-pages” in the same repository. Deploying the website via a separate branch is advantageous as it
avoids accidentally adding large HTML/CSS/JavaScript source �les and libraries to the R package
itself (which can slow down its installation and performance in some situations).

Page 10/18

�. Push container: Pushes a container to Docker Hub with your R package, all of its dependencies, and
an interactive Rstudio interface pre-installed. Included in templateR is an auto-�lled vignette for how
to create a local Docker or SIngularity container. This step requires a valid DockerHub authentication
token, which can be stored as a GitHub Secrets variable. This ensures that only users with
appropriate push permissions to a given Docker Hub account can update the container there.

Steps 6-8 are only run on the Linux VM to avoid redundancy and avoid con�icts due to simultaneous
pushes to their respective repositories (i.e. Codecov, GitHub, Docker Hub).

Container usage
Containerisation is especially useful when distributing R packages to many users using a wide variety of
OS platforms, including high-performance computing (HPC) clusters which may have software
installation restrictions for non-root users. Once the rwork�ows action has successfully completed at
least once on the Linux VM, both developers can create Docker and/or Singularity images from the
container hosted on Docker Hub. If templateR was used as a template, a vignette detailing a step-by-step
reproducible example is autogenerated. A rendered version of this vignette can be accessed via the
dedicated GitHub Pages site, and a link to this vignette is automatically rendered within the templateR
template README �le (see Code availability section) under the “Documentation → Docker/Singularity”
subheader.

rwork�ows adoption
Metadata was gathered from the GitHub application programming interface (API) for each repository
using the R packages echodeps 32. This was used to both identify which packages are currently using the
rwork�ows action (i.e. dependents), and to gather relevant metadata on each of the repositories. Of
particular interest were the following metrics; stars (the number of users that bookmarked the GitHub repo
with a star), unique clones (the number of unique instances that the GitHub repo was downloaded from
Github), and unique views (the number unique instances the GitHub repo was viewed in a web browser).
Here, “unique” means the number of distinct internet protocol (IP) addresses. Sums of each of these
metrics across all were computed to represent the total downstream impact of rwork�ows. All dependents
were visualised as nodes in a directed graph, connecting to an additional node representing the
rwork�ows action (Fig. 2).

To identify the R packages with the highest potential for downstream impact on other packages, we
collected data on the number of downloads for every packages in CRAN and Bioc using
echogithub(Schilder et al. 2021). We then selected the packages with the greatest numbers of downloads
and prioritised them for making Pull Requests on their respective GitHub repos to implement rwork�ows.

Page 11/18

An R markdown script to fully reproduce these analyses, as well as an interactive version of the graph
with additional metadata, is available as a vignette on the o�cial rwork�ows GitHub Pages
documentation website (See the Code availability section for link).

GitHub as a package distributor
To comprehensively assess which repositories R packages are distributed via, we collected metadata on
all known R packages from base R, CRAN, Bioc, rOpenSci, R-Forge, and GitHub using the package
echogithub32. The total and intersection between packages in each of these repositories were then
computed and visualised using the R package UpSetR33 (Fig. 3).

It should be noted that the data on GitHub-hosted R packages comes from a static snapshot previously
collected in February 2018 via the echogithub dependency githubinstall 34, whereas all the
CRAN/Bioc/rOpenSci/R-Forge data is fully up-to-date. This means that our estimates of the proportion of
R packages that are distributed exclusively through GitHub are almost certainly an underestimate. An R
markdown script to fully reproduce these analyses is available as a vignette on the rwork�ows
documentation website (See the Code availability section).

Declarations

Acknowledgements
The authors would like to thank the development/maintenance teams at GitHub, Bioconductor, and
CRAN, as well as the respective contributors of the GitHub Actions that rwork�ows depends on.

For the purpose of open access, the authors has applied a creative commons attribution (CC BY) licence
(where permitted by UKRI, ‘open government licence’ or ‘creative commons attribution no-derivatives (CC
BY-ND) licence’ may be stated instead) to any author accepted manuscript version arising.

Funding
This work was supported by a UK Dementia Research Institute (UK DRI) Future Leaders Fellowship
[MR/T04327X/1] and the UK DRI which receives its funding from UK DRI Ltd, funded by the UK Medical
Research Council, Alzheimer’s Society and Alzheimer's Research UK.

Data availability
Up-to-date data on rwork�ows adoption:

https://github.com/neurogenomics/rwork�ows/network/dependents

https://github.com/neurogenomics/rworkflows/network/dependents

Page 12/18

Wiki page on creating a Bioconductor package:
https://github.com/neurogenomics/labwiki/wiki/Creating-a-Bioconductor-package

Bioconductor Guidelines for Mentors and Mentees:

https://bioconductor.github.io/bioc_mentorship_docs

Code availability
Each component of rwork�ows is freely available on GitHub and/or Docker Hub:

templateR R package template:

https://github.com/neurogenomics/templateR

rwork�ows R package:

https://github.com/neurogenomics/rwork�ows

rwork�ows GitHub Action:

https://github.com/marketplace/actions/rwork�ows

rwork�ows Docker container:

https://hub.docker.com/repository/docker/neurogenomicslab/rwork�ows

rwork�ows Docker/Singularity container vignette:

https://neurogenomics.github.io/rwork�ows/articles/docker

rwork�ows dependency graph vignette:

https://neurogenomics.github.io/rwork�ows/articles/depgraph

R package repository distribution vignette:

https://neurogenomics.github.io/rwork�ows/articles/repos

Supplementary Materials

Links
act:

https://github.com/neurogenomics/labwiki/wiki/Creating-a-Bioconductor-package
https://bioconductor.github.io/bioc_mentorship_docs
https://github.com/neurogenomics/templateR
https://github.com/neurogenomics/rworkflows
https://github.com/marketplace/actions/rworkflows
https://hub.docker.com/repository/docker/neurogenomicslab/rworkflows
https://neurogenomics.github.io/rworkflows/articles/docker
https://neurogenomics.github.io/rworkflows/articles/depgraph
https://neurogenomics.github.io/rworkflows/articles/repos

Page 13/18

https://github.com/nektos/act

Codecov:

https://codecov.io

Docker Hub:

https://hub.docker.com

GitHub Actions documentation:

https://github.com/features/actions

GitHub Pages:

https://pages.github.com

References
1. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

2. Duck, G. et al. A Survey of Bioinformatics Database and Software Usage through Mining the
Literature. PLoS One 11, e0157989 (2016).

3. Russell, P. H., Johnson, R. L., Ananthan, S., Harnke, B. & Carlson, N. E. A large-scale analysis of
bioinformatics code on GitHub. PLoS One 13, e0205898 (2018).

4. Wilkinson, M. D. et al. The FAIR Guiding Principles for scienti�c data management and stewardship.
Sci Data 3, 160018 (2016).

5. Clarke, D. J. B. et al. FAIRshake: Toolkit to Evaluate the FAIRness of Research Digital Resources. Cell
Syst 9, 417–421 (2019).

�. Ihaka, R. & Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 5,
299–314 (1996).

7. Giorgi, F. M., Ceraolo, C. & Mercatelli, D. The R Language: An Engine for Bioinformatics and Data
Science. Life 12, (2022).

�. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol. 5, R80 (2004).

9. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12,
115–121 (2015).

10. Boettiger, C., Chamberlain, S., Hart, E. & Ram, K. Building software, building community: Lessons
from the rOpenSci project. J. Open Res. Softw. 3, 8 (2015).

11. Ram, K. et al. A Community of Practice Around Peer Review for Long-Term Research Software
Sustainability. Comput. Sci. Eng. 21, 59–65 (2019).

https://github.com/nektos/act
https://about.codecov.io/
https://hub.docker.com/
https://github.com/features/actions
https://pages.github.com/

Page 14/18

12. Hornik, K. Are There Too Many R Packages? AJS 41, 59–66 (2012).

13. Bioconductor, Shepherd, L. & Ramos, M. BiocCheck: Bioconductor-speci�c package checks. (2022).
doi:doi:10.18129/B9.bioc.BiocCheck.

14. Wujciak-Jens, M. P. M. S. pkgcheck: Check whether a package is ready for submission to rOpenSci’s
peer-review system. (rOpenSci, 2022).

15. Wickham, H., Danenberg, P., Csárdi, G. & Eugster, M. roxygen2: In-Line Documentation for R, 2020. R
package version.

1�. Wickham, H. & Hesselberth, J. Pkgdown: Make static html documentation for a package. R package
version.

17. Yu, G. badger: Badge for R Package. (2022).

1�. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

19. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene
expression data. Nat. Biotechnol. 33, 495–502 (2015).

20. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9,
e1003118 (2013).

21. Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome
browsers. Bioinformatics 25, 1841–1842 (2009).

22. M Morgan, H Pagès, V Obenchain, N Hayden N. Rsamtools: Binary alignment (BAM), FASTA, variant
call (BCF), and tabix �le import. (2022).

23. Obenchain, V. et al. VariantAnnotation: a Bioconductor package for exploration and annotation of
genetic variants. Bioinformatics 30, 2076–2078 (2014).

24. Collado-Torres, L. biocthis: automate package and project setup for Bioconductor packages. (2022).
doi:10.18129/B9.bioc.

25. Lee, C. act: run your GitHub actions locally. (2022).

2�. Vesper, I. Peer reviewers unmasked: largest global survey reveals trends. Nature Publishing Group UK
http://dx.doi.org/10.1038/d41586-018-06602-y (2018) doi:10.1038/d41586-018-06602-y.

27. Woolston, C. How burnout and imposter syndrome blight scienti�c careers. Nature Publishing Group
UK http://dx.doi.org/10.1038/d41586-021-03042-z (2021) doi:10.1038/d41586-021-03042-z.

2�. Milojević, S., Radicchi, F. & Walsh, J. P. Changing demographics of scienti�c careers: The rise of the
temporary workforce. Proc. Natl. Acad. Sci. U. S. A. 115, 12616–12623 (2018).

29. Petrescu, M. & Krishen, A. S. The evolving crisis of the peer-review process. Journal of Marketing
Analytics 10, 185–186 (2022).

30. Wickham, H. Testthat: Get started with testing. R J. 3, 5 (2011).

31. Matthias Burger, Klaus Juenemann, Thomas Koenig, Roman Zenka. RUnit: R Unit Test Framework.
(2018).

32. Schilder, B. M., Humphrey, J. & Raj, T. echolocatoR: an automated end-to-end statistical and
functional genomic �ne-mapping pipeline. Bioinformatics (2021)

Page 15/18

doi:10.1093/bioinformatics/btab658.

33. Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets
and their properties. Bioinformatics 33, 2938–2940 (2017).

34. Makiyama, K. githubinstall: A Helpful Way to Install R Packages Hosted on GitHub. (2018).

Figures

Figure 1

Page 16/18

The rwork�ows suite

Example usage of rwork�ows. a. Create package: create a new R package by forking and cloning the
templateR template, or use an existing R package. b. Add work�ow: Install the rwork�ows R package and
use the use_work�ows() command to generate a work�ow yaml �le in the correct folder structure.
Arguments to customise the work�ow are detailed in Table S1. c. Trigger action: trigger the rwork�ows
GitHub Action by pushing to GitHub. d. Run the R package through the work�ow on three different OS
platforms in parallel, e. Inspect the results of the work�ow run. If one or more work�ows fail, an email is
automatically sent to the user. f. If issues are found, make �xes to the software and push again to
retrigger the rwork�ows action. g. When all work�ows have passed, the documentation website is built
using pkgdown 16 and deployed via GitHub Pages. The containerised R package is then deployed to
Docker Hub. Badges embedded into markdown or HTML �les (e.g. README documentation) will also be
automatically updated to re�ect the R package’s current status.

https://paperpile.com/c/sLTdZE/juhi

Page 17/18

Figure 2

Reverse dependency graph.

A reverse dependency graph showing all R package GitHub repositories that currently utilise the
rwork�ows action at the time of this article’s publication (blue nodes), or are dependent on a package that
does (grey nodes). Each graph node size is scaled to the number of times that package has been
downloaded. An interactive, continuously updated version of this graph is also available online (see Data
availability section).

Figure 3

Repositories through which R packages are distributed.

Page 18/18

Upset plot of how R packages are distributed through base R, dedicated R packages repositories (CRAN,
Bioc, rOpenSci, R-Forge), or code repositories (GitHub). Rows indicate the total number of R packages
available through a given distributor. Columns with single dots indicate the number of R packages that
are exclusively available through one repository. Columns with multiple dots indicate the number of R
packages available via two or more repositories. The number of R packages exclusively distributed
through GitHub is highlighted in red.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

glossary.xlsx

table1.xlsx

https://assets.researchsquare.com/files/rs-2399015/v1/bce405e5519367cb76e09a3b.xlsx
https://assets.researchsquare.com/files/rs-2399015/v1/6b04ae8ce5ebc735fa818c9b.xlsx

