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Abstract: Peripheral Electrical Stimulation (PES) of afferent pathways has received increased interest
as a solution to reduce pathological tremors with minimal side effects. Closed-loop PES systems
might present some advantages in reducing tremors, but further developments are required in
order to reliably detect pathological tremors to accurately enable the stimulation only if a tremor is
present. This study explores different machine learning (K-Nearest Neighbors, Random Forest and
Support Vector Machines) and deep learning (Long Short-Term Memory neural networks) models
in order to provide a binary (Tremor; No Tremor) classification of kinematic (angle displacement)
and electromyography (EMG) signals recorded from patients diagnosed with essential tremors and
healthy subjects. Three types of signal sequences without any feature extraction were used as inputs
for the classifiers: kinematics (wrist flexion–extension angle), raw EMG and EMG envelopes from
wrist flexor and extensor muscles. All the models showed high classification scores (Tremor vs. No
Tremor) for the different input data modalities, ranging from 0.8 to 0.99 for the f1 score. The LSTM
models achieved 0.98 f1 scores for the classification of raw EMG signals, showing high potential
to detect tremors without any processed features or preliminary information. These models may
be explored in real-time closed-loop PES strategies to detect tremors and enable stimulation with
minimal signal processing steps.

Keywords: machine learning; tremor; LSTM; electrical stimulation

1. Introduction

Neural disorders are the leading cause of disability worldwide. In particular, patho-
logical tremors are one of the most common motor disorders in the adult population and
can severely hamper the execution of activities of daily living (ADLs) [1]. A pathological
tremor refers to the oscillatory and involuntary movements of one or more body parts in
the frequency band above 4 Hz [2]. For some patients, the amplitude and constant presence
of the tremor oscillations affects the performance of ADLs [3] and the tremor becomes a
disabling condition, not only impacting the motor function but also the mental health of
the patients as they suffer comorbidities, such as depression or stress. It is worth noting
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pathological tremors differs from physiological tremors, which are also described as invol-
untary limb oscillations in the frequency band between 8 Hz and 12 Hz [4]. Physiological
tremors are observed in healthy individuals with different features. However, they do
not compromise ADLs, their amplitude is reduced and their frequency is typically higher
compared with pathological tremors [5].

Essential Tremor (ET) is the main clinical diagnosis leading to pathological tremors,
with an estimated incidence of around 4% to 5% of the population above 65 years old [6].
An ET diagnosis is purely clinical, as upper limb action in the frequency band between 4 Hz
and 12 Hz is the main clinical manifestation, and the disease etiology and pathophysiology
are not completely understood [7,8]. Besides its causes, the major challenge in ET is the
absence of a cure, since current treatments are limited to symptomatic relief, i.e., tremor
intensity reduction [9]. The first line of treatment is pharmacotherapy, but approximately
50% of the patients do not benefit from this because of its efficacy or its associated adverse
effects [9]. Neurosurgical interventions, such as Deep Brain Stimulation or High-Intensity
Focused Ultrasound, are the most effective solutions for the most severe tremor cases [10].
However, there is a limited number of patients who are eligible for these procedures due
to the surgery-related risks, elevated costs and reluctance due to the potential adverse
effects [6,11]. Therefore, there is an increasing interest in alternative tremor management
solutions which are less invasive and overcome the side effects of standard treatments with
similar efficacy [12,13].

Peripheral Electrical Stimulation (PES) of afferent pathways (stimulation below motor
threshold) is emerging as a potential solution to reduce pathological tremors with poten-
tially minimal side effects [14]. PES below motor threshold delivers electrical currents that
activate the afferent or sensory pathways which are hypothesized to disrupt tremors at
different sites of the central nervous system [15]. Some studies have gathered evidence
about the relevance of synchronizing the stimulation with physiological events, such as the
tremor phase or frequency, in order to promote neural adaptations in the spinal cord or
brain circuits which prevent the tremor input from reaching the muscles [16]. Thus, the
development of stimulation strategies that integrate bio-signals, such as kinematic or elec-
tromyography (EMG) measurements, into closed-loop control systems in order to adapt the
stimulation to the tremor features might be a cornerstone for the optimization of PES-based
tremor reduction therapies. The application of stimulation while a tremor is present and
timed with the tremor phase might present some benefits: the maximization of neural
plasticity induction according to paired associative stimulation protocols [17]; a reduction
in the stimulation dose and a likely reduction in the development of tolerance [16]; or the
minimization of interference with voluntary movements [18].

So far, very few studies have tested the closed-loop PES of afferent pathways in order
to reduce tremors, and these studies have used algorithms based on traditional signal
processing methods [16]. Some of the closed-loop strategies enable stimulation only if
tremor is detected using EMG or kinematic signals measured from the target muscle or
joint. Such is the case for the out-of-phase and Selective and Adaptive Timely Stimulation
(SATS) strategies, which use sequential recording and stimulation windows [19]. During
a recording window (where no stimulation is applied) the envelope in the tremor band
is extracted by means of rectification and band-pass filtering or the Hilbert Transform
application of the raw signals [20]. Then, the tremor frequency and period are estimated by
identifying the local maxima (tremor peaks) in the envelope, which are above a heuristic
threshold. If a tremor is detected, the stimulation window is enabled, and the stimulation
is delivered based on the next predicted tremor cycle (out-of-phase) or real-time tremor
estimation (SATS) [15]. Other groups have proposed tremor detection methods based on
computing the power spectral density (PSD) of the envelope of the EMG signal [21,22]. In
this case, the power peak in the tremor band is identified and compared against a threshold
that has been previously empirically estimated with data recorded from healthy subjects
without tremors.
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A common limitation of tremor detection methods is the use of user-defined thresh-
olds to detect tremors either based on the time or frequency features of the signals, as this
procedure requires preliminary data and operator experience. The application of machine
learning techniques to classify or predict pathological signals may overcome the limitations
of traditional approaches. In the literature, there are numerous approaches to quantify
and monitor pathological tremors using machine learning techniques or EMG measure-
ments [23,24]. Alves et al. [25] explored the classification of hand parkinsonian tremors
based on machine learning methods (SVM, KNN and Random Forest, among others) using
272 features extracted from kinematics data measured with Inertial Measurement Units
(IMUs). Jeon et al. [26] proposed the classification of tremor severity from 15 kinematic
features using several machine learning algorithms (SVM and KNN) in order to score
parkinsonian tremor severity which matched the Parkinson’s Disease rating scale (UPDRS).
These and other implementations use the extraction and identification of features as a
preliminary step to perform classification tasks [27]. In the application of closed-loop PES,
minimizing pre-processing stages is a desirable characteristic as the methods must be
applied continuously in real-time and are likely embedded in wearable systems.

The application of Artificial Neural Networks (ANNs) and deep learning models to
model pathological tremors has gained interest in recent years [28]. The higher complexity
of some of these models, such as auto-encoders, Recurrent Neural Networks or Long Short-
Term Memory (LSTM) neural networks, allows the identification of temporal patterns in a
time series [29]. However, whether the increase in the complexity of these models translates
into more accurate outcomes compared to traditional machine learning approaches is yet
to be proven [30].

Nonetheless, tremorgenic signals, recorded either from kinematics or EMG, arise
from spatial and temporal mechanisms containing linear and non-linear information.
Previous studies have provided entropy measures that show evidence about disorder
in the system [31]. Moreover, some other studies provide an automatic analysis of the
characterization of ET based on the linear and non-linear features of digital drawings [32].

The main goal of this study was to develop a tremor detection method based on
kinematic and EMG signals. The performance of the binary tremor classification based
on traditional machine learning techniques (SVM, KNN and Random Forest) and deep
learning models (Long Short-Term Memory networks) was assessed using kinematic and
EMG signals recorded from healthy subjects and ET patients. We hypothesized that pre-
processed datasets would lead to higher prediction scores, and that the LSTM classifiers
would outperform the classification results achieved by traditional models. The models
provided here could be integrated into closed-loop PES tremor reduction strategies.

2. Materials and Methods
2.1. Participants and Data Acquisition

Twelve patients diagnosed with ET from Gregorio Marañón Hospital (Madrid, Spain)
and eleven healthy subjects were recruited for this study. For the ET patients, the presence
of postural tremors and predominant wrist flexion–extension tremors, and the absence of
additional neuromuscular disorders were conditions considered in the inclusion criteria.
All the participants signed a consent form, and all the procedures were approved by the
hospital Ethics Committee.

Kinematic and EMG signals were acquired while the patients were asked to maintain
a posture that facilitated the appearance of tremors for 60 s: with both arms stretched out
in front and pronated (see Figure 1), or with both arms raised, elbows flexed and fingers
pointing to each other at the face level [33]. The healthy subjects were asked to replicate the
same postures. The acquisition of kinematic signals was performed using a motion capture
system with a set of two inertial measurement sensors (IMUs, Technaid S.L, Spain) that
were placed on the patients’ hand and forearm affected by tremors, or on the dominant
side for the healthy subjects [34]. The IMU system provided orientation data in the form
of quaternions sampled at 50 Hz. Surface EMG (sEMG) signals were acquired at 2042 Hz
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with a bio-signal amplifier (Quattrocento, OT Bioelettronica, Italy) using bipolar electrodes
placed on the Flexor Carpi Radialis (FCR) and Extensor Carpi Radialis (ECR) muscles.
When the healthy subjects held the postural task, the muscle activity of ECR and FCR
muscles was close to baseline activity. Hence, additional EMG data were acquired while
they were asked to perform an isometric wrist flexion contraction equivalent to 10% of their
maximum voluntary contraction [35].
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Figure 1. Illustration of the data recording setup (left) and pre-processing steps (right) followed
in order to obtain the three different input datasets. On the left, the sEMG bipolar electrodes were
placed over the wrist flexor and extensor muscles; two IMUs were placed on the dorsal side of the
hand and the forearm.

2.2. Data Pre-Processing
2.2.1. Kinematics

The raw quaternions were converted into Euler angles and the wrist flexion–extension
angle was computed and segmented in 1-s windows. The classification task required the
labelling of the kinematic signals into two classes: Tremor and No Tremor. Following previous
implementations, this task was performed based on the spectral power of the signals in
the tremor band. The signals were band-pass filtered (2nd order zero-lag Butterworth)
between 4 Hz and 10 Hz in order to isolate the component related to the pathological tremor.
Furthermore, the PSD was computed for the 1-s window, and the maximum value in the
tremor band [4, 10] Hz was identified [36]. Then, the global threshold used to differentiate
data samples of patients presenting tremor with those who do not was heuristically defined
based on the spectral values. This approach was followed for two main reasons: previous
studies have used the PSD as an objective classification for tremors [22]; and if a patient is
diagnosed with ET, not all the 1-s signals extracted during tremor recordings must show
tremorgenic activity; thus, the classification errors due to mislabeled data are minimized.

The whole dataset was normalized between 0 and 1 (the amplitude of all the signals
recorded from all the subjects were mapped in the range [0, 1]). A total of 18,000 s of
kinematics data were selected for the final dataset, including balanced subsets of classes:
9000 instances were labeled as Tremor and 9000 as No Tremor. Then, the kinematics dataset
was divided into training (70% of samples) and test sets (30%) for the machine learning
models, and training (70%), validation (15%) and test sets (15%) for the LSTM models.

2.2.2. Electromyography

The EMG signals were firstly visually inspected and the recordings with low signal to
noise ratios (SNRs) or artifacts were discarded as they did not satisfy the minimum quality
requisites. The signals were downsampled from 2042 Hz to 510 Hz in order to reduce the
computational cost related to the training and classification stages, and were segmented in
1-s windows (see Figure 1) [37]. This process does not imply the loss of relevant information
for bipolar surface EMG signals [38].

In order to explore the capabilities of the models to classify minimally pre-processed
signals, two different datasets were created from the EMG signals acquired. The first
dataset comprised of the downsampled raw EMG signals, and the second dataset was
created from the envelope of the EMG signals in the tremor band. In order to extract the
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envelope, the raw signals were rectified and band-pass filtered between 4 Hz and 10 Hz
(2nd order zero-lag Butterworth). Then, the EMG envelopes were downsampled to 50 Hz as
the tremor component was preserved. At this point, either the raw EMG or EMG envelope
datasets were normalized between 0 and 1 [39].

Following the same procedure as for the kinematics dataset, data labelling (Tremor and
No Tremor) was performed by identifying the heuristic threshold for the PSD computed
for the EMG envelopes in the tremor band. The final datasets for the raw and envelope
EMG signals consisted of 8000 samples each, including 4000 samples for each of the two
classes (Tremor and No Tremor). Finally, the EMG datasets were divided into training
(70% of samples) and test sets (30%) for the machine learning models, and training (70%),
validation (15%) and test sets (15%) for the LSTM models.

2.3. Classication Algortihms

All the pre-processing and classification algorithms were implemented using Python [40].
In particular, the packages scikit-learn were implemented for the machine learning mod-
els [41], and PyTorch [42] for the LSTM neural networks.

2.3.1. Machine Learning Classifiers

Different machine learning algorithms that are widely used were selected to solve the
problem of tremor binary classification. In order to find the optimal hyper-parameters for
each of the machine learning methods, K-fold cross-validation (k = 10) was applied.

• K-nearest neighbors (KNN). The fixed parameters selected included the algorithm (Ball
tree) and weights (Distance). The variable parameters were the number of neighbors,
the leaf size and the distance algorithm [43].

• Support Vector Machine (SVM). The selected kernel was the Radial Basis Function
(RBF), whereas the hyperparameters c and γ were explored in the validation pro-
cess [44].

• Random Forest (RF). The criterion function (Entropy) and the minimum number of
samples per leaf were fixed, whereas the number of trees and the maximum number
of features were varied across the cross-validation method [45].

2.3.2. LSTM Classifier

The LSTM neural network model used for classification is shown in Figure 2. The
architecture selected consists of three layers: two LSTM layers and a final linear layer, which
was a perceptron [46]. The inputs for the first LSTM layer were the time sequence values
(i1, i2, i3, . . . , iτ), where τ is the last temporal data point in the sequence. The hidden states
from this layer (h1

i ) were sent to the second LSTM layer as inputs. The last hidden state
from this layer (h2

i ) corresponds to the input for the linear layer, as it stores information
from all the sequences. Finally, the output (y) was generated as the predicted label for
the input sequence. An Adam optimizer was selected as the algorithm to compute the
backpropagation through time (BPTT) problem [47] and Binary Cross-Entropy was selected
as the loss function [41]. The training of the LSTM models included a validation method
to minimize overfitting: The model performance was evaluated on the validation set and
the loss function was computed. If the loss value was lower than the one evaluated in
the previous step, then the latest network parameters were saved [48]. The number of
hidden neurons per layer (20, 35 and 50) and the learning rate (0.005, 0.001 and 0.0001)
were explored in order to find the optimal classification results.
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Figure 2. LSTM architecture used for the classification of pathological tremors.

2.4. Performance Metrics

Evaluation of the performance of the classification algorithms was conducted using
five different metrics: precision, recall, specificity, accuracy and f 1 score, according to the
following equations, where TP represents true positive values, TN represents true negative
values, FP represents false positive values and FN represents false negative values [41].

Precision =
TP

TP + FP
(1)

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Recall =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

f1 = 2· Precision ·Recall
Precision + Recall

(5)
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3. Results

Figure 3 illustrates examples of the kinematic and EMG signals used as inputs for the
classifiers. The maximum peak of the PSD in the tremor band of each signal modality was
used to label the datasets (Figure 3c,d) into Tremor and No Tremor classes. The examples
depicted in Figure 3 correspond to clear manifestations of pathological tremors and non-
pathological behaviors, which are reflected in the PSD functions. In both kinematic and
EMG envelope signals, the tremor component can be visually identified as a sinusoidal
waveform, whereas the raw EMG signal retains the oscillatory electrical muscle activity.

Entropy 2023, 25, x FOR PEER REVIEW 7 of 13 
 

 

  
(a) (b) 

 
(c) (d) 

Figure 3. Illustrations of the signals contained in the three datasets. (a) Raw EMG signals from a 
tremor patient (blue line) and a healthy subject (yellow line). The estimated EMG envelopes (rose 
lines) were used as input signals in one of the three datasets. (b) Kinematic signals from a tremor 
patient (blue line) and a healthy subject (yellow line). (c) PSD function estimated for the EMG data 
displayed in (a). (d) PSD function estimated for the kinematics data displayed in (b). 

For each of the three datasets (kinematics, EMG envelope and raw EMG) and each 
classification technique, the optimal parameters for each classifier were found through the 
validation process (k-fold cross validation for the traditional machine learning methods, 
and training and validation process for the LSTM neural networks). Table 1 contains the 
parameters achieving the optimal classification results for each model and type of input 
data. The models that showed the best performance in the validation process were finally 
assessed with the training set. 

Table 1. Model parameters used for the optimal classifiers selected for the final assessment. 

KNN Algorithm  Leaf Size  Metric Neighbors Weights 
Kinematics Ball-Tree   Euclidean 6 Distance 

EMG envelope Ball-Tree  30 Euclidean 3 Distance 
EMG Raw Ball-Tree  30 Chebyshev 2 Distance 

RF Criterion Max. Features Min. Samples Trees  
Kinematics Entropy sqrt 2 100  

EMG envelope Entropy sqrt 2 100  
EMG Raw Entropy sqrt 2 110  

SVM C γ Kernel   
Kinematics 10 1 RBF   

EMG envelope 1 0.1 RBF   
EMG Raw 10 0.01 RBF   

LSTM Learning Rate Hidden Size    
Kinematics 0.005 50    

EMG envelope 0.005 35    
EMG Raw 0.005 50    

Figure 3. Illustrations of the signals contained in the three datasets. (a) Raw EMG signals from a
tremor patient (blue line) and a healthy subject (yellow line). The estimated EMG envelopes (rose
lines) were used as input signals in one of the three datasets. (b) Kinematic signals from a tremor
patient (blue line) and a healthy subject (yellow line). (c) PSD function estimated for the EMG data
displayed in (a). (d) PSD function estimated for the kinematics data displayed in (b).

For each of the three datasets (kinematics, EMG envelope and raw EMG) and each
classification technique, the optimal parameters for each classifier were found through the
validation process (k-fold cross validation for the traditional machine learning methods,
and training and validation process for the LSTM neural networks). Table 1 contains the
parameters achieving the optimal classification results for each model and type of input
data. The models that showed the best performance in the validation process were finally
assessed with the training set.

Figure 4 summarizes the classification results that were obtained for the optimal
models and signal modalities. All the trained models obtained performance metrics above
0.80, except for the recall metric obtained by the KNN model using raw EMG as input data
(0.64). For the kinematics data, all the models showed classification scores higher than 0.84
in all the assessment metrics. The highest value was achieved by the KNN model for the
recall metric (0.99).
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Table 1. Model parameters used for the optimal classifiers selected for the final assessment.

KNN Algorithm Leaf Size Metric Neighbors Weights

Kinematics Ball-Tree Euclidean 6 Distance
EMG envelope Ball-Tree 30 Euclidean 3 Distance

EMG Raw Ball-Tree 30 Chebyshev 2 Distance

RF Criterion Max. Features Min. Samples Trees

Kinematics Entropy sqrt 2 100
EMG envelope Entropy sqrt 2 100

EMG Raw Entropy sqrt 2 110

SVM C γ Kernel

Kinematics 10 1 RBF
EMG envelope 1 0.1 RBF

EMG Raw 10 0.01 RBF

LSTM Learning Rate Hidden Size

Kinematics 0.005 50
EMG envelope 0.005 35

EMG Raw 0.005 50
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When comparing the capability of the models to use different signal modalities to
detect tremors, the f1 score was selected as it represents the harmonic mean between preci-
sion and recall (see Figure 5). The f1 score was higher than 0.80 for all the classifiers and
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types of input data. The performance of the KNN models in classifying the raw EMG data
was lower compared to the rest of classifiers. All the LSTM models achieved the highest f1
scores for the different input datasets (f1-kinematics = 0.94, f1-EMG envelope = 0.96 and
f1-EMG raw = 0.9) when compared to the rest of the classifiers. Additionally, the f1 scores
across the three types of input signals showed that, on average, the LSTM models outper-
formed the rest of the traditional machine learning classifiers (mean ± standard deviation;
f1-KNN = 0.88 ± 0.08, f1-RF = 0.92 ± 0.3, f1-SVM = 0.91 ± 0.01 and f1-LSTM = 0.96 ± 0.03).
The KNN models showed the lowest average f1, whereas the RF and SVM models showed
similar average performance.
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Classification of the kinematic signals resulted in higher f1 scores compared to the
classification of EMG envelope or raw EMG datasets for the same models used for the
three traditional machine learning models. Nevertheless, the classification of raw EMG
signals through the LSTM model was an exception to this, since it achieved the best
classification f1 score (0.98). The averaged f1 scores across the four models for the three
different datasets showed that the kinematics data resulted in more robust classification
outcomes, followed by the pre-processed EMG (EMG envelope) and, lastly, the raw EMG
(mean ± standard deviation; f1-kinematics = 0.95 ± 0.02, f1-EMG envelope = 0.91 ± 0.1
and f1-raw EMG = 0.89 ± 0.08).

4. Discussion

This study showed the feasibility of using machine learning techniques to provide bi-
nary classifications of pathological tremor signals without specific feature extraction. Three
datasets containing kinematic, pre-processed (EMG envelopes) and raw EMG signals were
used to train, validate and test different machine learning models in order to classify the
input sequences into Tremor and No Tremor classes. The results showed high classification
performances (f1 score above 0.8) for all the models and data input modalities. Moreover,
the LSTM neural networks achieved, on average, the best classification outcomes for all the
datasets, including the classification of raw EMG signals.

Overall, the different models provided high classification outcomes. The KNN models
showed the highest variability, ranging from 0.64 to 0.99 in the recall metric. Moreover, it
achieved the lowest f1 score among the classifiers (0.8) for the classification of raw EMG
signals. No significant differences were found between the RF and SVM classifiers. The
LSTM models achieved, on average, the best performance scores for the different modalities
of input data compared to the traditional models, verifying the authors’ hypothesis. The
higher complexity of the LSTM neural networks when extracting temporal patterns, such
as the tremor cycles, could explain the difference in performance when compared to the
traditional methods. Nevertheless, this difference was subtle for the kinematics and EMG
envelope datasets. Thus, the application of more complex models does not necessarily
lead to better outcomes. In these scenarios, other factors, such as the computational cost
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throughout the training and execution processes, should be considered when selecting one
of the models.

Since a minimum pre-processing stage was applied in order to isolate the tremorgenic
component between 3 and 10 Hz for both kinematic and EMG envelope signals, the high
signal-to-noise ratio in the frequency band was expected to result in better classification
results. Therefore, when comparing signal input modalities, it was expected that the classi-
fication of the kinematic signals would lead to the highest classification scores, followed by
the EMG envelope dataset, and finally the raw EMG signals. This behavior was confirmed
by the traditional classifiers, which achieved higher f1 scores for the kinematic signals, then
for the EMG envelope and finally for the raw EMG dataset. Interestingly, the LSTM model
achieved the highest f1 score (0.98) for the classification of raw EMG signals. This result
highlights the capability of LSTM networks as a deep learning tool to extract temporal
patterns from un-processed signals.

No direct comparison between the results of this study and other research from the
scientific literature could be found, as both the datasets and the approach followed in
this study were unique, to the best of our knowledge. Interestingly, another group has
reported f1 classification scores ranging between 0.64 and 0.80 for different parametric
and non-parametric signal processing methods used to classify signals containing 4-s
acceleration data from patients diagnosed with pathological tremors of the hand (compared
to classifications performed through visual inspection by trained neurologists) [49]. In
another study, the envelopes in the tremor band of acceleration and EMG signals recorded
from ET, PD and healthy participants were used to develop a tremor binary classifier
based on the PSD and a thresholding method. The results showed accuracy scores (when
compared to visual classification) for the acceleration dataset of 0.90 and 0.94 for the EMG
envelope dataset [50]. These examples support the validation of the classifiers obtained
in this study, where shorter sequences of data (including unprocessed EMG signals) were
used to classify tremors with f1 scores above 0.9 for different sorts of input modalities when
compared against traditional PSD-thresholding methods.

Both traditional implementations and deep learning models were capable of detecting
the tremor pattern from the time series without any previous information of the input
signals. This approach is relevant because there was no pre-processing of the raw data to
extract any signal features, such as descriptive statistics, time-frequency or signal power
measurements [25,45]. Though pathological tremor signals are variable and non-stationary
in short periods of time, both the kinematic and EMG recordings exhibited tremor patterns
which could be differentiated from non-pathological behaviors. Interestingly, the raw
EMG signals from healthy and ET patients could contain some oscillatory components
related to physiological (non-pathological) tremors between 8 Hz and 12 Hz [5]. Despite
this oscillatory pattern, all the classification models, particularly the LSTM models, could
disregard this pattern, which is characterized by a different frequency and amplitude
compared to those seen in pathological tremors.

The capability of these models to classify specific tremor patterns that are exclusively
related to ET and that are different from other oscillations caused by different neural
disorders (e.g., PD or dystonia) was not explored in this study. Diagnosis outcomes based
on the classification of kinematics or EMG data could provide additional value to the
current clinical diagnosis, which is based on clinical scales, as other research groups have
shown [51]. Datasets including EMG and/or kinematic signals recorded from different
motor tasks than the ones used in this study (postural or isometric contractions) would be
necessary in order to collect a sufficient sample of tremor patterns associated with different
etiologies [52].

PES systems to reduce tremors could benefit from these implementations to guide the
stimulation if a tremor is detected [14]. Following this procedure, the length of the signal
processing pipeline would be shortened compared to other approaches that use multiple
feature extraction [26]. Translation from computational models to embedded systems
would require a transition from offline to online implementations, a process which might
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be challenging. Due to the size of the data used as input for the classifiers, ranging from
50 samples per second (for the EMG envelopes and kinematics) to 510 samples per second
(for the raw EMG), the computing time for the classification of one instance is estimated
to be in the order of milliseconds. Following the assumption that the computing time of
the different algorithms does not have a significant impact on real-time performance, the
main criteria used to select one of the algorithms would rely on the optimal classification
outcomes for each specific modality of input data. In future studies, it would be valuable
to explore different input sequence lengths in order to provide higher time resolution, as
well as the optimization of model parameters in order to meet the real-time requirements,
and finally to test the feasibility of these models in a real-time system.
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