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Left ventricular assist devices (LVADs) are increasingly common across the

heart failure population. Right ventricular failure (RVF) is a feared complication

that can occur in the early post-operative phase or during the outpatient

follow-up. Multiple tools are available to the clinician to carefully estimate

the individual risk of developing RVF after LVAD implantation. This review will

provide a comprehensive overview of available tools for RVF prognostication,

including patient-specific and right ventricle (RV)-specific echocardiographic

and hemodynamic parameters, to provide guidance in patient selection

during LVAD candidacy. We also offer a multidisciplinary approach to the

management of early RVF, including indications and management of right

ventricular assist devices in this setting to provide tools that help managing

the failing RV.

KEYWORDS

left ventricular assist device (LVAD), heart failure (HF), right ventricle (RV), right
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Introduction

Left ventricular assist devices (LVADs) are commonly used for patients with end-
stage heart failure (HF) as destination therapy (DT), bridge to transplant (BTT) or to
orthotopic heart transplant (OHT) candidacy (1). As the right ventricle (RV) is not
supported, right ventricular failure (RVF) is a feared complication that occurs in 20–40%
patients early after LVAD implantation (2). Right ventricular assist devices (RVADs) are
required in approximately 5% of cases (3, 4) with an associated increase in mortality,
morbidity, and cost. In patients successfully discharged from hospital, persistent
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and new-onset late RVF can complicate patients’ clinical
course with higher rates of HF admission, mortality,
and hemocompatibility-related adverse events (HRAEs).
Determining the risk of developing RVF is paramount, as it
may be the sole preclusion of LVAD implantation and the
only way of planning ahead simultaneous RVAD support.
Prediction of RVF is based on clinical variables and direct
RV assessment, which integrates echocardiographic and
invasive hemodynamic data. Clinical optimization before LVAD
implantation, surgical technique for LVAD implantation and
concomitant interventions can modify rates of both early and
late RVF. Intra-operative management and decision-making
about appropriateness, type, and timing of RVAD support is key.
The purpose of this review is to provide a practical guideline for
patient selection, RVF prognostication and RVF management
by incorporating the most recent evidence, that can be used by
HF specialists, cardiovascular surgeons, or anesthetists during
LVAD candidacy assessment and post-operative period.

Definition of right ventricular
failure

The definition of RVF has been cumbersome with many
working groups utilizing their own definition. Since 2014,
the Interagency Registry of Mechanical Circulatory Support
(INTERMACS) definition of RVF requires documentation of
elevated central venous pressure (CVP) and tangible clinical
or laboratory manifestations of RVF. INTERMACS grades
RVF severity according to the duration of required therapy
[mainly nitric oxide (iNO) and inotropes] with 0–7 days
of support defined as mild RVF, 7–14 days considered
moderate RVF, and >14 days or need for RVAD was defined
as severe RVF (5). Subsequent studies have demonstrated
that only severe, INTERMACS-defined RVF is associated
with worse outcomes (6, 7). Thus, it seems reasonable
to consider a clinically relevant episode of RVF as only
those episodes that require RVAD or inotropic support for
>14 days, acknowledging that prognosis worsens with duration
(8, 9).

The INTERMACS definition, however, fails to capture late
RVF, as prolonged inotropic or RVAD support are rarely
needed. To account for this discrepancy, an updated definition
was released by the Mechanical Circulatory Support–Academic
Research Consortium (MCS-ARC) in 2020 (10). The new
definition distinguishes between early acute RVF (requiring
RVAD support), early RVF in the first 30 days, and late RVF after
the first 30 days. For the MCS-ARC definition, RVF is diagnosed
in the presence of RVF signs and symptoms in combination
with increased diuretic or inotrope requirement for at least 72 h
(Figure 1).

Pre-operative prediction of right
ventricular failure

Both early and late RVF most likely result from a multiple
hit combination of pre-existent RV dysfunction, surgical insult,
and RV loading conditions after initiation of LVAD support.
Therefore, none of the published predictors has emerged as
a standalone gold standard and an integrative approach is
required. We advocate for a combination of patient-specific
and RV-focused metrics obtained from echocardiography
and pulmonary artery (PA) catheterization, summarized in
Figures 2–4.

Clinical risk factors for right ventricular
failure

Body size and cardiac size
In the MOMENTUM3 trial, the average body surface area

(BSA) of patients with LVADs was 2.1 m2, a finding consistent
across all large-scale, MCS registries (11). Smaller patients
have historically been considered high-risk, and industry
recommendations do not support the use of LVAD support
in patients with a BSA <1.5 or <1.8 m2. An INTERMACS
analysis of 10,813 patients, however, has shown comparable
rates of survival and RVF in patients with BSA <1.5 m2 and BSA
>1.5 m2, a finding replicated in smaller cohorts using bigger
devices such as the Heart Mate II (HM2, Abbott, TX, USA)
(12–15).

In healthy patients, smaller BSA reflects smaller cardiac
size, but this may not hold true in advanced HF, as BSA
and left ventricular end-diastolic diameter (LVEDD)
correlate poorly (14). Independently of BSA, an LVEDD
<60 mm has been repeatedly associated with RVAD
requirement and late RVF, worse tricuspid regurgitation
(TR) severity, lower LVAD flow and more LVAD alarms
in both axial and centrifugal flow pumps (14, 16, 17).
This is probably explained by the interventricular septum
being more prone to shifting leftwards in smaller hearts
at speeds that would otherwise be considered normal for
larger cavities, thus distorting RV geometry (18). In the
IMACS registry, the higher mortality and RVF observed in
women was partially mediated by a smaller LVEDD, but not
by BSA (18).

Although surgical implant may be more challenging, smaller
patients benefit equally from LVADs. BSA does not impact
RVF risk unless the LVEDD is exceedingly small. Individuals
with restrictive or hypertrophic cardiomyopathies and smaller
LVEDDs may have poor survival and higher risk of RVF. In such
patients, a left atrial (LA) configuration of the inflow cannula
may be attempted if LA cavity is big enough (19).
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FIGURE 1

Definition of right ventricular failure after LVAD implantation according to INTERMACS from 2015 and from 2021. INTERMACS, interagency
registry for mechanically assisted circulatory support; MCS-ARC, mechanical circulatory support–academic research consortium; CVP, central
venous pressure; IVC, inferior vena cava; JVP, jugular venous pressure; iNO, nitric oxide; IV, intravenous; RVAD, right ventricular assist device;
RVF, right ventricular failure; ULN, upper limit of normal; Svo2, central venous oxygen saturation; CI, cardiac index; ECMO, extracorporeal
membrane oxygenator; LVAD, left ventricular assist device.

Obesity and malnourishment
Obesity, defined as body mass index (BMI) >30 kg/m2,

confers a 40% increased risk of late RVF according to a
recent meta-analysis (20). Other published data report up
to a 3-fold risk of RVF in obese patients (21, 22). Obesity
and congestion are linked through several well-described
mechanisms including increased blood volume, inflammation,
microvascular dysfunction and myocardial fibrosis, as well as
comorbid conditions such as sleep apnea (23). The increased
risk of RVF in obese patients is not associated with increased
RVAD requirement or mortality.

Conversely, undernutrition at the time of implant is more
common in individuals with pre-operative RVF and gut edema,
as demonstrated by a higher CVP in malnourished patients
(11 vs. 7 mmHg, p = 0.002) (24). Poor nutritional status has
demonstrated a negative impact on RVF and survival using
different metrics (BMI <18.5 kg/m2, prealbumin <17 g/L,
nutritional risk index <83.5 points, prognostic nutritional index
<30 points) (25–27). Thus, as a modifiable risk factor, deficient
nutritional status should be identified during LVAD candidacy
assessment and actively addressed.

Kidney dysfunction
Kidney dysfunction is a strong predictor for mortality

and early RVF, and few centers implant LVADs in stage V
chronic kidney disease (CKD) [estimated glomerular filtration
rate (eGFR), <15 ml/min/1.73 m2] (28, 29). In end-stage
HF, cardiorenal syndrome can cause or exacerbate CKD via
chronically elevated CVP and suboptimal renal perfusion
pressure, which could explain its association with RVF during
the early post-operative phase (30). Support for this hypothesis

comes from the observation that kidney function improves after
LVAD in a vast majority of patients, except in those who develop
late RVF (28, 29, 31, 32).

In advanced HF, increased neurohormonal activation
promotes the reabsorption of blood urea nitrogen (BUN) (33),
with BUN levels being more strongly associated with early RVF
than creatinine and eGFR (34). Muscle wasting and sarcopenia
will also lower serum creatinine for a given GFR, explaining
the paradoxical improvement in eGFR often seen in admitted
patients. Cystatin C, a renal marker not affected by cachexia,
better predicts RVF and RVAD need in the early post-operative
period (35). Neutrophil gelatinase-associated lipocalin (NGAL)
is an experimental marker that can differentiate intrinsic tubular
damage from that attributable to hemodynamic disturbances,
and can also predict an increased risk of RVF (36).

Proteinuria identifies patients with established CKD and
faster disease progression and should be routinely tested during
LVAD candidacy assessment. A positive dipstick or >0.55 mg
protein/mg creatinine doubles the risk of renal replacement
therapy (RRT), need for RVAD and mortality (37, 38).

Liver dysfunction
Liver dysfunction is another form of end-organ dysfunction

attributable to RVF. Like eGFR, liver function tests frequently
improve and remain within normal range for years after LVAD
implantation, reflecting the close link with venous congestion
(39, 40). The MELD score is a chronic liver disease severity
scoring system that integrates both liver and kidney function,
making it an excellent tool to assess RVF-related congestion
before LVAD. Multiple studies have shown an association
between MELD scores >12 and early RVF, RVAD support and
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FIGURE 2

Risk factors for right ventricular failure after LVAD implantation not related to the intrinsic right ventricular function. LVEDD, left ventricular
end-diastolic diameter; NICM, non-ischemic cardiomyopathy; ARVC, arrhythmogenic right ventricular cardiomyopathy; VT, ventricular
tachycardia; BSA, body surface area; BMI, body mass index; NRI, nutrition risk index; PNI, prognostic nutrition index; ECMO, extracorporeal
membrane oxygenation; RRT, renal replacement therapy; IMV, invasive mechanical ventilation; INTERMACS, interagency registry for
mechanically assisted circulatory support; VE, minute ventilation; VCO2, carbon dioxide production; DLCO, carbon monoxide diffusion
capacity; eGFR, estimated glomerular filtration rate; NGAL, neutrophil gelatinase-associated lipocalin; MELD, model for end-stage liver disease;
INR, international normalized ratio; BNP, brain natriuretic peptide; ET1, endothelin 1; IL6, interleukin-6; PCT, procalcitonin; CCR, CC chemokine
receptor.

FIGURE 3

Risk factors for right ventricular failure after LVAD implantation obtained using echocardiography. RA, right atrial; TAPSE, tricuspid annular plane
systolic excursión; RV, right ventricle; FAC, fractional área change; RVFWLS, right ventricular free wall longitudinal strain; PSSrL, peak systolic
longitudinal strain rate; PA, pulmonary artery.

mortality, although no such association exists for late RVF
(41–45). In the absence of warfarin treatment, the international
normalized ratio (INR) is an excellent marker of synthetic liver
function strongly associated with early RVF (46).

A liver biopsy may distinguish functional liver damage vs.
established scarring, that may reflect a primary liver disease

or sustained right-sided congestion. In patients with periportal
fibrosis (stage F1 and F2 on the biopsy), LVAD has been used
successfully (47, 48). There is no data about patients with
F3 or F4 fibrosis, but FibroScan elastography has identified
higher rates of early RVF in patients with increased pre-
operative liver stiffness, most of them within the range of severe
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FIGURE 4

Risk factors for right ventricular failure after LVAD implantation obtained using pulmonary artery catheterization. DTPG, diastolic transpulmonary
gradient; PA, pulmonary artery; Ees, end-systolic elastance; Ea, arterial elastance; RVSWI, right ventricular stroke work index; RV, right ventricle;
RA, right atrium; CVP, central venous pressure; PCWP, pre-capillary wedge pressure; MAP, mean arterial pressure; PAPI, pulmonary artery
pulsatility index; pVAD, percutaneous ventricular assist device; iSV, indexed stroke volume.

fibrosis (24.6 KPa vs. 9.5 KPa, >17.6 KPa being the cutoff for
cirrhosis) (49).

Pre-operative clinical profile
The number of LVAD implants in patients with

INTERMACS 1 and 2 is decreasing over the years, as it
is associated with greater RVF and mortality (50). When
temporary MCS is used in INTERMACS 1 patients to restore
hemodynamics, prognosis with regards to RVF remains equally
poor, which may be related to only partial recovery of end-organ
function or a more challenging assessment of RV dysfunction
while on extracorporeal membrane oxygenator (ECMO)
support (51). Rates of temporary RVAD utilization after ECMO
is approximately 20% in multiple registries, and some authors
even advocate for planned temporary RVAD support in all
INTERMACS 1 patients to avoid the second surgery required
for staged implantation (50, 52). In patients who cannot be
weaned off ECMO, LVAD may be non-inferior to OHT, but
assessment of RV function is important in deciding whether
to proceed to one of these two high-risk alternatives (52). In
patients who are receiving temporary MCS, assessment of RV
function and reserve is more complicated due to the decrease in
RV preload [in ECMO or biventricular assist device (BiVAD)]
or afterload [in isolated left ventricle (LV) support], and a
pulmonary artery catheter (PAC)-guided management could
help in patient selection and even improve survival, as shown in
a recent meta-analysis of observational data (53).

Interagency registry of mechanical circulatory support three
patients, and especially those with ongoing inotropic support
for >30 days, also tend to develop more RVF after the surgery
than INTERMACS 4 or higher. This may be a marker of RVF
pre-operatively and could identify patients with little margin
for improvement solely using pharmacological adjustments if
early RVF occurs (54, 55). Lastly, LVAD implantation should
be considered cautiously in patients with ongoing invasive
mechanical ventilation or RRT, as these have been consistently
associated with early RVF (46, 56, 57).

Biomarkers and the role of inflammation
There is a growing interest in biomarkers as predictors of

RVF. Elevated BNP reflects stretch of myocardial fibers and
has been correlated with higher RVF rates (58). Increased
osteopontin (>260 ng/ml) is a marker for greater extracellular
matrix turnover and identifies patients with an ongoing
profibrotic process that may potentially involve the RV, with
increased risk of RVF (59). Patients with RVF also display
persistently high osteopontin levels after surgery and have less
reverse remodeling (60). Direct measurement of this fibrotic
process in myocardial tissue from the apical core removed at the
time of LVAD implant has showed that increased collagen type
1 mRNA expression is associated with RVF and need for RVAD
(61). Non-invasive measures of diffuse fibrosis such as cardiac
MRI with T1 mapping have not been evaluated for this purpose.
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Inflammation may be a relevant mediator of RVF in early
phases. Readily available inflammatory markers such as white
cell count, neutrophil to lymphocyte ratio, or C reactive protein
correlate with rates of RVF (62). A more in-depth analysis
showed that patients with RVF displayed a pre-operative
downregulation of chemokine receptors CCR3, 4, 6, 7, and 8
that was even more profound in patients who required RVAD,
which suggests a dose-response relationship that supports a
causative role (63). Other inflammatory biomarkers such as
procalcitonin, neopterin, or endothelin 1 have also been linked
to RVF (64). As worse INTERMACS profiles have higher
inflammatory biomarkers [such as interleukin-6 (IL-6)], the
association between INTERMACS profile and RVF could be
partially mediated by inflammation (65, 66). The therapeutic
benefit of treating inflammation before LVAD implant in high-
risk cohorts has not been yet explored.

Respiratory disorders
Severe respiratory disease leads to increased pulmonary

vascular resistance (PVR), a major contributor to RVF.
Surprisingly, current evidence suggests that chronic obstructive
pulmonary disease is not associated with overt RVF and does
not impact mortality after LVAD, although quality of life
and functional capacity remain compromised (67). Central
sleep apnea frequently resolves with the increase in cardiac
output (CO) provided by the LVAD, but obstructive or mixed
episodes may persist and even cause nocturnal drops in LVAD
flows (68), presumably related to transient hypoxia-mediated
increases in PVR (69). A pre-operative carbon monoxide
diffusion capacity <80% identified patients whose PVR will
not decrease after surgery and who are at higher risk of
recurrent HF admissions (70). Finally, patients with elevated
ventilatory efficiency (VE)/carbon dioxide output (VCO2) slope
on a cardiopulmonary exercise test (a marker of inefficient
ventilation that may indicate disproportionate increase in PA
pressures during effort) had a close association with RVF,
higher CVP and lower pulmonary artery pulsatility index
(PAPI), whereas peak oxygen consumption (VO2) had no
association (71).

Other clinical risk factors for right ventricular
dysfunction

In myocardial diseases with primary involvement of the
RV, such as arrhythmogenic right ventricular cardiomyopathy
with severe RV dysfunction and dilatation, LVAD support will
provide minimal benefit. Other cardiomyopathies impact the
RV in a less apparent way, explaining the higher rates of
RVF of non-ischemic cardiomyopathy (NICM) compared to
their ischemic counterparts. This is most evident for NICM
related to chemotherapy, which damages both ventricles, and
is associated with higher rates of RVAD utilization (72, 73).
Atrial fibrillation is marginally associated with RVF, presumably
due to the detrimental effect of losing atrial contraction on CO

(74). Subjective assessment of lower limb hemosiderosis has
been used by some as a surrogate for long-standing right-sided
congestion (75).

Right ventricular function assessment

In HF, RV dysfunction is usually related to chronically
elevated left-sided filling pressures and secondary pulmonary
hypertension, which constitutes a hallmark of advanced HF
and is related to the remodeling of the pulmonary vasculature
(76). The adaptative response of the RV is an increase
in contractility to match the increased afterload, and RV
hypertrophy or dilatation may occur. If RV afterload remains
high, RV contractility may not be able to overcome the imposed
resistance, leading to an uncoupling of RV and PA pressures.
When RV-PA uncoupling occurs without correction of the
RV afterload, RVF may result. As RV contractility worsens,
PA pressures drop as the RV fails to generate an appropriate
stroke volume. In severe RVF, even the correction of afterload
will not improve RV contractility, and RVAD support may be
required. This bimodal relationship between PA pressures, RV-
PA uncoupling and RV contractility and dilatation explains most
of the echocardiographic and hemodynamic predictors that
have been studied. In all-comers with HF, higher PA pressures
are usually associated with worse outcomes (77). However, in
patients undergoing LVAD candidacy assessment, higher PA
pressures confer a better prognosis, as low PA pressures are
usually associated with a drop in RV contractility (78).

Echocardiographic risk factors for right
ventricular dysfunction
Right ventricular systolic function

Most echocardiographic predictors of RVF are based on
RV systolic dysfunction, although all of them are afterload
dependent and portend higher rates of RVF in the setting of
a low afterload. Despite the existence of different cutoffs for
RVF risk, all predictors should be approached as a continuum
of risk rather than a dichotomous value. Tricuspid annular plane
systolic excursion (TAPSE) less than 8 mm has been consistently
associated with RVF risk, increasing the predictive capacity of
different risk scores (79–81). The suggested cutoff to predict
RVF for RV’s tissue Doppler s′ was <5–8 cm/s (82, 83). RV
fractional area change (FAC) accounts for radial contraction
in addition to longitudinal contraction, and is associated with
RVF <25–30% (79, 84). RV dilatation can be assessed with the
ratio between RV and LV end-diastolic diameters in a 4-chamber
view, or right-to-left ratio. Another useful tool is the ratio
between the end-diastolic RV mid-ventricular and longitudinal
diameters, or the sphericity index. The risk of RVF increases
when the right-to-left ratio is >0.72–0.75 (85, 86), or when
the sphericity index is >0.6 (82, 87, 88). The contribution of
septal fibers to RV contractility is severely reduced after LVAD
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implant, and the assessment of RV free wall contractility with
deformation techniques predicts RVF with accuracy similar to
conventional RV systolic assessment. However, the cutoffs for
RV free wall longitudinal strain for predicting RVF vary widely
across studies, ranging from <5 to <15%, which precludes
practical implementation (46, 79, 89–93). The capacity of
simultaneous multiplanar echocardiography and 3-dimensional
imaging to evaluate the complex RV anatomy may improve
discrimination (88, 94–96).

Right ventricular to pulmonary artery coupling

Indices of RV systolic function can be misleading, as
they can be affected by excessive afterload independent of
intrinsic RV dysfunction. Measures of RV-PA coupling such
as TAPSE/systolic PA pressure that have been shown to be
predictive of RVF in all-comers with HF do not reliably predict
RVF in the LVAD population (97). This is not surprising, as
a low TAPSE/systolic PA pressure identifies patients with mild
RV-PA uncoupling (initial drop in systolic function related to
elevated RV afterload) but cannot capture patients with more
advanced stages of RV-PA uncoupling (drop in systolic PA
pressure due to a decrease in RV stroke volume), who are
precisely the patients at higher risk of post-operative RVF.
The product of peak systolic longitudinal strain rate × mean
RV-PA gradient <24 or a load adaptation index [(mean RV-
PA velocity time-integral × longitudinal RV diameter)/RV end
diastolic area] <14 identify patients with a failing RV unable
to generate appropriate PA pressures, and both indexes have
a very high accuracy in predicting RVF in candidates for
LVAD implantation (82). Several other metrics of late-stage RV-
PA uncoupling have been tested in HF population, but their
usefulness remain to be proven in LVAD recipients (98).

Right ventricular diastolic dysfunction

Diastolic RV dysfunction is frequently overlooked as a
predictor of RVF following LVAD implant. A restrictive RV
filling pattern and/or high filling pressures can be assessed with
the tricuspid E/e′ ratio, which predicts RVF when >10 in the
72 h preceding LVAD surgery (83). Chronically elevated RV end
diastolic pressure is better captured by peak longitudinal right
atrial (RA) strain. The only study analyzing RA strain showed
striking differences between groups (average peak RA strain 11%
for those with RVF vs. 33% for those without, p < 0.01), with
excellent discrimination [area under the curve (AUC) = 0.913]
to predict the need for RVAD (99).

Invasive assessment of right ventricle to predict
right ventricular failure
Right ventricular afterload

Invasive hemodynamic measurement using a PA catheter
is the gold standard for assessment of RV afterload. The
transpulmonary gradient (TPG) [mean PA pressure–pulmonary
capillary wedge pressure (PCWP)] or the transpulmonary
diastolic gradient (TPDG) (diastolic PA pressure–PCWP) are

simple measures that can identify a fixed component of RV
afterload likely to persist after LVAD implant. They are of limited
use because they do not account for pulmonary flow. A TPDG
>7 mmHg predicted RVF after LVAD implantation in a single
study (100).

Right ventricle afterload can be divided into a resistive
component and a pulsatile load. The resistive component
of RV afterload is captured by PVR [(mean PA pressure–
PCWP)/cardiac output (CO)], but PVR has not been
consistently associated with worse RV function after LVAD.
Compliance, calculated as [stroke volume/(systolic PA pressure–
diastolic PA pressure)], measures pulsatile RV load, and may
be a better marker of RV afterload in HF patients that is highly
sensitive to changes in PCWP (101). When indexed by BSA,
compliance <0.89 ml/mmHg/m2 predicts RVF after LVAD
(7, 102). Finally, PA elastance (Ea) incorporates both pulsatile
and resistive components, and may be a better measure of
global RV afterload (103). PA elastance is calculated as systolic
PA pressure/stroke volume, and outperforms PA compliance
for predicting RVF after LVAD with a suggested cutoff of
>1.16 mmHg/ml (7).

Right ventricular systolic and diastolic function

Assessing intrinsic RV systolic performance independent
of other variables remains challenging. The parameter most
often used for this purpose is right ventricular stroke work
index (RVSWI), a flow-dependent estimate of RV contractile
function. RVSWI is calculated as [mean pulmonary artery
pressure (mPAP)–CVP]× stroke volume index (SVI)× 0.0136.
An RVSWI >5 g × m/m2 (equivalent to 350 mmHg·ml/m2)
is predictive of RVF after LVAD implant (46, 104). Other
proposed load-independent metrics include RV dp/dt and direct
estimation of end-systolic elastance (Ees) using pressure-volume
loops, but there is only preliminary data using these parameters
and no proposed cutoffs (105, 106).

Right ventricle diastolic dysfunction cannot be directly
measured using standard monitors, which limits clinical utility.
However, the RA pressure waveform provides a readily available
surrogate of RV distensibility. In the absence of TR, a Y
descent deeper than the X descent reflects impaired RV diastolic
relaxation. Qualitative RA waveform assessment has excellent
interobserver reliability, with impaired RV relaxation seen in
20% of LVAD candidates. A non-distensible RV is a strong
predictor of early RVF, and in a small cohort was observed
in all patients requiring RVAD support and in those with late
RVF (107).

Right ventricular preload

Systolic and diastolic dysfunction will eventually lead to
inefficient volume management with a resultant increase in
preload and CVP. Elevated pre-operative CVP (>10–14 mmHg
depending on the study) has been consistently associated with
RVF after LVAD (46, 104). Furthermore, CVP increases with
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vasoplegia, often seen in combination with RVF (108). The
CVP/PCWP ratio >0.63 distinguishes between volume overload
vs. disproportionate RVF as the cause for elevated CVP. A mean
arterial pressure (MAP)/CVP ratio <7.5 may also suggest high
RV preload and higher risk of RVF (109).

Integrative measures of right ventricular assessment

As with echocardiographic evaluation, an integrative
approach incorporating multiple invasive hemodynamic
parameters is likely to improve RVF risk prediction. Pulmonary
artery pulsatility index (PAPi) (systolic PA–diastolic PA)/CVP
is PAC-derived measurement that reflects both preload and
afterload with excellent predictive capacity for RVF at values
<1.85–2 (91, 104, 110, 111). PAPi <1.85 is associated with
higher rates of RVF, need for RVAD and mortality. Moreover,
PAPi may reflect an abnormal myocardial substrate, as it has
also been linked to RV sarcomere contractile dysfunction
(112). Models that integrate indices of RV distensibility, PA
compliance and PA elastance more accurately predict post-
operative RVF from diastolic dysfunction or afterload (7,
102, 107). Likewise, patients with both RVSWI <5 g × m/m2

(low contractility) and elevated PVR (elevated resistance) are
at significantly higher risk of RVF and RVAD (113). Other
integrative measures of RV-PA coupling such as Ees/Ea ratio
(normal values >0.8) have shown excellent prognostic value
in advanced HF population (114) but have not been studied to
predict RVF in LVAD patients.

Assessment of right ventricular reserve

Right ventricle function, preload and afterload are dynamic
variables that may fluctuate pre- and post-LVAD implantation,
and these static metrics may be unable to fully account for RV
reserve. In a moderately large cohort, baseline PAPi predicted
RVF, but an optimal PAPi <3.3 after hemodynamic optimization
or an increase in PAPi (1PAPi) <2 had a much stronger
predictive value for RVF (115). Similarly, PAPi measurement
while on inotropes better predicts RVF than when measured
off inotropic support (111). The same findings were observed
for CVP, as patients with normalized CVP after hemodynamic
optimization had the same outcomes as those with low CVP at
admission (116). The strong predictive value of pre-operative
hemodynamics raises the question of whether pre-emptive
percutaneous RVAD support for hemodynamic tailoring and
RV unloading could improve outcomes in patients at very
high-risk for RVF (117). A vasodilator challenge with sodium
nitroprusside (SNP) is also helpful in predicting RVF, so that
PAPi after a SNP administration was the strongest predictor
of RVF in a small prospective study (118). In the same
line, a multicentric collaboration also demonstrated that a
blunted increase <22 ml/m2 in indexed stroke volume after
SNP challenge was consistently associated with higher rates of
RVF (119).

In patients at high risk of RVF, RV reserve can be assessed
using a temporary, percutaneous LVAD. Within 48–72 h of

insertion of an Impella CP (Abiomed, Danvers, MA, USA),
all parameters of RV afterload improve (reduction in PCWP,
PVR and Ea), as does CVP and CVP/PCWP (120). The
ratios Ea/CVP and Ea/(CVP/PCWP) remain unchanged as
they reflect the RV capacity to cope with a given afterload.
These metrics may therefore have higher value in the static
assessment of RV function (120). These results were replicated
in patients bridged to LVAD with axillary Impella devices (121).
Conversely, patients with little or no improvement in CVP,
PAPI and CVP/PCWP ratio after Impella support developed
RVF (121).

Scores to predict right ventricular failure
Currently, there are over 20 published RVF risk scores

that integrate clinical, echocardiographic, and hemodynamic
variables, but few have undergone external validation. The
most commonly used scores are the HM2 Risk Score, CRITT,
EUROMACS, Michigan and ALMA scores (56, 57, 122–124).
Most of these scores were developed using single center
registries and axial flow pumps, display modest discrimination
capacity (AUC 0.68–0.74), and performed poorly when
externally validated (AUC 0.53–0.65) with inaccurate calibration
(2). Overall, the currently available risk scores are too unreliable
to aid in decision-making but remain a useful tool when
comparing average risk of RVF among registries.

A meta-analysis studying predictors of RVF showed that
the most robust variables were high CVP, low RVSWI, low
MAP, high INR, white blood count and NT-proBNP, qualitative
assessment of RV function, higher RV/LV ratio and RVFWLS,
as well as pre-operative mechanical ventilation or RRT (46).
A Bayesian analysis of the INTERMACS score was also
developed for acute, early and late RVF and identified >30
variables with different weights for each scenario, with excellent
predictive value (AUC 0.83–0.9). Systolic PA pressures and
inflammatory markers had more weight in predicting early RVF
whereas PVR and MELD score were more relevant for late
RVF (125).

Surgical considerations to
minimize risk of right ventricular
failure

Avoidance of pericardiotomy and
cardiopulmonary bypass

The conventional surgical approach to LVAD implantation
involves complete midline sternotomy, open pericardium,
aorto-bicaval cannulation and cardiopulmonary bypass (CPB).
Implantation is most often performed on CPB with a beating
heart, as avoidance of cardioplegia and cardiac arrest may lessen
post-CBP stunning of the RV.
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After surgical LVAD placement, RV adaptation to afterload
drastically diminishes, with higher CVP and CVP/PCWP ratios
for a given PA elastance. This decompensation is not seen
after percutaneous LVAD insertion, highlighting the deleterious
effects of surgery (120, 126). CPB, cardioplegia and extensive
pericardiotomy can worsen RV dysfunction and dilation and
distort the RV geometry, worsening RV-PA uncoupling. In serial
echocardiographic assessments during cardiac surgery, there
was a 50% drop in RV contractility and increased LV compliance
at the time of pericardiotomy, prior to the initiation of CPB (127,
128). RV function further deteriorated with the septal dyskinesis
commonly seen upon discontinuation of CPB (129). Cytotoxin
liberation during CPB may also negatively impact RV function
(62, 63, 65, 66, 130).

The feasibility of a minimally invasive approach was
demonstrated in the LATERAL trial, a non-randomized, single
arm, prospective trial in which 144 LVAD candidates underwent
on-pump HVAD placement through a lateral thoracotomy
(LT) and mini-sternotomy, with only 1 patient requiring
RVAD support (131). Notably, pre-existent severe RVF was
an exclusion criterion for the trial. Although the HeartWare
HVAD device (Medtronic, Minneapolis, MN, USA) is no longer
available, the feasibility of LT approach avoiding pericardial
opening has been demonstrated for Heart Mate III (HM3,
Abbott, Chicago, IL, USA) (132, 133). LT was approved by the
food and drug administration (FDA) for HM3 in 2020 and
is endorsed by industry after the successful LT implant in 44
patients from the ELEVATE registry and in 13 patients from the
LAT feasibility study. Off-pump LT implantation is also feasible,
but experience is by far less common (134, 135).

The benefits of LT and pericardial preservation on RVF
by preserving RV geometry and avoiding distension are still
under debate. Whereas a recent INTERMACS analysis using
propensity matching did not identify any benefit regarding RVF
incidence (136), two contemporary meta-analyses comparing
LT to median sternotomy showed a reduction of RVF, RVAD
and blood product utilization by more than 50% with almost no
heterogeneity in results (137, 138).

Bleeding and coagulopathy

Intra-operative bleeding and transfusion are common
during LVAD implantation and negatively affect RV
performance through cytokine release, increased PVR and
volume overload. It is estimated that with transfusion of each
unit of blood products (red blood cells, platelets or frozen
plasma), there is a 10% increase in RVF risk, so that judicious
use of blood products is recommended (139, 140).

The use of rotational thromboelastometry (ROTEM)
reduces blood transfusions and bleeding in patients undergoing
cardiac surgery, and should be considered standard of care
during LVAD surgery (141). Baseline ROTEM before surgery

can identify primary bleeding disorders or platelet dysfunction
that can be addressed before coagulopathy ensues (142). Upon
discontinuation of CPB, ROTEM allows for rapid, point-
of-care analysis of hemostasis and coagulopathy, enabling
targeted transfusion strategies that avoid the indiscriminate
administration of blood products.

The main risk factors for intra-operative transfusion are
previous cardiac surgery and low pre-operative hemoglobin
(139). Pre-operative hemoglobin optimization strategies have
been shown to reduce blood product utilization during surgery
(143). In patients with unresolved coagulopathy, consideration
may be given to packing the mediastinum and leaving the
sternum open for delayed closure. Delayed sternal closure
allows to control the coagulopathy in the intensive care unit
(ICU), minimizing bleeding and avoiding tamponade and the
associated excessive pressure on the RV from edematous tissues,
thus potentially preventing RVF. This approach, however,
has not demonstrated any benefit in the rates of RVF in
observational cohorts, prevents early extubation and increases
risk of infection (144–146). The peritoneum can be damaged
while tunneling the LVAD driveline, allowing peritoneal fluid
into the thoracic cavity. This should be avoided, as peritoneal
fluid contains tissue plasminogen activator that can worsen
coagulopathy (147).

Tricuspid regurgitation

Moderate to severe TR is found in 30–40% of LVAD
candidates (Figure 5) (148, 149). If left unrepaired, >70% of
cases will regress to less than moderate during follow-up, likely
related to the relief of RV afterload, whereas 10% of LVAD
patients will develop de novo significant TR (150, 151). As
expected, severe TR after LVAD is independently associated with
RVF and mortality (150). Routine tricuspid valve (TV) repair
for severe TR at the time of implantation does not improve
long term outcomes, with 30% of TV repairs failing within 1
year of implant (152, 153). Instead, TV repair has been linked
with increased risk of arrhythmia, stroke, bleeding, need for
reoperation, higher need for RRT and longer stay on mechanical
ventilation and in ICU, with no improvement in quality of life
thereafter (148, 154). However, the techniques of repair vary
widely and have not been standardized. Failure to demonstrate a
benefit of TV repair may be associated with a failure of the repair
itself or with failure of the selected strategy.

Predictors of persistent TR or de novo TR are tricuspid
annulus dilatation >41 mm (153, 155, 156), atrial fibrillation
(157–159) and normal PVR (159). Despite the risks, repair
in these cases is justified to minimize the likelihood of late
RVF. In patients with intracardiac devices and suspected device-
related severe TR, a surgical exploration seems reasonable if the
echocardiography shows a lead adherent or impinging the TV
leaflets, as the chance of TR improving if left uncorrected is
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FIGURE 5

Prevalence, risk factors for progression and management for valvular regurgitation at the time of LVAD implant to minimize the risk of right
ventricular dysfunction. TR, tricuspid regurgitation; MR, mitral regurgitation; AR, aortic regurgitation; TV, tricuspid valve; PVR, pulmonary
vascular resistance; LVEDD, left ventricular end-diastolic diameter; NICM, non-ischemic cardiomyopathy; STJ, sinotubular junction.

much lower (160). However, an isolated annuloplasty band for
severe TR related to a pacing lead will predictably fail.

Mitral regurgitation

Significant mitral regurgitation (MR) is observed in 40%
of patients at the time of LVAD implantation (Figure 5), but
>80% experience improvement to mild or less with adequate
LV unloading (161). Persistent MR after LVAD is associated
with higher mortality, HF admissions, RVF, severe TR and
increased PVR with elevated CVP and PA pressures, and also
with worse kidney function (162–166). Patients who received a
previous transcatheter edge-to-edge repair can safely undergo
LVAD implantation without the need to remove the device if the
mean transvalvular gradient remains below 6 mmHg. Compared
with patients without transcatheter repair and severe MR at the
time of LVAD implantation, previous repair was associated with
greater reduction in TPG (167).

Mitral valve repair at the time of LVAD implant is not
universally recommended given the high percentage of patients
who improve without intervention. Review of the INTERMACS
registry shows that mitral valve repair is associated with less
MR during follow up, fewer HF admissions, and improved
functional capacity and quality of life (161, 164, 168, 169). Risk
factors for significant MR after LVAD include severe MR before
LVAD, NICM with large LVEDD, RV dysfunction, significant
TR, atrial fibrillation, female sex, younger patients, and HM2
support (vs. HM3) (164, 170).

Left ventricular assist device implantations are guided by
transesophageal echocardiography (TEE) so that the inflow
cannula is oriented toward the mitral valve to favor proper
unloading. Using a conventional chest X ray, an inflow cannula

with coronal angle >65–75◦ for HM2 and HVAD and <28◦ for
HM3 is associated with worse unloading, greater MR severity,
lower PAPI, less decrease in PCWP per each 100 rpm LVAD
speed increase and more HF admissions due to late RVF (171–
174). The degree of residual MR following LV unloading can be
immediately assessed during surgery, and patients with tenuous
RV function and risk factors for MR persistence may benefit
from simultaneous mitral valve repair. If LVAD is being used
as a bridge to recovery, mitral valve repair also helps to achieve
better hemodynamics.

Aortic regurgitation

Aortic regurgitation (AR) causes a closed-loop circulation
between the aorta and LV, and AR following LVAD is clearly
associated with higher mortality, more HF admissions, RVF,
lower PAPI and higher CVP, all of which are related to
increased PCWP (175–177). Any more than mild AR needs
to be surgically addressed at the time of LVAD implantation,
a situation encountered in 20% of patients (Figure 5) (176,
178). More than half of patients with unrepaired mild AR
progress to moderate or severe AR during their time on support
(176, 179, 180). Management options include aortic valve
repair, bioprosthetic aortic valve replacement, patch closure
of the aortic root, complete aortic valve closure, and central
aortic valve closure/Park’s stitch (181). Aortic valve closure
is associated with higher 2-year mortality than repair or
replacement and increases the risk of sudden death in case of
device malfunction. Instead of complete closure, repair with a
central coaptation stitch ensures partial aortic valve opening.
20% of repairs display recurrent AR vs. 9% of replacements
(182). Risk factors for progressive AR following LVAD include
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a dilated aortic root or sinotubular junction (>19.5 mm/m2 or
35 mm), obtuse outflow graft configuration directed toward the
aortic valve, and implantation closer to the aortic root (180,
183–187).

Patients who develop AR have higher BNP, reduced cardiac
index, higher LVEDD and reduced PCWP decrease at higher
LVAD speeds (175, 176), which subsequently increases RV
afterload and leads to worse functional class, more frequent HF
admissions and worse survival (176, 177, 179). Main predictors
for AR are female sex, duration of support and aortic valve
closure, which causes commissural fusion of the leaflets (176,
188). AR severity should be routinely monitored during follow-
up of LVAD patients using the novel diagnostic criteria that
use pulsed wave in the outflow graft for their better correlation
with clinical endpoints (189, 190). Aortic valve intervention
should be considered when de novo AR is at least moderate,
there are congestive HF symptoms and hemodynamic ramps
suggest poor unloading at increasing speeds. Although a high-
risk procedure, transcatheter aortic valve implantation (TAVI)
or percutaneous closure using an Amplatzer device (Abbott,
Chicago, IL, USA) (191–193) can be performed (194–197), but
acute resolution of AR may cause LV collapse with marked
leftwards shift and acute RVF in around 15% of reported TAVI
procedures (194).

Coronary artery disease

Damage or occlusion of the right coronary circulation may
lead to catastrophic RVF (198, 199). In patients with ischemic
cardiomyopathy, and especially in those with previous bypass,

assessment of coronary anatomy is necessary to determine RV
blood supply and risk of re-entry. In patients with proximal right
coronary artery (RCA) occlusion, the RV may rely on collateral
branches susceptible to injury during coring for LVAD insertion
or sternotomy. Likewise, septal perforators must be preserved to
preserve the septal contribution to RV contraction (200, 201).
Simultaneous coronary artery graft bypass, however, may be
associated with more risks than benefits and there is a very
low rate of coronary events in the long-term (200, 202), so that
protection of RV circulation should be assessed case-by-case.
Severe proximal RCA stenoses limiting coronary perfusion to
the RV should likely be addressed at the time of LVAD implant.

Early and acute right ventricular
failure

Mechanisms of early and acute right
ventricular dysfunction

Acute severe RVF with RVAD requirement is the most
catastrophic form of RVF and occurs in approximately 5% of
LVAD implants (3, 4). Early RVF and RVAD are associated
with multiple complications including prolonged ICU length
of stay, acute kidney injury (AKI) and RRT, bleeding and
bowel ischemia, stroke, and in-hospital mortality (Figure 6)
(203–209). While on CPB, the RV is completely unloaded, and
weaning from CPB should be gradual and coordinated with
progressive increase in LVAD speed to avoid RV distension. RV
geometry and pressure-volume relationships are altered after

FIGURE 6

Adverse events associated with right ventricular failure after LVAD implantation.
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pericardiotomy, and transient RV dysfunction is common post-
CPB. The septal contribution to RV contraction is decreased as
the septum is suctioned leftwards, and TV geometry may be
distorted, causing a greater regurgitant jet with increased RV
dilation, wall tension with higher VO2, and demand ischemia
(210). The RV becomes afterload sensitive after LVAD (126),
and high pulmonary pressures may compromise function. Early
RVF is characterized by a drop in peak RV systolic pressure
and RV dp/dt (211). A commonly theorized cause for RV
deterioration following LVAD is an increase in RV preload with
“flooding” caused by the increased CO. Very limited evidence
exists to support this theory, which contradicts the principles of
a closed-loop circulation, where the RV output must necessarily
match LVAD output.

Intra-operative assessment of right
ventricular performance

After chest closure, invasive measurements of CVP, diastolic
PAP and PAPi remain accurate for predicting RVF (212, 213).
Although no specific cut-offs have been suggested for clinical
use, the relevant values are likely lower than those used in
pre-operative RV assessment (212, 213). Patients who develop
RVF show a significant intra-operative drop in RVSWI and
blunted increase in cardiac index (214). If there is residual
pulsatility, pulsus alternans could also be an early sign of RVF
after initiating LVAD support (215).

Transesophageal echocardiography can assist in monitoring
leftwards septal shift at progressively higher speeds.
Intraoperatively, the echocardiographic assessment of RV
function described in the pre-operative setting has poor
predictive value for acute RVF, with the exception of FAC
(213, 216, 217). In the immediate post-operative period, TEE
guidance can identify septal misalignment and trigger more
speed adjustments than conventional monitoring with a PA
catheter, with the most common indicator being a rightwards
septum suggesting insufficient unloading (218).

Decreasing afterload

General measures
Following separation from CPB, the general principles

of RV optimization apply, with reduction of RV afterload
being paramount (219). Thorough de-airing is essential as
air emboli have a predilection for the RCA due to its
anatomic position. Maintaining adequate RV perfusion pressure
can be challenging in the context of refractory vasoplegia
or use of inodilators (milrinone, dobutamine). Hypercarbia,
hypoxemia, acidosis, hypothermia, pain and light anesthesia can
all promote pulmonary vasoconstriction and increase PVR, with
a detrimental effect on LV filling and LVAD flows (220). Return

of CPB volume and subsequent transfusion should be performed
slowly and with TEE guidance to prevent RV overload.
Protamine reactions can cause significant increases in PVR
through thromboxane release (221). For patients with tenuous
RV function, intra-aortic administration of protamine bypasses
the pulmonary circulation and minimizes its hemodynamic
effects (222). Unexplained hypoxemia after LVAD raises the
possibility of an unrecognized patent foramen ovale with right
to left shunt. Low LVAD speeds may cause insufficient LV
unloading and should be adjusted under echocardiographic
guidance to reduce RV afterload. Notably, many factors may
impact RV resistive load during surgery and general anesthesia,
and diastolic PAP in the operating room may not be reflective
of PCWP. Figure 7 provides a comprehensive algorithm for
management of RVF.

Early extubation
Positive pressure ventilation increases PVR and decreases

CO in an RV-dependent circulation. Positive end-expiratory
pressure (PEEP) and mean airway pressure should be kept
at the minimum required to avoid atelectasis (223). Ultra-
fast-track anesthesia, consisting of early extubation within 4 h
of the surgery, is feasible with either median sternotomy or
LT (224). Early extubation with spontaneous breathing and
negative intrathoracic pressure minimizes RV afterload and is
associated with less RVF and pneumonia, improved RVSWI
and shorter length of stay (224, 225). Unfortunately, inhaled
iNO therapy often delays extubation in patients at risk of RVF,
and early administration of inodilators such as milrinone may
hasten iNO weaning.

Vasoactive support
In patients undergoing LVAD surgery, the RV remains

preload dependent, but with much narrower limits. At a
CVP above 10–12 mmHg, volume loading further increases
filling pressures without improvement in RVSWI or CO
(226). Fluid responsiveness must not be mistaken for fluid
tolerance, and resuscitation should be judicious (227). Inotropic
support with either dobutamine, milrinone or epinephrine
will improve contractility, forward flow and decrease CVP.
At doses higher than 2–5 µg/kg/min, dobutamine causes a
rise in PVR, and milrinone is preferred for its vasodilatory
effect on the pulmonary circulation. If vasopressor support is
required following milrinone initiation, low-dose vasopressin
can effectively increase systemic vascular resistance (SVR) to the
same extent as norepinephrine without modifying PVR (228).
Intratracheal and inhaled milrinone have been successfully used
to improve RVF, reduce PVR and mean PA pressures, while
minimizing the effect on SVR (229, 230). Levosimendan is a
calcium sensitizer that can be administered in combination
with other inotropes to improve RV contractility. Reports in
the LVAD population are scarce (231), but randomized trials
involving levosimendan in general cardiac surgery have not
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FIGURE 7

Proposed algorithm for management of early right ventricular failure. aSigns of hypoperfusion (lactate >2 mmol/L, MAP <60 mmHg, drop in
pump flows, mottled skin, oliguria) supported by hemodynamic (CVP >15, PAPI <1, RV stroke work index <300, CI <2 ml/min/m2, mixed
venous oxygen saturation <50%), echocardiographic (dilated RV, leftwards septal bulge, severe TR, fixed and distended IVC) or laboratory data
(rise in creatinine, blood urea nitrogen or liver enzymes). bCorrect hypoxemia (if significant, rule out intracardiac shunts), hypercarbia and
acidosis. cCommon causes for VT are metabolic derangementsb, ischemia (supply demand but also direct damage during surgery),
pacing-related issues, scar-mediated or suction events. dAim for low positive end-expiratory pressure (just enough to minimize atelectasis), low
mean airway pressure and avoid air entrapment. Plan for early extubation if possible. eMilrinone (0.125–0.75 µg/kg/min) is usually preferred to
dobutamine or epinephrine given their deleterious on PVR. Low dose dobutamine (2–5 µg/kg/min) may not affect PVR. Epinephrine can be
used if patient is hypotensive. fNorepinephrine (0.01–0.5 µg/kg/min) is the most used pressor, but vasopressin (0.01–0.06 U/min) should be
added at low dose as it has less vasoconstrictive effect on the pulmonary vasculature. RV, right ventricular; TEE, transesophageal
echocardiography; PA, pulmonary artery; HR, heart rate; PCWP, pulmonary capillary wedge pressure; DCCV, direct current cardioversion; VT,
ventricular tachycardia; VF, ventricular fibrillation; ATP, antitachycardia pacing; ICD, internal cardiac defibrillator; RVAD, right ventricular assist
device; PVR, pulmonary vascular resistance; LVAD, left ventricular assist device; iNO, nitric oxide; CVP, central venous pressure; RRT, renal
replacement therapy; MAP, mean arterial pressure.

shown improved outcomes (232–234). Currently there is no
evidence to support levosimendan use in LVAD patients.

Pulmonary vasodilators
Pulmonary vasodilators may reduce RV afterload but should

only be initiated once LVAD speeds are optimized. If a patient
exhibits persistent pulmonary hypertension despite adequate LV
offloading and a low PCWP, then pulmonary vasodilators may
be of benefit. However, if the LV remains congested, pulmonary
vasodilators may increase LV preload and PCWP with minimal
improvement in RV afterload or performance (235).

Inhaled nitric oxide

Inhaled iNO is a selective pulmonary vasodilator that
activates guanylate cyclase to increase cyclic guanylyl
monophosphate in the smooth muscle only in vessels perfusing
oxygenated alveoli, reducing intrapulmonary shunting and V/Q
mismatch. Unlike intravenous inodilators such as milrinone
and dobutamine, iNO has minimal effects of SVR and blood
pressure, making it easier to maintain RV perfusion pressure.
iNO is commonly used pre-emptively in LVAD surgery due to a
favorable risk-benefit profile, with cost and time-to-extubation
being the primary deterrents. Methemoglobinemia is rarely

seen at clinically relevant doses of 40 ppm or less (236). Small,
randomized controlled trials have demonstrated the efficacy
of iNO in reducing PVR and mean PA pressure over placebo,
but with a non-significant reduction in RVF, probably related
to insufficient sample size and >10% crossover (237–239).
The benefit of iNO seems limited to patients with elevated
mean PA pressures or elevated PVR after PCWP normalization,
regardless of CVP values (238–240). Abrupt discontinuation of
iNO can result in rebound pulmonary hypertension and RVF.
In the absence of a PAC or TEE, systemic indices of RV function
such as CVP, lactate, urine output and bloodwork should be
carefully monitored throughout the weaning process.

Inhaled prostaglandins

Inhaled prostaglandins have also been used intra-operatively
and in the early post-operative setting to reduce RV afterload.
Epoprostenol is a synthetic analog of prostacyclin that promotes
pulmonary vasodilatation by increasing intracellular cyclic
adenylyl monophosphate. Epoprostenol must be nebulized
continuously within the breathing circuit to exert local selective
vasodilatation. In a non-randomized trial, Epoprostenol
has shown to effectively reduce mean PA pressures after
LVAD support (241). Administering epoprostenol before CPB
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increases risk of bleeding, likely due to interference with
platelet aggregation (241). Iloprost is another synthetic analog
of prostacyclin with a more stable half-life that can be given
intermittently via a nebulizer. Unlike epoprostenol or iNO,
iloprost can be continued in patients after extubation. The
addition of iloprost in LVAD patients receiving iNO has been
shown to further reduce PVR, mean PA pressure and to increase
TAPSE (242).

Sodium nitroprusside

Sodium nitroprusside is a potent arterial vasodilator with
immediate effect than can reduce PVR as effectively as iNO
(243). The associated decrease in SVR may be especially useful in
hypertensive patients with elevated PCWP, in which increasing
LVAD speeds are unable to decompress the LV (244, 245).
Unlike iNO, SNP is a non-selective intravenous medication that
inhibits the physiological vasoconstrictive response to hypoxia.
SNP will therefore vasodilate pulmonary vessels perfusing
unventilated alveoli, causing right to left shunt and hypoxemia.
Cyanide toxicity can occur with prolonged SNP infusions above
2 mcg/kg/min, and serum cyanide levels should be performed
routinely for the duration of the infusion.

Phosphodiesterase 5 inhibitors

Sildenafil is a phosphodiesterase 5 inhibitor (PDE5i) that
increases cyclic guanylyl monophosphate by inhibiting its
degradation, and is commonly used to wean off iNO or
milrinone in patients with borderline RV function to prevent
a rebound effect (246). Few studies have assessed the effect of
sildenafil on clinical outcomes, but the limited data suggests
a benefit for patients with persistent pulmonary hypertension
after LVAD, with reduction of PVR and mPAP, and increase in
RV function and CO (247). Simultaneous high-dose sildenafil,
iloprost and iNO have been trialed, yielding very low rates of
RVF and no need for RVAD (248). Notably, in a propensity-
score-matched INTERMACS registry analysis, pre-treatment
with sildenafil was associated with a paradoxical increase in
RVF rates. However, this result may be due to between-group
differences in baseline RV afterload, despite matching (249).

In the long-term, PDE5i could have favorable effects
on RV function by decreasing RV afterload, such that it
may be reasonable to try in patients with low PCWP who
still display elevated PVR after LVAD. However, the major
determinant of functional capacity in LVAD patients is a
disproportionate rise of PCWP with activity that may limit
the potential benefits of sildenafil (250). Randomized data is
lacking until the results of the SOPRANO trial become available,
in which macitentan will be assessed as adjunctive therapy
(NCT02554903). A meta-analysis of 6 observational studies
reporting data on RVF demonstrated no benefit of sildenafil to
reduce RVF with very high heterogeneity between the studies
included (251). These neutral results were confirmed in a
propensity-matched analysis of the STS registry, and do not
support the indiscriminate use of PDE5i.

Volume status and kidney function
The differential and management for a high CVP after

separation from CPB can be challenging, reflecting a
combination of volume status, RV function, hemodynamic
support, respiratory function, surgical manipulation and LVAD
performance. The RV is directly visible during surgery and
can be regularly assessed for signs of volume overload and
distention. If intraoperative TEE shows inferior vena cava (IVC)
plethora, a distended RV and adequate LV filling, then diuretics
may help to release RV wall tension and improve contractility.
AKI is commonly seen in 25–35% patients undergoing LVAD
support, and RRT is initiated in 10–15%. Both AKI and RRT
are associated with early RVF and RVAD use, and higher
subsequent mortality (252–254). Pre-operative predictors
for AKI and RRT include an eGFR <45 mL/min/1.73 m2,
presence of proteinuria and CVP/PCWP >0.54 (252). This
association between RRT and mortality may reflect a sicker
patient population, and not deleterious effects directly related
to RRT. In high-risk patients, pre-emptive initiation of RRT
before systemic congestion ensues may be beneficial, especially
if urine output remains inadequate after high-dose diuretics.
This theory was tested in a small study of 21 patients with eGFR
<30 mL/min/1.73 m2 treated with aggressive pre-operative
optimization including IABP placement and immediate RRT
after weaning CPB, with similar rates of RVF and 1-year survival
as patients with normal eGFR (255).

Heart rhythm management considerations
Heart rate

Temporary epicardial pacing wires are routinely implanted
prior to chest closure, allowing optimization of heart rate
(HR) and CO. Many patients will have permanent implanted
devices, and regular interrogation can prevent competition
between temporary and permanent devices. Cardiac surgery
patients are routinely paced between 80 and 100 bpm in the
immediate post-operative period, which maximizes output and
minimizes dilatation. A higher HR may increase PCWP and
thus augment RV afterload (256). If the RV has a restrictive
filling pattern, CO will heavily rely on the HR, as stroke volume
will plateau at low volumes. Thus, in a truly restrictive RV with
adequately unloaded LV and low PCWP, higher pacing rate may
result beneficial.

Atrial arrhythmias

Atrial fibrillation is present in 30–40% of patients at the time
of implant. After LVAD surgery, half of the patients convert to
sinus rhythm but an additional 10% experience de novo post-
operative atrial fibrillation (257, 258). In both INTERMACS
and EUROMACS registries, atrial fibrillation is seen in 20–25%
of LVAD outpatients and is associated to decreased survival,
quality of life and functional capacity, likely reflecting different
baseline characteristics (259, 260). Atrial contraction at the
end of diastole contributes around 15–20% to CO in normal
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individuals. Ventricles with restrictive filling and elevated end-
diastolic pressures may be more susceptible to losing atrial
contribution. In the acute setting, patients with restrictive RV
filling may experience hemodynamic compromise with drop
in flows due to RVF with atrial arrhythmias, and a rhythm
control strategy may be advisable in these specific cases (261).
An association between atrial arrhythmias and RVF and RVAD
need has been reported, although the temporal sequence of
events is unclear and atrial fibrillation is probably a marker of
disease severity and elevated RA pressures (262).

Ventricular arrhythmias

Sustained ventricular arrhythmias (>30 s) occur in
the early post-operative period in 20–25% of patients,
most often in the first 15 days after surgery (263–265).
Ventricular arrhythmias can compromise RV output and LV
filling, resulting in suction events. Interventricular septum
position should be assessed and suction events ruled out,
especially if the ventricular arrhythmias are accompanied
by reduced flows and MAP (218). Ventricular arrhythmias
may triggered by metabolic derangements, R-on-T pacing,
RV ischemia related to distension, or damage/occlusion of
the RCA (263). Pre-operative ventricular arrhythmias are the
strongest predictor for post-operative ventricular arrhythmias,
highlighting the importance of scar-mediated re-entry as a
leading mechanism. Initiation may be triggered by increased
adrenergic tone aggravated by inotropic support. Only a
minority of patients undergoing ventricular tachycardia (VT)
ablation show arrhythmias related to the inflow cannula (266).
RVAD at the time of LVAD insertion halved the risk of
early ventricular arrhythmias after multivariate adjustment,
suggesting that RVF contributes to ventricular arrhythmias in
the acute setting (264).

Electrical storm is seen in 6% of patients and carries a
poor prognosis with very high in-hospital mortality (264, 267,
268). Recurrent shocks can cause myocardial stunning and
progressive RVF with increased support requirements including
inotropes, pulmonary vasodilators, or RVAD, a functional
deterioration not seen with anti-tachycardia pacing (263).
Rarely, VT ablation should be considered in the acute setting
for patients with RVF and recurrent intractable VT (263–
265). For patients with recurrent ventricular fibrillation without
preceding VT, sympatholytic therapies such as stellate ganglion
blockade or ablation of the Purkinje fibers may be helpful (263,
264, 268).

Cardiac resynchronization therapy

Cardiac resynchronization therapy (CRT) is initiated
in many patients with advanced HF patients who later
undergo LVAD implant. There is no improvement in invasive
hemodynamic measurements with biventricular pacing
compared to no pacing or right ventricular pacing only
(269–271). Similarly, there are no differences between pacing

modes in LV unloading during invasive ramp tests (271).
Although some patients may benefit from CRT to improve RV
contractility (272), frequent pack changes, reduced exercise
capacity and quality of life with biventricular pacing suggests
that turning off the LV-lead is advisable for most patients after
LVAD (266, 273, 274).

Right ventricular mechanical
circulatory support

Timing of right ventricular assist device
implantation

Right ventricular assist device implantation is more effective
as a pre-emptive strategy than a rescue device. The pre-operative
LVAD assessment should identify patients at moderate to high
risk of RVF. Ideally, the decision to implement RVAD support
is made at the time of LVAD implantation, and not after
multi-organ failure secondary to congestion and hypoperfusion
are established. Several studies suggest improved survival and
end-organ preservation with planned RVAD support compared
to rescue (275, 276). 30-day survival for planned, combined
LVAD + RVAD implant parallels survival of patients who require
LVAD support alone (277). This trend is further evidenced
by a STS registry analysis which showed that mortality
post-operative rescue RVAD increased by almost 50% when
compared to pre-emptive, planned RVAD + LVAD simultaneous
implantation (278). Thus, liberal use of RVAD in patients at
high-risk for RVF may be beneficial (279).

Extracorporeal membrane oxygenation vs.
right ventricular assist device

Venoarterial (VA) ECMO reduces RV preload by diverting
blood from the venous system through an external pump
and oxygenator, which then returns to the arterial circulation
through direct aortic cannulation in the ascending aorta or
through a femoral artery if peripherally cannulated. Optimizing
the fine balance between the ECMO circuit and the LVAD can
be challenging. If the ECMO speed is too high, there may be
inadequate flow through the RV and pulmonary circulation,
leading to LV underfilling and suction events. Conversely,
if the LVAD speeds is too low, the increased LV afterload
may lead to inadequate LV decompression with secondary
pulmonary congestion. Despite these challenges, V-A ECMO
has been used successfully for acute RVF following LVAD
implant, but with well-recognized risks (280, 281). In an
adjusted analysis using data from the STS registry, LVAD
patients who required ECMO support showed higher rates of
acute limb ischemia, reoperation, pneumonia, wound infection,
and mortality compared to those who received an RVAD, (54.2%
vs. 40.5%, p < 0.001) (278). Notably, peripheral V-A ECMO
significantly increases LV afterload and should not be used in
patients receiving LVAD as bridge to recovery.
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Types of right ventricular assist device
Right ventricular assist device support can be provided

through percutaneous or central cannulation. In recent years,
percutaneous RVAD has gained popularity over central RVAD
for its minimal invasiveness, but the preference is supported by
little evidence. Disadvantages of central RVAD include the need
for a second surgery if not implanted at the time of LVAD, and a
third for its removal, although percutaneous removal is possible
if planned at the time of insertion (277). Although large scale
studies are lacking, percutaneous RVADs are associated with a
shorter length of stay, shorter time on mechanical ventilation
and less blood product utilization with a trend toward lower
rates of RRT (27.3% vs. 52.4%; p = 0.09) and mortality (21.1%
vs. 42.9%; p = 0.14) (282). An oxygenator allows for correction
of hypoxemia and can be connected to central RVADs and
some percutaneous models. A comparison between RVAD with
or without oxygenator showed earlier acidosis resolution and
further decrease in vasoactive medication with shorter time on
support if an oxygenator was added to the system (283).

The most commonly used central RVAD device is the
Levitronix CentriMag

R©

(Abbott, IL, USA), with an inflow
cannula in the RA, and an outflow cannula in the PA. The inflow
cannula can be surgically implanted, or peripherally inserted
through the femoral vein. CentriMag

R©

RVAD can provide up
to 10 L/min of support, and an oxygenator can be incorporated
to the circuit if there is concomitant lung disease with associated
hypoxemia (284).

Percutaneous RVAD systems currently available include
the TandemHeart

R©

(LivaNova, London, UK), ProtekDuo
R©

(LivaNova, London, UK) and Impella RP
R©

(Abiomed, Danvers,
MA, USA). Tandem Heart femoro-femoral cannulation with
inflow in the superior vena cava–RA junction with a
percutaneously placed cannula in the PA has been largely
abandoned since the commercialization of the ProtekDuo

R©

cannula in 2014 (284). The ProtekDuo
R©

cannula is a dual
lumen cannula allowing for percutaneous, single-vessel jugular
venous access. The ProtekDuo

R©

cannula is placed under
echocardiographic or fluoroscopic guidance with a proximal
port in the RA and a distal port in the main PA. The cannula
is connected to an extracorporeal centrifugal pump [either
Lifesparc

R©

(LivaNova, London, UK), ECMO or CentriMag
R©

console], able to provide flow up to 4–4.5 L/min (284), and
allows for the connection of an oxygenator. The ProtekDuo

R©

has been successfully used in LVAD patients and is approved for
up to 30 days of use (285–287). Its jugular insertion allows for
patient ambulation and better rehabilitation, but can also cause
superior vena cava syndrome given the large cannula size (288).
Specific to the shape of Protek Duo is RCA compression caused
by the bending of the cannula within the RV (289).

The Impella RP
R©

is a dual-lumen 22 Fr cannula inserted
under fluoroscopy through the femoral vein that incorporates
a microaxial pump to propel blood from the IVC into the PA.
Unlike the ProtekDuo

R©

, the Impella RP
R©

cannot accommodate

an oxygenator, and should not be used if hypoxemia is a concern,
as an upgrade to surgical RVAD may be necessary in that
scenario. It has been used successfully in RVF after LVAD and
can provide up to 4–4.5 L/min of flow, but it is only approved
for less than 14 days of support (287, 290), and its femoral
placement precludes ambulation. Complications that can occur
are device migration, clotting of the cannula or of the purge
system and hemolysis, due to the high speed required by the
microaxial pump (usually above 30,000 rpm to provide full
support) (290).

Contraindications to use percutaneous RVAD are
mechanical valves, pulmonary or supravalvular stenosis,
severe pulmonic insufficiency, or clots in the right chambers,
but a surgical RVAD with the inflow cannula in the RA or
VA-ECMO could be used if the clot is limited to the RV. Impella
RP should be used with caution if there are IVC filters or deep
vein thrombosis. Common to both percutaneous RVADs is the
risk of tricuspid or pulmonary valve damage, but incidence is
low (290). Also, fracture of the cannula, bleeding at the entry
site and PA perforation can occur with both percutaneous
devices (290, 291). RVAD flows should be kept below LVAD
flow to avoid pulmonary edema and hemorrhage, which have
been associated with surgical RVAD flows >4 L/min (292).

Right ventricular assist device weaning
There are no standardized protocols for weaning RVAD

support. In preparation for decannulation, an RVAD ramp study
should be performed under echocardiographic guidance with
advanced hemodynamic monitoring to assess RV response to
decrements in speed, although simultaneous PAC insertion may
not be possible in many cases while on RVAD support. At each
speed, CVP, MAP, LVAD flow and the occurrence of suction
events should be assessed, along with TAPSE, tricuspid s′ and the
velocity-time integral in the RV outflow tract. If hemodynamics
remain unchanged following a reduction in 0.5–1 L/min, further
reductions are attempted as tolerated. Risk of thrombosis
increases at flows below 2 L/min, and anticoagulation should
be initiated, targeting an activated clotting time (ACT) >160 s,
or >200 s if an oxygenator is attached to the pump to prevent
clotting. In some cases, it may be preferable to maintain a low
flow on the RVAD for a more prolonged time while on proper
anticoagulation and assess urine output and lactate before
proceeding to next steps. If CVP remains unchanged and LVAD
flow is stable with no suction events, full anticoagulation is
administered (ACT >300), and RVAD flows dropped to 1 L/min
for 5–10 min. If all parameters remain stable and the RV is
functioning adequately on TEE, the circuit can be clamped in
preparation for decannulation (293).

Exit strategies: BerlinHeart excor right
ventricular assist device

If weaning cannot be achieved after multiple attempts,
an exit strategy is required, as percutaneous RVADs are not
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approved for long-term use. Unfortunately, in this scenario,
prognosis is poor regardless of strategy. In patients who
have recovered end-organ function, OHT candidacy needs
to be reassessed. If the patient can be listed for OHT but
long wait times are expected, more durable biventricular
support can be achieved with the Excor RVAD R© (BerlinHeart,
Berlin, Germany). Excor is a paracorporeal pulsatile mechanical
ventricle of different sizes that can be used exclusively as RVAD
or combined with an LVAD. A common Excor

R©

complications
include thrombosis of the mechanical ventricle, which is risky
on the right side, high rates of bleeding and wound infections
(294, 295). However, approximately 50% of carefully selected
patients receiving an upgrade to Excor support following a failed
temporary RVAD wean could be successfully bridged to OHT,
with similar survival after OHT as other recipients (294–296).

Exit strategies: Durable right ventricular assist
devices

The use of durable BIVAD remains highly experimental
and should only be used as a last resort in critically ill
patients as BTT candidacy. Most published cases of durable
intracorporeal RVAD using bilateral continuous-flow VADs
underwent upfront BIVAD and not staged implantation after
RVF, which has been associated with worse outcomes (297).
However, patients receiving durable BIVAD support were more
acutely ill than those receiving isolated LVAD (298). When
performed simultaneously, durable BIVAD is as effective as total
artificial heart regarding survival until transplantation. Durable
BIVAD is associated with longer time on support but higher
rates of hospital discharge (299). Most durable BIVAD strategies
involve off-label use of the Medtronic HVAD R© pump, a smaller
centrifugal, continuous-flow device that permitted intrathoracic
placement (300, 301). 1-year survival with a HVAD-BIVAD
configuration was 56% is a multi-center collaboration (302).
Similar survival rates have been described with either right
atrial or right ventricular inflow cannula configurations, with
pump thrombosis occurring in 30% of cases (297–299, 302, 303).
Unfortunately, the Medtronic HVAD was withdrawn from the
worldwide market in 2021 amidst studies demonstrating higher
rates of neurological events and mortality. As an alternative,
dual HM3 support has been demonstrated, but necessitates
either partial cardiotomy (304–306) or right atrial configuration
(307, 308). Comprehensive studies are lacking, as reported
survival rates with HM3 in an RVAD configuration widely
ranges from 30% at 3 months to 92% at 18 months (298,
306–308).

Late right ventricular failure

Late RVF is currently defined as RVF occurring at least
30 days after the implant, as recommended by the MCS-ARC
(Figure 1). The prevalence of moderate-severe late RVF is 20%
at 1-month, decreasing to 3–5% at 3 months and remaining

stable thereafter (309). However, if milder cases are included,
the prevalence of late RVF are estimated to be as high as
40% (310). In patients with an LVAD as BTT, late RVF is
associated with higher urgent HT rates (309). Although the
data are conflicting (280), late RVF is a major risk factor for
primary graft dysfunction, in-hospital mortality, and high 1
and 5-year mortality after HT (22, 311). RV assessment is
usually more permissive and LVAD indication is more liberal
in the BTT population as the time on support is expected to be
shorter, but these results highlight that careful RV assessment
and aggressive RVF treatment should be pursued to improve
outcomes after HT.

Late RVF is associated with lower hemoglobin, higher
gastrointestinal bleeding and stroke rates, VAD-related and
non-VAD-related infections and persistent kidney impairment
during follow-up (39, 309, 312, 313). Quality of life and
functional capacity is also decreased in patients with late
RVF (309, 313). The pathophysiology underlying the non-
cardiovascular complications of RVF is poorly defined. LVAD
patients have an abnormal von Willebrand factor metabolism
and overexpression of angiopoetin-2 that increases the risk of
arteriovenous malformations and creates a fragile vasculature.
Along with lack of pulsatility, RVF causes malnutrition due
to gut edema and hepatic congestion, venous hypertension,
blood stasis, coagulopathy and increased intravascular pressure
within these abnormal vessels that predispose them to rupture
and bleeding in the GI tract or brain (204). In addition to
hemorrhagic complications, the extravasated blood and blood
stasis act as an ideal substrate for infection (204).

The response of the RV to LVAD will be patient-specific
depending on interventricular interdependence and RV-PA
coupling. In general, higher LVAD speeds will worsen RV
systolic function but improve RV compliance and relaxation
(314, 315). In most cases, the RV remains sensitive to afterload
(126) and higher speeds will provide better unloading, reflected
in the improved RV performance and fewer RVF and HF
admissions observed at higher speeds (316–319). Pressure-
volume loops before and after LVAD implantation demonstrate
that despite higher CVP for a similar Ea, the stroke volume/end-
systolic volume as a measure of RV-PA coupling significantly
improved, suggesting better RV efficiency (320). The elevated
CVP may therefore reflect diastolic rather than systolic
dysfunction, explaining the better long-term performance of
the RV at higher speeds (321, 322). The association between
recurrent HF admissions, impaired RV relaxation and restrictive
RV filling is demonstrated by higher RVF rates in patients with
a deep CVP Y descent or prolonged diastolic plateau (>55% of
the diastole) (323, 324).

A detailed description of long-term management of RVF in
LVAD patients is beyond the scope of this review, but it is worth
mentioning that invasive ramp studies are feasible and reliable as
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soon as 1–3 months after the implant (317) and allow
case-by-case pump speed optimization. Echocardiographic
surveillance is mandatory during follow-up, and can be
useful in estimating filling pressures (325). With limited
evidence, it seems that optimization of HF medication
may improve LV function, thereby reducing RV afterload
and improving its function (326). In the setting of late
RVF, de novo AR should be ruled out, and revision of
the log files looking for a progressive increase in power
for a similar flow can help in suspecting an outflow
graft obstruction. If the LVAD speed is optimized and
there are no lesions amenable to repair, RVF should be
managed as per the current HF guidelines with diuretic
adjustment, or dialysis (hemodialysis or peritoneal) if
RVF is refractory to medical management (327–329).
Inotropes may be an option for these patients (330), as
the use of oral milrinone or intermittent levosimendan
infusions have been successfully reported (331, 332).
RVADs for late RVF should be restricted to patients who
remain on the OHT list and develop refractory RVF with
cardiogenic shock.

Conclusion

Right ventricular failure is a devastating complication
occurring after LVAD implantation, but it can be predicted pre-
operatively in the basis of clinical features and a combination
of echocardiographic and hemodynamic RV metrics here
summarized. Intra-operative assessment of RV function is
paramount to decide on early RVAD support to improve
patient survival. This review offers a comprehensive guidance
to provide the best supportive treatment for the patient
with RVF after LVAD in the early post-operative phase
and considerations about RV performance later during the
outpatient follow up.
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Glossary

LVAD, left ventricular assist device; HF, heart failure; DT, destination therapy; BTT, bridge to transplant; OHT, orthotopic heart
transplant; RV, right ventricle; RVF, right ventricular failure; RVAD, right ventricular assist device; HRAEs, hemocompatibility-related
adverse events; INTERMACS, interagency registry of mechanical circulatory support; CVP, central venous pressure; MCS-ARC,
mechanical circulatory support–academic research consortium; BSA, body surface area; HM2, Heart Mate II; HM3, Heart Mate
III; LVEDD, left ventricular end-diastolic diameter; TR, tricuspid regurgitation; LA, left atrium; BMI, body mass index; eGFR,
estimated glomerular filtration rate; CKD, chronic kidney disease; BUN, blood urea nitrogen; NGAL, neutrophil gelatinase-associated
lipocalin; RRT, renal replacement therapy; INR, international normalized ratio; ECMO, extracorporeal membrane oxygenation; CCR,
chemokine receptor; IL, interleukin; PVR, pulmonary vascular resistance; VE, ventilatory efficiency; VCO2, carbon dioxide output;
VO2, oxygen consumption; PAPi, pulmonary artery pulsatility index; PA, pulmonary artery; NICM, non-ischemic cardiomyopathy;
TAPSE, tricuspid annular plane systolic excursion; RA, right atrium; AUC, area under the curve; TPG, transpulmonary gradient;
PCWP, pulmonary capillary wedge pressure; TPDG, transpulmonary diastolic gradient; CO, cardiac output; Ea, arterial elastance;
SVI, stroke volume index; RVSWI, right ventricular stroke work index; mPAP, mean pulmonary artery pressure; MAP, mean
arterial pressure; PAC, pulmonary artery catheter; Ees, end-systolic elastance; CPB, cardiopulmonary bypass; FDA, food and drug
administration; ROTEM, rotational thromboelastometry; ICU, intensive care unit; TV, tricuspid valve; MR, mitral regurgitation; AR,
aortic regurgitation; TAVI, transcatheter aortic valve implantation; RCA, right coronary artery; TTE, transthoracic echocardiography;
TEE, transesophageal echocardiography; PEEP, positive end-expiratory pressure; iNO, nitric oxide; SVR, systemic vascular resistance;
SNP, sodium nitroprusside; PDE5i, phosphodiesterase 5 inhibitor; AKI, acute kidney injury; IVC, inferior vena cava; HR, heart rate;
VT, ventricular tachycardia; CRT, cardiac resynchronization therapy; LV, left ventricle; VA, venoarterial; ACT, activated clotting time;
BIVAD, biventricular assist device.
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