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Abstract

The UK’s defence industry is accelerating its implementation of artificial intelligence, including

expert systems and natural language processing (NLP) tools designed to supplement human

analysis. This thesis examines the limitations of NLP tools in small-data environments (com-

mon in defence) in the defence-related energetic-materials domain. A literature review identifies

the domain-specific challenges of developing an expert system (specifically an ontology). The

absence of domain resources such as labelled datasets and, most significantly, the preprocessing

of text resources are identified as challenges. To address the latter, a novel general-purpose

preprocessing pipeline specifically tailored for the energetic-materials domain is developed. The

effectiveness of the pipeline is evaluated.

Examination of the interface between using NLP tools in data-limited environments to either

supplement or replace human analysis completely is conducted in a study examining the sub-

jective concept of importance. A methodology for directly comparing the ability of NLP tools

and experts to identify important points in the text is presented. Results show the participants

of the study exhibit little agreement, even on which points in the text are important. The NLP,

expert (author of the text being examined) and participants only agree on general statements.

However, as a group, the participants agreed with the expert. In data-limited environments,

the extractive-summarisation tools examined cannot effectively identify the important points

in a technical document akin to an expert.

A methodology for the classification of journal articles by the technology readiness level (TRL)

of the described technologies in a data-limited environment is proposed. Techniques to overcome

challenges with using real-world data such as class imbalances are investigated. A methodology

to evaluate the reliability of human annotations is presented. Analysis identifies a lack of

agreement and consistency in the expert evaluation of document TRL.
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Chapter 1

Introduction

An increasingly pressing problem in the field of defence is the loss of expert knowledge from

the retirement of key personnel1. Over a prolonged period in an organisation, an employee will

develop deeply contextualised knowledge of specific business systems and procedures. When this

employee retires, their expert knowledge is lost and is difficult to replace [2]. The significance

of this problem is becoming more apparent globally due to an increasingly ageing population

[3]. For example, by 2040, approximately one in seven people in the UK will be over the age of

75 [4]. As the UK population ages, retirement rates will rise, leading to an increasing number

of workers leaving the workforce; hence, some roles will be left vacant due to a lack of suitable

replacements [5]. In extreme cases, this can result in organisations resorting to rehiring retired

employees at consultancy rates to resolve complex problems [6].

One potential solution to the loss-of-knowledge problem is the development of expert systems

that could aid the preservation and transfer of expert knowledge by emulating expert decision-

making. Expert systems generally consist of a knowledge base and an inference system [7]. The

knowledge base, typically designed by a knowledge engineer, consists of facts and information

as well as data considered in the context of the domain in question. The inference system uses

the knowledge base to obtain a solution to a problem [8].

However, since the earliest work on expert systems, computer scientists and psychologists have

struggled with issues around eliciting expert knowledge for the knowledge base [9, 10]. Popular

1The present introduction is based on the introduction to my paper in Ref. [1], see Section 1.4 for details on
the rights to reproduce Ref. [1].

1
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knowledge acquisition methods in the early 1990s relied on knowledge acquisition methods from

psychology [11]. In recent years these methods have become less popular due to ‘information

overload’ [11]. The quantity of information on the web has dramatically increased through the

development of social media and the web-publishing of journal articles. Information overload

is a pressing issue in industry, government, and academia [12]. A 2020 report on the future of

artificial intelligence and UK national security described this as ‘one of the greatest technical

challenges facing the UK’s national security community’ [13].

Expert systems have consequently evolved to exploit the large quantities of data readily avail-

able [14]. As a result, those involved in developing expert systems have turned to computerised

methods of processing large quantities of text data, such as Natural Language Processing (NLP)

tools [15]. NLP is defined as the application of computational techniques to analyse language

and speech [16]2. In the era of big data, harnessing the power of NLP to obtain actionable

insights from text is a rapidly increasing area of research, not just in the context of expert

systems [17, 18, 19, 20]. For instance, in the biomedical domain, biomedical text mining (or

BioNLP) is a well-established area of research [21, 22], with applications to finding protein-gene

interactions [23] and identifying biomedical relations, such as between diseases and medications

[24, 25].

The race to adapt to ‘information overload’ by leveraging AI capabilities is a race in which

the UK and its allies are falling behind [26]. In light of this, the UK’s defence and security

industries are taking steps to accelerate the implementation of AI. This includes implementing

a range of NLP systems that can ‘support’ human operators to analyse and organise large

volumes of unstructured text [13], e.g. by flagging significant items.

State-of-the-art NLP tools rely on large labelled datasets (either to demonstrate the perfor-

mance of unsupervised methods or to train the NLP algorithms themselves). Development

of these datasets is a costly and time-consuming process, one that is often not feasible when

resources are constrained [27]. This is a hurdle in information-restricted fields, such as the de-

fence industry, which are often the most affected by the loss-of-knowledge problem. In defence,

information can be complex and hidden in data silos, making the development of these datasets

unfeasible [28]. This thesis examines the limitations of NLP tools in small-data environments.

2This definition of NLP will be used throughout this thesis. It is noted that the acronym ’NLP’ can be
an abbreviation of phrases not relevant to this thesis, such as the pseudoscientific field of Neuro-linguistic
programming.
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Since NLP tools are designed to supplement human analysis, rather than replace the role of the

analyst altogether, the focus of this thesis exists at this interface, comparing the ability of NLP

tools in data-limited environments to domain experts on the analysis of technical information

concerned with inherently subjective concepts.

The scope of this work is focused on the defence-related field of ‘energetic materials’. This

is an interdisciplinary field where limited work has been conducted on the use of NLP tools.

The use of NLP tools in this field poses a unique set of challenges. This thesis will examine

the challenges that using NLP tools to develop an expert system in the domain of energetic

materials may face.

To conclude, the underlying theme of this thesis could be considered as the limitations of NLP

tools in small-data environments in the domain of energetic materials. The aims of this thesis

are summarised as follows

• Identification of the challenges of using NLP tools to develop an expert system in the

energetic materials domain.

• Examination of the interface between using NLP tools to either supplement or replace

human analysis.

1.1 Outline and contributions

This thesis consists of 10 Chapters.

Chapter 1: Context and motivations for this work are introduced. Thesis aims, outline and

contributions are summarised.

Chapter 2: First part of a two-chapter literature review investigating the challenges of us-

ing NLP tools to develop an expert system in the energetic materials domain. This chapter

provides an in-depth introduction to knowledge representation and expert systems with a fo-

cus on ontology. A literature review consisting of the definition of an ontology, the semantic

web, ontology representation languages, classification of ontologies and ontology construction

is presented.
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Chapter 3: Second part of a two-chapter literature review investigating the challenges of using

NLP tools to develop an expert system in the energetic materials domain. This chapter provides

the reader with a comprehensive overview of ontology learning from text with a focus on tools

that are applicable for small datasets. Domain-specific challenges for ontology construction

from text in energetic materials are identified.

Chapter 4: Preliminary study investigating the boundary between using NLP tools to either

supplement or replace human analysis. This chapter provides the reader with a review of

existing summarisation techniques for the suitability of summarising a single document in a

niche domain (energetic materials) and introduces an adapted methodology for comparing the

ability of NLP tools in data-limited environments and domain experts to summarise technical

information in a single document in the energetic materials domain according to a subjective

concept (importance). Furthermore, a clear set of guidelines for future studies of this nature

are specified.

Chapter 5: First part of a two-chapter follow-up study to Chapter 4. This chapter provides an

overview of techniques for knowledge elicitation and presents a novel methodology for elicitation

of expert knowledge. Reasons why the expert finds specific points in a single document impor-

tant are elicited. This is the first open-source investigation into the elicitation of knowledge in

the domain of energetic materials.

Chapter 6: This is the second part of a two-chapter follow-up study to Chapter 4. This

chapter applies recommendations from Chapter 4 and insights from Chapter 5 to develop a

novel methodology for comparing the ability of NLP tools, novices and experts to identify

important points in a single document. The reader is provided with an overview of inter-

rater reliability metrics and introduced to an adapted methodology for assessing the agreement

amongst experts and novices on how they evaluate the importance of technical information in

a single document.

Chapter 7: This chapter addresses a significant challenge for ontology construction from text

in the energetic materials domain identified in Chapter 3, preprocessing and extraction of text.

The challenges of preprocessing PDFs of conference proceedings in the energetic materials do-

main are identified through a literature review. A novel general-purpose preprocessing pipeline

catered to small datasets of conference proceedings in the energetic materials domain is de-

scribed. Then, an in-depth qualitative evaluation of the preprocessing pipeline is conducted.
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Chapter 8: This chapter addresses the limitations of using NLP tools in a small-data en-

vironment. Chapters 3 and 4 discussed the approaches to various NLP tasks, such as text

summarisation in the data-limited environment of energetic materials. Supervised algorithms

were identified as high-performance methods but were ruled out as they require large labelled

datasets. In this chapter, a preliminary study compares supervised and unsupervised tech-

niques for document classification on a small dataset of NTREM journal articles. This work

establishes a series of recommendations applicable to future studies classifying long text in

data-limited environments. Furthermore, the work in this chapter demonstrates the usefulness

of the Chapter 7 preprocessing pipeline.

Chapter 9: This chapter is a follow-up study to Chapter 8. Recommendations from Chapter

8 are applied to compare the ability of supervised and unsupervised classifiers to classify the

TRL of a small dataset of NTREM articles. The flexibility of the classifiers is tested by

examining their ability to classify a dataset of HEMCE articles. The work in this chapter

will refine the methodology presented in Chapter 8 by examine the effectiveness of a range

of techniques to mitigate the negative effects of a class imbalance and examining the impact

of PCA transforms on classifier performance. In addition, the reliability of the data used to

train these classifiers is examined by examining inter-participant agreement and test-retest

agreement on TRL classification of NTREM articles. This work demonstrates the importance

of identifying the most suitable agreement metric for analysis.

Chapter 10: This chapter summarises the key findings in relation to the aims of this thesis,

the impact of the research conducted in this thesis and makes recommendations for future work.

1.2 Statement of originality

I declare the work in this thesis to be my own except where referenced in the text.

1.3 Copyright declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are

licensed under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 Interna-
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tional Licence (CC BY-NC-ND).

Under this licence, you may copy and redistribute the material in any medium or format on

the condition that; you credit the author, do not use it for commercial purposes and do not

distribute modified versions of the work.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming

the licence and linking to the licence text.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

1.4 Publications

• O’Brien, Sinead, William G. Proud, and Margaret A. Wilson. ‘Elicitation of knowledge

from a defence expert.’ Journal of Physics: Conference Series. Vol. 1507. No. 10. IOP

Publishing, 2020.3

• O’Brien, Sinead, William G. Proud. ‘Predicting the technology readiness level of NTREM

papers.’ New trends in research of energetic materials conference proceedings, 2022.4

3Work from this paper is included in this thesis and is reproduced under the Creative Commons Attribution
3.0 licence which allows me to copy and redistribute the material in any medium or format.

4Work from this paper is included in this thesis. After checking with the editor of the journal I confirmed I
have retained all rights to reproduce work in this paper including for use in this thesis.



Chapter 2

Knowledge representation and

ontologies

In Chapter 1, loss-of-knowledge due to the retirement of key personnel was identified as a critical

problem in defence and security-related fields such as energetic materials. Expert systems and

other knowledge-representation methods may be a solution to this problem. In the last two

decades, methods of producing such systems have evolved considerably to leverage NLP tools.

This chapter forms the first part of a two-Chapter literature review on the challenges of using

NLP tools to develop an expert system in the energetic-materials domain. This chapter aims

to provide the reader with an overview of knowledge-representation and ontologies.

Chapter achievements:

• In-depth introduction to knowledge-representation with a focus on ontologies

• Literature review comprising the definitions of an ontology, the Semantic Web, ontology

representation languages, classification of ontologies and ontology construction.

Section 2.1 gives an overview of knowledge-representation and expert systems. In Section 2.2,

knowledge-representation with ontologies is introduced. In Section 2.3, definitions of ontologies

are reviewed before establishing a preferred definition for this thesis. A noticeable driver of

change in the field of ontology lies in one of its applications - the Semantic Web. In Section

7
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2.4, a brief introduction to the Semantic Web is given. Section 2.5 gives an overview of on-

tology representation languages and then, in Section 2.7, ontology construction methods are

introduced. Finally, in Section 2.8, the conclusions of the Chapter are presented.

2.1 Knowledge representation and expert systems

Knowledge-representation (KR) could provide a possible solution to the loss-of-expert-knowledge

problem. The ultimate goal of KR is to develop a computational model that replicates human

intelligence [29]. KR is arguably the most fundamental problem in artificial intelligence (AI)

[30, 31]. Artificial intelligence is the development of computer systems able to complete tasks

requiring human intelligence [32]. Examples of such tasks include visual perception, decision

making and translation between languages. An intelligent computer system is required to

comprehend the extent of the domain it is assigned to understand how to compute necessary

tasks [30]. KR tackles the problem of how to represent knowledge in a machine- and human-

understandable format that enables intelligent (human-like) inferencing in knowledge-based

systems. Knowledge-based systems are an umbrella term for an AI that represents and per-

forms inferences on knowledge. Such a system comprises a knowledge base and an inferencing

facility. An inferencing facility aims to perform expert-like reasoning to find solutions to specific

problems using the knowledge in the knowledge base [33]. The knowledge base is a structure

(such as an ontology) used to store knowledge.

The first knowledge-representation methods, also referred to as expert systems, were designed

to solve specific problems [34, 35]. For example, identifying and prescribing Meningitis treat-

ments from a list of symptoms [36]. Generally, these early expert systems consisted of pro-

duction rules (IF-THEN statements). The computer would then iterate over these rules to

generate an outcome. An example of such a system is given in Ref. [37], this system is designed

to aid analytical chemists in selecting the appropriate methodology for high-performance liq-

uid chromatography. IF-THEN statements such as, ‘IF the Compound has a functional group

AND this group absorbs in the UV, THEN the Compound can be detected by a UV absorbance

detector.’, are used to determine the appropriate method from a list of the properties of the

compound. Knowledge for these systems was acquired in what was viewed as a transfer pro-

cess, from an expert to a knowledge engineer (whose role is to encode the knowledge into the



2.1. Knowledge representation and expert systems 9

system) [38]. Viewing knowledge acquisition for these systems as a transfer problem raised a

fundamental problem: experts find it challenging to formalise their knowledge [39, 31]. The

difficulty surrounding obtaining knowledge for a knowledge-based system is commonly referred

to as the knowledge-acquisition bottleneck [40].

The knowledge-acquisition bottleneck came to be viewed as a psychological problem caused

by most of the expert’s knowledge being implicit and needing to be ‘mined’ using knowledge-

elicitation techniques [41, 42, 39]. Consequently, the knowledge-acquisition process evolved from

interviews lacking any psychological justification to structured interviews using these elicitation

techniques. While these knowledge-representation techniques facilitate a more effortless transfer

of knowledge, it became apparent that the transfer process perspective of knowledge acquisition

is not adequate [43, 44, 45]. Therefore, knowledge acquisition is now viewed as the process of

modelling knowledge [43, 44]. Instead of aiming to recreate knowledge in the mind of an expert

(transfer approach), the modelling approach attempts to recreate an approximation of the

expert’s mind [44].

The popularity of expert systems declined in the late 1980s as companies realised these systems

often were not worth their upkeep [46]. Knowledge encoded in an expert system would quickly

become outdated as practises related to the purpose of the system evolved, leaving the expert

system redundant. Furthermore, the primary method of acquiring knowledge was based on sit-

down, face-to-face interviews with an expert. As a result, the development of expert systems

was time and monetarily expensive [30, 47]. Maintenance also requiring expert input was a

costly and challenging task.

Expert systems did not separate procedural knowledge, designed to help the system solve a

specific task, from domain knowledge. However, in the 1990s, work such as in Ref. [48] led

to a new approach to developing knowledge bases whereby domain and procedural knowledge

are stored separately. An example of this type of knowledge-based system is an ontology.

Throughout the 1990s and early 2000s, interest in ontologies as a knowledge-representation

method grew due to a motivation to create machine-understandable representations of domain

knowledge for artificial intelligence [49].

Today, ontologies are widely established methods of representing knowledge in a structured and

machine-readable format, facilitating knowledge sharing and reuse. Ontologies are widely used

in a variety of domains [50, 51, 52, 53, 54, 55, 56]. In the biology domain, ontologies such as the
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Gene Ontology (GO) [57], have been used to aid understanding in this instance by providing

researchers with useful and current information concerning genes and hence facilitate scientific

research [58]. However, ontologies are not used as widely in the physics and chemistry domains

[59, 60]. A notable example in the physics domain is the Orbital Debris Ontology (ODO) [61].

This ontology aims to facilitate knowledge sharing and integration of multi-source data to allow

for improved orbital debris tracking and increased awareness of orbital hazards, thus allowing

for safer space exploration.

Given the popularity in the KR field of ontologies, and their demonstrated benefits in other

scientific domains, the focus of this review is confined to ontologies. Currently, there are no

open-source ontologies in the domain of energetic materials; therefore, exploring ontologies in

this context is of interest to the field of energetics.

2.2 Knowledge representation with ontologies

The term ‘ontology’ is derived from philosophy, specifically from a subsector of metaphysics

concerned with the nature of being. Ontology in this context is the study of categories of

things that exist or may exist in the world [62]. AI adopted the term ontology to describe

computational representations of the world [43]. Most modern ontologies represent domain

knowledge.1

Ontologies aim to capture knowledge in a manner that is independent of use. Therefore,

the knowledge represented in an ontology should reflect an objective description of an area of

interest (domain). This method of representing knowledge is in contrast to the more traditional

view of knowledge in expert systems which views the knowledge in a knowledge base as a

repository of knowledge extracted from the mind of an expert [64]. This viewpoint aligns

with the transfer perspective on knowledge acquisition introduced in Section 2.1. Domain

knowledge and task-specific knowledge were elicited together in expert systems. Knowledge

was hence considered in a strictly functional manner [65], whereby the criteria used to evaluate

its relevance is for a particular function as opposed to whether or not it is objectively true in

all contexts in the domain.

1There are some exceptions such as the ambitious Cyc project which aims to create a knowledge base of all
‘common-sense’ knowledge in the world [63].
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The involvement of philosophers in the knowledge engineering community led to a shift in

perspective away from the functional view of knowledge. Clancy argued, ‘the primary concern

of knowledge engineering is modelling systems in the world not replicating how they think’ [48].

This point is further emphasised in Ref. [66], where the author argued that domain knowledge

should be obtained in a manner that is separate from procedural (task-specific) knowledge. By

constructing domain knowledge in a manner that is independent of the task in hand, the closer

the domain-specific knowledge base will be to the truth. Furthermore, a knowledge base close

to the fundamental truth is likely to be more reusable for various applications [48]. Generating

reusable knowledge bases for various applications generates cost and time savings as well as

increasing the ontology’s reliability [67]. A highly reused knowledge base for a wide range of

applications indicates its knowledge is generally accepted. These arguments support the theory

that the knowledge represented in a knowledge base should reflect an objective understanding

of a domain, as in an ontology. The separation of domain and procedural knowledge in an

ontology facilitates knowledge sharing and reuse, a clear benefit of using ontologies [68].

An additional primary goal of developing ontologies is to allow for a common understanding of

the structure of information in a domain to be shared [69, 70, 68]. One way this is achieved is

by describing key concepts of the domain and specifying the relationship between the concepts,

from which a vocabulary is defined [43]. These concepts are defined in a manner that is either

objective or reflects the consensus among domain experts. These concepts’ definitions are often

referred to as a ‘shared vocabulary’ [71]. In generating a shared vocabulary, knowledge can be

centralised, and ambiguity among the meaning of terms is removed. In turn, it aids non-expert

understanding of the domain. Conceptual and terminological confusion is also reduced through

domain vocabulary, making knowledge sharing and analysis easier.

Domain assumptions are made explicit in ontologies. By making these assumptions explicit, a

better understanding of the domain is facilitated, particularly for new researchers [68]. This is

particularly important in fields where domain knowledge is dynamic and underlying assump-

tions may need to be changed to adapt to the state-of-the-art understanding. Making domain

assumptions explicit also enables the reuse of ontologies.

Ontologies ultimately create a shared common understanding of a domain in a machine-readable

format. Because of this, they are widely used in modern knowledge-based systems. The most

notable application of ontologies is in the Semantic Web [72]; this will be discussed further in
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Section 2.4.

2.3 A definition of ontology

As seen in Section 2.2, ontology is a field intertwined with philosophy and AI, meaning that

the concept of an ontology can be interpreted from various perspectives. As a result, there are

many definitions of an ontology in the literature [73]. Some of these definitions are conflicting.

In this section, these definitions will be briefly surveyed, and a definition of ontology for this

thesis will be selected.

The most commonly cited definition of an ontology is ‘an explicit specification of a conceptu-

alisation’ [70]. From this definition, a family of similar definitions arose; a notable variation is

that of Borst, who defined an ontology as a ‘formal specification of a shared conceptualisation’

[74]. Studer et al., building on these definitions, defined an ontology as ‘a formal, explicit

specification of a shared conceptualisation’ [43].

Despite being widely cited, these definitions have also been criticised. One primary criticism is

that the definitions often need further definitions to describe the terms within them, making

them not particularly useful for understanding [75]. In Ref. [43] the authors outlined the

meaning of several terms in the definition, noting the use of the word ‘explicit’ refers to the

fact that the types of concepts used and the constraints on their use must be explicitly defined

and hence machine-readable. ‘Formal’ means an ontology should be machine-readable, whilst

‘shared’ means an ontology should not just reflect an individual’s knowledge but should be

accepted by a consensus of experts, i.e. an objective truth, as discussed in Section 2.2.

The use of the term ‘conceptualisation’ has sparked a debate of a philosophical nature. In

Ref. [66] it is argued that Gruber’s original interpretation of conceptualism is limited by its

existential nature. To understand his interpretation of conceptualism, we can consider an

ontology that represents knowledge in a particular domain. We consider what is represented in

our ontology as all knowledge that exists in this domain [70]. Our ontology is therefore based on

an abstract model of the word (or conceptualisation) where this is true. This conceptualisation

is based on the objects hypothesised to exist in this world, and their interrelationships [76].

This viewpoint is existential as it only considers what exists as opposed to what could exist;
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it depends too much on a specific state of the world [77]. A conceptualisation should not be

dependent on whether or not the world is in a particular state [66]. In Studer’s definition, a

less existential notion of conceptualism was considered [43]. Conceptualisation is considered an

abstract model of some phenomena in the world by having found the relevant concepts needed

to describe that phenomena [43]. It is this interpretation of conceptualism that we will consider.

Further criticism of these definitions is discussed in Ref. [49]. Due to, in part, the complex

nature of the definitions and because they are broad, there is a wide range of interpretations

of exactly what an ontology is. There are examples in the literature of ontologies labelled as

a wide range of information systems, including glossaries and as a set of logical constraints

[49, 78, 79]. A later paper by Gruber attempted to clarify the salient points of his definition to

resolve the confusion surrounding the definition [80]. Primarily, the paper makes the point that

an ontology defines the concepts, relationships, and other relevant distinctions for modelling a

domain [80]. Hence, this excludes information systems such as glossaries from the definition of

an ontology.

Recently, Feilmayr extended Studer’s definition of an ontology in an attempt to eliminate fur-

ther misuse of the term: ‘An ontology is a formal, explicit specification of a shared conceptual-

isation that is characterised by high semantic expressiveness required for increased complexity’

[81]. Despite these efforts, it can still be argued these definitions are subject to interpretation

and the complexity of the terms used to describe them mean that further clarification is needed

[79]. Other definitions of note include those presented in Refs. [82, 83, 84].

Defining ontologies can be considered from an alternative perspective in terms of how an on-

tology functions, as opposed to the philosophical approaches to defining ontologies outlined

above. An ontology can be considered in terms of its components, classes, attributes, relations

and axioms. The base units of an ontology are called ‘instances’. For example, in a rocket

fuel ontology, a specific fuel such as Dinitrogen tetroxide (N2H2) would be an example of an

instance. Classes are sets or collections of objects, and a class represents a concept. Following

on from the example of a rocket fuel ontology, the type of propellant, e.g. liquid chemical, could

be a class. Classes are organised typically in taxonomies and related to one another through

taxonomic or non-taxonomic relations. For example, the relation ‘Dinitrogen tetroxide is a

liquid chemical rocket propellant’ would be an example of a taxonomic relation. Axioms are

defined as ‘propositions or sentences that are all ways taken to be true’ [85]. For instance,
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‘Liquid chemical rocket propellants are storable’ would be an example of a general axiom.

An ontology is a formal representation of the concepts and relations of a shared conceptualisa-

tion. It can further be defined as the concepts, relations, attributes and hierarchies present in

a domain. Defining an ontology in this way removes the confusion and complexity associated

with the other definitions surveyed above.

For the sake of this review we will refer to an ontology as a tuple [72, 40],

θ = (C,R,HC , rel, Aθ), (2.1)

where C is a set of concepts (entities represented using natural language terms), HC ⊆ C × C

is a set of taxonomic relationships between the concepts showing the hierarchy of the concepts,

R denotes the set of non-taxonomic relationships. The function, rel: R → C × C relates

a relationship label to the actual relationship and the set of axioms is denoted by Aθ. Other

constraints on the ontology are given by axioms which are represented in some logical language.

Ontology representation languages are introduced in Section 2.5.

2.4 The Semantic Web

A significant application of ontologies is the Semantic Web [72]. The Semantic Web’s develop-

ment has heavily influenced the evolution of the field of ontology. Therefore a brief overview of

the Semantic Web will be given in this section.

The Semantic Web is an extension of the World Wide Web; it is a framework for data sharing

and reuse of information in the web [86]. Ontologies are the backbone of the Semantic Web;

they are machine-readable information structures which give information on the web meaning

and context. For instance, web searches currently retrieve web pages using keywords entered

by the user. However, these keywords can be misinterpreted, resulting in non-relevant web

pages being returned. For example, a user wishing to obtain information on electromagnetic

fields could enter the phrase ‘field’ into the Google search engine, which would return web

pages related to agriculture as opposed to those on electromagnetic fields. The Semantic Web

enhances the accuracy of web searches by identifying web pages that correspond to a particular

concept as opposed to keywords [86].
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The Semantic Web’s success depends on the quick and cheap construction of domain-specific

ontologies. The introduction of automatic ontology construction from text remains the key

to the success of the Semantic Web [72]. This, in turn, has influenced ontology construction

methods, see Section 2.7. The application of ontologies to the Semantic Web has also led to

changes in ontology representation languages, which is explored in Section 2.5.

2.5 Ontology representation languages

The definitions of an ontology given in Section 2.3 make it clear that an ontology must be formal.

This means it must be expressed in a language with a ‘formal syntax and semantics’ [87], hence

allowing for machine interpretation. In the 1980s and 1990s, there was a range of knowledge-

representation formats generated by distinct research groups [88]. However, these representation

formats did not facilitate the exchange of data between various computer systems, i.e. they were

not interoperable.

In 2001, Berners-Lee [86] published an article in Scientific American introducing the Seman-

tic Web. The article highlighted the need for a transition from the traditional approach to

knowledge-representation, whereby representations are centralised to open knowledge-based

representation systems. Centralised knowledge-representation systems contain single definitions

of a concept. However, language can contain multiple definitions of the same word; therefore,

increasing the size of centralised knowledge-representation systems can become problematic.

On the other hand, open knowledge-representation systems allow for multiple definitions of the

same term. They hence can allow different systems to be merged and encourage interoperability.

As a result, the World Wide Web Consortium (W3C) developed a resource description frame-

work (RDF). This represents the semantics of information on the web in a machine-understandable

format using triples [89]. A triple consists of a subject, predicate and object [90]. The predi-

cate of a sentence usually contains a verb and makes a statement about the subject [91]. For

example, in the sentence ‘The propellant was ignited on the top surface.’, the subject is ‘the

propellant’, the object is ‘the top surface’, and the predicate is ‘was ignited on’, the relevant

triple is then (the propellent, was ignited on, the top surface) [92]. A set of triples is referred

to as an RDF graph [89], with the subject and object represented as nodes and the predicate

represented as an edge between them. Figure 2.1 depicts the example sentence, ‘The propellant
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was ignited on the top surface.’, as an RDF graph [93]. There are three types of nodes: Inter-

nationalised Resource Identifiers (IRIs), literals and blank nodes. IRIs and literals are used to

denote something in the world such as a resource. An RDF triple states that some relationship,

indicated by a predicate, holds between the subject and object. Blank nodes state that rela-

tionships exist but do not specifically name them. Whilst RDF does support interoperability;

it is limited to the exchange of simple binary predicates [94].

The propellent the top surface
was ignited on

Subject Predicate Object

Figure 2.1: RDF graph of a triple.

A Resource Description Framework Schematic (RDFS) is a more semantically expressive version

of RDF, describing resources with classes, properties and values [95]. RDF only describes

binary relations between two resources (subject and object); RDFS introduces a hierarchy and

inheritance for classes and properties. However, RDFS does have some limitations [96]. RDFS

gives the essential elements of ontologies but is limited in its expressive power [97]. This is

problematic since more expressive languages can better represent complex concepts and hence

produce better ontologies [51].

Ontology Web Language (OWL) is designed for use on the Semantic Web. OWL was developed

to address the limitations of RDF and RDFS. OWL has a significantly more extensive vocab-

ulary, allowing for data to be defined in terms of set operations and for equivalences across

databases to be defined [98]. For example, the RDFS triplet: (ChemicalName: Hexogen, owl:

SameAs, MolecularFormula: C3H6N6O6) allows the chemical name to be mapped to the molec-

ular formula. In addition, OWL allows property values to be restricted. For example, we can

restrict the property of ‘toxicity’ to a categorical scale: (Example: Toxicity, owl:allValuesFrom,

(Toxicity:1,....)). In addition to a more expressive vocabulary, OWL is more rigid, specify-

ing not just how it can be used but how it cannot be used. OWL facilitates the machine

interoperability of web content [99].
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2.6 Classifying ontologies

There is a wide range of applications of ontologies. As a result, different classifications of

ontologies have emerged. Guarino organised ontologies into three categories according to their

purpose [100]:

• Top-level or upper ontologies describe general concepts of knowledge as a whole and

relations between the ontologies that are independent across several domains. An example

of such an ontology is Cyc, a long-term ontology project aiming to encode ‘common-sense’

knowledge [63]. Other examples are shown in Refs. [101, 102, 103].

• Domain ontologies represent concepts belonging to a particular subsection of knowledge.

A domain-specific ontology will obtain domain-specific terms and their associated mean-

ings, specialising the more generic terms in upper ontologies. The primary aim of a

domain ontology is to resolve conceptual and terminological misunderstandings within

the domain enabling knowledge sharing [104, 44]. Domain ontologies have been used in

domains such as education [105], molecular biology [106] and space [61].

• Application ontologies describe concepts that are domain- and task-dependent. They

often represent roles played by concepts in performing a specific task. For example,

OntoNeuroBase is designed for sharing and reuse of tools in neuroimaging and is an

example of an application ontology [107]. Other examples are shown in Refs. [108, 109,

110].

Classification of ontologies can also be performed based on the formality of the representation

language used. In Ref. [111], the authors proposed the following classifications:

• Informal ontologies are taxonomies; they only contain information about hierarchical

arrangements. For instance, web dictionaries or glossaries.

• Formal ontologies are built using formal ontology languages such as OWL1 and OWL2.

Examples include Cyc [63].

• Semi-formal ontologies use resource description frameworks as opposed to a formal lan-

guage like OWL.
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2.7 Ontology construction

As illustrated in Ref. [112], ontology construction consists of 5 order-independent stages. These

stages are

• Specify the domain to develop terms and concepts.

• Identify key terms, concepts and relations.

• Establish rules and axioms that describe the structure of the domain.

• Encode the ontology in a representation language, for example, RDF, RDFS or OWL.

• Evaluate the performance of the ontology.

Ontology construction can be classified into three classes, the first being manual construction,

whereby an expert encodes domain knowledge into the ontology by hand. This is a more

traditional approach to ontology construction but is prone to bias, as different experts can

have varying opinions on the same concept. In addition, manual construction is costly both

monetarily and time-wise due to the large number of tasks that require expert input [113].

Cooperative construction is when the experts supervise the construction of the ontology for the

vast majority of tasks [112]. Whilst the issues associated with manual construction, such as

cost, bias and time, are less significant due to the reduction in the quantity of expert-related

tasks, these problems are still present.

Finally, semi-automatic ontology construction is the construction of ontologies with limited

input from experts; this is also referred to as ontology learning. Ontology learning meth-

ods tend to rely on NLP techniques to identify the various components of an ontology from

domain-specific texts. There has been increased interest in the development of ontology learn-

ing techniques [114], as the development of the Semantic Web has created a need for cheap,

accurate ontology construction methods that can leverage multiple sources of data [72]. Fully

automatic ontology construction may, however, not be possible [115, 85].
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2.8 Conclusion

This chapter’s purpose was to provide the reader with an overview of knowledge representation

and ontologies as part of a wider investigation into the feasibility of using NLP tools to develop

an expert system in the energetic-materials domain.

Section 2.1 gave an overview of knowledge representation (KR) and expert systems. Ontologies

were identified as a popular KR technique widely implemented in many other scientific domains.

As a result, the focus of the scope of this investigation was narrowed from expert systems to

ontologies. In Section 2.2, knowledge representation with ontologies was discussed.

In Section 2.3, a brief literature review of the definition of an ontology was conducted. Ontology

is an interdisciplinary field drawing influences from artificial intelligence and philosophy. There

are hence a variety of different approaches to defining an ontology. It was determined that for

this thesis, those definitions routed in philosophy, such as Gruber’s [116], despite being heavily

cited, were found to be too complex and broad. Defining an ontology in terms of its components

(see Eq. (2.1)) was determined to be the most useful definition for the purposes of this thesis.

Work in later chapters of this thesis will reference this definition.

In Section 2.4, the most salient application of ontologies, the Semantic Web, was introduced.

The Semantic Web is an extension of the World Wide Web, which uses ontologies to give

information on the web meaning and context. The Semantic Web is partly responsible for the

popularity of ontologies and has consequently influenced the evolution of the field of ontology

in terms of both ontology construction and ontology representation languages.

In Section 2.5, the reader was introduced to ontology representation languages. An overview

of three popular ontology representation languages, RDF, RDFS and OWL, was discussed.

The development of how the Semantic Web shaped the development of ontology representation

languages, from primitive languages such as RDF to more expressive and rigid languages such

as OWL, was also discussed. With a range of representation languages and applications for

ontologies, classifications of ontologies were presented in Section 2.6. Two classifications of

ontologies, on the basis of the formality of the representation language and the purpose of the

ontology, were outlined in Section 2.6.

In Section 2.7, ontology construction was introduced. The 5-order independent stages used



20 Chapter 2. Knowledge representation and ontologies

to develop an ontology were outlined. Ontology construction methods that rely on human

intervention (manual and cooperative construction) are costly, prone to bias and unable to

leverage large quantities of data. On the other hand, semi-automatic ontology learning methods

(ontology learning) are the construction of ontologies with minimal expert intervention. These

methods tend to rely on NLP techniques to leverage vast quantities of text data to develop

ontologies. The development of the Semantic Web has created a need for cheap, efficient

methods of ontology construction that leverage vast quantities of data. There is hence increased

interest in the development of these methods. With the broader goal of this investigation to

identify the challenges of using NLP tools to develop an ontology in the energetic-materials

domain, ontology learning is a research area requiring further investigation. Ontology learning

is explored further in Chapter 3.



Chapter 3

Ontology construction from text

In Chapter 2, an overview of knowledge representation and ontologies was given. This overview

formed the first part of a wider investigation into the challenges of using NLP tools to develop an

expert system in the energetic-materials domain. The review conducted in Chapter 2 narrowed

the scope of this investigation to ontologies and ontology learning was identified as an area for

further research. This chapter will provide the reader with an overview of ontology learning.

Domain-specific challenges of ontology construction from text in the energetic-materials domain

will be identified.

Chapter achievements:

• Comprehensive overview of ontology learning from text with a focus on tools that are

applicable to small datasets.

• First-of-its-kind review into ontology construction in the domain of energetic materials.

• Identification of the challenges that ontology construction in the domain of energetic

materials pose.

This chapter provides the reader with a survey of the field of ontology learning. First, a broad

review of the field will be given. This review will cover the dominant approach to ontology

learning (the Ontology Layer Cake) (Section 3.1). The development of language models has

impacted the techniques used to approach ontology learning tasks; therefore, language models

will be outlined in Section 3.2. A review of the techniques used to generate each component

21
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of the Ontology Layer Cake will be given in Section 3.1. In Section 3.3, methods of evaluating

ontologies will briefly be introduced, and in Section 3.5, existing ontology learning tools will be

surveyed. Discussion of the challenges of implementing ontology learning techniques/tools in the

energetic-materials domain will be discussed in Section 3.6 before summarising the Chapter’s

conclusions in Section 3.7.

3.1 The Ontology Layer Cake

Ontology learning is concerned with developing ontology construction methods that reduce

the input of an ontology engineer. Ontology learning is an interdisciplinary field drawing on

techniques from the fields of Natural Language Processing (NLP), Information Retrieval (IR),

and logic-based computing [115].

The dominant approach to ontology learning from text is the Ontology Layer Cake [117]. The

Ontology Layer Cake views the task of developing an ontology as a collection of subtasks, each

corresponding to a ‘layer in the cake’ [115]. This layered approach to ontology construction

starts with simple tasks such as identifying relevant domain terms. It then builds upon the

previous layers of the cake to complete increasingly complex tasks such as generating axioms

[118]. Figure 3.1 shows a visual representation of the Ontology Layer Cake.

Terms

Synonyms

Concepts

Concept hierarchies

Relations

Axioms

Figure 3.1: Adapted from Ref. [115]. The task of developing an ontology can be viewed as a
collection of subtasks, each represented as a layer of the Ontology Layer Cake. These subtasks
are completed in order starting at the bottom of the cake. Each subtask builds on those
preceding it.

Extracting domain-relevant terms from the text is the first step in constructing an ontology
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according to the Ontology Layer Cake. A term is a multi-word or single word that is a repre-

sentation of some significant meaning and is of importance in a domain of interest [115]. Terms

can be described as a linguistic realisation of a domain concept [118]. Extracting relevant terms

is an essential task as the performance of all later tasks in the ontology later cake depend on

accurate extraction and identification of relevant terms [85].

Following the extraction of terms, synonyms of these terms are identified and grouped [118].

The grouping of these synonyms is used to identify concepts [85].

Once concepts have been identified, the next step is to identify relations between concepts.

Relating back to the definition of ontology given in Eq. (2.1), there are two types of relation:

taxonomic, which is represented in Figure 3.1 as the Concept hierarchy component of the Layer

Cake and non-taxonomic, referred to as Relations in Figure 3.1 [85].

Finally, axioms are found. In an ontology, axioms are used to define constraints of an ontology,

and the domain assumptions [85].

3.2 Language models

The evolution of machine learning has significantly influenced approaches to the tasks that

comprise the Ontology Layer Cake. One of these advances is the development of language

models. Language models are AI tools that, generally speaking, model the probability of a

given sequence of words occurring in a sentence [119]. These models can allow users to generate

semantically meaningful numerical representations of words (word-vectors) [120]. These models

tend to be trained in an unsupervised manner, meaning they learn patterns from unlabelled

data.

In 2013, Google developed Word2Vec. Word2Vec is a predictive model consisting of a shallow

neural network1 that uses one of two architectures, Continuous Bag Of Words (CBOW) or Skip-

gram, to generate numerical representations of words [120]. Both architectures start learning

from randomly initialised vectors. The vectors are then updated depending on what was learnt

from the training examples. The Skip-gram model uses an architecture with the input layer

consisting of a one-hot encoded target word, a hidden layer and an output layer that predicts

1See Ref. [121] for an overview of artificial neural networks.
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words surrounding the target word using a soft-max activation function. CBOW predicts the

target words by taking an input of context words. The Skip-gram architecture tends to be

preferred to CBOW as it gives the best results on semantic and syntactic tasks [120].

Global Vectors GloVe [122], is trained on global word-word co-occurrence statistics and aims

to produce vector representations that minimise the reconstruction error between the model’s

predictions of global co-occurrence statistics and global co-occurrence statistics of the training

corpus [123].

GloVe and Word2Vec learn on a word level. This means they cannot assign words not in the

training vocabulary a useful vector representation. FastText solves this problem by extending

CBOW to learn subword information in the form of character n-grams [124]. Using the learnt

subwords, FastText can derive meaningful vector representations of out-of-vocabulary words

[125].

Word2Vec and GloVe learn one single representation of a word regardless of the context in

which it is applied. For example, if the algorithm was trained on a corpus that contained the

following sentences: ‘Darcy the dog is very energetic’, ‘Typical classes of energetic materials

include propellants, explosives and fuels’. Then, one numerical representation of the word

‘energetic’ would be produced. These representation methods are therefore referred to as static

representation methods.

Contextualised representations address this problem. ELMo (Embeddings from Language Mod-

els) is a contextualised language model that uses a bi-directional (meaning it learns from the

preceding and proceeding word) LSTM architecture [126] to learn more context-dependent rep-

resentations of words. ELMo learns at the character level, so can also develop out-of-vocabulary

representations.

GTP-2 and BERT are transformer-based contextual representation models2. GTP-2 uses a

uni-directional transformer-based architecture to learn contextual word representations [128].

BERT uses a multi-layer bi-directional transformer architecture [129]. This multi-layer ar-

chitecture allows for the development of better quality contextualised embeddings. BERT is

pretrained in an unsupervised manner for two tasks: (1) masked language model (a specific

percentage of the tokens are replaced with a mask, and the model is then trained to predict the

2See Ref. [127] for an overview of transformers.
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masked token) and (2) next-sentence prediction [130]. BERT tokenises words into subwords

and learns at a subword level. It is, therefore, able to generate semantically meaningful numeric

representations of out-of-vocabulary words.

GTP-2, BERT and ELMO can generate semantically meaningful word representations for out-

of-vocabulary words and contextual embeddings. For instance, if we take the previous example,

the word ‘energetic’ would have different numerical representations dependent on its context.

3.3 Ontology learning

This section reviews the techniques used to generate each component of the Ontology Layer

Cake. The strengths and weaknesses of these methods will be stated. As mentioned previously,

ontology learning is a field that draws upon techniques from a wide range of fields from NLP,

data mining, machine learning (ML), IR & KR and reasoning. As a result, a wide range of

techniques can be used to generate each component. Refs. [114, 85] classify these techniques

into four categories: linguistic, statistical/ML, logic-based and hybrid. For simplicity, this

classification will be used in this chapter.

Due to the vast array of methods available, most methods will be described only briefly; in

instances where specific details of the method are relevant to the understanding of other tech-

niques, greater detail will be provided. This review concentrates on statistical/linguistic ap-

proaches as these approaches do not require large quantities of data.

3.3.1 Concept extraction

Concept extraction consists of the first three subtasks or ‘layers’ of the Ontology Layer Cake

(see Figure 3.1). Extracting concepts from text consists of generating terms, finding synonyms

and concept formation. There are a variety of approaches to these subtasks. Here, some of the

methods used will be outlined.
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Generating Terms

The generation of terms can be divided into two main subtasks: term discovery and recognition.

Term discovery, performed before term recognition, primarily consists of collecting a series of

candidate terms. The purpose of term recognition is to determine whether or not a specific

discovered term has a greater semantic relationship between a group of terms said to represent

the domain than with the English language as a whole [131]. Term recognition determines

if a term is part of a specific domain. Term recognition is not a straightforward task and

is particularly difficult in the case of homographs, words which are spelt the same but have

different meanings [132].

In order to select candidate terms, the text must be preprocessed so it is in a machine-

understandable format. Preprocessing is the process of extracting and cleaning text data before

being fed into an NLP algorithm. A brief summary of preprocessing will be given here; further

details of preprocessing can be found in Chapter 4. The first preprocessing stage is to extract

text from the source itself. Generally, following extraction of the text, the following prepro-

cessing steps are completed: tokenisation of the text, removal of stopwords and Part-of-Speech

(PoS) tagging. Tokenisation is the process of breaking down a string into a functional semantic

unit for further processing. These units can be words, sentences or phrases [133]. Stop words

are words which are not considered to have any semantic meaning, e.g. ‘in’, ‘the’ and ‘to’.

These words are considered noise and removed for the sake of computational efficiency and

to not influence any frequency-based algorithms. PoS is the process of assigning a PoS label

(‘noun’, ‘verb’, etc.) to word tokens. On completion of preprocessing the text, techniques to

select candidate terms can be performed.

One standard linguistic method for generating candidate terms is to select nouns and nominal-

word groups. These are word combinations in which the noun is the main word [134]. The

theory behind this method is that terms tend to be nominal (nouns) [135]. Identifying nominal

terms can be achieved using linguistic patterns such as those described in Ref. [136]. A short-

fall of linguistic pattern-based approaches to term extraction is that it is time-consuming to

predefine patterns for a domain [137]. Alternatively, PoS taggers can be used [115, 138]. PoS

taggers often need to be trained to a specific domain [139], as different words can have different

meanings in different domains. For instance, the term ‘electric’ can be a noun describing a

system of electric wiring (and part of the physics domain), or it can refer to a feeling of excite-
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ment as an adjective. Homographs can cause confusion as it is difficult to establish whether

a particular term is relevant to a given domain. Training PoS taggers for a specific domain

avoids this issue. One downside of this method is that verbs and adjectives can also be critical

domain-specific terms.

Statistical methods for generating candidate terms can exploit the distributional properties

of terms in the text. The vector-space model is a commonly used method for representing

textual information in a way that allows for mathematical manipulation [140]. This can also

be described as feature representation.

Traditional vector representations of words and documents can be produced from document-

term matrices. A set of M documents is defined as D = { di | i ϵ {1, 2, . . . .,M}}, where di

is the ith document of the document set, with a vocabulary V = {wj | j ϵ {1, 2, . . . ., N}},

where N is the number of words wj in the vocabulary. An M document-term matrix X̄ is then

produced from the set of documents and set of vocabulary as

X̄ =


x11 x12 x13 . . . x1N

x21 x22 x23 . . . x2N

...
...

...
. . .

...

xM1 xM2 xM3 . . . xMN


, (3.1)

where xij is a metric denoting the relationship between document di and word wj.

There are a range of distributional semantic metrics that can be used in the document-term

matrix. The most simplistic is using boolean values,

xij =


1, if wi in dj

0, otherwise

. (3.2)

Term Frequency - Inverse Document Frequency (TF-IDF) is a common metric used in NLP to

measure how important a given word is to a document in a corpus [141]. The TF-IDF metric

value is

xij = fij log

(
M

fj

)
, (3.3)

where fij is the number of occurrences of word wj in document di and fj is the number of
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documents containing word wj [142]. A higher value of xij indicates greater relevance of word

wj to document di [143].

This measure is commonly used in information retrieval [144]. However, it can be used for

term extraction [137, 145]. Only terms beyond a threshold weighting, generally set as 0.9,

can be used as terms [145]. The threshold weighting ensures only the most relevant terms are

included. The TF-IDF gives a high score to terms that frequently occur in only a small number

of documents. TF-IDF can be used not just to identify terms but to establish whether or

not they are relevant to a particular domain. However, this method can be problematic when

considering single-word terms.

The relevance of candidate terms can be established using metrics such as Domain Pertinence

and Domain Consensus. Domain Pertinence is a measure used to compare the occurrence

of a candidate term in the documents belonging to the target domain with its occurrence in

some other domain corpus [146, 147]. Domain Pertinence is high if the candidate term is more

frequent in the domain of interest than in the contrasting domain. One drawback of this measure

is it can incorrectly identify a term that appears in the domain corpus with high frequency as

a domain-specific term [148]. Domain Consensus attempts to ensure no non-domain specific

words are extracted [149]. Domain Consensus may identify frequent terms as domain-specific

terms [148, 147]. As a result, the approach taken in Ref. [147] combines these two metrics to

obtain increased accuracy in assessing the relevance of terms to a domain. A shortfall of this

method is that it is not designed for complex and multi-word terms [148].

A hybrid linguistic and statistical approach to generating terms is the C-Value/NC-value

method [150]. This technique was developed to improve the extraction of multi-word terms

[138]. C/NC-value method is used to generate multi-word terms from text automatically; it

uses PoS taggers to generate nominal candidate terms. Candidate terms are then given two

scores: C-value and NC-value. The C-value finds a group of valid terms in the corpus, whereas

the NC-value considers the context of multi-word terms and tries to find longer strings which

appear more frequently in the corpus [150]. In Ref. [151], the C-NC method was shown to

be of high precision (90%). Further examples in the literature of this method being employed

include that of Ref. [152], which cited a precision of 86%. However, a downfall of this technique

is that it prioritises terms of higher length and consequently may ignore shorter terms of a

higher importance [138].
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The task of identifying terms often is presented as a feature-based supervised classification

problem [153, 154]. A supervised learning algorithm learns from a labelled dataset. In the

context of concept identification, this means important entities in the text would be labelled,

e.g. the sentence ‘RDX is a more energetic explosive than TNT’ would be represented as the

following set of labels [1,0,0,0,0,0,0,1] where ‘1’ denotes that the word is a chemical term. The

supervised classifier then learns from these labelled sentences and is applied to unlabelled data

to identify other similar entities in the text [154]. Common approaches represent the text using

TF-IDF or language models such as Word2Vec [155]. This approach is typically more complex

than traditional classification tasks as entities can vary in length, location and context [153].

To adapt to this complexity, more complex approaches such as sequential learning classification

[156], or boundary classification [157, 158] are used. These supervised approaches have one

notable disadvantage - they rely on the existence of a large labelled dataset.

Synonym extraction and concept labelling

Once domain-relevant candidate terms have been identified, there are two remaining tasks:

collecting and grouping synonyms to form concepts and the labelling of concepts.

One common approach to finding synonyms of terms is to use existing ontology databases, such

as Wordnet, to look up different synonyms of extracted terms. This approach is commonly

referred to as a dictionary look-up method [159]. Wordnet is an extensive lexical database of

English words whereby nouns, verbs and adverbs are grouped into sets of synonyms, referred

to as synsets [160]. The main problem with this method is that Wordnet is not domain-

specific and may suggest synonyms that are not relevant. There are some domain-specific

databases, such as the Unified Medical Language system [161]. However, no such resource

exists for the energetic-materials domain. Homographs may also cause problems, and word-

sense disambiguation algorithms may need to be used to determine the appropriate meaning

of a word given its context. An additional issue with database look-up methods is that these

databases lack word coverage and multi-word terms.

Most approaches for synonym extraction depend on Harris’s distributional hypothesis: ‘terms

are similar in meaning to the extent to which they share syntactic contexts’ [162].

Similarity-based clustering methods are widely used for concept extraction [163, 114]. Similarity-
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based clustering can be defined as the organisation of unlabelled data into groups, called clus-

ters, based on their similarity. Items in a cluster will be more similar than items in other

groups. Clustering methods are applied to the vector-space model representation of text [140].

The similarity between items is calculated using a similarity or distance measure such as ‘eu-

clidean distance’ or ‘cosine’ [164]. Clustering can be used to assign terms into groups for

discovering concepts or constructing hierarchies (see Section 3.3.2) [165]. Clustering can hence

be used as a means for identifying semantically similar words, and for labelling concepts, by

finding the most centralised data point within a cluster. Clustering is an unsupervised learning

approach.

In Refs. [165, 166] clustering is used for synonym discovery. Refs. [167, 168, 169] performed

clustering using word vectors generated using Word2Vec for synonym identification achieving

better performance than those approaches that used TF-IDF to generate word vectors. How-

ever, there are some drawbacks to clustering-based methods, namely data sparseness. There

is also the problem of high dimensions, whereby a large corpus will typically require high-

dimension vectors to represent the corpus [170]. In such situations, commonly used metrics

used to obtain the similarity between terms, such as Euclidean distance measures, become less

appropriate due to the ‘curse of dimensionality’. As a result, the development of featureless

metrics such as the normalised web distance have been developed [171].

A prominent statistical method for extracting synonyms is to perform co-occurrence analysis

[172, 173, 114]. Co-occurrence analysis identifies words that regularly occur in the same context,

assuming they are semantically similar [174]. There are a range of co-occurrence measures,

including the dice coefficient, mutual information, and log-likelihood ratio [175, 176].

Information retrieval techniques for term indexing, such as latent semantic analysis and latent

semantic indexing, apply dimensional analysis to reveal inherent connections between words

[177]. These techniques have been used for concept extraction [114, 178, 179, 177]. Latent

semantic indexing is based on Harris’s distributional hypothesis; it is a vector retrieval model

which models relationships between terms [180]. The algorithm is based on a term-document

matrix, whereby rows represent terms and columns represent documents or sentences. The cell

value of the matrix will contain a weighting of that term in the document/sentence. Examples

of these weightings include frequency and TF-IDF (see Eq. (3.3)). Singular decomposition is

then applied to the matrix to obtain a low-rank approximation of the matrix. This reduced
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dimensional representation is referred to as feature-space representation. The reduced dimen-

sions contain terms with a similar meaning and mitigate the problem of identifying synonyms.

The reduced matrix similarity measures can be used to identify the most prominent terms in a

corpus.

The development of term extraction techniques is more established than other techniques used

for other parts of the Ontology Layer Cake. However, it is noted that when developing ontolo-

gies for specific domains, tools such as the aforementioned need to be adapted to the specific

characteristics of that domain [87]. It is further noted that most of the techniques surveyed

are statistical. As pointed out in Refs. [181, 163] statistical methods provide a probability

associated with a string (series of words). There is no conceptual explanation of the result.

3.3.2 Hierarchies and relation extraction

Hierarchies and relations are the backbones of an ontology. Techniques for extracting hierarchi-

cal relations (taxonomic relations) from the text are more advanced and accurate than general

relation-extraction (non-taxonomic) techniques.

Taxonomic relations

One of the earliest methods for extracting taxonomies from text is the linguistic-based approach

of using lexico-syntactic patterns. Lexico-syntactic patterns are based on Hearst patterns, for

instance, ‘NP such as NP’ or ‘NP is an NP’ (where NP corresponds to noun-phrase) [182].

These patterns frequently occur in English text, and the identification of a string containing

such a pattern suggests the presence of a relation of interest. An advantage of this approach

is that relations can be generated with little or no preencoded knowledge. In 1998, Hearst

produced an algorithm for extraction of different types of lexico-syntactic patterns and val-

idated them using Wordnet with an accuracy of 76% [182, 114]. However, generating these

patterns manually is time costly. As a result, ML approaches have been used in recent years.

For instance, work conducted in Ref. [183] used a logistic regression classifier on a training set

of known hypernym pairs to learn dependency paths from parse trees and hence extract rela-

tionships automatically. Generally speaking, lexico-syntactic pattern-based approaches provide

reasonably good precision, but low recall [115, 114, 184]. One reason for this is they require the
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term and the hypernym to co-occur in the text within a fixed window; this is not always the

case. A further disadvantage of this method is it can only derive taxonomies using single-word

terms [185].

There are a range of clustering approaches to taxonomy extraction from a corpus. In this review,

the classification of these methods is given in Ref. [164] (set-theoretic and similarity-based are

used). Both approaches use vector-space representations of words or terms (see Section 3.3.1).

Similarity-based methods use similarity or distance metrics to determine whether or not they are

semantically similar. Similarity-based clustering methods are briefly introduced in Section 3.3.1.

Similarity metrics used for taxonomy extraction include co-occurrence [186], using similarity

in a semantic lexicon [187], cosine and euclidean distance. Similarity-based approaches to

clustering can be further classified into agglomerative and divisive clustering. An advantage of

these methods is that a dendrogram (tree-like) structure is generated, making the algorithms

easy to interpret. Agglomerative clustering builds a tree from the bottom up. The algorithms

start with N clusters, where N is the total number of concepts, and group together the most

similar clusters until a single cluster remains [114]. Divisive clustering, on the other hand,

starts with one large cluster and divides it into smaller clusters incrementally until all items are

in a separate cluster. Examples of taxonomy extraction using similarity-based clustering are

given in Refs. [188, 189, 190, 164, 159]. Work conducted in Ref. [185] used a divisive clustering

algorithm on word embeddings to extract taxonomies from corpora. This algorithm was found

to outperform standard hierarchical clustering methods.

In contrast, set-theoretic methods such as Formal Concept Analysis (FCA) place items into

clusters according to the inclusion relationship between their feature sets [164]. FCA is a widely

used approach to generating concept hierarchies. This approach is based on the theory that

objects are connected via their characteristics [152]. FCA generates an object (concept) - an

attribute matrix is generated, allowing for analysis of the structure of the data and identification

of dependants. Clusters of attributes and objects are found by identifying concepts with similar

attributes. This results in the formation of a lattice representing concepts and attributes in a

hierarchy. The size of this lattice can be considerable, resulting in exponential time complexity,

which is a severe disadvantage of this method. An advantage of FCA over other clustering

algorithms is it has a high degree of traceability since each cluster is given an intensional

description [164].
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Work conducted in Ref. [164] compared conceptual, divisive and agglomerative methods for

learning taxonomies and found FCA to be the most effective. However, it was noted these

methods were found to ‘fall short of human achievement’ [164].

Term subsumption is a method of deriving a term hierarchy [191]. When a concept frequently

occurs in the context of another concept, a parent-child relationship can be created. However,

this easy-to-implement method requires a vast corpus to be effective, which can be a severe

disadvantage. A study conducted in Ref. [190] concluded hierarchical clustering methods are

preferred for generating more complex taxonomies.

Supervised or semi-supervised methods of learning taxonomic relations generally consist of

training a classifier to predict if two terms are a hypernym-hyponym pair. These methods

require large quantities of training data consisting of hypernym-hyponym pairs [192]. These

methods have also been seen to utilise word-embeddings [193, 194, 185]. In Ref. [195], a method

of learning embeddings as features input into the classifier (supervised support vector machine)

was used to generate taxonomic relationships. The embeddings were learnt using a dynamic

weighting neural network; the embeddings represented hypernym-hyponym pairs as well as the

contextual information between them. A comparison was conducted with other embedding

approaches such as Word2Vec and term embeddings described in Ref. [196]. This method of

constructing embeddings was found to outperform the aforementioned.

Non-taxonomic relations

Extraction of non-taxonomic relations is a significantly more challenging task than concept

formation and taxonomic relation extraction. As a result, it is often neglected in the ontology

construction process [197, 198, 199]. Approaches to non-taxonomic relation extraction can be

classified as supervised or unsupervised.

One notable unsupervised approach to non-taxonomic relation extraction is outlined in Ref. [200].

The theory behind this approach is that non-taxonomic relations are expressed by verbs that

relate to pairs of concepts, where concepts are assumed to be nouns. PoS tagging is applied to

the corpus, and pairs of concepts that occur in the same sentence with verbs that relate them

are identified. Candidate relationships are presented using triples: (noun, noun, verb). If either

of the two nouns identified are not preexisting concepts in the ontology, then the candidate re-
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lation is discarded [50]. Similar approaches have been outlined in Refs. [201, 198, 137]. These

methods only focus on extracting relationships between a subject and object in a single sen-

tence. This is a serious limitation [50]. In Ref. [50], an approach to extracting non-taxonomic

relations to avoid this problem is presented. A probabilistic method is proposed and evaluated

on texts in the tourism domain. Unfortunately, no comparative analysis of existing methods

was given.

Similarly to that of taxonomic relation generation, supervised approaches to relation extraction

are presented as a classification problem [202]. There are two primary types of supervised ML

approaches applicable to taxonomic relation identification: feature and kernel-based approaches

[202].

Kernel-based methods are based on kernel functions which define the inner product of two

observed instances represented in some feature vector-space [203]. Kernal functions can be

thought of as a similarity measure [202]. There are two types of kernel-based methods used

for relation extraction: tree-based kernels and composite kernels. Tree-based kernels explore

structured feature-space generated from parse trees [204] or dependency trees [205]. Tree-based

kernel methods are found to outperform standard feature-based kernel methods. Composite

kernel methods can integrate various tree-based/feature-based methods into one kernel [206]. It

has been shown that composite kernel methods tend to outperform single syntactic tree-kernel

methods [206].

Feature-based approaches rely on a training dataset of positive and negative examples of rela-

tions [202]. To train the algorithm, lexical, semantic and syntactic features are extracted from

the examples and inputted into a classifier (for instance, support vector machine or maximum

entropy) in the form of a vector of features. Upon completion of training, the algorithm will be

able to classify the relation examples into a predefined set of relationship types. Approaches

such as these are presented in Refs. [130, 207].

In Ref. [208], a feature-based approach relying on distant supervision is used for non-taxonomic

relation extraction. Distant supervision is based on the concept that any sentence containing

a pair of entities expressed in a preexisting database of relations may also express that relation

in the same way. This is an extension of the approach outlined in Ref. [183, 208] for taxonomic

relation extraction. In this case, the preexisting database used to provide weak supervision

is Freebase. Freebase is a large semantic database consisting of over 166 million instances
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of 7,300 relations [209]. Sentences containing relations found in Freebase have their lexical

and syntactic features extracted and are used to train a logistic regression classifier [208]. This

method has achieved precision of 67% [202]. This approach gives a key advantage over standard

supervised approaches, as a database provides the labelling. This means the algorithm is less

likely to suffer from issues of over-fitting and domain dependence [208]. However, since Freebase

contains general relations only, domain-specific relations may not be detected. For extraction

of domain-specific relations, a domain-specific database of taxonomic relations would have to

exist; there is no such database for the energetic-materials domain. Furthermore, this approach

focuses on binary relation extraction and does not identify relations across the text as a whole

[202]. A similar approach that also uses an existing knowledge base is outlined in Ref. [210].

Ref. [211] proposes a methodology for extraction of complex relations in the biomedical domain.

This approach first considers binary relations, and a graph is generated from the pairs of

entities in the binary relations. An edge exists between two pairs of entities if a trained feature-

based binary classifier decides the two entities are likely to be related. Following this, complex

relations are generated by making tuples from selected maximal cliques in the graph [211]3. An

advantage of this method is it considers non-binary relation extraction.

In general, supervised approaches are cost, and time-intensive due to the need for comprehen-

sive labelled data [202, 114]. Unfortunately, there are currently no existing labelled datasets

available in the energetic-materials domain. As a result, there has been an increased interest

in semi-supervised approaches to relation extraction.

Bootstrapping approaches for non-taxonomic relation extraction are an example of a semi-

supervised method. They require a small number of seed instances of the relation type of

interest. A bootstrapping algorithm will then extract similar relations to those given as seeds.

DIPRE is the first bootstrapping approach to extracting relations [212]. Later approaches, such

as Ref. [213] built on this approach. The performance of these approaches is highly dependent

upon the quality of the seed relations used.

TextRunner is a relation extraction system presented in Ref. [214]. Relation extraction is

presented as a classification problem. The Textrunner system consists of three components:

a single pass extractor, a self-supervised classifier and synonym resolution. The single-pass

3A clique in a graph is a subset of vertices that every two distinct vertices are adjacent to. A maximal clique
of a graph is one such that there is no extension by including one more adjacent vertex [211].
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extractor tags each sentence with PoS tags and noun-phase chunks. For every pair of noun-

phases subject to a series of constraints, a classifier is applied to determine whether or not to

extract a relationship. This will be represented in a tuple of the form (ei, rj, ek) whereby ei, ek

are entities and rj is the relation between them. The classier is trained using features such as

PoS tags on parsed sentences automatically labelled as positive or negative tuples. The classier

is hence able to determine if a given sequence of words is a relation.

3.3.3 Axioms

The performance of axiom learning tasks depends on the performance of previous tasks in the

Ontology Layer Cake [114]. Although the generation of axioms is a particularly complicated

task, like non-taxonomic relations, it is often neglected in the ontology construction process

[115].

A common approach to axiom generation is Inductive Logic Programming (ILP). This method

derives axioms from positive and negative examples of preexisting concepts and relations [112,

85]. ILP depends on expert oversight to ensure accurate axiom generation. This approach is

shown in Ref. [215].

Logical inference can be used to infer axioms from existing relations [112]. For example, given

the statements ‘solid propellants are easy to store’ and ‘ammonium perchlorate composite

propellant (APCP) is a solid propellant’, then ‘ammonium perchlorate composite propellant

(APCP) is easy to store’ can be inferred. As mentioned in Refs. [85, 112] there is a high

possibility of introducing incorrect or conflicting relations. Therefore, only very basic relations

can be generated using this method [112].

In Ref. [216], an unsupervised methodology for finding inference rules from text is proposed.

First, dependency trees of a parsed corpus are generated. They then hypothesise that if two

words are similar, a path on the dependency tree will link the same sets of words. A path

represents a binary relationship, and inference rules are generated for a pair of similar paths.
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3.4 Ontology evaluation

Ontology evaluation is performed to ensure a generated ontology represents the domain it is

designed to represent accurately. This is a particularly important task in ontology learning as

effective evaluation can allow future improvements to an ontology learning system to be made

[217]. In addition, ontology evaluation must ensure quality and correctness [218, 219]. There

are two approaches to evaluating ontology learning systems: to evaluate the ontology learning

method and the resulting ontology. The more popular of the two approaches is to evaluate

the resulting ontology. This is due to difficulties measuring the correctness of the learning

procedure.

Ontology evaluation processes that assess the resulting ontology can further be divided into

four distinct approaches as specified in Ref. [220].

• Gold standard, comparing an ontology to a gold-standard ontology, e.g. Ref. [221].

• Application-based, using a target ontology to perform a specific task and evaluating the

specific results. For example, see Ref. [222].

• Data-driven or coverage analysis, comparing the ontology to a source of data such as a

collection of documents in the domain. For example, see Ref. [223].

• Manual evaluation performed by an expert. For example, see Ref. [224].

Ontology evaluation approaches can also be considered in terms of the level of evaluation.

Evaluating ontologies on different levels as opposed to the ontology as a whole is useful for

automated evaluation [219]. The different levels include: lexical, taxonomic, non-taxonomic,

syntactic, application and structure [220]. Table 3.1 summarises which approaches are suitable

for which level of ontology evaluation.

The lexical level evaluates the conceptual layer of the ontology. Evaluation on this level is

concerned with the quality of terms and definitions [225]. The taxonomic and non-taxonomic

levels evaluate the correctness and consistency of relations in the ontology. Evaluation on the

application layer assesses the performance of the ontology at a particular application that might

be designed to do, for example, query answering. Evaluation on the syntactic level is concerned
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Level
Evaluation Approach

Gold standard Application based Data-driven Human
Lexical ✓ ✓ ✓ ✓

Taxonomic ✓ ✓ ✓ ✓

Non-taxonomic ✓ ✓ ✓ ✓

Syntactic ✓ ✓

Application ✓ ✓

Structure ✓

Table 3.1: Adapted from Ref. [220]. Overview of ontology evaluation showing the layers of an
ontology each method can evaluate.

with the formalism of the language used [220]. The structural level assesses the ability of the

ontology to meet certain predefined design criteria [219]. Each evaluation approach will be

briefly described in Sections 3.4.1 - 3.4.4.

3.4.1 Gold standard

The gold standard evaluation approach compares an ontology against a predefined benchmark

or standard ontology that is assumed to be ‘correct’ [114, 217]. Gold-standard techniques

tend to be concerned with completeness, conciseness and accuracy factors. The quality of the

ontology is established by comparing it to an example. This is normally done on different

levels, e.g. lexical - considering terms and concepts, or taxonomic - considering taxonomies, as

illustrated in Ref. [72].

In ontology learning, the metrics precision (P ), recall (R) and F-measure (F ) are widely used

to evaluate an ontology at a lexical level. These metrics are adapted and used in a wide range

of NLP tasks. In this context these metrics are based on the following values:

• True positives (TP ) is the number of concepts found in the evaluated ontology and in the

gold-standard ontology.

• True negatives (TN) is the number of concepts found not in the gold-standard ontology

and in the evaluated ontology.

• False positives (FP ) is the number of concepts found in the evaluated ontology and not

in the gold-standard ontology.
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• False negatives (FN) is the number of concepts found in the gold-standard ontology and

not in the evaluated ontology.

Recall

Recall, R, is the proportion of relevant concepts to those that were found in the gold standard

ontology [112], defined as

R =
TP

TP + FN

. (3.4)

Precision

Precision, P , is the proportion of relevant concepts to those were found in the evaluated ontology

[112]. It is defined as

P =
TP

TN + FP

. (3.5)

F-Measure

F-Measure, F , is the harmonic mean of precision and recall. It is a trade-off between the two

quanities and a good measure of overall performance. It is expressed as

F =
2PR

P +R
. (3.6)

P , R and F can be calculated automatically when compared with an ontology by using exact

matches of strings. The problem with this method is it is unable to detect synonymy and

polysemy. The efficiency and accuracy of this method are hence poor. P , R and F have values

in the range of [0,1], where a greater value indicates better performance.

Other metrics for a gold-standard approach to ontology evaluation are outlined in Ref. [221].

The present work tends to focus on evaluation at the lexical level. Similar work is conducted

in Ref. [220] on the evaluation at the taxonomic level.

Gold-standard methods are good at evaluating the accuracy of an ontology. They can also

determine whether an ontology has sufficient coverage of a domain of interest. However, a

limitation of this method is that the gold standard ontology itself needs to be evaluated to

determine if it is, in fact, the gold standard. If the evaluation of the gold standard ontology is

not done correctly, it can be difficult to determine if the source of the error is in the ontology
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being evaluated or the gold standard ontology [218]. The accuracy of the evaluation method is

determined by the accuracy and quality of the gold standard ontology.

3.4.2 Human evaluation

Human evaluation is when a group of humans assess how well an ontology meets a set of

predefined requirements, this is done by asking domain experts to score candidate ontologies

subject to these criteria. Examples of such criteria are given in Refs. [116, 226, 227]. The

advantages of manual evaluation methods include that experts should be able to tell whether

or not an ontology is a good reflection of a domain.

One limitation of this approach is it requires expert intervention to determine what is relevant

and what is not. This is seen as somewhat subjective. Furthermore, manual evaluation may not

be completely feasible in the case of a large-scale ontology. A further disadvantage of human

methods of ontology evaluation is that they are highly expensive both in terms of money and

time [114].

3.4.3 Application based

Application-based approaches to ontology evaluation evaluate the performance of an ontology

concerning a specific task [220]. Examples of task-based approaches include document clustering

and classification, word-sense disambiguation, information retrieval, question answering and

coreference resolution. These approaches are generally the most efficient means of evaluating the

adaptability of an ontology to a specific task. Moreover, they are useful for finding inconsistent

concepts and evaluating the adaptability of a particular ontology to certain tasks. Examples

of application-based approaches are outlined in Refs. [222, 228].

There are several disadvantages to application-based evaluation. Notably, if an ontology is not

appropriate for a specific task, it is not easy to establish why this is the case. For instance, the

ontology may be a small part of the application so that the impact may be indirect, and small

[220], or it may be the case the ontology contains inconsistent concepts.
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3.4.4 Data driven

Data-driven approaches use domain-specific knowledge resources, such as a collection of inde-

pendent documents, to determine coverage of a particular domain [220]. This is similar to a

gold standard evaluation in that it covers completeness, conciseness and accuracy. Data-driven

approaches are outlined in Ref. [229]. One challenge with this approach is to find a good

domain-specific corpus to perform the evaluation.

3.5 Ontology learning tools

In Section 3.3, an overview of the techniques used in the various stages of constructing an

ontology was given. It is noted there are some preexisting off-the-shelf ontology learning tools

that are capable of conducting several stages of the process in ontology construction. Therefore,

this section will briefly survey existing ontology learning tools. In Section 3.5.7, a table sum-

marising ontology learning systems and which components of the Ontology Layer Cake each

system generates can be found.

3.5.1 ASIUM

Acquisition of Semantic knowledge Using ML methods (ASUIM) is one of the first ontology

learning systems. ASUIM is a semi-automatic system aimed at learning semantic knowledge

from text using linguistic and statistical techniques [230]. Sentence parsing and syntactic

analysis are used to generate sub-categorisation frames of the following form

< verb >< syntactic role | preposition : head noun > these frames are then used for term

extraction and concept formation [231]. Heuristic and conceptual clustering are then performed

to extract taxonomic relations. Evaluation of the system as a whole has not been performed.

However, an evaluation of the term-extraction part of the ASIUM system was performed,

quoting a high precision value of 89% [85]. It is noted this system omits two layers of the

Ontology Layer Cake from its framework: non-taxonomic relation identification and axiom

generation.



42 Chapter 3. Ontology construction from text

3.5.2 TextStorm & Clouds

Together, TextStorm & Clouds make up a semi-automated ontology learning system [215]. The

first component of the system, TextStorm, generates binary predicates from the text. Next,

information from the database WordNet [232] is used to annotate the input text. Parsing and

syntactic structure analysis is also performed. This information is then used to generate pairs

of terms in the form of binary predicates. These predicates are either of the form verb(subject,

object) or property(noun, modifier). For instance, the sentence ‘The preliminary results were

recorded in the lab’ will generate the following predicates recorded(results, lab) and prop-

erty(results, preliminary). Following this, the predictors combine the terms and relations in an

existing ontology. Expert input is required most heavily here [112].

The second component of the system, Clouds, is used for axiom generation and uses an Inductive

Logic Programming approach [112]. This is best explained via example, given the following list

of predicates:

• eat(cat, mouse)

• is-a(cat, carnivore)

The following axiom might be generated: eat(cat, mouse) :- is-a( cat, carnivore)[85]. Of the

systems evaluated, the TextStorm & Cloud system are the only ones that generates all compo-

nents of the Ontology Layer Cake; however, they suffer from low accuracy. For example, the

binary predicate extraction part of the system was found to have an average accuracy of 52%

over 21 articles, based off domain experts’ judgments [215].

3.5.3 HASTI

HASTI is an automatic ontology learning approach. It aims to construct dynamic ontologies

using only a few primitive concepts and relations. The system is designed for Persian text, so it

is not as relevant as other systems and will hence be described very briefly. The system learns

concepts using Lexico-syntactic patterns and semantic templates. Taxonomic relations are

obtained using both heuristic clustering and semantic templates. Logical inference is used for

non-taxonomic relations, and very general axiom extraction [233]. Axioms are also generated
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using Inductive Logical Programming. HASTI is one of the few ontology learning systems that

produce axioms. However, it is noted the axioms produced are very general. Expert input is

required for validation and evaluation of the generated ontology.

3.5.4 Text2Onto

The Text2Onto tool is an updated version of the tool TexttoOnto [87]. The main structure

of the Text2Onto framework is centred around the Probabilistic Ontology Model (POM). This

is a container for learning objects from various ontology learning algorithms. Each learnt

structure is assigned a calculated probability, which can be used to decide if the object should

be included in the ontology. The main advantage of such an approach is that, because learnt

structures are represented at a meta-level using modelling primitives as opposed to a concrete

knowledge representation language, they are in a representation that can be translated to an

ontology language. This is unlike ASIUM [230], which depends on specific ontology models,

often limiting them to one ontology representation language and making them difficult to

transfer into other formalisms [159].

Furthermore, previous systems are not dynamic; they need to recreate the ontology if the

existing corpus is changed. This is a substantial problem in the creation of the semantic web as

web pages are constantly modified and changed. However, this issue is overcome in Text2Onto

as it tracks document changes and calculates the corresponding probabilities needed for the

POM before making the changes accordingly.

A brief overview of the algorithms fed into the POM will now be given. A series of different

metrics are used to find the importance of terms extracted from the text. These include TF-

IDF, entropy and C-value/NC-value method. These are normalised in a [0,1] interval and used

as a corresponding probability in the POM. It is noted that Text2Onto only extracts single-word

terms; as mentioned previously, this is a limitation.

Taxonomic relations between terms are obtained using the approach outlined in Ref. [234].

Multiple sources of evidence are used. In order to establish an optimal combination of multiple

sources of evidence, the sources of evidence are represented as first-order features, and standard

classifiers are trained. Different features were derived from WordNet, exploiting its hypernym

structure, and Hearst-style patterns were used [234].
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For deriving non-taxonomic relations, JAPE (Java Annotation Patterns Engine) rules were

used. JAPE is a pattern-matching language consisting of a series of patterns. More details

of the approach are specified in Ref. [234]. To ensure instances or entities in the corpus are

assigned to the correct concepts, a vector-based similarity approach, Skewed Divergence, is

used [235]. Instance and concept vectors are obtained from the corpus, and instance vectors

closest to the concept vectors are assigned to such concepts.

Equivalence between terms and concepts was obtained by considering the extent to which two

terms or concepts share similar contexts. Similarities were calculated based on contextual

similarity using a variety of features, from simple word windows to linguistic features found

using a shallow parser. This similarity is then said to represent the probability of equivalence

of the terms of the concept.

It is noted this approach does not generate axioms. Furthermore, whilst the approach can aid

an ontology engineer in designing an ontology, further expert input is needed to validate and

evaluate the generated ontology. Finally, the described approach is not entirely automatic.

The authors of the paper only quote the low recall and precision (17.38% precision and 29.95%

recall on tourism-related texts) for only taxonomic relations [234].

3.5.5 CRCTOL

Concept-relation-concept tuple-based ontology learning (CRCTOL) was generated for mining

ontologies automatically from domain-specific documents [236]. The first component in the

CRCTOL architecture is the data importer. This converts various document formats to plain

text [85]. In this process, structural information is discarded. After this, PoS tagging and

parsing is performed.

Extraction of terms is performed by considering nouns and noun-phases identified using the

PoS tags. A manually expert-generated domain lexicon is then used to identify those terms that

are relevant to a specific domain. The domain relevance measure (see Section 3.5) is then used

to identify the most relevant domain terms, forming an initial list of domain concepts. Word

sense disambiguation is performed using a variant of the LESK algorithm [237]. This identifies

the meaning of the term in the target domain. relation extraction is performed between single

and multi-word terms. Taxonomic relations are extracted using Lexico-syntactic patterns.
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Non-taxonomic relations are extracted by extracting tuples of the form (noun1, verb, noun2).

Verbs, in this instance, are considered lexical realisations of the semantic relations between the

concepts.

This system not only needs user intervention for developing a domain-specific lexicon but also for

the validation and evaluation of the system. Furthermore, the system can only be represented

in RDFS or OWL and only observes general concepts. The CRCTOL system was compared

against an earlier version of Text2Onto, TexttoOnto, for term and relation extraction. The

term extraction obtained an F-score of 99.5%. In addition, F-scores of 90.3% and 68.3% were

obtained for relation extraction for simple and complex sentences, respectively [236]. It is noted

these scores are higher than those obtained by the Text2Onto system [159].

3.5.6 OntoGain

OntoGain is a system for the unsupervised acquisition of ontologies from text [238]. The first

step in this system is to perform preprocessing using PoS tagging and shallow parsing. Then,

to extract terms, the C/NC-Value technique are used to generate relevant concepts. Next,

hierarchical clustering and Formal Concept Analysis (FCA) are used to generate taxonomic

relations. Finally, association-rule mining is used to generate non-taxonomic relations.

In Ref. [238] the OntoGain system was compared to Text2Onto in medicine and computer

science domains. The OntoGain system achieved precision values in the range of 86.7–89.7%.

In the comparison given in Ref. [238], there are no numerical values for the performance of

Text2Onto. Evaluation of each component of the system was performed. FCA recorded low

precision values between 44.2–47.1%. However, agglomerative clustering obtained values of

71.2–71.3%. Non-taxonomic relation extraction using association-rule mining achieved precision

values between 71.8–72.9%. One advantage of the OntoGain system is it considers multi-word

terms, whereas systems such as Text2Onto do not.

3.5.7 Comparison

An overview of various ontology learning systems has been given. A summary of the capabilities

of each system with regards to which component of the Ontology Layer Cake they produce is
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given in Table 3.1.

System
Component of Ontology Layer Cake

Terms Concepts Taxonomic relations Non-taxonomic relations Axioms
ASIUM ✓ ✓ ✓

Text-Storm
& Clouds

✓ ✓ ✓ ✓

HASTI ✓ ✓ ✓ ✓ ✓

Text2Onto ✓ ✓ ✓ ✓

CRCTOL ✓ ✓ ✓ ✓

OntoGain ✓ ✓ ✓ ✓

Table 3.2: Summary of ontology learning systems and which components of the Ontology Layer
Cake each system generates. If a particular system generates a part of the Ontology Layer Cake,
it is marked with a ‘✓’ in the corresponding cell of the table.

As mentioned throughout this chapter, the generation of non-taxonomic relations and axioms

are complex tasks and are often neglected. This is reflected in Table 3.2: only two systems

produce axioms, Text-Storm & Clouds and HASTI. The axioms generated by these systems

are basic. Axiom generation is an evident weakness of these systems.

In Table 3.2, HASTI is the only system that produces all components of the Ontology Layer

Cake. Hence, according to our definition in Chapter 2, it is the only system that produces

a complete ontology. However, HASTI requires expert insight not only for validation and

evaluation of the ontology but also for inputting a few initial concepts. It is hence not fully

automatic. The same can be said for the other systems described in this section.

The majority of ontology learning systems are not dynamic; if new knowledge of the domain

needs to be added to the ontology, then the ontology often needs to be rewritten from scratch.

Text2Onto’s framework allows for the ontology learning process to be dynamic, thereby negating

this problem. Another advantage of the Text2Onto system is it facilitates transfer to any

ontology language. This flexibility gives it an advantage over other systems such as ASIUM,

TextStorm and Clouds.

From reviewing the literature, it is noted there is no commonly adopted measure for evaluating

ontologies. Various approaches are used to develop ontologies, often focusing on individual

components in ontology development processes. Only the OntoGain system was evaluated as

a whole. Different domains and datasets are also used to evaluate ontology learning systems.

The factors outlined in this paragraph make comparing these systems very difficult.
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Furthermore, all of the systems described in Table 3.2 require human intervention. They are not

yet fully-automated methods for generating ontologies from scratch. The evaluation methods

and ontology validation require human input for the described systems in this section.

To conclude, popular ontology learning systems were surveyed. It was determined none of

these systems are fully automatic. In addition, there is no commonly established method for

evaluating ontologies, which makes comparing these systems difficult.

3.6 Applying ontology learning to the energetic-materials

domain

Thus far in this chapter, techniques used to generate each stage of the Ontology Layer Cake

and preexisting ontology learning tools have been discussed. In this section, the application of

these tools and techniques to the domain of energetic materials will be discussed.

As mentioned in Chapter 1, there has been limited work on applying NLP techniques to the

domain of energetic materials. Ref. [239] describes an approach to extracting chemical insights

from corpora in the energetic domain. This unsupervised approach used Word2Vec embeddings

to extract chemical-chemical and application-chemical relations from large corpora using cosine

similarity metrics and clustering. Preliminary results presented in Ref. [239] indicate this

approach can capture conceptually meaningful relationships between essential terms in the

text.

A recent PhD thesis [60] introduced a system for ontology population from scientific articles,

Hybrid Ontology-Learning Material Engineering System (HOLMES). The framework is de-

signed with the pharmaceutical domain in mind. However, insights from this approach can be

applied to energetic materials. The objectives of the HOLMES system include identifying on-

tological entities, and the relationships between them, and relating them to existing ontological

classes and properties. Each of these tasks is considered a separate ML task. This system is

unique as it incorporates information extraction methods from equations and diagrams. For-

mula extraction and graphical-imaging processing are also used to extract information from

equations and images. These techniques will be briefly outlined.
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The HOLMES system uses the following methodology for understanding equations. First,

mathematical equations are identified in the corpus. Then, using optical character recognition

algorithms, the individual characters in the equation are identified; this approach is taken as, in

some PDF files, formulae may be represented as images. The algorithm used in this approach is

described in Ref. [240]. The 2D layout of the equation is then extracted as a graph. The weights

on the edges of the graph correspond to the likelihood the classes of those graphical symbols

would occur in a spatial relationship. The meaning of the equation is found by searching for

the maximum weight tree of this graph via dynamic programming. Variables in the equation

are then cross-referenced with surrounding text to find their meaning. Finally, the formula is

stored in a format that captures the variable definitions, the relevance of the equation, and

possible assumptions [60].

To process chemical formulae, HOLMES uses the 2009 Optical Structure Recognition Applica-

tion, OSRA [241]. This analyses the chemical structure and generates an output of a Simplified

Molecular Input Line Entry System (SMILES) representation of the structure (essentially a

single string representation) [242]. The SMILES representation is machine understandable and

facilities further analysis.

Another issue highlighted in Ref. [60] is that scientific publications often convey a large amount

of conceptual meaning per word. Domain-specific terms can be very complex, whereby parts

of the term can be classified differently from the term itself. For example, the term ‘magnetic

confinement fusion’ contains the words ‘magnetic’ and ‘fusion’ which are terms relevant to ener-

getic materials. These terms can be referred to as nested terms and often need multiple labels

in identifying and categorising terms in multi-domains. Multi-label classification techniques

presented in Ref. [60] require further work. The authors suggested implementing a rule-based

approach.

The HOLMES system is a prototype method. Critical weaknesses in the system include concept

detection identification, which relied on entity recognition techniques [243]. In particular, it

was found that concepts relating to processes and objects were difficult to extract. However,

chemical and mathematical formulae extraction methods are used to provide insight into how

to tackle ontology learning in the energetic-materials domain.

Analysis of text sources in the energetic-materials domain was conducted, and, using the above-

surveyed literature, potential issues with transferring ontology learning techniques to the do-
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main of energetic materials were identified. These issues include:

• Equations in the physical sciences domain contain valuable information. This information

is not always found in the surrounding text.

• Acronyms and abbreviations are frequently used in energetic materials literature. Unfor-

tunately, there are not always specific rules for expanding acronyms and abbreviations;

as a result, they can have dual meanings. This could impact the term identification phase

of the Ontology Layer Cake. As a result, some means of identifying and mapping term

variants to each other are needed.

• Greek symbols/math symbols can have different meanings in different contexts. For in-

stance, µ can be used to represent 10−6 when describing units of measurement, or it can

be used to represent the coefficient of friction. This is entirely context-dependent. The

meaning of a symbol in one paper can be different from the meaning of the same symbol

in a different paper.

• Diagrams, figures and graphs contain valuable information. Arguably a good caption will

summarise the necessary information in a figure. Hence, it should be ensured that figure

captions are included in the extracted body of text.

• Chemical symbols and equations contain important scientific information. Often the in-

formation in these equations is not later explained in the text. Chemical equations and

symbols should hence be made machine-readable.

It is observed that in scientific literature, chemical and mathematical formulae are expressed

as figures instead of the easier-to-process ASCII representation. This further complicates the

issue of chemical-formula and equation extraction.

One obvious limitation of applying the discussed techniques to the domain of energetic materi-

als is the absence of domain-specific resources. A not insignificant proportion of the techniques

discussed in Section 3.3 were supervised techniques which rely on domain-specific datasets. This

success in utilising such approaches is best illustrated in the biomedical field, where ontology

for knowledge representation is a well-established practice. A wide variety of domain-specific

resources exist in this domain, for example, the GENIA corpus [244], a human-annotated
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corpus of 670 biomedical journal abstracts taken from the MEDLINE database. As illus-

trated in Ref. [163], resources can be used to train algorithms for specific tasks in the on-

tology learning process. A specific example is given in Ref. [245] where term recognition

is enhanced by identifying acronyms of specific biological terms. In the absence of such re-

sources in the energetic-materials domain, ontology learning approaches are limited to unsu-

pervised/linguistic/statistical approaches.

Another fundamental barrier to the successful implementation of an ontology learning system

in the energetic-materials domain comes from the preprocessing of text resources. Energetic

materials are an academic domain. As a result, the majority of the text resources on the subject

come from journal articles and books. Extracting the relevant text from journal articles and

books is not a simple task [246]. Whilst there is a growing trend among publishers to release

HTML formats of journals, some publications do not yet do this producing the harder-to-extract

text from PDFs. The presence of chemical names, figures and formulae can also complicate

other preprocessing tasks such as tokenisation [247]. Therefore any ontology learning system

in the energetic-materials domain will more than likely require a custom preprocessing pipeline

that addresses some of these challenges.

3.7 Conclusion

This chapter provided an overview of the field of ontology learning, and challenges with ontology

learning in the energetic-materials domain were identified. In Section 3.1, an overview of the

dominant approach to ontology learning, the Ontology Layer Cake, was given. In Section 3.2,

a significant development in NLP, language models, was introduced to the reader.

A review of the techniques used to generate each component of the Ontology Layer Cake was

given in Section 3.3. These techniques can be statistical/machine-learning, logical, linguistic

or hybrid approaches. However, the majority of surveyed techniques were statistical/linguistic

due to the scope of this thesis being small-data techniques.

Section 3.3.1 evaluated the current state-of-the-art techniques in concept extraction. Correct

identification of terms is a critical task as later tasks in constructing the ontology depend on it.

Dictionary look-up methods were found not to be suitable for concept identification in specific
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domains without the existence of domain-specific resources. Since no such resources exist for

energetic materials, the use of these techniques has been excluded from any implementation in

future plans. Statistical measures such as hierarchical clustering, latent semantic analysis and

the N/NC method were found to perform better than the aforementioned linguistic techniques.

The N/NC method, in particular, is a method that has demonstrated high precision and should

hence be considered when developing an ontology learning framework.

In Section 3.3.2, techniques for taxonomic and non-taxonomic relation extraction are consid-

ered. One of the earliest methods of learning taxonomic relations from text is a linguistic

technique utilising Heart-patterns. This method is of good precision but low recall and can

only consider taxonomies that use terms consisting of single words. Supervised methods and

term subsumption were discussed. Clustering for taxonomic relation derivation is a particularly

promising area of research. Formal Concept Analysis (FCA) is a set-theoretic clustering ap-

proach found to be more effective than traditional clustering-based methods at deriving concept

hierarchies. Recently the accuracy and precision of clustering methods have improved due to

the use of word embeddings. Using word embeddings for clustering algorithms for taxonomic

relation discovery should be considered an area worthy of further investigation.

Non-taxonomic relation discovery from text is a significantly more complex task than the afore-

mentioned. Supervised and unsupervised approaches were described. Supervised approaches

require the existence of domain-specific labelled datasets. There are currently no such resources

for the domain of energetic materials; developing such a resource would be timeconsuming.

In Section 3.3.3, axiom generation was discussed. From reviewing the literature, it is clear

axiom generation is a weakness in ontology learning. This is reflected in Section 3.5, which

reviews popular ontology learning systems. Axiom generation was often a neglected step in

these systems. Discussed techniques were only able to generate very basic axioms.

In Section 3.4, the four approaches to ontology evaluation were introduced; gold standard,

application-based, data-driven and manual evaluation. A brief comparison was conducted;

human evaluation, despite being time and labour-intensive, was the only identified evaluation

metric capable of evaluating all levels in the Ontology Layer Cake.

In Section 3.5, a range of ontology learning systems were evaluated. This analysis highlighted

that none of these systems are fully automatic, with the majority of systems requiring expert
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insight for ontology verification and validation. In addition, there is no commonly established

method for evaluating ontologies, which makes comparing these systems difficult.

Section 3.6 discussed the potential challenges of applying ontology learning to the energetic-

materials domain. Specific challenges were discussed, such as extracting information from

equations and figures. A recently developed ontology population from scientific articles, Hybrid

Ontology Learning Material Engineering System (HOLMES) was introduced. Insights from

this work, such as methods to extract information from formulae and figures directly applicable

to the identified challenges with ontology learning in the energetic-materials domain, were

discussed.

In addition, the most fundamental barrier to the successful implementation of an ontology

learning system in the energetic-materials domain was preprocessing and extraction of text from

text sources. Therefore, developing such a preprocessing pipeline for the energetic-materials

domain will be explored further in Chapter 7.



Chapter 4

Comparing NLP tools’ and experts’

ability to summarise technical text

In Chapter 1, it was identified that in defence and security-related fields, NLP tools have

been used to supplement human analysis instead of replacing human analysis. Therefore,

examination of the boundary between using NLP tools to supplement or replace human analysis

in the energetic-materials domain was identified as a key aim of this thesis. This chapter

presents a preliminary study examining this aim. This preliminary study compares the ability

of NLP tools in data-limited environments against domain experts to summarise technical

information contained in a single document in the energetic-materials domain according to an

inherently subjective concept, ‘importance’. The desired outcome of this study is to identify a

series of recommendations to guide future studies.

There has only been one prior study of this nature conducted in defence/security domains—the

study conducted in Ref. [6] evaluated individual and intra-group human understanding of 6

volunteer participants of a short text in the domain of terrorism hostage-taking and compared

this to the views of the author of the text and output generated by off-the-shelf NLP tools.

The work in this chapter can be viewed as a follow-on study from Ref. [6]. One of the authors

of this work acted in a supervisory role for the present study. Influences from Ref. [6] will be

acknowledged throughout.

Chapter achievements:

53
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• A review of existing summarisation techniques for the suitability of summarising a single

document in a niche domain (energetic materials).

• Adapted methodology for comparing the ability of NLP tools, an expert and a group of

technically trained readers to evaluate the importance of technical knowledge in a single

document.

• Clear set of guidelines to inform future studies of this nature.

In Section 4.1, a literature review of text-summarisation techniques is given with the aim of

identifying a series of suitable techniques for summarising a single document from the energetic-

materials domain. In Section 4.2, an overview of the study methodology is given. In Section

4.3, results and their discussion are presented. In Section 4.4, conclusions and recommendations

for future work are summarised.

4.1 A literature review of NLP-summarisation techniques

Automatic text summarisation aims to produce concise summaries of a document or collection of

documents that convey the most important information in the text, akin to a human-generated

summary [248]. An automatic text-summarisation pipeline typically consists of the following

steps: preprocessing, a summarisation algorithm and evaluation of algorithm performance.

This section presents a literature review of the techniques used in all steps of an automatic

single-document summarisation pipeline. This review aims to identify a series of suitable tech-

niques for summarising a single document from the energetic-materials domain.

4.1.1 Preprocessing

In this section, an overview of preprocessing techniques will be given.

Briefly introduced in Section 3.3.1, preprocessing is the process of extracting and cleaning text

data before being fed into an NLP algorithm1.

1In this study, the document of interest is a single Microsoft Word document; therefore, techniques for
extracting text will not be discussed in this review as it is easiest to convert the Word document to a text file.



4.1. A literature review of NLP-summarisation techniques 55

Tokenisation is the process of breaking down a string into a functional semantic unit for further

processing. These units can be words or sentences and are called tokens. Most programming

languages have prebuilt tokenisers, e.g. Python’s NLTK package contains a tokeniser [133].

Stopwords are words which are not considered to have any semantic meaning, e.g. ‘in’, ‘the’ and

‘to’. These words are removed for the sake of computational efficiency and to not influence any

frequency-based algorithms. There are various preexisting stopword lists, e.g. Python’s NLTK

package contains stopword lists for many languages, including English.

Part-of-Speech (PoS) tagging and parsing are two processes of obtaining syntactic information

about a text. PoS tagging is the process of assigning a Part-of-Speech label (e.g. ‘noun’, ‘verb’)

to each word in a sentence [249]. Labels can also include more specific tags, e.g. referring to

tense. Parsing takes the PoS tag and places it into a parsing/syntactic tree to illustrate how

the sentence joins together, see Ref. [250] for examples.

Stemming and lemmatising are a form of fundamental morphological analysis used to identify

morphological variants of the words in the text and perform data reduction for the sake of

computational efficiency.

Stemming is the process of matching various morphological forms of words to their stem and,

therefore, to a root word (a word with no prefix or suffix). A root word is the smallest lexical

unit of a word that contains all semantic content and cannot be broken down any further [251].

Stemming produces a stem as an output, a part of a word that does not necessarily have a

meaning that can be used to form words through processes such as compounding or attaching

affixes [251].

Lemmatizing (a sibling process of stemming) reduces words from their inflexion forms to a

root word. Although unlike stemming, lemmatising produces a lemma, this is a linguistic

compound that, by convention, is used to represent the lemme (a collection of words with the

same meaning) [252]. Furthermore, unlike stemming algorithms, lemmatising algorithms use

PoS tagging and consider the context of the word. As a result, lemmatising algorithms are

significantly more complex than stemming algorithms [252].

The majority of literature reviewed used the more computationally efficient stemming as op-

posed to lemmatising as a preprocessing step in automatic summarisation algorithms[253, 254,

255]. Three main stemming algorithms are cited in the literature: the Lovins, Paice-Husk and
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Porter stemming algorithms [251]. All three of these algorithms rely on affix removal to re-

duce inflected words to their stem. Comparative analysis between the stemmers undertaken by

Paice concluded that although the Louvins stemmer is the most efficient at data reduction, it

had the highest error rate. Stemming algorithms have two types of errors: over-stemming and

under-stemming [256]. Over-stemming is the process by which two words of different stems are

mapped to the same root. Under-stemming is the opposite, whereby two words of the same

stem are not mapped to the same root. [252]

For text summarisation, we are concerned with finding the least error-prone algorithm for

stemming. The Porter algorithm is identified in the literature as having the lowest error rate;

it is also the most widely cited [252]. However, the performance of stemmers are domain

dependent; therefore, a comparison should be conducted to determine the optimal stemmer for

the energetic-materials domain.

4.1.2 Abstractive summarisation

There are two approaches to text summarisation; abstractive and extractive. Unlike extractive

methods that lift sentences from the text verbatim, abstractive methods identify the main

concepts in the text and use paraphrasing to generate concise summaries, similarly to a human

[257, 258]. Abstractive methods typically require a more complex analysis of the input text than

extractive methods. Generally, these methods produce better summaries with fewer incidents of

redundancy. However, generating a good quality abstractive summary is difficult as this requires

natural language generation technology [257, 259]. Consequently, abstractive summaries often

suffer from grammatical errors that can confuse the meaning of the summary and struggle to

analyse out-of-vocabulary words successfully.

Furthermore, approaches to abstractive summarisation are ML-based, which means they rely

on large quantities of data to train the model [260]. A large corpus/dataset is not readily

available for the domain of energetic materials. As a result, abstractive techniques were ruled

out for inclusion in this study2. Given this, the remainder of the techniques reviewed in this

section will be extractive summarisation methods.

2It is noted that pretrained models for abstractive summarisation are readily available in Python, e.g.
[261, 262], but these methods produce small, succinct summaries that were not comparable in length to those
produced by the participants in the study.
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4.1.3 Frequency-based single-document summarisation

Early approaches to automatic summarisation, such as Luhn’s [263], are centred around the

theory that the frequency of a word in a document indicates the importance of the word [263].

Nenkova [264] investigated the validity of this theory by examining whether the probability

of a word being included in a human-generated summary is related to the frequency of the

word in the document being summarised. A set of thirty documents, each with four human-

generated summaries, were examined. Results showed that words with a high frequency are

very likely to appear in human summaries; the top five frequency words were 94.66% likely

to occur somewhere in the set of the four human-generated summaries. However, words with

low frequencies also appeared in the human-generated summaries. Whilst the results appear

to support Luhn’s theory, the frequency of a word is not always an accurate indicator of

importance. Using frequency alone will not replicate all the content in a human-generated

summary.

Nenkova developed SumBasic [264], a purely frequency-based summarisation algorithm. Sum-

Basic uses the probability p(wi) of a word wi occurring in a document to generate weightings

α(sj) of each sentence sj. Then, α(sj) is used to rank the sentences and obtain a summary.

This algorithm is often used as a baseline for comparing other algorithms and is a good start-

ing point for generating automatic summaries, it will therefore be explained in detail. The

probability is given by

p(wi) =
c(wi)

N
, (4.1)

where the number of counts of wi is given by c(wi) and N is the total number of words in the

document.

The weightings α(sj) can be obtained by summing p(wi) for each word in a given sentence and

taking an average,

α(sj) =
∑
wi∈sj

p(wi)

|{wi|wi ∈ sj}|
. (4.2)

The sentence with the highest score, i.e. containing the most-probable words, is then picked

and added to the summary. The algorithm then updates the probabilities to avoid a word

appearing in the summary more than once hence mitigating repetition within the summary

(a problem with earlier algorithms such as Luhn’s [263]). For each word wi in the selected
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sentence, the word probability is updated from Pold(wi),

Pnew(wi) = Pold(wi). (4.3)

The process is repeated until a summary of a predefined size is generated [264].

Frequency-based approaches to text summarisation are simplistic and have the added advan-

tage of being language-independent; however, they do not consider the context in which the

word appears. This can lead to issues with homographs. In addition, preprocessing can signif-

icantly impact the performance of algorithms: stemming and lemmatising reduce the corpus

to a selection of root words. Cases of over- and under-stemming will lead to words having a

higher/lower frequency count than the ‘true count’, which could influence the output. Further-

more, frequency-based algorithms cannot identify when a concept is discussed using different

words; this can lead to generated summaries containing redundant information.

4.1.4 Graph-based single document summmarisation

Another common subset of approaches to extractive document summarisation are graph-based

approaches. Graph-based approaches structure text documents as graphs and exploit the

graph’s structure to extract important concepts [265]. TextRank is a popular single document

automatic summarisation algorithm that employs graph-based analysis to generate a summary

[266]. The TextRank algorithm can also be applied to keyword extraction, a technique useful

in the generation of ontologies [267]. The algorithm is derived from Google’s Page-Rank algo-

rithm, used to rank search results for web-pages [268]3. The TextRank algorithm represents a

text document as a directed graph, G = (V,E), where V is the set of vertices of the graph,

where each vertex V (si) represents a sentence si in the document and E is the set of edges of

the graph, used to connect the vertices of the graph, E ⊂ V × V [266]. The edges of the graph

represent the relations between the sentences. The set of vertices directed into vertex V (si) is

denoted in(V (si)).

The algorithm assigns each edge a weight λji, reflecting the relationship (similarity) between

3TextRank is similar to the popular multi-document summarisation algorithm LexRank [269].
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the two sentences si and sj [270]. This weight is given by

λji =

∑
w∈i,j

Ci
w + Cj

w

log |si|+ log |sj|
, (4.4)

where Cj
w is the number of occurrences of the word w in the sentence j. The logarithmic

length of each sentence normalises the weights to ensure long sentences are not unfairly given

an advantage.

These weights are used to obtain the score of each sentence. The score α of each sentence si is

calculated iteratively until convergence using

α(v(si)) = (1− d) + d
∑

v(sj)∈in(v(si))

λji∑
v(sk)∈in(v(sj))

wjk

λ(v(sj)), (4.5)

where d is the damping factor set to the default value of 0.85 [266]. The sentences with the

highest-ranking scores are used to comprise a summary [266].

This algorithm is popular since it is unsupervised and language-independent. It only depends on

word occurrence and identifies document-wide connections. However, a fundamental limitation

of this algorithm can be found in Eq. (4.5), which gives the weighting between two sentences

as the number of common tokens in the sentences. As a result, sentences with no common

words but discussing the same concepts will have a weighting of 0. This could result in a

sentence having a lower weighting than expected and critical information being neglected from

the summary as a result.

Recent work by Mallick et al., [271], adapted the traditional TextRank algorithm to address

this issue. This approach considers a vector-space feature representation method (a numerical

representation of the text) to compute sentence similarity. The text document, d, is a vector-

space model comprised of sentences si represented as word vectors. A graph of the form

G = (V,E) is produced according to the procedure laid out above for TextRank. Unlike in the

TextRank algorithm, words are not assumed to be of equal weighting. The modified TextRank

approach uses the Term Frequency-Inverse Sentence Frequency (TF-ISF)4 measures to find the

relevance of the sentences according to the salience of the words they are composed of. This is

incorporated into the similarity measure. The term frequency f j
i is merely the count of a word

4This is a modification of TF-IDF introduced in Chapter 3.
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wi in a sentence sj. The inverse sentence frequency ISFi is the normalised number of sentences

that a word wi appears in, i.e.

ISFi = log
N

|{sj ∈ D : wi ∈ sj}|
, (4.6)

where N is the total number of sentences in the document and |{sj ∈ D : wi ∈ sj}| is the

number of sentences that the word wi occurs in. Given this, the TF-ISF measure is given by

βj
i = f j

i × ISF (wi), (4.7)

where βj
i (the weight of a word wi in sentence sj) can then be used to calculate the similarity

between two sentences sj and sk, i.e.

λ(jk) =

∑m
i=1 β

j
i β

k
i√∑m

i=1(β
k
i )

2
∑m

i=1(β
j
i )

2
(4.8)

where j, k = 1, . . . , N and N is the total number of sentences in the document. This similarity

metric considers the relevance of the sentences with reference to the importance of the words

composing it. The graph is then reduced by removing edges with weights below a certain

threshold value before the standard TextRank algorithm is performed.

This method is an improvement on the standard TextRank algorithm as it uses a more effective

method of computing sentence weightings that considers the importance of the words composing

the sentences [272]. This method also achieved improved performance over other representa-

tion methods such as TF-IDF (see Chapter 3, Eq. (3.3)) [271]. However, the method cannot

consider complex semantic relationships; it cannot identify when a concept is discussed using

different words. This can lead to the generated summaries containing redundant information

and important information being missed from the summaries.

Work carried in Ref. [273] used the feature representation method Word2Vec to obtain semantic

similarities between sentences (see Section 3.2 for a description of Word2Vec). This process of

using a pretrained word representation model from a previous task on a new somewhat-related

task is referred to as feature-representation-based transfer learning [261]. Transfer learning

will be discussed in detail in Chapters 8 and 9. Results obtained using this approach were an

improvement on previous graph-based approaches.
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A graph-based approach by Parveen et al. [274] tackled the redundancy problem discussed in

the previous two methods. They represented the text document as a bipartite graph with two

sets of nodes: entities and sentences. Coherence scores were calculated using the degree of

each node (number of edges from each node) to ensure the summary was non-redundant and

coherent optimisation was performed. Meaningful sentences were picked using a graph-ranking

algorithm to establish which sentences belong in the summary. However, this algorithm did

not perform as well as the TextRank algorithms in capturing important information. This may

be due to the very basic method of capturing semantic relationships.

4.1.5 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is an unsupervised extractive text-summarisation method

[275]. LSA assumes that if two words appear in similar contexts, they have analogous semantic

interpretations, and if two contexts are alike, they must have words which are semantically

related [270]. Using this assumption, LSA-based methods map the semantic relationships

in a document and can group related sentences even if they do not contain the same words

[276]. LSA can be divided into three phases: term-document matrix creation, singular value

decomposition (SVD), and sentence selection [265].

Term-document matrix creation transforms a document, D, to a matrix. The sentences in a

document are represented as a set, S = {s1, s2, . . . . . . . . . , sN} and W = {w1, w2, . . . . . . . . . , wM}

is the set of M unique words in D. Given this representation, D can be represented as the

matrix

A =



s1 s2 . . . sN

w1 a1,1 a1,2 . . . a1,N

w2 a2,1 a2,2 . . . a2,N
...

...
...

...
...

wM aM,1 aM,2 ... aM,N


, (4.9)

which has dimensions N × M . The entries aij of the matrix represent the importance of

a word in a given sentence. There are a variety of different methods to calculate this, e.g.

cosine similarity [277], log entropy [278], frequency or TF-ISF [279]. A comparison of different

weighting functions can be found in Ref. [280].
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After the creation of A, SVD is performed to model the relationships between the words and

sentences. This is the process of decomposing A into three different matrices using

A = UΣVT, (4.10)

where U is a unitary matrix of left singular vectors with dimensions M × N and VT is is the

transpose of the unitary matrix V of right-singular vectors, of dimensions N × N [279, 281],

and Σ is a diagonal N × N matrix with diagonal elements known as singular values. These

singular values are sorted in descending order.

It is of note that the preprocessing techniques can significantly impact the resulting matrices

produced by SVD. For instance, stopword removal, stemming and lemmatising can significantly

reduce the dimensions of A [279].

The dimensions of the outputted matrices can be reduced by deleting the smallest singular

values from Σ, which eliminates the least important values from the calculation [282]. Deter-

mining the optimal number of dimensions is a problematic issue in SVD. The lower the number

of dimensions, the broader the comparison of the concepts. Finding the optimal number of

dimensions for LSA will increase computational efficiency and reduce noise or terms in the

documents that do not contribute to the meaning [177]. However, there is no one-size-fits-all

solution to this task. This process is often task- and content-dependent.

Assume the reduced dimensions of the matrices are U (m× r), Σ (r× r) and VT (r× n). This

process of reducing the dimensions can be equated to a mapping between the m-dimensional

space of weighted-frequency term vectors and the r-dimensional singular vector space.

SVD decomposes the document into r linearly-independent base vectors; each of these base

vectors represents a salient concept. The concepts are found by semantically clustering words

and sentences by identifying important and recurring patterns in the text. If a word combination

pattern is important and recurs, it will be represented by a left singular vector in matrix U. The

magnitude of the corresponding singular value in matrix Σ represents the degree of importance

of the concept.

A sentence containing a particular word combination pattern will be projected along the corre-

sponding singular vector. The sentence with the best representation of this word combination
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pattern will have the largest value of overlap with the vector. The cell values of the matrix VT

show the overlap between the sentences and the concept; the rows indicate the most important

concepts, and the columns represent the sentences [283].

The final step of LSA selects the sentences for inclusion in the summary from the results of

SVD. There are various approaches to doing this [284].

Gong et al. [285] used VT to select the most important sentences for inclusion in the summary.

By identifying the most important concepts, the sentence that best represents this concept is

selected. This involves going down the rows of the VT matrix; the sentence with the highest

cell value for that row is identified and included in the summary. The column is then removed

from the matrix, and the process is repeated on an iterative basis until a predefined number of

sentences are collected. An overarching issue with this method is it assumes all concepts are of

the same importance. This could lead to some of the selected concepts not being significant.

Furthermore, this method assumes there is one important sentence per concept; it is possible

not all of the important information on a concept can be represented in one sentence. This is

particularly relevant when considering technical documents such as the one in this study.

Steinberger and Jezek [286] resolved this problem by finding the sentences with the highest

combined weight across the important topics. Then, the length of each sentence vector in Σ ·V

was calculated, and the sentences with the greatest length were selected [286]. This is among

the more popular approaches in LSA [284]. The aim of doing this is to find the sentences with

the greatest combined weight across all important topics [286]. A shortcoming of this method

is it relies on traditional weighting schemes to build the document representation.

Other approaches to this method include the topic approach by Ozsoy et al. [279]. This approach

aims to classify the topics extracted from VT as ‘topics’ or ‘subtopics’. First, the main topics

are identified by constructing a concept matrix. The strength values of each concept are used

to determine the document’s main topics. Next, the sentence with the highest score is chosen

for each selected main topic. This selection is performed until a predefined number of sentences

are collected.

Another approach by Ozsoy et al. [279] builds on Steinberger and Jezek’s [286] approach of

using a preprocessed VT for sentence selection. This method is known as the ‘cross approach’.

VT is preprocessed by setting all values in a row to zero if they are below a threshold value.
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This removes any sentences that are not core sentences representing the topic as opposed to

sentences that are related in some way. The length scores of the sentences were found, and the

highest scoring sentences were used in the summary. This was found to outperform the other

sentence-selection methods mentioned above.

Yeh et al. [282] used an approach referred to as LSA + TRM to document summarisation. This

approach used AutoTag [287] to obtain a list of keywords in the sentences, any keywords that

were not nouns were removed. The standard LSA approach outlined above was then conducted

with the keywords being represented as wi in the input matrix (Eq. (4.9). The entries of the

input matrix aij were obtained using

aij = GiLij, (4.11)

where Lij is the local weight of wi in sj and Gi is the global weight of wi in D, demonstrating

the saliency of wi in the document.

Lij is defined as Lij = log(1 + cij/nj) and Gi = 1−Ei, where cij is the frequency ofWi occurring

in Sj, nj is the number of words in Sj and Ei is the normalised entropy of Wi which is defined

as

Ei = − 1

log(N)

N∑
j=1

fij log(fij), (4.12)

where fij is defined in Eq. (3.3). It is noted this method of obtaining the coefficients aij is

designed for multi-document summarisation and has been adapted by setting the number of

documents to one. After generating the input matrix A, SVD is performed, and an alternative

approach is used to extract the sentences for the summaries. A relationship map based on

the document’s semantic representation is then constructed; from this, important sentences are

identified as those with a high number of connections [282]. Whilst using this method provides a

visualisation of the summarisation process like with other LSA approaches, finding the optimal

dimension reduction ratio is difficult and computational time is an issue [282]. A shortcoming

of this method is it relies on traditional weighting schemes to build the document representation

in the matrix A. As a result, this method suffers from some of the same limitations associated

with those using cosine similarity and TF-ISF.

Recently, work undertaken by Al-Sabahi [288] used word embeddings to obtain the input matrix

A as opposed to the traditional methods outlined above. Word2Vec was used to learn the vector
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representation of words. The model is trained to reconstruct the linguistic contexts of words.

As the model is trained on such a large corpus, this method has the advantage of bringing in

semantic knowledge that is not available from the document. The study used pretrained word

embeddings from Google’s Word2Vec, trained on the Google News corpus, and embedding-

based weighting schemes to calculate the values of the input matrix. However, since the corpus

the embeddings were trained on was not similar to the documents being summarised, the study

ignored words that were not in the pretrained word embeddings. Despite the documents being

summarised being different from the domain of the documents used to train the embeddings,

this method achieved higher performance scores than standard LSA approaches. This is another

example of feature representation-based transfer learning.

4.1.6 Machine-learning-based single-document summarisation

In recent years, ML-based summarisation algorithms have become more popular [289]. This

reflects both large-scale advancement within the field of ML in the last decade and the need

for summarising large datasets in a computationally efficient manner [290].

Supervised learning techniques use labelled training data which, for every input document, has

a corresponding human-generated extractive summary, i.e. the ‘correct result’ [291]. Examples

of supervised learning techniques that have been applied to automatic summarisation include

converting the summarisation problem to a sentence-level classification problem [292, 293].

As with the classification techniques discussed in Chapter 3, this requires a large manually

annotated dataset. Every sentence in the dataset is labelled as ‘in’ or ‘out’ of the summary

[265]. Other methods represent extractive summarisation as an optimisation problem [294, 293].

Likewise, a large labelled dataset is required [295]. Generating such a dataset is time consuming

and challenging to do without the introduction of bias: if the corresponding summary for each

document is human, who is to say it is the correct or ideal summary? Training supervised

algorithms on small datasets can lead to overfitting, particularly when the dataset’s number of

input features (dimensions) is greater than the number of training samples [296], as is often the

case with text data. Overfitting is when a trained model fits against its training data exactly

and therefore fails to generalise well (perform well on unseen data) [297], which can lead to over-

optimism about the algorithm’s performance. Semi-supervised techniques use a small amount

of the same type of labelled training data and a large amount of unlabelled training data.
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Unsupervised techniques use unlabelled training data, a large dataset of input documents with-

out the corresponding human-generated summaries. Unsupervised training models deduce in-

ferences from the data by finding hidden patterns or structures. This contrasts with supervised

approaches, which give a clear labelled response [291]. Unsupervised techniques applied to au-

tomatic summarisation include clustering [298], and those based on neural networks [299, 300].

Recently there has been an increase in supervised and unsupervised techniques relying on deep

learning methods [301]. A review can be found in Ref. [300].

The present study is conducted in a data-limited environment using one document in the domain

of energetic materials. Since no open-source dataset of documents and their summaries exists

for the energetic-materials domain, supervised and semi-supervised methods are ruled out and

not discussed further. Furthermore, data-intensive unsupervised methods are also ruled out.

ML techniques that do not require large datasets are therefore considered. These techniques

are limited to those using pretrained models available to be deployed in Python and clustering.

Clustering-based techniques were first introduced in Chapter 3. They are an ML technique that

groups data (which has not been labelled, classified, or categorised) by similarity. There are

three main types of clustering: hierarchical, diverse, and partition/Bayesian clustering [302].

Agglomerative clustering is an example of a hierarchical clustering approach that has been ap-

plied to single-document extractive summarisation. Each sentence is initially represented as an

individual cluster; sentences are then clustered together based on the maximum pairwise cosine

similarity of vector representations of sentences. Clusters are then bound together in a ‘greedy’

manner5, and, as a result, a hierarchy of clusters is generated [303]. This is performed until

a threshold value of dissimilarity between all clusters is achieved. In doing this, semantically

similar sentences are grouped, for instance, in Ref. [304], TF-ISF (see Eq. (4.7)) is used to

generate sentence vectors before performing agglomerative clustering to generate summaries.

El-Kilany and Saleh [305] performed Louvain clustering on dependency graphs of sentences to

group coherent words into clusters. Using these clusters, words were scored based on their

position in relation to other words and the importance of the word in the dependency graph

of the sentence in which the word appears. The highest-scoring nouns were taken to be the

keywords. The scores of these keywords were increased if a keyword appeared in the context

5Greedy algorithms solve problems by selecting the best option at a given point without considering the
effect on later results.
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of another keyword. The sentences were then scored depending on the number of keywords

in a sentence and the associated scores of the keywords. Finally, the top-scoring sentences

are selected. This algorithm assumes the generated keywords, and hence selected sentences,

represent the most important topics so it can produce non-redundant summaries. Unlike the

previous clustering approach, this approach captures the dependency relationships between

sentences which can be useful for establishing coherence. However, selecting one sentence per

topic can lead to important information being lost, as not all the salient information on a topic

is necessarily contained in one sentence.

Other non-hierarchical clustering algorithms have also been used to generate automatic sum-

marisation algorithms. Work undertaken by Jain et al./ [306] used a K-Means clustering algo-

rithm for query-related summary generation [306]. A K-Means clustering algorithm separates

data into clusters by minimising criteria referred to as inertia [307]. Considering a dataset of

N items, X = {x1, .....xN} being split into a predefined number of clusters, C1, ....CK , inertia

is defined as the sum of the squared Euclidean distances between each sample xi in cluster Cj

and the mean of the samples in each cluster µj (centroids). The K-Means clustering algorithm

hence aims to find the centroids that minimise the inertia

E(µ1, ....µK) =
N∑
i=1

K∑
j=1

I(xi ∈ Cj)min(||xi − µj||2), (4.13)

where I(X) = 1 if xi is in cluster Cj and 0 otherwise [308]. In general, clustering algorithms

produce non-redundant summaries, however they do not capture the context in which words

appear which can lead to the true meaning of the text not being captured.

Ref. [301] describes a feature representation-based transfer-learning technique that has been

applied to extractive summarisation using K-means clustering. First sentences are embedded

using a pretrained model. The embeddings are then clustered using K-means clustering, and

sentences closest to the centroid of each cluster are selected for inclusion in the model. This

method achieved state-of-the-art performance for clustering lecture materials. The work done

in this paper lead to the development of a Python package, ‘bert-extractive-summarizer’. This

package allows any pretrained language representation model to be loaded into the summari-

sation pipeline, notably BERT and GTP2 (see Section 3.2 for an overview). This approach

achieved state-of-the-art performance over other methods.
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4.1.7 Evaluation metrics

Thus far, this review has covered techniques used in two stages of developing an automatic

text-summarisation pipeline: preprocessing and summarisation algorithms. This section will

cover the final stage of an automatic text-summarisation pipeline, evaluation of algorithm

performance.

There are two approaches to summary evaluation: extrinsic and intrinsic [309]. Extrinsic

approaches evaluate the performance of automatic-summarisation algorithms by looking at how

the summary performs at completing tasks such as information retrieval and query answering.

In contrast, intrinsic evaluation looks at the summary by comparing it to human-generated

reference summaries and assessing the quality and content of the produced summary. For this

study, intrinsic content-based evaluation of extractive summarisation algorithms is of interest.

For summary evaluation, the metrics can be calculated from the definitions in Chapter 3,

Eqs. (3.4)-(3.6), after adapting the definitions of TP etc. in the following way:

• True positives (TP ) are the number of sentences machine-generated summary that are

also in the reference summary.

• True negatives (TN) are the number of sentences not in the machine-generated summary

that are also not in the reference summary.

• False positives (FP ) are the number of sentences in the machine-generated summary that

are not in the reference summary.

• False negatives (FN) are the number of sentences in the reference summary that are not

in the machine-generated summary.

There are issues with P , R and F as summary-evaluation metrics. Humans often cannot agree

on what makes an ideal summary [6]. If P and R are used alone, it is possible two equally

good summaries could be judged differently. One method of correcting this is to average the

precision and recall scores for a collection of reference summaries.

In order to evaluate the content on a word level, metrics like the ones in the widely established

Recall-Orientated Understudy for Gisting Evaluation (ROUGE) group of metrics can be used.
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The metric RROUGE-N gives a measure of overlap of number of N-grams (where 1-gram is one

word) between the machine-generated summary and a gold-standard summary (denoted by G).

This is a value between 0 and 1, where 1 means all N-grams in the gold-standard summary are

present in the generated summary. RROUGE-N is defined as

RROUGE-N =

∑
S∈G

∑
gramn∈S

Cmatch(gramn)∑
S∈G

∑
gramn∈S

C(gramn)
, (4.14)

where n is the length of the N-gram being calculated (gramn) and Cmatch(gramn) is the max-

imum number of N-grams co-occurring in the reference summary and the machine-generated

summary and C(gramn) is the number of N-grams in the reference summary [310]. The metric

PROUGE-N gives a measure of the number of N-grams in the generated summary that are also

present in the gold-standard summary. PROUGE-N is defined as

PROUGE-N =

∑
G∈S

∑
gramn∈G

Cmatch(gramn)∑
G∈S

∑
gramn∈G

C(gramn)
, (4.15)

PROUGE-N is also between 0 and 1. If the number of N-grams in the reference and gold-standard

summaries are not the same then these metrics will be biased. The FROUGE-N metric is the

harmonic mean of RROUGE-N and PROUGE-N. This metric removes the aforementioned bias by

accounting for statements of different lengths and can be interpreted as the balanced overlap

of N-grams between the two summaries. The metric FROUGE-N is adapted from Eq. (3.6) and

is defined as

FROUGE-N =
2RROUGE-NPROUGE-N

RROUGE-N + PROUGE-N

. (4.16)

The value of FROUGE-N ranges between 0 and 1, where a value of 1 denotes the highest overlap

of N-Grams between the two summaries.

4.1.8 Conclusion

In this section, a review of the techniques used to develop an automatic single-document sum-

marisation pipeline was conducted. The objective of this review was to identify a series of

suitable techniques for summarising a single document in the field of energetic materials. The

findings of this review will be discussed here.

In Section 4.1.1, an overview of preprocessing techniques was given. The NLTK Python package
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was identified as a useful preprocessing tool. Stemming and lemmatising were introduced. A

literature review established that stemming is used more frequently in automatic-summarisation

pipelines. Three popular stemming algorithms were discussed: Lovins, Paice-Husk and Porter.

The Porter stemming algorithm was identified in the literature as having the best performance

and being the most widely cited. However, the performance of these algorithms is domain-

dependent. Therefore, an in-domain comparison of various stemming algorithms should be

conducted.

There are two main approaches to automatic summarisation: abstractive and extractive. In

Section 4.1.2, abstractive methods were introduced. Abstractive approaches were immediately

ruled out as they are ML-based. In the absence of an extensive labelled/unlabelled dataset in

the energetic-materials domain, it was determined that it is unlikely these approaches would

yield high performance. All remaining approaches reviewed were extractive methods. Gen-

erally speaking, extractive methods, while faster and more straightforward, tend to produce

summaries very different from one that an expert would produce [257]. In addition, these sum-

maries can include redundant statements; there can be a lack of semantic cohesion between

sentences due to unexplained co-reference relationships, and important information is often

spread across sentences.

In Section 4.1.3, frequency-based methods were reviewed. SumBasic is an example of a frequency-

based extractive summarisation algorithm commonly used as a baseline against which other

summarisation algorithms are compared. As illustrated by Nenkova [264], frequency alone is

capable of replicating all the concepts in a human-generated summary. Frequency-based ap-

proaches do not take into account the context in which words appear, nor are they able to

identify any semantic relationships in the text nor capture the true meaning of the text. There

are also issues with homographs and redundancy in the summaries produced. Whilst these

approaches are efficient and easily understandable, more comprehensive methods that employ

semantic, syntactic and morphological analysis are needed to overcome the shortcomings. It is

recommended that SumBasic be included in this study as a baseline for comparison to more

complex methods.

In Section 4.1.4, graph-based methods for single-document summarisation were discussed. Tex-

tRank is a graph-based extractive summarisation algorithm that would be suitable for inclusion

in this study as it does not rely on a large dataset. Algorithm performance can be improved
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using distributional sentence vectors such as those based on TF-ISF weightings to compute the

weightings between nodes. Transfer-learning techniques, for instance, using Word2Vec embed-

dings to compute the weightings between nodes on a graph, have also been found to improve

performance. The TextRank algorithm will be used in this study.

In Section 4.1.5, Latent Semantic Analysis (LSA) was discussed; this is an effective method

for extractive summarisation. In general, LSA approaches are an improvement on graph and

frequency-based approaches to solving homograph issues. However, the context in which the

words occur is not fully considered. It is an unsupervised approach suitable for data-limited

environments. There are various approaches to selecting sentences for inclusion in a summary.

The method that achieves the best performance out of those mentioned is the ‘cross method’.

The cross method will be used in this study.

In Section 4.1.6, ML approaches to extractive summarisation were examined. Supervised ML

approaches typically perform better than the other methods described in this review. How-

ever, supervised methods require sizeable labelled training sets; since no such dataset exists

in the energetic-materials domain, these methods were not considered further. Unsupervised

methods such as clustering were also reviewed. The ‘bert-extractive-summarizer’ is an easily

implementable Python package that uses pretrained language representation models to gener-

ate summaries of documents using K-means clustering. This approach will be explored in this

study.

In Section 4.1.7, an overview of evaluation metrics was given. Metrics that evaluate sentences

on a sentence level: precision P , recall R, and F-score F were introduced, as were metrics that

evaluate on an N-gram level (the ROUGE metrics).

To conclude, this review aimed to identify techniques for developing a summarisation pipeline

that can summarise a single document in the field of energetic materials. Various suitable

techniques were identified, and areas of further research were established. This is summarised

below:

• An in-domain comparison of the Lovins, Paice-Husk and Porter stemming algorithms

should be conducted to identify the most appropriate stemmer for the domain of energetic

materials.
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• The following summarisation algorithms are suitable for this study:

– SumBasic as a baseline measure of performance.

– TextRank.

– LSA using the cross method for sentence selection.

– The clustering-based ‘bert-extractive-summarizer’.

• In the cases of TextRank and LSA, modifications to traditional algorithms, such as the

use of TF-ISF weightings and Word2Vec, should be explored further.

4.2 Methodology

The objective of the study in this chapter is to compare the ability of NLP tools in a data-limited

environment to domain experts in the summarisation of technical information contained in a

single document. In Section 4.1, a literature review was conducted to identify useful techniques

that can be used to develop a suitable NLP-summarisation pipeline. In this chapter, an overview

of the methodology of this study will be presented, and techniques identified in the previous

Chapter will be used to define a summarisation pipeline.

The proposed methodology for this study follows a similar format to the study conducted in

Ref. [6]. Here, an overview of the methodology will be presented. Specific details will be given

in this section’s sections. An overview of the methodology is given in Figure 4.1.

The first stage of this method is to preprocess the document that is the subject of this study,

henceforth referred to as ‘the text’. The text is an eight-page technical report providing an

overview of the effect of electric and magnetic fields on propellant combustion and was selected

to be the exemplary document of this study. Further details on the text can be found in

Section 4.2.1. A description of the preprocessing methodology is detailed in Section 4.2.4. A

group of scientifically proficient ‘readers’ and an expert were asked to complete a background-

information questionnaire, this is described in Section 4.2.2.6 Collecting information on the

6An expert practitioner in the field of energetics could be someone who has acquired expertise through
studying the field academically or by obtaining practical experience, such as through working in the armed
forces or in the manufacturing of energetic materials. It is therefore possible to have an expert in energetic
materials who has limited education or literacy. In this study, an expert in the field is considered someone who
has studied the field in an academic sense.



4.2. Methodology 73

Figure 4.1: Tasks completed by the NLP are shown in turquoise, those completed by the readers
in lilac and those completed by the expert in orange. First, the text was preprocessed. Then the
readers and the expert were requested to fill in a background-information questionnaire (BI).
Next, the NLP summarised the document, and the readers and expert completed the keypoints
exercise. Finally, a comparison was conducted on the output of the summarisation/keypoints
tasks.

reader’s background was a suggestion given in Ref. [6] as understanding why different readers

have different interpretations of the text is an area of interest. The background questionnaire

given to readers can be found in Appendix A. Details of reader selection and the expert can be

found in Sections 4.2.2 and 4.2.3. Collectively the readers and the expert are referred to as the

‘participants’.

The participants are then asked to complete the keypoints task; details of the task are discussed

in Section 4.2.5. The NLP is used to generate a summary of the document. A discussion of the

NLP techniques used in this study is given in Section 4.2.6.
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Comparative analysis will be conducted with the output of the NLP’s summarisation task and

output from the participant’s keypoints task. Details of the methods used for comparative anal-

ysis are discussed in Section 4.2.7. Approval from Imperial College London’s ethics committee

was granted for this study.

4.2.1 Stimulus materials

An eight-page technical report providing an overview of the effect of electric and magnetic fields

on propellant combustion was selected as the document used in this study. The document

contains a review of scientific and technological developments on the effects of magnetic and

electric fields on combustion. The paper’s emphasis is on solid propellant combustion, but

relevant papers describing the effect on liquid or gaseous combustion are also reviewed. This

paper aims to establish potential routes of exploration for future defence-based endeavours.

The report was selected as it is on a well-defined neutral subject matter, reducing the number

of additional biases or prejudices in the participants’ interpretation of the text. Furthermore,

the report’s length is a manageable number of pages for human analysis. The report is of a

technical nature but focuses in detail on a specific domain.

4.2.2 Reader selection

This study recruited seven readers on a voluntary basis. The inclusion criteria for the study was

that readers must have a STEM background. The background-information questionnaire details

the readers’ current occupation, higher-education qualifications and work history. In terms of

occupation, participants were asked to tick the relevant box of five categories: government

policymaker, industry scientist, academic scientist, government scientist or other. Participants

were also asked to detail the number of years spent in each profession.

4.2.3 The expert author

In this study, the domain expertise is limited to a single document; the most apparent expert

on the information contained in the document is its author. As with the study conducted in
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Ref. [6], it was decided the expert in this study would be the author of the document. The

expert was recruited voluntarily.

In this case, the expert has over 17 years of experience working in commercial research areas and

over 23 years of experience in government research in fields related to the energetic-materials

domain. They, therefore, have an extensive knowledge base in the selected field of propellant

combustion.

4.2.4 Preprocessing methodology

Section 4.1.1 gave a general overview of preprocessing techniques in NLP. This section will give

an overview of how these techniques will be applied to develop the preprocessing stage of an

automatic-summarisation pipeline. An overview of the preprocessing methodology used in this

study is outlined in Figure 4.2. Figure 4.2 shows the first step in the preprocessing methodology

Figure 4.2: Overview of the methodology used to preprocess the document.

is to take the text in a Microsoft Word document form and generate a corpus that is equally

understandable by machines and humans. Following recommendations from Ref. [6], references,

titles and subtitles are removed from the text. References are removed from the text so as not to

influence the reader by giving information where the author’s identity of the referenced papers

could be deduced (knowledge of the author introduces bias depending on whether participants

view them positively or negatively). Titles and subtitles are also cut out not to direct the reader
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to key pieces of information, as this could give them an unfair advantage over the automatic

text summarisation algorithms.

In addition, images and their captions are deleted as NLP techniques do not apply to images.

Including images would give the readers an unfair advantage over the NLP given the present

study concerns only the ability of humans and NLP to analyse text alone. At this stage in the

preprocessing, the text can be given to the participants to complete the keypoints task.

Following this, the issue of reformatting the text document so it is in a machine-interpretable

format is tackled. Following on from this, tokenisation is performed. NLTK’s tokenisation

function was used to complete this step [311]. Next, all words are converted to lowercase,

which is achieved using Python’s ‘lowercase()’ function [312]. This step is performed to ensure

the NLP recognises the lower- and upper-case words as being the same word.

Then, stopwords are removed using a custom stopword list. NLTK’s preexisting stopword list

was modified by adding the Python string list of punctuation [312], all numbers preceding a

percentage sign and all numbers/functions of numbers. In addition, common words such as

‘figure’ and ‘reference’ are added to the stopword list, as were in-text citations.

Finally, stemming can be performed on the text. As mentioned in Section 4.1.1, the perfor-

mance of a stemmer is domain-dependent. No comparison of stemming algorithms in the ener-

getic material domain has been conducted in the literature. A recommendation from Section

4.1.8 was to compare the performance of Lovins, Paice-Husk and Porter stemming algorithms.

Therefore, using four pages of the text, a comparison of stemmer performance was conducted.

Every unique word in the stemmed text and the words it stemmed from were listed for each of

the aforementioned stemmers. Incidents of over- and under-stemming were recorded and com-

pared. The overall performance (percentage of correctly-stemmed words) of these stemmers is

summarised in Table 4.1.

Stemming algorithm Percentage of correctly-stemmed words

Lovins 92%
Paice-Husk 93%

Porter 95%

Table 4.1: Percentage of correctly-stemmed words in four pages of the text using the Lovins,
Paice-Husk and Porter stemming algorithms.

Table 4.1 shows the best-performing stemming algorithm was the Porter stemmer with 95% of
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words stemmed correctly. This stemmer was used to preprocess the text. After stemming is

conducted, the NLP summarisation task can be performed.

4.2.5 Keypoints task

The keypoints task is based on the keypoints task in Ref. [6] differing only in the subject matter

of the text being reviewed. The keypoints task asks participants to read and digest the text.

After reading the stimulus material, they were asked to list the points they felt were most

significant in the text. These points are henceforth referred to as ‘keypoints’. The definition

of importance was left to the participant to interpret. No constraints regarding the number of

points or the word limit of a keypoint were given. The participants were also asked to identify

the five most important keypoints in the text and then rank them in order of importance, with

1 being the least important and 5 being the most important. This information was elicited via

a questionnaire; see Appendix B for a copy of the template given to participants.

4.2.6 NLP-summmarisation task

In Section 4.1.8, a series of recommendations were made for developing a summarisation pipeline

for this study. Among these recommendations were that the following algorithms: SumBasic,

LSA, TextRank and the clustering-based ‘bert-extractive-summarizer’, should be used as part

of a summarisation pipeline. The performance of these algorithms will be compared and, if

appropriate, different feature-representation methods will be explored to establish the best-

performing summarisation algorithm. This subsection will provide an overview of the method

used to generate the summarisation algorithms.

For SumBasic, LSA, and TextRank, preexisting implementations of these algorithms are avail-

able in Python packages such as Ref. [313]. However, one of the recommendations from Section

4.1.8 was to implement the ‘cross method’ for identifying the sentences to include in the sum-

mary of LSA. Furthermore, it is of interest to examine different feature-representation methods

of these algorithms. It was determined that preexisting Python implementations were too rigid

to do this. Therefore, custom implementations of the algorithms in Python were written. This

not only allowed for the algorithms to be easily adapted to any modifications, but also allowed
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for the text to be easily preprocessed using the methodology discussed in Section 4.2.4.

The ‘bert-extractive-summarizer’ approach allows for a range of different pretrained language

models to be loaded into the summarisation architecture. It is generally advisable to use a

pretrained model that has been trained in the target domain as it will then be able to cap-

ture the semantic nuances of the domain. Unfortunately, no open-source language models are

trained in the energetic-materials domain. Therefore generic language models were considered.

BERT [129] is a state-of-the-art transformer-based language model that can produce contextual

representations of text and meaningful representations of out-of-vocabulary words. BERT is

discussed in more detail in Section 3.2. The original pretrained BERT model, ‘BERT-base’,

is a general language model trained on 3.3 billion words in a self-supervised fashion [314].

Sci-BERT is a pretrained model trained on a large corpus of scientific publications. It was

developed to address the lack of large-scale labelled scientific data [315]. GTP-2 is a similar

transformer-based language model; the base model is trained on the text dataset WebText,

which contains 40GB of text data from 45 million web links [128]. Sci-BERT, ‘BERT-base’ and

GTP-2 were implemented in the bert-extractive-summarizer architecture for this study. It is

noted the language models used in this approach do not take an input of stemmed/tokenised

text. Therefore the same level of preprocessing that was applied before the text was given to

the participants is used for these models.

All algorithms were set to return 25 sentences (the average number of keypoints the participants

returned in the keypoints task).

4.2.7 Evaluation

Intra-group comparison metrics

Ref. [6] introduces two metrics to evaluate how important the readers found the agreed points:

RAIS (reader-agreed important points scores) and MRIS (mean reader importance scores).

RAIS is a measure of how important the readers as a group found an agreed point. MRIS is

a measure of how important, on average, the readers found an agreed point. Worked examples

illustrating the difference between these two scores can be found in Appendix C. This section

will describe the methodology used to calculate these scores in this study.
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This questionnaire received a total of seven responses. The length of the responses varied from

5 to 23 keypoints. The total number of keypoints received was 98. The style of each keypoint

varied from a ‘bullet-point style’ response to several sentences. In the latter case, each keypoint

could consist of several subpoints. Therefore, to generate a measure of reader agreement, each

point was divided into subpoints. The analysis resulted in a total of 135 subpoints. Subpoints

conveying the same meaning were grouped. The number of conceptually unique subpoints was

91. These conceptually unique subpoints will henceforth be referred to as reader-agreed points.

It is noted that it is possible for a reader to have more than one subpoint grouped under a

reader-agreed point.

Identifying subpoints in keypoints and grouping them to form reader-agreed points is a very

subjective process. For instance, the statements ‘There has not been much work reported’, and

‘Electro-thermal guns using electric solid propellants showed promising results but have had no

other further publications in the US’ imply a lack of publications. However, it is not possible

to determine they are making precisely the same point. For this reason, they are not grouped.

To reduce bias, this process was repeated three times at six-month intervals.

As part of the keypoints task, the readers were asked to identify and assign the top 5 most-

important keypoints a ranking, R, from 1-5, where 5 is the most-important. These rankings

were converted to importance scores (IS) using

IS = 1 +R, (4.17)

such that the keypoints, that were not ranked in the top 5 most-important key points, have a

score of IS = 1; while the most-important have a score of IS = 6. Each keypoint now has an

IS, and each subpoint is assigned the same IS as the keypoint it originates from. RAIS was

calculated for the reader-agreed points using

RAISj =
∑
i∈J

ISi, (4.18)

where ISi is the IS for subpoint i ∈ J where J is the set of subpoints in agreement with

reader-agreed point j. MRIS was calculated using

MRISj =
RAISj

Nj

, (4.19)
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where Nj is the number of readers that had a subpoint in agreement with reader-agreed point

j.

Inter-group comparison metrics

In Section 4.1.7, a metric to evaluate the overlap between two summaries at the sentence level

is introduced. However, evaluating at a sentence level may result in the overlap of the two

summaries being misrepresented. For example, a human-generated summary may contain two

conceptual ideas in one sentence, whereas a machine-generated summary might express the

same conceptual ideas over two sentences. The sentence overlap, however, would be 0 as the

two summaries do not return the same sentences. Therefore Eq. (3.6) is adapted to evaluate

at a conceptual level. To determine the conceptual overlap between two participants (denoted

in this case by i and j), the harmonic mean of the content overlap, Fij, is defined as

FCij
=

2PCij
RCij

PCij
+Rij

(4.20)

where PCij
is defined as

PCij
=

Aij

Ni

, (4.21)

where Aij is the number of subpoints from participant i’s summary found to be in agreement

with that of participant j and Ni is the number of subpoints in participant i’s summary. RCij

is defined as

RCij
=

Aji

Nj

. (4.22)

The metric FROUGE-1 will also be used to indicate the overlap between summaries. FROUGE-1 is a

modification of Eq. (4.16) that scores the unigram overlap of two summaries. Both summaries

follow the same preprocessing methodology described in Section 4.2.4 to normalise the text

before evaluating with ROUGE. There are a range of different implementations of ROUGE

available in Python [316, 317, 318].



4.3. Results and discussion 81

4.3 Results and discussion

In this section, the results of the study are presented. First, a comparison of NLP summarisation

algorithms will be made to determine the best-performing algorithm in Section 4.3.1 . Secondly,

an overview of the readers’ background information will be presented (Section 4.3.2). Thirdly, a

comparision of the two metrics, FC and FROUGE-1, used to evaluate the quality of the generated

summaries will be made in Section 4.3.3. Finally, a comparison between the expert, reader and

best-performing NLP summarisation algorithm will be made in Section 4.3.4.

4.3.1 A comparison of text-summarisation algorithms

This section aims to determine the best-performing summarisation algorithm. First, the algo-

rithms identified in the literature review in Section 4.1 are compared. Then a comparison of

different feature-representation methods for the best-performing algorithm is made.

Identifying the best-performing NLP algorithm

The preprocessing methodology described in Section 4.2.4 was used to preprocess the text.

Then, the four approaches to summarisation identified in the literature review in Section 4.1 as

suitable for the task, SumBasic, LSA, TextRank and bert-extractive-summarizer, were used to

generate summaries. Three different models were inputted in the bert-extractive-summarizer

architecture, Sci-BERT, GTP-2 and BERT. These summaries were compared against the ex-

pert’s keypoints using conceptual overlap FC (Eq. (4.20)) and unigram overlap using the metric

FROUGE-1. Table 4.2 displays the results of this comparison.

Algorithm FROUGE-1 FC

SumBasic 0.37 0.36
LSA 0.35 0.31

TextRank 0.39 0.33
BERT-summariser (Sci-BERT) 0.29 0.27
BERT-summariser (GTP-2) 0.34 0.31
BERT-summariser (BERT) 0.30 0.28

Table 4.2: Evaluation of summaries generated by SumBasic, LSA, TextRank and bert-
extractive-summarizer with Sci-BERT, BERT and GTP-2 against the expert’s keypoints using
the metrics FROUGE-1 and FC .
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The results of Table 4.2 show that basic statistical algorithms outperformed the state-of-the-

art BERT-summariser. FROUGE-1 values of 0.37, 0.35 and 0.39 were obtained for SumBasic,

LSA and TextRank respectively. These values are higher than the FROUGE-1 obtained for all

three bert-extractive-summarizer implementations examined. The values of FC for SumBa-

sic, LSA and TextRank also outperformed those generated for the bert-extractive-summarizer

implementations. There are a range of possible reasons for this, which will be explained below.

Firstly, SumBasic, LSA and TextRank are statistical algorithms. It was observed that all

three algorithms returned a high number of sentences with high percentages of keywords. This

resulted in summary-style sentences being returned, such as ‘magnetic control of combustion

falls into four main areas: (1) direct control of the burning at the surface of a solid propellant,

(2) influence on the manufacturing process by forcing alignment of metallic needle-like particles

within the propellant, (3) influence of the combustion flow patterns within a chamber or nozzle,

(4) upstream polarisation of the fuel system.’. These summary-style sentences portrayed not

only key technical concepts but had a high proportion of key terms and phrases that also

appeared in the expert’s summary. This resulted in higher FROUGE-1 and FC .

Secondly, whilst bert-extractive-summarizer uses state-of-the-art sentence embeddings, the

models used to generate these embeddings were trained on out-of-domain text. As a result,

these embeddings may not have been able to capture domain-specific semantic relationships

and consequently may be less semantically meaningful in this domain. In addition, the method

of generating the embeddings from the pretrained models was not tailored to this domain. This

may have resulted in lower algorithm performance.

Three different pretrained models were implemented as part of the bert-extractive-summarizer

architecture. It was expected the Sci-BERT implementation would perform the best as it was

trained on scientific text, whereas the other two examined implementations, GTP-2 and BERT,

are trained on a general corpus. This, however, was not the case as Table 4.2 shows the Sci-

BERT implementation was outperformed by the GTP-2 and BERT implementations for both

FROUGE-1 and FC . This may be because the style in which the text was written was closer to

the text used to train the GTP-2 and BERT models than the Sci-BERT models. Alternatively,

the method used to generate the embeddings from the pretrained models may have been better

suited to the GTP-2 and BERT models. Future work should explore different approaches to

generating embeddings from the models, for instance using S-BERT [319].
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Table 4.2 shows FC was lower than FROUGE-1 for all examined algorithms. This illustrates that

summaries containing the same words and consequently having a high unigram overlap may

not be portraying the same conceptual points and, as a result, have a lower conceptual overlap.

In addition, some sentences returned by the algorithms were returned out of context, causing

them to lose the original meaning they expressed in the text. For instance, the sentence

‘Again inconsistent results have been obtained.’ appears in the text as a summary statement

about electric control of combustion, specifically direct control of the burning at a surface

of a solid propellant. Its meaning is spread over two sentences. The summary returned by

the bert-extractive-summarizer with GTP-2 this sentence appears after the following sentences

‘For a typical example, the outer electrode is a 3.2mm diameter aluminium tube, and the

concentric inner electrode is a 1.2mm diameter molybdenum rod. The former method has

been applied only at pressures suitable for rocket propellant applications’. In this context, it

is unclear what the meaning of ‘Again inconsistent results have been obtained.’ is. This issue

of selecting sentences that contained words requiring context also contributed to a lack of flow

in the summaries. This issue was observed to a greater extent in summaries generated using

bert-extractive-summarizer. In Ref. [301] a similar issue is identified as the bert-extractive-

summarizer identifying sentences that contain words that require further context e.g. ‘this’,

‘those’, ‘these’, and ‘also’.

The TextRank algorithm outperformed all other algorithms with both conceptual overlap and

uni-gram overlap, achieving a FROUGE-1 of 0.39 and FC of 0.33. These obtained values are in line

with state-of-the-art results found in the literature [320] and results in the original TextRank

paper [266]. The FC score can be interpreted as the two summaries agreeing on 33% of the

concepts.

Overall, the returned summaries showed a lack of cohesion. Sentences appeared in seemingly

random order and did not flow. This is a typical limitation of extractive-summarisation tech-

niques. The expert’s summary contained concepts summarised in a single sentence that ap-

peared over several sentences in the text. The summarisation algorithms were unable to identify

such concepts and return them accordingly. The bert-extractive-summarizer summaries were

found to flow less. This is because the summaries generated using LSA, SumBasic and Tex-

tRank returned sentences in the order in which they appeared in the text. It is noted that

this is not in agreement with the results in Ref. [301] which compared TextRank to the bert-
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extractive-summarizer on a Health Information Exchange lecture series and found the cohesion

bert-extractive-summarizer summaries to be more cohesive.

The preprocessing methodology also resulted in errors. The sentence tokenizer was confused

by the presence of some abbreviations and chemical names, which resulted in some sentences

being incorrectly tokenized. For instance, the presence of the word ‘i.e.’ caused the sentence

tokenizer to interpret this as the end of a sentence mistakenly. This would have had a significant

impact on TextRank, LSA and SumBasic, which use frequency-based measures on a sentence-

by-sentence level. Incorrect identification of a sentence boundary will result in incorrect values

for these statistics. The bert-extractive-summarizer has an in-built tokenizer and was not

affected similarly. Future work on energetic-materials text may require the development of a

custom preprocessing pipeline.

The best-performing algorithm of those examined was TextRank. Following the recommen-

dations in Section 4.1, different modifications to the original TextRank algorithm should be

examined. This will be explored in the next section.

A comparison of TextRank modifications

Here ‘TextRank cosine TF-ISF’ and ‘TextRank cosine Word2Vec’, modified versions of the orig-

inal TextRank algorithm, ‘TextRank Basic Jacquard’ (Eqs. (4.4) and (4.5)), will be compared.

TextRank cosine TF-ISF and TextRank cosine Word2Vec use TF-ISF (Eq. (4.7)) and a pre-

trained Word2Vec model, respectively, to generate sentence vectors. The weights on the Tex-

tRank graph are then calculated using the cosine of the relevant sentence vectors (Eq. (4.8)).

There are a range of pretrained models available in Python, the most notable being those

trained on the Google News corpus [120]. However, no open-source Word2Vec models trained

on text in the energetic-materials domain exist. Therefore, for this study, embeddings trained

using the Skip-gram algorithm on 3 billion tokens from English Wikipedia are used [321]. Since

the model is trained on the entire English Wikipedia, it would have encountered some refer-

ences to energetic materials. Sentence embeddings are generated by averaging the word vectors

for each word in the sentence (excluding stopwords). However, there is some dispute over the

effectiveness of this method in the literature. For instance, in Ref. [322], embeddings generated

in this manner were not found to be semantically meaningful; in contrast, in Ref. [323], this
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method was found to be effective.

Using out-of-domain embeddings meant some of the words in the text were not in the training

corpus. This means they do not have word embeddings, e.g. ‘ambipolar’, ‘micro-engine’, ‘car-

boxylated’ and ‘dioctyl’. These words are referred to as ‘out-of-vocabulary’. In addition, in-text

equations and units were also out-of-vocabulary. A complete list can be found in Appendix

D. A large proportion of these out-of-vocabulary words had hyphens. Therefore hyphenated

out-of-vocabulary words were split into individual tokens. If the remaining words were out-of-

vocabulary, they were removed from the text. This problem could have been avoided if the

model had been trained on domain-specific text.

The performance of TextRank cosine TF-ISF and TextRank cosine Word2Vec was evaluated

against the expert’s keypoints using FROUGE-1 and F . Results are displayed in Table 4.3 along-

side the performance of TextRank Basic Jacquard.

Algorithm FROUGE-1 FC

TextRank Basic Jacquard 0.39 0.33
TextRank Word2Vec cosine 0.41 0.39
TextRank cosine TF-ISF 0.41 0.39

Table 4.3: Evaluation of ‘TextRank Basic Jacquard’, ‘TextRank cosine TF-ISF’ and ‘TextRank
Word2Vec cosine’ against the expert’s keypoints using FROUGE-1 and F .

Table 4.3 shows that, as with the results in Table 4.2, all values of FROUGE-1 are less than FC .

This is further evidence supporting the conclusion that returning sentences with a high unigram

overlap will not result in an equally high conceptual overlap.

Both modified implementations performed equally well obtaining FROUGE-1 of 0.41 and FC of

0.39, outperforming ‘TextRank Basic Jacquard’ which obtained FROUGE-1 of 0.39 and FC of

0.33. This FC value can be interpreted as the NLP and expert agreeing on 39% of concepts.

This shows the summaries generated by the modified versions of the TextRank algorithm had a

greater word and conceptual overlap with the expert’s keypoints. It can therefore be concluded

the two modifications of the TextRank algorithms outperformed the original implementation.

This agrees with the results found in Refs. [288, 282]. It is noted the generated summaries

suffered from the lack-of-cohesion issues described in the previous section.

Despite being two different methods of feature representation, the TextRank cosine TF-ISF and

TextRank Word2Vec cosine algorithms returned identical sentences and hence yielded identical
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values FROUGE-1 and FC . The algorithms perform equally well at extractive summarisation.

In this case, using transfer learning methods did not improve performance over traditional

statistical methods of feature representation. There are other examples in the literature of

traditional statistical feature-representation methods outperforming state-of-the-art language

models for small/niche datasets [324, 325].

A significant limitation of the ‘TextRank Word2Vec cosine’ method was the use of a general

pretrained model. This led to some of the words in the text being out-of-vocabulary. The out-of-

vocabulary words are hence removed from the text. This led to poorer quality sentence vectors.

Using a Word2Vec model trained on energetic-materials text would not only lead to more

accurate semantic representations of the words but led to fewer out-of-vocabulary words, thus

improving performance. The method of generating sentence embeddings from the Word2Vec

model was to average over the word embeddings of the words in each sentence. Future work

should investigate other methods of generating sentence embeddings from Word2Vec models,

such as using TF-ISF weightings in the averaging process.

To conclude, TextRank outperformed SumBasic, LSA and the state-of-the-art bert-extractive-

summarizer architecture. Furthermore, two modifications of TextRank, ‘TextRank cosine TF-

ISF’ and ‘TextRank Word2Vec cosine’, outperformed the original version of TextRank. Despite

different methods of feature representation, these methods returned identical sentences and

hence yielded identical word and conceptual overlap with the expert’s keypoints. Since the

modifications produced identical summaries, the best-performing algorithm will henceforth be

referred to as ‘modified TextRank’. This summary will be used to compare with the readers’

and expert’s keypoints.

4.3.2 Background information of the readers

The participants in this study were asked to complete a background-information questionnaire

(Appendix A). This questionnaire collected details on the participants’ experience levels and

expertise in the topic of the text (effect of electric and magnetic fields on propellant combustion).

This section will present an overview of the readers’ responses to the background information.

This information will be used in later analysis (Section 4.3.3) to understand how a reader’s

background influences their response to the keypoints task.
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The readers were requested to specify the number of years of experience they have in academic,

government and commercial research as well as government policy. None of the readers had

experience in government policy. Only two readers had experience in government research,

one totalling 24 years and the other totalling 0.25 years. Figures 4.3 (a) and (d) display the

proportion of readers by the number of years of experience they have in academic/commercial

research. The total number of years of experience of each reader was totalled. Figure 4.3 (b)

displays the proportion of readers by their total years of experience.

The readers were also asked to assign themselves an expertise rating on a 1-5 scale, where

a score of 5 would consider them an expert on the effect of electric and magnetic fields on

propellant combustion. The results are displayed in Figure 4.3 (d).

(a) Proportion of readers by the number of years of
experience in academic research.

(b) Proportion of readers by the total number of years
experience.

(c) Proportion of readers by the number of years
experience in commercial research.

(d) Proportion of readers by their expertise rating.

Figure 4.3: Proportion of readers by: numbers of years of experience in academic research (a)
or commercial research (c), number of years total experience (b) and expertise rating (d).

Figure 4.3 (a) shows the majority of the readers are not in the early stages of their careers, with

over 67% having over 5 years of experience in academic research. This is further illustrated in

Figure 4.3 (b), which shows a sizeable proportion of the participants (43%) having a total of 20-

25 years of experience. Most of the recruited participants have limited experience in commercial
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research, with only one participant having more than 3 years of experience. The readers were

also asked to specify any higher-education qualifications. All of the readers in this study were

either studying for or had completed a PhD. From this analysis, it is concluded most readers are

experienced academics. These results indicate the readers are experienced and, therefore, fully

equipped to complete the keypoints task. However, this is a limited selection of readers. Future

work should aim to attract a more significant number of readers from more varied backgrounds.

This will allow for better comparisons of how a reader’s background influences their response

to the keypoints task.

Figure 4.3 (d) shows the majority of readers (71%) rated themselves as having little expertise

(1-2) on the topic of the effect of electric and magnetic fields on propellant combustion. Two of

the participants rated themselves as having an expertise level of 4. To examine whether those

participants rated themselves the highest were the most experienced, the Pearsons correlation

between the total number of years of experience and the self-assigned expertise rating was

calculated. However, no statistically significant correlation was obtained. This indicates there

was no linear relationship between the self-assigned expertise level and the total number of

years of experience. This may be due to the sample size being too small to view any significant

correlation. Alternatively, this could be due to the inherent subjectivity in asking participants

to assign themselves an expertise rating or because the total number of years of experience may

not correspond to relevant experience.

4.3.3 Inter-group and intra-group comparison

Reader intra-group agreement: NLP vs Expert

In Section 4.2.7, two metrics, RAIS (Reader Agreed Importance scores) and MRIS (Mean

Reader Importance Scores), were introduced to measure how important the readers as a group

found an agreed point and how important, on average, the readers found an agreed point7.

These are measures of group importance (inter-group importance). In this section, analysis

using RAIS and MRIS will be conducted.

The method presented in Ref. [6] divided reader-agreed points (RAPs) into two sets of datasets:

7See worked examples demonstrating the difference between these two scores in Appendix C.
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(1) those the NLP found important and not important and (2) those the expert found important

and not important. T-tests were then performed on the associated RAIS or MRIS scores for

each set of datasets. The purpose of this analysis was to determine if the reader-agreed points

were viewed as more important by the readers if they agreed with the points made by the NLP

(using the first dataset (1))/the expert (using the second dataset (2)). This analysis is adapted

to the data in this study.

Conducting a T-test requires the data to meet the following conditions: measured values on a

scale, a simple random sample, normally distributed, appropriate sample size, and homogeneity

of variance [326].

RAIS andMRIS scores are a scale of measurement, and they are assumed to be simple random

samples8. The normality of the data is examined by plotting the distribution of the RAIS and

MRIS in Figure 4.4.

(a) Distribution of MRIS for the reader-agreed points. (b) Distribution of RAIS for the reader-agreed points.

Figure 4.4: Distribution of MRIS (a) and RAIS (b) for the reader-agreed points (RAPs).

Figures 4.4 (a) and (b) show the distributions of RAIS and MRIS are heavily skewed to lower

values of RAIS and MRIS. This indicates the datasets as a whole are non-normal and non-

parametric analysis may need to be utilised. The reason for the skew is many readers’ keypoints

were not found to agree with any other readers’ keypoints. As a result, these points had low

associated RAIS and MRIS scores. Similarly, in Ref. [6], a large conceptual variety was found

in the readers’ keypoints. In Ref. [327] a comparison of what novices and experts found to be

8The question of whether or not these scores are a simple random sample is complex, this implies the scores
are an unbiased representation of the general population, but given the way the scores are computed (a biased
method), this is not entirely true.
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important in physics texts also found considerable variation in responses. As pointed out in

Ref. [6] from a psychological perspective, this is unsurprising as experts bring to any task their

own expectations drawing from their experiences which will influence their interpretations of

the task. These varying approaches to completing the task will result in varied responses.

First intra-group agreement between the readers and the expert is examined. In order to

determine the correct statistical test, the distributions of RAIS and MRIS for statements in

agreement or not in agreement with the expert are examined individually. A total of 9 reader-

agreed points were found to agree with the expert, and 60 were not in agreement with the

expert. The distribution of these datasets is plotted using boxplots in Figure 4.5.

(a) Distribution of MRIS for the reader-agreed
points in agreement/not in agreement with the

expert.

(b) Distribution of RAIS for the reader-agreed points
in agreement/not in agreement with the expert.

Figure 4.5: Distribution of MRIS (a) and RAIS (b) for the reader-agreed points (RAPs) in
agreement with the expert and not in agreement with the expert. Red crosses indicate outliers
and orange lines indicate median scores.

Figures 4.5 (a) and (b) indicate the distribution of MRIS and RAIS scores not in agreement

with the expert are heavily skewed towards lower values, whereas the distribution of MRIS

and RAIS scores in agreement with the author are considerably less skewed. Of those points

that were found to agree with the expert, 4 out of 9 were general statements that described

the overall theme of the text; an example is ‘Both magnetic and electric fields may affect the

combustion process’. Unsurprisingly, general statements tended to agree with at least one other

reader generating high MRIS and RAIS scores, thus resulting in less skew for the distributions

for RAPs in agreement with the expert.
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In addition, Figures 4.5 (a) and (b) show some outliers where the group of readers found a

RAP to be important and thus the RAP had a high MRIS/RAIS but the expert did not

find the RAP important. These outlying RAPs had no consistent attributes. Overall, the

median MRIS and RAIS of RAPs in agreement with the expert, which had values of 3 and

4 respectively, were higher than RAPs not in agreement with the expert, values of 1 and 1.5

respectively. This preliminary analysis indicates the intra-group agreement is higher for RAPs

in agreement with the expert. Further statistical analysis is needed to validate this.

From Figure 4.5 (a) and (b), the MRIS and RAIS datasets for RAPs in agreement with the

expert appear normally distributed, whereas the datasets for RAPs not in agreement with the

expert appear non-normal. The normality was validated using the Shapiro-Wilk test [328].

Firstly the RAIS scores are examined, p-values of 0.84 and 5e-11 were obtained for RAIS of

RAPs in agreement with the expert and RAPs not in agreement with the expert respectively.

From this, it is concluded that at a 95% significance level, since 0.84 > 0.05 and 5×10−11 < 0.05,

RAIS for RAPs in agreement with the expert are not statistically different from the normal

distribution, whereas those RAIS of RAPs not in agreement with the expert are statistically

different from the normal distribution and are described as non-normal. The dataset of RAIS

of RAPs in agreement with the expert had a sample size of 9. At such low sample sizes, tests of

normality, such are the Shapiro-Wilk test are inaccurate [329]. Therefore non-parametric tests

should be used.

An unpaired Wilcoxon rank sum test with continuity correction (see Ref. [330] for further

details) was performed9. This test was selected as it does not assume normality of the data.

An unpaired Wilcoxon rank sum test test compares the medians between the two datasets. The

obtained p-value of the test is 0.011, which is less than the significance level of 0.05. Therefore

it can be concluded the median RAIS of RAPs in agreement with the expert is significantly

different from the median RAIS of RAPs not in agreement with the expert. The median

difference between a sample from RAIS statements in agreement with the expert and a sample

from RAIS statements not in agreement with the expert in location was determined to be

2. The size effect was measured using Vargha and Delaney’s A (see Ref. [331] for details).

An estimate of 0.75 was obtained, implying a large difference between the two datasets. This

9See Appendix E for an overview of the decision-making process used to determine the appropriate statistical
test.
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value can be interpreted as 75% of RAIS scores being higher for RAPs in agreement with the

expert than RAPs not in agreement with the expert. From this, it is concluded there is more

agreement between readers for RAPs that the expert also finds important than for RAPs the

expert does not find important.

Secondly, the MRIS scores are examined. The Shapiro-Wilk test is performed to assess the

normality of the data. P-values of 0.20 and 5×10−11 were obtained for the dataset of MRIS for

RAPs in agreement with the expert and RAPs not in agreement with the expert, respectively.

Since 0.20 > 0.05 and 5 × 10−11 < 0.05, it is concluded the distribution of MRIS for RAPs

in agreement with the expert is not significantly different from the normal distribution but the

dataset of MRIS for RAPs not in agreement with the expert are not normally distributed. As

discussed above, the dataset of MRIS of RAPs in agreement with the expert has a sample size

of 9. At such low sample sizes, normality tests are inaccurate [329]; therefore non-parametric

tests should be used.

An unpaired Wilcoxon rank sum test with continuity correction was performed on the MRIS

scores. The p-value of the test was 0.013, and this is less than the significance level of 0.05.

Therefore the median MRIS of RAPs in agreement with the expert is significantly different

from the median MRIS of RAPs not in agreement with the expert. The median difference

between a sample from MRIS of RAPs in agreement with the expert and a sample from MRIS

of RAPs not in agreement with the expert was 1. The size effect was measured using Vargha

and Delaney’s A. An estimate of 0.73 was obtained, again implying a significant difference

between the two populations. It is therefore concluded that, on average, the readers find RAPs

in agreement with the expert more important than those not in agreement with the expert.

Thus far, it has been established that as a group, the readers find RAPs in agreement with the

expert more important and, on average, are rated more important than those not in agreement

with the expert.

The same analysis is applied to the datasets of RAPs in agreement/not in agreement with the

NLP. A total of 6 RAPs were in agreement with the NLP, and 63 were not. The distribution

of these datasets is plotted in Figure 4.6.

Figures 4.6 (a) and (b) show the distribution of MRIS and RAIS scores of the RAPs not in

agreement with the NLP are more heavily skewed towards lower values than the scores for RAPs
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(a) Distribution of MRIS for the reader-agreed
points in agreement and not in agreement with the

NLP.

(b) Distribution of RAIS for the reader-agreed points
in agreement and not in agreement with the NLP.

Figure 4.6: Distribution of MRIS (a) and RAIS (b) for the reader-agreed points (RAPs) for
those in agreement with the NLP and not in agreement with the NLP. Red crosses indicate
outliers and orange lines indicate the median scores.

in agreement with the NLP. Of those points that were found to agree with the expert, 3 out of

6 were either general statements about the topic of the text or statements stating a summary

conclusion, for instance, ‘Electrothermal guns using electric solid propellants showed promising

results but have had no other further publications in the US’. As mentioned in Section 4.3.1, the

NLP returned conclusion-style statements frequently as they tend to contain a high frequency

of keywords. As mentioned above, this RAP style also tends to have an agreement with at least

one other participant.

The median MRIS and RAIS score of the RAPs in agreement with the NLP (2 and 4 re-

spectively) was higher than RAPs not in agreement with the expert (1 and 2 respectively).

This initial analysis indicates that group agreement is higher for RAPs in agreement with the

NLP. However, further statistical analysis is needed to validate this. Figures 4.6 (a) and (b)

show the distribution of RAIS and MRIS for RAPs that agree with the NLP to be normal,

whereas the distributions of RAIS and MRIS for statements not in agreement with the NLP

do not. These hypotheses are validated using Shapiro-Wilk tests. Consider the RAIS scores

first, p-values of 0.04 and 2× 10−10 were obtained for RAPs in agreement with the expert and

not in agreement with the NLP, respectively.
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Given the non-normal nature of the datasets of the RAIS scores, an unpaired Wilcoxon rank

sum test with continuity correction was performed. The p-value of the test was 0.02, which

is less than the significance level of 0.05. Therefore the median RAIS of RAPs in agreement

with the NLP is significantly different from the median RAIS of RAPs not in agreement with

the NLP. The median difference between a sample from RAIS RAPs in agreement with the

NLP and a sample from RAIS RAPs not in agreement with the NLP was determined to be 2.

The size effect was measured using Vargha and Delaney’s A. An estimate of 0.77 was obtained

again, implying a significant difference between the two populations. It is therefore concluded

that as a group, readers find RAPs in agreement with the NLP more important than those not

in agreement with the NLP.

Next, the MRIS scores are examined. P-values of 0.40 and 2× 10−10 were obtained for RAPs

in agreement with the NLP and not in agreement with the NLP, respectively. Given the low

sample size of the MRIS scores for RAPs in agreement with the NLP, an unpaired Wilcoxon

rank sum test with continuity correction was performed. The p-value of the test was 0.33, at a

0.05 significance level. This implies there is insufficient evidence to reject the null hypothesis.

It, therefore, cannot be conclusively determined whether, on average, participants find RAPs

in agreement with the NLP more important than those not in agreement with the NLP10.

Inter-group agreement: readers vs expert vs NLP

Previously in this section, reader intra-group analysis was conducted. Here the readers will be

considered individuals and randomly assigned a numeric label. The inter-group agreement will

be examined for the participants (the readers and the expert) and the NLP using two metrics,

conceptual overlap (FC) and unigram overlap (FROUGE-1).

A matrix containing the FC scores between the keypoints/summary for every possible pairing

of individuals in the group and the NLP is displayed in Figure 4.7. Figure 4.7 shows the highest

FC for 4 of the 7 readers was with the expert. The highest FC was a value of 0.61 between

Readers 7 and 5. Their keypoints were not just similar conceptually but were also similar in the

style in which they were written; both readers wrote lengthy, detail-orientated responses. The

readers had similar numbers of years of experience in academic research, suggesting they have

10A statistical test cannot be conducted between the RAPs found important by the NLP and expert as some
but not all samples are paired, and the two datasets are of different sample sizes.
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Figure 4.7: Matrix displaying the FC overlap of the keypoints/summaries for every possible
pairing of individuals in the group and the NLP.

similar backgrounds, which may be why they analysed the text similarly. Reader 5 also obtained

high FC with Reader 1 (0.33) and Reader 3 (0.38). These readers had either their self-assigned

expertise level in common or similar levels of experience. This initial analysis implies the

collected background information may be useful in predicting the agreement between readers.

The NLP exhibits the highest FC with the expert obtaining a value of 0.39. This is unsurprising

as in Section 4.3.1, a range of NLP tools were investigated, and the best methodology was chosen

based on FC and FROUGE-1 with the expert. Some readers’ keypoints had no conceptual overlap.

This reflects the extent of the conceptual variation in the readers’ keypoints mentioned earlier

in this section.

The average FC among the readers (⟨FC⟩) was calculated for each of the participants/NLP.

The results are displayed in Figure 4.8.

Figure 4.8 shows that, on average, the readers had an FC with the expert of 0.39. This is higher
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Figure 4.8: Average FC among the readers (⟨FC⟩) for each participant and the NLP.

than the average FC with NLP, which was 0.27. From this, it is possible to conclude that, on

average, the readers have a higher agreement with the expert’s keypoints than the NLP’s sum-

mary. The readers often returned summary-style keypoints that contained concepts expressed

in the text over several sentences. The NLP chosen for this comparison was modified TextRank.

This is an extractive summarisation algorithm and thus cannot return such summary-style key-

points. It is unsurprising then that the participants exhibited higher agreement with the expert

than the NLP.

The ⟨FC⟩ was higher for the expert than for any other participant/NLP. Hence, on average, the

keypoints generated by the readers have more significant conceptual overlap with the experts’

keypoints than any other readeror the NLP. This supports the conclusion from earlier that the

readers view concepts, that are also viewed as important by the author, as important by the

author. Readers 1 and 6 obtained notably low values of ⟨FC⟩ indicating low levels of conceptual

agreement with the other readers. Reader 6 was one of the most experienced in this study, with

all of their experience spent exclusively in academia. It may be that this experience meant the
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reader interpreted the task very differently from the others.

The FROUGE-1 scores between the keypoints/summary for every possible pairing of individuals

in the group and the NLP is displayed in Figure 4.9. Figure 4.9 shows a significantly narrower

Figure 4.9: FROUGE-1 overlap of the keypoints/summaries for every possible pairing of individ-
uals in the group containing participants and the NLP.

range of FROUGE-1 scores than the range of FC scores displayed in Figure 4.7. Pairings of readers

that had low FC in Figure 4.7 are seen in Figure 4.9 to have high overlap. For example, Readers

1 and 6 have an FC of 0 and an FROUGE-1 of 0.22. This supports the conclusion in Section 4.3.1

that a high/low conceptual overlap does not necessarily mean a high/low unigram overlap. The

relationship between the two metrics is explored further in Section 4.3.4.

The highest FROUGE-1 in Figure 4.9 is between the expert and the NLP. As mentioned previously,

this may be because the NLP method was optimised using the FROUGE-1 metric. In addition,

the expert is the author of the text, and since the NLP lifts sentences directly from the text, it

is unsurprising that FROUGE-1 is high as the style and word choices are likely to be very similar

because the NLP’s summary and the expert’s keypoints have the same author.
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Figure 4.9 shows the expert and Reader 5 had high FROUGE-1 of 0.37 as well as an FC of 0.60.

Reader 5 was the most experienced, and they also assigned themselves a high expertise rating

of 4. Overall, Reader 5’s background was the most similar to the experts. This may explain

the high overlap between the produced keypoints.

The average FROUGE-1 among the readers (⟨FROUGE-1⟩) was calculated for each of the partici-

pants/NLP. The results are displayed in Figure 4.10.

Figure 4.10: Average FROUGE-1 among the readers (⟨FROUGE-1⟩) for each participant and the
NLP.

Figure 4.10 shows minimal variation of ⟨FROUGE-1⟩ for each participant and the NLP. As ob-

served in Figure 4.8, there is a noticeable global minima for Reader 6. This illustrates that, on

average, the participants agreed the least with this participant.

The analysis so far has indicated there may be a relationship between the agreement of the

readers’ FROUGE-1 and FC and background factors such as expertise rating. Therefore, the

relationship between the difference in expertise level of the readers and FC/FROUGE-1 was ex-

amined. The difference in expertise level is an ordinal scale; therefore, Kendall’s Tau, which
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ranges from -1 to 1, was used to establish the strength of the relationship between the two

variables. The p-value is the statistical significance of the results. P-values above 0.05 are not

statistically significant at a 95% confidence level. For FC , a value of 0.15 was obtained with a

p-value of 0.40. For FC , a value of 0.24 was obtained with a p-value of 0.18. Both p-values are

more significant than 0.05; there exists no statistically significant relationship between the dif-

ference of self-assigned expertise ratings and the unigram/conceptual overlap of the generated

summaries.

The relationship between the difference in the total number of years of experience and FC for

each pair of readers was examined by calculating Pearson’s Correlation, as the total number

of years of experience is a continuous variable. A p-value of 0.26 was obtained, indicating no

statistically significant correlation. The exact process was repeated using FROUGE-1. Again, no

statistically significant correlation was obtained. This method was applied to the difference in

the total number of years of academic experience. Again, no statistically significant correlations

were observed.

Other background factors, such as the number of years of commercial/government research,

again exhibited no statistically significant correlation. As seen in Section 4.3.2, there is only

slight variation in the number of years of commercial/government research among the readers.

The lack of statistically significant correlations may be due to the small sample size or the lack

of variation in the readers’ backgrounds. This suggests future studies should try to recruit a

larger, more diverse group of readers.

4.3.4 Conceptual vs unigram overlap

In the previous section it was recommended that the relationship between conceptual overlap FC

and unigram overlap FROUGE-1 is examined further. In this section, the relationship between

the two metrics, FC and FROUGE-1, is examined. For every comparison between summaries

made in this study, values of FC and FROUGE-1 were calculated. These values are plotted in

Figure 4.11. A regression line was fitted to this data, and the shaded region on the plots shows

bootstrapped 95% confidence intervals generated for the regression line.

The plotted regression line indicates a positive linear relationship between F and FROUGE-1.

This is in agreement with the results found in Tables 4.3 and 4.2. The 95% confidence intervals
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Figure 4.11: F versus FROUGE-1 for overlap between participants, expert and NLP summaries.
A regression line is fitted to the plot and 95% confidence intervals are bootstrapped, represented
by the red-shaded region of the graph.

are very large (approximately 0.35), particularly for values of FROUGE-1 less than 0.20 and

greater than 0.3 as the majority of the data is clustered around FROUGE−1 = 0.25. This is

because the majority of the data is clustered around FROUGE-1 values of 0.25, resulting in few

data points in the aforementioned regions; hence there are large estimated uncertainties if F

was to be estimated from FROUGE-1 in these regions.

The strength of this relationship was measured using Pearson’s correlation. A value of 0.50

was obtained at a significance level of 0.001. According to Ref. [332] this can be interpreted as

a moderate-strength linear relationship significant to a confidence level of 99.9%.

Both FC and FROUGE-1 are imperfect metrics. Conceptual evaluation F is an inherently biased

process, and calculating unigram overlap, as discussed in Section 4.1.7, does not establish if

two summaries are discussing the same concept. F and FROUGE-1 having a positive linear

relationship implies these metrics are in agreement to an extent and are generally useful in

assessing summaries. This result agrees with other studies that compared ROUGE metrics to

human judgement, for instance, Ref. [310]. Whilst useful for analysis to an extent these metrics

are imperfect for the purposes of this study. For future studies, the metrics need to be closely

considered and outputs aligned to allow cross comparison.
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4.4 Conclusion

This chapter presented a preliminary study investigating the boundary between using NLP

tools to either supplement or replace human analysis. The ability of NLP tools and domain

experts to summarise technical information in a single document in the energetic-materials

domain according to a subjective concept (importance) was compared.

In order to identify suitable NLP techniques for use in this study, in Section 4.1, a literature

review of the techniques used in all steps of an automatic document-summarisation pipeline

was reviewed. The focus of this review was on techniques suitable for data-limited environ-

ments. The review covered preprocessing techniques in Section 4.1.1. There, the NLTK Python

package was identified as a useful preprocessing tool, and three popular stemming algorithms

(Lovins, Paice-Husk and Porter) were discussed. It was recommended to conduct an in-domain

comparison of the stemming algorithms. In Sections 4.1.2 - 4.1.6, an overview of summari-

sation algorithms was given. ML-based abstractive approaches were ruled out due to the

absence of readily available large corpora/datasets in the energetic-materials domain. The

analysis concluded the following extractive algorithms should be investigated: the frequency-

based approach SumBasic, graph-based TextRank, Latent Semantic Analysis (LSA) using the

cross method for sentence selection and the state-of-the-art clustering-based summariser ‘bert-

extractive-summarizer’. The review found that in the case of LSA and TextRank, modifications

to the traditional algorithms, such as the use of TF-ISF weightings and Word2Vec, will increase

performance. It was recommended to explore such modifications further. In Section 4.1.7, met-

rics for evaluation were introduced.

In Section 4.2, a detailed overview of the methodology was given. In particular, in Section

4.2.1, a description of the document given to the NLP, readers and expert to analyse the text

was given. An overview of the first step in the methodology, preprocessing, was given in Section

4.2.4. A brief comparison of the performance of the Lovins, Paice-Husk and Porter stemming

algorithms on the text was conducted. The Porter stemmer performed the best, stemming

95% of words correctly. Section 4.2.2 described the inclusion criteria for readers in this study.

An overview of the background-information questionnaire presented to the participants was

given. Section 4.2.3 contains a description of the expert. Section 4.2.5 gave an overview of the

keypoints task. Here it was described how the expert and readers (collectively referred to as
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participants) were asked to list the points they felt were significant in the text. Section 4.2.6

described an overview of the NLP methods used to summarise the text. In Section 4.2.7,

two metrics were introduced for intra-group comparison: RAIS (Reader Agreed Important

Points Score) and MRIS (Reader Importance Score). These are measures of how important

the readers as a group found an agreed point and how important, on average, the readers

found an agreed point, respectively. The method for grouping keypoints responses together

to form reader-agreed points (RAPs) was described. Methods for inter-group comparison, the

conceptual overlap FC and unigram overlap FROUGE-1 between two keypoints/summaries, were

also stated.

In Section 4.3, the results and discussion are presented. Section 4.3.1 gave an overview of

the results of the NLP summarisation algorithms. SumBasic, LSA, TextRank and the bert-

extractive-summarizer architecture with (Sci-BERT, GTP-2 and BERT) were compared against

the expert’s keypoints using FROUGE-1 and FC . The best-performing algorithm was TextRank

which obtained an FC and FROUGE-1 of 0.33 and 0.39, respectively. SumBasic, LSA and Tex-

tRank outperformed the state-of-the-art bert-extractive-summariser. This was partly because

the embeddings generated from the Sci-BERT, GTP-2 and BERT models were not semanti-

cally meaningful in the domain. For future work, it was recommended to explore alternative

methods of generating embeddings, for instance, using the S-BERT architecture [301].

Following this, two different modifications of TextRank were explored,‘TextRank cosine TF-

ISF’ and ‘TextRank Word2Vec cosine’. These modifications outperformed the original version

of TextRank. Despite different methods of feature representation, these methods returned

identical sentences and hence yielded identical word and conceptual overlap with the experts’

keypoints. However, the ‘TextRank Word2Vec cosine’ had two significant limitations. Firstly

the Word2Vec model used was a general pretrained model. This led to some of the words in

‘the text’ being out-of-vocabulary, resulting in poor quality sentence embeddings. Secondly, the

method of generating sentence embeddings from the Word2Vec model was to average over the

word embeddings of the words in each sentence. The effectiveness of this method is disputed

in the literature. These limitations highlight that transfer-learning techniques will not enhance

the performance of an algorithm in all instances. Future work should investigate other methods

of generating sentence embeddings from Word2Vec models, such as using TF-ISF weightings

in the averaging process.
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Overall, the summaries generated in this comparison lifted sentences directly from the text and

could not capture complex concepts given over several sentences. They often lacked cohesion

and flow. It was further noted the preprocessing methodology used in this study resulted in

errors due to the presence of chemical names and abbreviations. This supports the conclusion

in Chapter 3 that a custom preprocessing methodology for the energetic-materials domain is

needed.

Section 4.3.2 presents the background information of the 7 recruited readers. The analysis

at this stage showed that most readers were not in the early stages of their careers and had

substantial academic experience. All readers in this study had either completed or were studying

for a PhD. The results indicated that, whilst the readers were fully equipped to complete the

keypoints task, recruited readers are from a narrow range of backgrounds. Future studies should

endeavour to recruit a more significant number of readers from more varied backgrounds.

In Section 4.3.3, a comparison between the keypoints generated by the expert, the participants

and the NLP was conducted. To examine reader intra-group agreement, RAPs were divided

into two sets of datasets (1) those the NLP found important and not important and (2) those

the expert found important and not important. For each of these sets, unpaired Wilcoxon rank

sum tests were conducted on the RAIS and MRIS scores. The results determined the RAPs

in agreement with the expert were rated higher on average and found more important by the

participants. Similarly, the readers found RAPs in agreement with the NLP more important

than those not in agreement with the NLP. Statistical analysis was unable to conclude that the

readers rated the RAPs higher on average. Closer inspection of the points that the NLP/expert

found important revealed that a significant proportion were either very general statements on

the topic of the text or summary-style sentences that state the conclusions of the text. Therefore

high reader agreement would be expected.

Analysis of the distribution of RAIS and MRIS showed a heavily skewed distribution that

indicated the majority of keypoints were not in agreement with any other readers’ keypoints.

This is further illustrated in the inter-group analysis, which found considerable variation in the

conceptual overlap of summaries; some readers had no conceptual overlap whatsoever. This

variation of responses was found in a similar study in Ref. [6]. As pointed out by this study,

this variation is unsurprising from a psychological perspective as experts will draw on their

experiences when approaching a task, resulting in varied responses.
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Inter-group analysis was completed by calculating the FC and FROUGE-1 between every possi-

ble combination of the readers/experts/NLP keypoints/summaries. On average, the readers

exhibited higher conceptual overlap with the expert than with the NLP/other readers. The

variation in FROUGE-1 was significantly less than in FC . In both cases, the highest overlap with

the NLP was the expert. This was unsurprising since the selection of NLP techniques was

based on overlap with the expert’s summary.

The relationship between different background factors of the readers and the associated FC and

FROUGE-1 was examined. No relationships were detected. This could be because the sample size

is too small or the participants are not diverse enough. This is further evidence to support the

conclusion that future studies should try to recruit a larger, more diverse group of participants.

The relationship between the two inter-group comparison metrics, FROUGE-1 and FC , was ex-

amined in more detail in Section 4.3.2. FC is an inherently biased metric, and calculating

FROUGE-1, as discussed in Section 4.1.7, does not establish if two summaries are discussing the

same concept. In Section 4.3.3, it was observed that pairings of participants could have a high

FC and low FROUGE-1; the converse was also true. Pearson’s correlation was measured between

the scores for all readers and a statistically significant value of 0.50 was obtained. It was there-

fore concluded that there was a moderate-strength relationship between FC and low FROUGE-1

indicating the metrics are helpful to some degree.

Overall this study could be improved. The methods of analysing intra-group agreement of the

keypoints relied on generating RAPs, the process of grouping together these points is subjective,

resulting in biased analysis. Furthermore, inter-group comparison was conducted using metrics

that are imperfect for the purposes of this study. There is an inherent conflict in the analysis

methods used because the NLP and the participants are essentially performing different tasks.

The NLP identifies important sentences in the text, whereas the participants generate succinct

summaries of the conceptual ideas in the text in their own words. It is therefore recommended

that future studies reframe the keypoints task to bridge the gap between the summarisation task

and keypoints task. In addition, this study did not elicit the reasons why the participants found

specific points in the text important. Future studies should aim to elicit why participants find

specific points in the text important. The agreement among the participant responses should

be examined.

The desired outcome from this study was a series of recommendations to guide future studies.
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The four key recommendations are summarised below.

• Recruit a larger more diverse group of participants.

• Redefine the keypoints task.

• Elicit why the participants find specific points in the text important.

• Examine participant agreement of the reasons why the participants find specific points in

the text important.
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Chapter 4 appendices



Version: 2.     6/03/2019 
 

BACKGROUND INFORMATION QUESTIONNAIRE  
 
Participant N.O:  
 
In our pilot study we discovered that there were some quite substantial differences  
between readers in what they thought was important in a text. We hypothesised that  
this may be because of differences in people's technical background or professional 
work experience. For the current study then, we need to record some basic information 
about your background. This information is not used to judge your answers in any way, but 
to see which other readers your views are most similar to.  
 
This information will be kept in strict confidence and will not be used to identify you in 
any report or publication. If you are not happy to fill in any section of this questionnaire 
please just leave it blank. 
 
 
1. Knowledge of subject matter: 
 
Please rate the extent to that you agree/disagree with the following statement, “I consider 
myself an expert in the topic of the effect of electric and magnetic fields on propellent 
combustion.”  
 
 
Using the scale below, please tick the most appropriate box.  
 

 1 = Strongly Disagree      
 2 = Disagree 
 3 = Neutral 
 4 = Agree 
 5 = Strongly Agree 

 
 
 
2. Education:  
 
Please list any higher education qualifications specifying the subject matter and level, on the 
dotted lines below: 
 
…………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………
…………………………………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………………………………… 
 
 
3. Occupation History: 

Chapter 4. Appendices 107

A Background-information questionnaire



Version: 2.     6/03/2019 
 

 
Current Occupation, please tick the appropriate box.  
  

 Academic research/teaching 
 Government research 
 Commercial research 
 Government policy making 
 Other, please specify on the dotted line below. 

…………………………………………………………………………………………………………………. 
 
Please specify the number of years of experience in the following fields by writing the 
number of year’s experience on the dotted line:  
 

• Academic research/teaching. 
Number of years’ experience ……………….. 

• Government research. 
Number of years’ experience ……………….. 

• Commercial research.  
Number of years’ experience ……………….. 

• Government policy making  
Number of year’s experience ……………….. 

• Other, please specify on the dotted line below. 
…………………………………………………………………………………………………………………. 
Number of years’ experience ……………….. 

 
                                                                                              
 
 
 
 
 
 
 
 
 
 
 
  



 

Ver 2.0 07/01/2019 
 

KEY POINTS TEMPLATE 

 

Once you have read the report, please fill in the template below to explain briefly in a sentence or 
two what you thought were the key points made in the text. You can have as many or as few key 
points as you wish, it is your opinion that counts. We have left room for 25 key points, but you can 
add table lines for more, or delete (or not fill them in) if you have less. Once you have listed your key 
points, please rank order the top five points you think were made according to their importance. The 
importance should be judged by your reading of the text, not your previous experience. For 
example, it is not the newness of the idea to you personally that is important, just whether it was an 
important “take away” from your reading of the chapter.   

 

Key point Summary Rank Order of importance 
1   
2   
3   
4   
5   
6   
7   
8   
9   
10   
11.   
12   
13   
14   
16   
17   
18   
19   
20   
21   
22   
23   
24   
25   

 

Please indicate your participant number here. My Participant Number is……………………………. 

Please return your completed key points to Sinead as soon as possible on  

sinead.obrien14@imperial.ac.uk 

Thank you very much for your time in completing this template. 
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B Keypoints task questionnaire



110 Chapter 4. Appendices

C RAIS vs MRIS

Below are some worked examples demonstrating how it is possible for two sets of keypoints to

have the same RAIS=6 but possibly different MRIS values.

Example 1: Many readers return related points of low importance.

Reader-agreed point β
Subpoint in agreement with reader-agreed point Reader IS
β.F 1 1
β.G 4 1
β.H 7 1
β.I 5 1
β.J 10 1
β.K 11 1

For the reader-agreed point β the RAIS=1+1+1+1+1+1=6 (Eq. (4.18)) but the MRIS=6/6=1

(Eq. (4.19)).

Example 2: One reader mentions a specific point several times in their keypoint

summary.

Reader-agreed point γ
Subpoint in agreement with reader-agreed point Reader IS
γ.L 1 1
γ.M 4 2
γ.N 1 1
γ.0 1 1
γ.P 1 1

For the reader-agreed point γ the RAIS=6 but the MRIS=6/2=3.

Example 3: A reader-agreed point is found to be very important by one reader

only.

Reader-agreed point δ
Subpoint in agreement with reader agreed point Reader IS
δ.Q 1 6

For the reader-agreed point δ the RAIS=6 and the MRIS=6/1=6.
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Example 4: A reader-agreed point is found to be moderately important by several

readers.

Reader-agreed point η
Subpoint in agreement with reader-agreed point Reader IS
η.R 3 2
η.S 5 2
η.T 2 2

For the reader-agreed point η the RAIS=6 and the MRIS=6/3=2.

D Out-of-vocabulary words

Words not in pretrained embeddings:

ambipolar, a/m, b=µh, µ, micro-engine, carboxylated, dioctyl, adipate, magnetorheological,

jpl-126, lp-33, para-quinone, dioxime, guanadine, vorozhtov, hydrogen-oxygen, ion-producing,

thermo-chemical, oxidisers, wt., hydroxyl-terminated, htpb, non-aluminized, non-burning, vy-

atskii, hres, polymethylmethacrylate, kg/m2-s, microthrusters, hipep, microthruster, electrothermal-

chemical, pressure-time.

E Statistical tests
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Chapter 5

Elicitation of knowledge from a defence

expert

In Chapter 4, a preliminary study investigating the boundary between using NLP tools to either

supplement or replace human analysis in the domain of energetic materials was conducted. The

ability of NLP tools in data-limited environments and domain experts to summarise technical

information in a single document in the energetic-materials domain according to a subjective

concept (importance) was compared. The outcome of this study was a clear set of recommenda-

tions to guide future studies of this nature. One of the recommendations was to elicit why the

participants found specific points in the text important. To do this, the expert’s reasons must

first be elicited. This chapter forms the first part (explicitly focusing on the aforementioned

recommendation) of a two-chapter follow-up study to Chapter 4 applying these recommenda-

tions. Therefore, this chapter aims to elicit the expert’s complex content schema1 in a confined

domain. Specifically, this work focuses on eliciting how the expert evaluates the importance

of the different points in the technical document. The content of this chapter largely follows

that of my published work in the proceedings of the 2020 Spring International Conference on

Defence Technology [1].

Chapter achievements:

• Overview of techniques for elicitation of knowledge.

1A schema is a knowledge structure describing how an individual perceives a particular aspect of the world.

113
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• Development of novel methodology for elicitation of expert knowledge.

• First-of-its-kind open-source investigation into elicitation of knowledge in the domain of

energetic materials.

In this chapter, a brief overview of elicitation of knowledge techniques will be given in Section

5.1. Then, Section 5.2 will provide an overview of the methodology to capture the expert’s

understanding of the text. Next, in Section 5.3, the results will be presented, and an analysis

of the results will be presented in Section 5.4. Finally, in Section 5.5, results are summarised,

and suggestions for further work are made.

5.1 Elicitation of knowledge

One of the challenges in expert-knowledge elicitation has been to access an expert’s conceptu-

alisation of their subject area without the knowledge engineer imposing their own view of the

field via the elicitation process. In order to achieve this, a variety of open-ended elicitation

techniques have been employed. One of the earliest versions was the repertory grid technique,

derived from Kelly’s personal construct theory [333].

This tool, while popular with knowledge engineers in the early 1990s [334], has subsequently

been criticised as a method of knowledge acquisition because it assumes people organise their

knowledge along linear dimensions into bi-polar categories [335].

To address the problems of the repertory grid, Canter et al. [336] developed the multiple-sorting

method. This well-established method allows a participant to sort elements into categories of

their own devising as opposed to using constructs given to them by the interviewer. When

categories are presented to the interviewee this can subject the interviewee to bias, since asking

to sort elements into categories implies a lot about their expected response. The multiple-

sorting method allows the interviewer to elicit the meanings and explanations associated with

an individual’s categories as well as understanding the organisation of the elements within the

categories [337].

No limitations are placed on the sorting process, i.e. the number of categories is undefined.

This allows the interviewee to truly conduct the sorting in a way that mirrors their thought
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process and allows the researcher to obtain insight into the underlying frameworks by which

someone organises their own knowledge [338].

Recently, the multiple-sorting method proposed by Canter et al has been used in conjunction

with in-depth interview methods [339]. The in-depth interview methods allow for participants

to talk in detail through the reasoning behind their sorting. In combining the in-depth in-

terview approach with the sorting task, more evidence is gathered to establish the validity

of the conclusions and results elicited from the interview [340, 341]. In addition, the reasons

behind the sorting may be revealed in more detail when done in conjunction with the interview

methodology. By allowing the interviewee to talk through the elements separately, they are

encouraged to think in detail about each of the elements. This results in a sorting process that

has been more considered and hence more likely to be evidenced.

An expert would be expected to have a complex and layered construct system of the domain

they are an expert in. Through years of experience in a certain domain, their own construct

system would be expected to be refined in a way beyond surface features [342]. As a result,

eliciting knowledge from an expert would be expected to be more complex and intensive than

eliciting knowledge from a novice, and can therefore be time consuming and expensive [343].

5.2 Capturing expert understanding

Details of the stimulus material and the expert can be found in Sections 4.2.1 and 4.2.3. The

process of eliciting the expert’s views on the importance of the concepts in this document is a

two-stage procedure. Phase one is the keypoints task described in Section 4.2.5. Phase two is

a three-part sit-down interview.

On completion of the keypoints task by the expert, an interview with the expert was conducted

in order to elicit a more in-depth examination of how the expert views the importance of the

keypoints they generated in the keypoints task. Given the subjective nature of the concept

of importance, exploring the topic in this in-depth manner was fundamental to generating an

understanding of the expert’s content schema.

The interview was divided into three main tasks: 1) exploring the importance of each of the

expert’s keypoints, 2) ranking the keypoints and 3) a sorting task.
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Before the interview, each of the expert’s keypoints were printed onto identical cards. The

interview was conducted in a formal setting around a table. The cards were also labelled A-Q

in order to make the recording process easier. Figure 5.1 shows an example of a keypoints card.

Figure 5.1: Example of a keypoints card. Points were labelled A-Q in the top right-hand corner
to aid the recording process.

In the first stage of the interview, the expert was presented with a keypoints card and asked to

explain why they thought that particular point to be important. The card was then removed

from the table and placed into a pile and the expert was presented with another card and the

process was repeated until all of the keypoints had been talked through. The purpose of this

activity was to familiarise the expert with the material and encourage them to consider why

each of the points were important individually.

On completion of this task, five cards, labelled 1 to 5, were laid out upon the table. The

interviewer informed the expert that each of these cards represented five distinct groups, the

card labelled 1 being the least important and the card labelled 5 being the most important.

The expert was asked to place each of the shuffled keypoints cards into one of the five groups.

The aim of this activity was to extract how important the expert views each of the keypoints

in the context of the other cards. Using printed cards on a table allowed the expert to visualise

the process as they performed it. This task will henceforth be referred to as the ‘rating of

keypoints’. Figure 5.2 illustrates the set-up.

The final part of the interview was the multiple-sorting task. The method used in this part

was an adaptation of Canter et al’s. multiple-sorting procedure. The following adaptation from

Canter et al. [336] was read to the participant:

“You have indicated that the points you identified might be important for different reasons.

Therefore we would like you to think about the points that you generated [hand cards over] and

to sort them into groups in such a way that all of the points in any group are similar to each

other in terms of the reason why they are important, and different from the points in the other
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Figure 5.2: Set-up for the rating of the keypoints. Keypoints are placed into one of five
categories according to their relative importance.

groups. You can put the points into as many groups as you like and put as many points into

each group as you like - it’s your views that count. Once you have carried out the sorting, I

would like you to tell me the reasons why you put the points into each group and what the points

have in common.”

The expert was asked to form their own categories of importance, thereby avoiding imposing

any preconceptions from the researcher. The number of categories and the number of points in

each category was also left to the expert. Figure 5.3 illustrates this set-up.

Figure 5.3: Sorting task configuration. Keypoints are sorted into categories.

Once the expert had sorted the points into categories they were asked to explain the reasons
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for their classifications. The interview ended with an open-ended question: is there anything

else we haven’t talked about you think I should know? This gives the expert the opportunity

to verbalise anything else not said that they feel is relevant.

5.3 Results

5.3.1 Keypoints task

The results from the expert’s keypoints task are shown in Table 5.1. These are the same

keypoints used in analysis in Chapter 4. The first column indicates the keypoint the expert

found to be important. The second column assigns a label to each of the points which will be

used in later analysis. As mentioned in Section 4.2.5, no word limit was given to the required

length of each point nor to the total number of points.
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Keypoint Label

The application of a magnetic field may affect solid propellant combustion, partic-
ularly if ions play a significant role in combustion.

A

Magnetic control of combustion falls into 4 main areas: direct control of the surface
burning, influence on the manufacturing process, influence on the combustion flow
patterns, and upstream polarisation of the fuel system.

B

Burn rate increases of up to 20% have been observed due to the presence of a
magnetic field. However, the results have been variable.

C

Effects may depend on whether combustion occurs in the gas phase or at the surface,
resulting in burn rate decreases or increases respectively.

D

Application of a magnetic field during the manufacturing process of a solid rocket
propellant containing metal additives has resulted in a 20% increase in burn rate.

E

Theoretical studies conducted by scientists in Tomsk indicate a combustion rate of
up to 10 times might be possible.

F

Ionising additives to seed the propellant are necessary to improve the specific con-
ductance to obtain greater effects.

G

The application of an electric field may affect solid propellant combustion. H
Electric control of combustion falls into 2 main areas: direct control of the burning
surface, and ignition and control of the ablation and combustion of electrically con-
ductive solid propellant.

I

Work conducted at Imperial College by Mayo et al in the 1960s resulted in burn
rate increases of up to 200 times and burn rate decreases of up to 10 times when
applying voltages up to 30kV.

J

A typical rocket propellant containing ammonium perchlorate, aluminium (with and
without) and HTPB with iron added showed a decrease in burn rate in the presence
of an electric field, regardless of polarity and the decrease was approximately linear
with applied voltage.

K

A combined theoretical and experimental study indicated that burn rate increases in
the presence of an electric field were due to current heating of the unburnt propellant
whereas burn rate decreases were due to flame electrons inhibiting combustion.

L

The PMMA flame is known to contain surplus positive particles. In the presence of
an electric field, these can be driven towards the burning surface thereby increasing
the combustion rate. Up to 30% increases were observed using voltages up to 35kV
and electric fields of up to 266V/m.

M

Electric solid propellants (ESPs) are a relatively new development and have been
used in microthrusters. More recently they have been used in electrothermal-
chemical (ETC) guns.

N

In an ESP/ETC gun, electrodes are an integral part of the charge. O
Burn rate enhancements of a solid propellant, similar to JA2 but with metal addi-
tives to increase the electrical conductivity, in an ESP/ETC gun have been achieved
using as little as 500V. Multiple discharges were possible, achieving a flattened
pressure-time profile.

P

Apart from one paper in 2015, no other papers on ESP/ETC have been found. Q

Table 5.1: Expert’s keypoints, assigned importance rating and a label assigned to each keypoint.
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As illustrated by Table 5.1, the expert produced a total of 17 points of varying word length.

5.3.2 Interview

As mentioned in Section 5.2, the interview consisted of 3 main components. The first of these

asked the expert to explain why each of the keypoints (detailed in Table 5.1) are important.

No specific definition of importance was given to the expert, as the purpose of this interview is

to elicit how the author evaluates the importance of different concepts in the document.

From a transcript of the interview, a summary of why the expert found each point to be

important was produced. Details of the results are given in Section 5.4.

An important note about point N: in the context of the interview, the expert discussed the

point as being part of a wider experiment talked about in the document. This is not something

that may be understood from viewing the point on its own. The expert rated the point in this

wider context. The point will henceforth be considered in this context.

The results of the rating task are displayed in Table 5.2.

1 2 3 4 5
A B E J N
F C G L P

D K M
Q H O

I

Table 5.2: Keypoints sorted into five categories according to importance, 1 being the least
important and 5 being the most important.

Once the sorting was completed, the expert was asked to explain the reasoning behind their

sorting. The expert described the most-important points (placed in Group 5) as those more

application-orientated. These points looked specifically at how enhancing the combustion rate

through the use of electromagnetic fields can be applied in a real application as opposed to

considering enhancement of combustion in a theoretical or specialised environment. The point P

was said to be the most important as this actually demonstrated how enhancing the combustion

process through the use of electric and magnetic can be effectively applied. The expert also

remarked that the points they considered the least important were those concerning magnetic
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fields. The reasoning given to this was they felt that studies in this field were not as consistent

or reproducible in an application.

The expert further noted points such as F were placed in lower-importance categories as they

concerned theoretical studies conducted under specialised circumstances, which would not be

directly possible to replicate in an application. The author remarked that studies that were

experimental were seen as higher value that non-experimental studies.

The expert was then asked to complete the open-ended sorting task. The expert sorted the

keypoints into four distinct categories of their own devising. These categories are defined as

follows:

• Group α is defined as keypoints that are ESP-gun related.

• Group β is defined as results which quantify the effect of electric fields on the increase in

burn rate.

• Group γ is defined as quantifying the effects in terms of the increase and decrease in burn

rates seen for magnetic fields.

• Group δ is defined as keypoints that describe the physics and chemistry of the processes

occurring.

The results of this sort are displayed in Table 5.3.

Group α Group β Group γ Group δ

O H A B
Q J E I
N K F D
P M C L

G

Table 5.3: Keypoints sorted into four distinct categories generated by the expert.

The expert had no comments in response to the open-ended question asked at the end of the

interview.
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5.4 Analysis

5.4.1 Collective observations

As mentioned in Section 5.2, once the sorting was completed the expert was asked to explain

the reasoning behind their sorting. It was clear the expert viewed the most-important category

as the most application-orientated and the least important as that viewed to be of less interest

in terms of developing an application. It is clear there is a link between how important the

expert views the topic to be and its applicability.

In the process of talking through the keypoints, it was revealed the expert used past knowledge

to direct their analysis. For example, when discussing why point F was important, the expert

explained that from previous work they were aware of good-quality theoretical work by scientists

in Tomsk within the domain of enhancement of combustion rate using electromagnetic fields

[344, 345]. It is for this reason the expert looked at the work completed by these scientists for

this report. A similar point was made when discussing point J and the work of Weinberg and

Mayo [346]. Similar remarks were made in a study in Ref. [347] which remarked that, when

evaluating academic texts, the physicists would often use the reputation of the author to guide

text selection.

In addition, the expert described the approach to writing the document. It was described how

the expert divided the literature on the topic into categories and subcategories based on the

physical categories and the applications within the physical categories. The categories were

magnetic and electric fields and the subcategories were direct control of the surface burning;

influence on the manufacturing process; influence on the combustion flow patterns; upstream

polarisation of the fuel system and direct control of the burning surface; and ignition and

control of the ablation; and combustion of electrically conductive solid propellant. It is of note

that in Section 5.3.2, the categories devised by the expert in the sorting task were labelled in

a similar manner: ‘quantification of the effect of electric fields on the increases in burn rate’

and ‘quantification of the effect of magnetic fields on burn rate’. It is significant that, of all the

subcategories of literature mentioned in the text, only one specific subcategory was used in the

experts own categorisation in this interview, ‘ETC-gun’ related. This perhaps further backs

up the idea that ETC guns were considered to be the most-important application of this work.
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It is of interest that the sorting task uncovered the way the expert structured the process of

writing the document.

5.4.2 Independent reasoning categories

The first stage of the analysis draws upon the open-ended descriptions of the keypoints the

expert generated in the interview with the researcher. The transcript of the interview was

analysed in order to generate a series of conceptual categories that represent the range of

explanations given by the expert.

These categories will be referred to as ‘independent reasoning categories’. These categories

are not necessarily mutually exclusive since it is possible for a point to be in more than one

category. The results of this analysis are shown in Table 5.4.

The first category of importance identifies those keypoints that were said to be important

because they were a key piece of theoretical information vital to understanding the scientific

processes in the document. ‘Theoretical importance’ applied to points A, G, H and O. In the

interview process, the expert explained the theoretical value of these points.

The expert explained that when the literature was surveyed they divided the reviewed doc-

uments up into two separate categories according to physical concept: papers discussing the

effect of magnetic fields and papers discussing the effect of electric fields. Within these two

categories, the literature was further divided up into four and two subcategories respectively.

Points B and I detail these subcategories explicitly. The expert explained these points were

important because they describe an overview of the topics covered in the paper. These points

were therefore categorised as being a ‘Domain overview’.

Transcript analysis determined that keypoints N and P should be grouped together as they

demonstrate a direct use of increasing the combustion rate with an electric field in an applica-

tion: ETC guns. They therefore formed the category: ‘Demonstrated use in an application’.

Point E details how burn rate increases were achieved by treating rocket fuel propellants with

magnetic fields in the manufacturing stage. The expert explained this point is important

because it illustrates how burn rate increases can be achieved using a method that is practical

in a commercial environment. A similar point was made when describing why point K was
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Category Definition Keypoints

Theoretical importance A key piece of theoretical information
vital to understanding the scientific
processes in the document.

A, D, G,
H, L, O

Domain overview This is important because it provides
an overview of what is talked about in
the document.

B, I

Demonstrated use in an ap-
plication

This is important as it is a validated
example of the work being used in an
application.

N, P

Practicality of methodology The methodology described has appli-
cations.

E, K

Results show clear quantifi-
cation of effects

The results shown demonstrate a clear
quantification of the effects.

F, J, K, M

Advancement of the field This is important because it is key
to understanding how the field has
evolved and/or refined itself.

C, Q

Novelty This is important because it has not
been done before..

M

Table 5.4: Generalised categories of importance, the corresponding definition of each category
and the points sorted into each category.

important. The expert specifically highlighted that the methodology described in this point

was polarity independent. The fact that the method used to achieve an increase in burn rate was

polarity independent could make it more feasible to be implemented in a practical application.

As a result, points E and K were added to the ‘Practicality of methodology’ category.

When discussing point K, the expert gave another reason why point K was important. Point

K states the decrease in the burn-rate was linear with applied voltage; the expert said this

clear quantification of the effects observed was important as it would be easier to implement

in a practical environment. Having a clear quantification of the observed effects would allow

for prediction of performance enhancement in an application. For instance, if the work was

implemented in a tank gun system one would be able to predict increases in the velocity, range

and hence lethality of the gun. Similar reasons were given to explaining the importance of

points J and F. These points were hence grouped together into a category ‘Results show clear

quantification of effects’.

It is noted the expert made a clear distinction that the results for F were obtained through

theoretical analysis only. At various points throughout the interview, the expert made several
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references stating that theoretical work was thought to be less important that experimental.

Given this, point F could arguably be in its own subcategory within the larger category of

‘Results show clear quantification of effects’.

Point M was placed into a category labelled ‘Novelty’. Point M details a method of achieving

the desired control of burn rate in an electric field through the use of positive (as opposed to

negative) species. The expert found this to be significant as it was able to achieve the desired

physical effect in a new and distinct way from the other methods described in the paper.

Point C was placed into the category of ‘advancement of the field’. The expert explained this

point was important because it was one of the first studies in the area and although the results

were not necessarily well understood, they did show some burn rate increase. It was highlighted

this result formed the basis of future work.

Point Q was also placed in this category. Point Q describes how only one paper on ESP/ETC

guns was found. The expert used their expert understanding of the field to explain why this is

of significance. From experience the expert knew that if publication was halted it could mean

either adverse results may have been obtained leading to a cessation of the work, or that work

might have been very successful in which case further work became classified.

In Section 5.3.2, the expert generated four distinct categories of importance. These categories

will be explored in more detail by considering the independent-reasoning categories assigned to

each of the keypoints in these expert-generated categories. Table 5.5 summarises the categories

generated by the expert alongside the reasoning categories assigned to each point in each

category.

The starting point of this analysis was to examine Group δ. This group was specified as points

that were important because they described the physics or chemistry of the processes occurring.

Using the independent-reasoning categories, it is clear this group is subsequently divided into

two further separate categories: Theoretical importance and Domain overview.

Aside from Group δ there seems to be no relationship between the groups and the reasons of

importance between them. This implies the expert has generated the Groups α, β and γ purely

on the overall physical effect being described by the points as opposed to anything else.
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Group α Group β Group γ Group δ

Theoretical impor-
tance

Theoretical impor-
tance

Theoretical impor-
tance

Domain overview

Advancement of
the field

Results show clear
quantification of ef-
fects

Practicality of
methodology

Domain overview

Demonstrated use
in an application

Practicality of
Methodology and
Results show clear
quantification of
effects

Results show clear
quantification of ef-
fects

Theoretical impor-
tance

Demonstrated use
in an application

Novelty Advancement of
the field

Theoretical impor-
tance

Theoretical impor-
tance

Table 5.5: Categories generated by the expert with the points replaced by their corresponding
reasoning categories.

5.4.3 Rating comparison with summary ratings

A direct comparison of the expert’s keypoint ratings with the output of the rating task con-

ducted in the interview was performed. Table 5.6 displays a comparison of the five highest

ranking keypoints in the keypoints exercise with the corresponding category the expert placed

them in during the interview.
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Keypoint Rating Importance category
Electric control of combustion falls into 2 main areas:
direct control of the burning surface, and ignition and
control of the ablation and combustion of electrically
conductive solid propellant.

5 3

Magnetic control of combustion falls into 4 main areas:
direct control of the surface burning, influence on the
manufacturing process, influence on the combustion flow
patterns, and upstream polarisation of the fuel system.

4 2

Work conducted at Imperial College by Mayo et al in
the 1960s resulted in burn rate increases of up to 200
times and burn rate decreases of up to 10 times when
applying voltages up to 30kV.

3 2

Burn rate enhancements of a solid propellant, similar to
JA2 but with metal additives to increase the electrical
conductivity, in an ESP/ETC gun have been achieved
using as little as 500V. Multiple discharges were possi-
ble, achieving a flattened pressure-time profile.

2 5 (Most important)

The PMMA flame is known to contain surplus positive
particles. In the presence of an electric field, these can
be driven towards the burning surface thereby increasing
the combustion rate. Up to 30% increases were observed
using voltages up to 35kV and electric fields of up to
266V/m.

1 4

Table 5.6: Expert’s top-rated points alongside the importance category assigned to each point
in the interview task.

The rating task is compared to ranking completed at the time of the keypoints task. It is clear

from the table that several of the highly rated points are highly rated in the keypoints task.

This indicates consistency in the expert’s evaluation.

Only two of the five top-rated keypoints appear in the top two most-important categories in the

rating task completed in the interview. The top two rated points in the keypoints task (B and

I) were said to be important because they were helpful to understanding the document as they

surveyed the literature reviewed (see Table 5.4). It is possible the process of talking through

the points individually in terms of their importance may have encouraged the author to rethink

his evaluation of importance of these two points. This may also explain why only one of the

two points in the most-important category in Table 5.2 appeared in the top 5 most-important

points in the keypoints task.
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5.5 Conclusion

The aim of the work completed in this chapter was to elicit the author’s complex content schema

in a confined domain. The work specifically focused on eliciting how the expert evaluates the

importance of the different points in the technical document.

The expert’s views on the importance of the concepts in this document were elicited in two

phases. In the first phase, the expert was asked to summarise an eight-page document on the

effects of electromagnetic fields on propellant combustion. Completion of this task generated a

series of ‘keypoints’. The expert was asked to rank the five most-important points. Phase two

of the methodology was a sit-down interview with the expert. This interview was comprised

of three parts: asking the expert to talk through why each of the keypoints were important;

asking the expert to sort the keypoints into categories according to how important they are;

and then asking the expert to generate categories of why the points are important.

The techniques used for expert elicitation proved highly successful in relation to this domain

of knowledge. Not only were the procedures able to extract the underlying categories through

which the expert structured their understanding of the field, but the results indicated reliability

in the content of knowledge extracted through different methods.

For example, the different extraction techniques employed consistently revealed the prominence

of applications in the way the expert defined the importance of the material contained in the

document. Analysis in Sections 5.4.1 and 5.4.3 showed the expert viewed the most-important

category, α, as the one has the most demonstrated use in an application. The most-important

points in the rating task were found to be part of the same category.

In addition, in Section 5.2 it was shown there were various factors considered by the expert when

assigning importance in terms of use in an application: the practicality of the methodology;

whether or not use has been demonstrated in an application; and if the work in question has

been able to quantify the effects in a way that would be useful for applications.

It is clear from this work the expert has an advanced and complex content schema in this

domain. Whilst the sorting appeared to be picking up on basic surface features, the more

in-depth interview revealed a complex and detailed level of understanding typically associated

with experts. There were several points which used clear indications of expert knowledge, the
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first being the identification of what features in a methodology make it suitable for a practical

application. During the interview the author noted low voltages, for example, were a feature

necessary to achieve adaptation to an application. A further example of this is shown in the

fact the author kept mentioning that having a clear quantification of the effects observed was

important as this would lead to use in an appropriate application. This expert insight is not

something that would necessarily be known to a novice.

There has been much work on the comparison between how novices and experts interpret

academic text [327, 348, 349]. Chapter 6 will apply the recommendations in Chapter 4 to

develop a new questionnaire to be distributed to a broader range of participants, including

novices. This questionnaire contains an updated keypoints task and a keypoints rating exercise

that asks participants to assign keypoints a category of importance elicited from this study.



Chapter 6

Comparing NLP tools’, experts’ and

novices’ analysis of technical text

Chapters 4 and 5 presented a preliminary study and the first part of a follow-up study investi-

gating the boundary between using NLP tools to either supplement or replace human analysis

in the energetic-materials domain. These studies focus on the information in a single docu-

ment, referred to as ‘the text’. This chapter presents the second part of the follow-up study.

Recommendations from Chapter 4 and insights from Chapter 5 will be applied to address the

objectives of this chapter: (1) conduct a comparison of the ability of NLP tools, novices and

experts to identify important points in the text, and (2) assess the agreement amongst experts

and novices on how they evaluate the importance of technical information in the text.

Chapter achievements:

• Overview of inter-rater reliability metrics.

• Novel methodology for comparing the ability of NLP tools, experts and novices to identify

important points in a single document.

• Adapted methodology for comparing how experts and novices evaluate the importance of

technical information.

In Section 6.1, the reader will be introduced to inter-rater reliability metrics, a useful tool in

psychology for assessing agreement. In Section 6.2, an overview of the methodology used in

130
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this study will be given. In Section 6.3, results will be presented and discussed. In Section 6.4,

the conclusion to this chapter and recommendations for further work will be stated.

6.1 Inter-rater reliability

One of the objectives of this chapter is to assess the agreement amongst experts and novices on

how they evaluate the importance of technical information in the text. Therefore, this section

will present an overview of agreement metrics.

Understanding the extent to which a group of participants agree is a common problem in

psychology. Inter-rater reliability (IRR) metrics are a useful tool that measure how well raters

can consistently distinguish between items on a measurement scale, examining the trend in

the ratings as opposed to the absolute value [350]. Inter-rater agreement (IRA) measures the

absolute differences in the ratings amongst raters. Despite the terms being used interchangeably

on a measurement-scale, IRR and IRA do not refer to the same measure [351]. However, on a

nominal scale IRR and IRA can be used interchangeably. In this thesis, IRR metrics will be

interpreted as the extent to which participants agree.

Cohen’s kappa, κ, is a measure of the observed agreement between two raters of a binary-

categorical variable. This metric accounts for the probability of chance agreement [352, 353].

This is one of the most simplistic and widely cited agreement metrics. Cohen’s kappa can

be better understood through a contingency table. Considering the most simplistic example

where raters are asked to rate items on a binary scale (Outcome A and Outcome B), Table

6.1 represents the possible outcomes for two raters (Rater 1 and Rater 2) on n samples [354].

Table 6.1 shows the frequencies of a particular combination of outcomes. For instance, n1A2A

is the number of outcomes where Rater 1 and Rater 2 both rated a sample with Outcome A.

Rater 1 Total
Outcome A Outcome B

Rater 2
Outcome A n1A2A n1B2A R2A

Outcome B n1A2B n1B2B R2B

R1A R1B n

Table 6.1: Contingency table for two raters: 1 and 2 on a binary scale (Outcome A and Outcome
B).
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Using the contingency table, 6.1, the percentage agreement observed is defined as

po =
n1A2A + n1B2B

n
. (6.1)

The hypothetical probability of a chance agreement between two raters is defined as

pc =
R1AR2A +R1BR2B

n2
. (6.2)

Hence,

κ =
po − pc
1− pc

, (6.3)

where κ ranges from -1 to 1, with 1 denoting perfect agreement, -1 denoting perfect disagreement

and 0 denoting an agreement no better than pure chance [352, 354]. The literature contains a

range of interpretations of κ. Landis and Koch’s interpretation is one popular approach. This

approach, referred to as the Landis and Koch benchmark scale, is summarised in Table 6.2.

Other popular interpretations of κ can be found in Refs. [356, 357]. The disparity between

κ Interpretation
κ ≤ 0 poor

0 < κ ≤ 0.2 slight
0.2 < κ ≤ 0.4 fair
0.4 < κ ≤ 0.6 moderate
0.6 < κ ≤ 0.8 substantial
0.8 < κ ≤ 1 almost perfect

Table 6.2: Interpretation of Cohen’s kappa according to the Landis and Koch benchmark scale
[355, 353].

approaches to the interpretation of κ can be problematic, as highlighted in Ref. [358]. Fleiss’s

kappa [359] is an extension of κ designed to include two or more categories/raters.

Krippendorff’s alpha, αk is a highly flexible IRR metric that can deal with missing data,

any number of raters, categorical/ordinal/continuous data, and large/small sample sizes [360].

Calculating αk is complex and based on disagreement between raters, i.e.

αk = 1− Do

De

, (6.4)

where Do is the observed disagreement and De is the disagreement by chance. Further details

on the calculation of αk can be found in Ref. [361]. As with κ there are a range of different
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interpretations of αk; for instance, see Refs.[355, 362]. Krippendorff [363] suggests the following

interpretation of αk: αk ≥ 0.80 for conclusive statements to be made, αk ≥ 0.67 for tentative

statements and αk < 0.67 for no agreement.

Despite the popularity of κ and αk, these metrics have major limitations. Ref. [358] provides a

summary of these limitations. The two most common pitfalls of κ and αk are the kappa para-

doxes where a high agreement is observed, but low kappa values are obtained. The paradoxes

are summmarised as follows:

• Bias: the frequency with which the raters choose a particular category.

‘The first paradox of κ is that if pc (percentage chance) agreement is large, the correction

process can convert a relatively high value of po into a relatively low value of κ’ [364, 365].

This can be observed by comparing the distribution of R1A R1B and R2A R2B. If the

distributions are the same, the marginals are symmetric, and if they are opposite then

the marginals are asymmetric.

• Prevalence: the probability a user classifies an object A or B.

‘The second paradox occurs when unbalanced marginal totals produce higher values of κ

than more balanced totals’ [364, 365].

This can be observed by calculating the proportion of total samples in R1A and R2A. If

this equals 0.5 then the marginals are balanced.

To summarise, when the values of R1A, R2A, R1B and R2B (the marginals) are unbalanced it is

better to use another statistic such as Gwet’s AC1. Gwet’s AC1, denoted as κ̂G, was developed

to overcome these paradoxes [366]. κ̂G is defined as

κ̂G =
po − pc
1− pc

, (6.5)

where

pc = 2π̂1(1− π̂1), (6.6)

and

π̂1 =
R1A +R2B

2N
. (6.7)
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Whilst κ̂G is argued to be paradox proof, some studies have shown it is still affected by unbal-

anced marginals to a lesser extent [358, 367].

The metric κ̂G can be interpreted using standard benchmark scales such as the Landis and Koch

scale in Table 6.2 [366]. In Ref. [366], Gwet provides an alternative method of how to interpret

values of κ̂G: κ̂G is a point estimate with a probability distribution and a standard error.

This distribution and error is influenced by the number of raters and rating categories in the

study. Given this, Gwet proposed the following statistical approach for obtaining benchmarks

for interpreting κ̂G:

1. Select a benchmark scale. Using the calculated κ̂G and its standard error, calculate the

probability for κ̂G to fall into each of the benchmark intervals. These probabilities can

be referred to as interval membership probabilities [368].

2. Calculate the cumulative probability, starting from the highest benchmark level, i.e. find

the running total of the interval membership probabilities [368].

3. Find the first benchmark interval for which the cumulative probability is higher than

some prespecified value, e.g. 95% [368].

In summary, Cohen’s kappa is a simplistic metric that can be used to measure observed agree-

ment between two raters on a binary scale. Fleiss’s kappa is an extension of Cohen’s kappa

to two or more categories/raters. Krippendorff’s alpha is a highly flexible metric that, unlike

the metrics mentioned above, can deal with missing data, categorical, ordinal and continuous

data and is effective for small/large sample sizes. However, all three of these metrics suffer

from the ‘kappa paradoxes’ meaning, in some cases, a low kappa value can be returned for high

agreement. Gwet’s AC1 is another flexible coefficient developed to overcome these limitations.

IRR metrics are usually interpreted using benchmark scales such as the Landis and Koch scale.

6.2 Methodology

As stated in the introduction to this chapter, the objectives of this study were to (1) conduct

a comparison of the ability of NLP tools, novices, and experts to identify important points in

the text and (2) assess the agreement amongst experts and novices on how they evaluate the



6.2. Methodology 135

importance of technical information in the text. The text is an eight-page technical report on

the effect of electric and magnetic fields on propellant combustion, further details on the text

can be found in Section 4.2.1. To achieve the objectives mentioned above, a group of readers

were recruited for a follow-up study and asked to fill out a three-part online questionnaire.

The same questionnaire was also presented to the author of the text (the expert). Details of

the expert can be found in Section 4.2.3. As in previous chapters, the readers and expert will

be collectively referred to as ‘participants’. Approval from Imperial College’s ethics committee

was granted for this study.

A total of 25 readers were recruited voluntarily. Following recommendations from Chapters 4

and 5 to recruit a more diverse group of readers for the follow-up study, 2 of the 25 that were

recruited were considered ‘novice readers’. The inclusion criteria for the ‘novice readers’ was

they must not have a background in STEM. The remainder of the readers had the inclusion

criteria of a STEM background. The suitability of a particular candidate for this study was

established via the first part of the online questionnaire, a set of background-information ques-

tions. These background-information questions collected information on current occupation,

higher-education qualifications and work history. Participants who filled out the question-

naire had the option to remain anonymous1. The questionnaire was an online version of the

background-information questionnaire used in the previous study (see Chapter 4 Appendix A).

The second part of the questionnaire addresses objective (1). Chapter 4 compares NLP tools

and domain experts on their ability to summarise information in a technical document. As

described in Section 4.4, the Chapter 4 study could be improved by bridging the gap between

the tasks performed by NLP and the participants. As a result, in this study, the participants

were asked to perform exactly the same task as the NLP: identifying the important sentences

in the text. Figure 6.1 is a flow chart illustrating the methodology used to address objective

(1).

The first step in this methodology was to preprocess the text following the methodology de-

scribed in Section 4.2.4. This generates two forms of text, one suitable for further NLP process-

ing and one suitable for human processing. Next, the participants were asked to download the

text, read and digest the information, before highlighting the most-important sentences in the

1Participants were given the option to remain anonymous in order to attract more participants from defence
and security-related fields.
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Figure 6.1: Tasks completed by the NLP/participants/expert are shown in
turquoise/lilac/orange respectively. First, the preprocessing methodology from Chapter
4 is applied to the text. The participants are asked to complete a three-part online ques-
tionnaire. Only the first two parts of the questionnaire are relevant to this method. Part 1
asks the participants to answer background-information questions. Part 2 is a summarisation
exercise. Next, the best-performing NLP summarisation algorithm from Chapter 4 is used to
generate a summary. Finally, a comparison of the generated summaries is conducted.

document. As with the previous study, the definition of importance was left up to the partici-

pants’ interpretation. To prevent the participants from highlighting the entire document, they

were given the option of highlighting up to 25 sentences. This task will henceforth be referred

to as the ‘summarisation task’.

Using the best-performing NLP summarisation algorithm from Chapter 4 (see Section 4.3.1 for
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a comparison of different NLP summarisation algorithms), ‘modified TextRank’, a summary

of 25 sentences was generated. Finally, a comparison between the NLP’s and the participant’s

summaries was conducted. In order to conduct this comparison, two sets of metrics were used:

those that measure intra-group agreement and those that measure inter-group agreement. To

measure intra-group agreement in Chapter 4, the metric RAIS was introduced (Eq. (4.18)).

This metric is modified for this study to RAIS ′. RAIS ′
i for a sentence indexed as i is merely

the of readers who included the sentence in their summaries. RAIS ′ is a measure of how

important the readers found each sentence in the text collectively. Unlike RAIS, which relied

on amalgamating reader responses to generate reader-agreed points, an inherently subjective

process, RAIS ′ does not introduce any bias.

In Chapter 4, an inter-group comparison was conducted using conceptual FC , and uni-gram

FROUGE-1 overlap (see Eq. (4.20) and Eq. (4.16) respectively). These metrics were either in-

herently flawed or subjective. The modification of the summrisation task in this study allows

these two metrics to be replaced with a single non-subjective metric, FA. The metric FA is a

modification of FC . The overlap FA between two summaries i and j is defined as

FAij
=

2PAij
RAij

PAij
+RAij

, (6.8)

where

PAij
=

Sij

Ni

, (6.9)

and

RAij
=

Sji

Nj

, (6.10)

where Sij is the number of sentences identified as important both in summaries i and j and Nj

is the number of sentences identified as important in summary j.

The average overlap of a summary i with all other readers’ summaries, ⟨FA⟩′R‘
i
, is defined as

⟨FA⟩′R‘
i
=

1

M

M∑
m=1

FAim
, (6.11)

where m ∈ {1, . . . ,M} is an element in the set of M reader summaries excluding summary i.

The third part of the online questionnaire addresses objective (2). This section of the question-



138 Chapter 6. Comparing NLP tools’, experts’ and novices’ analysis of technical text

naire is referred to as the statement-analysis task. The methodology here is similar to that of

Ref. [6] where a group of participants rated the importance of a series of statements derived from

responses to a keypoints task on a text reviewing terrorism hostage-taking. This task asked

the participants to analyse a series of 30 statements derived from the keypoints/summaries

generated by the NLP/participants in Chapter 4. Of these statements, 9 originated from the

expert, 9 from the NLP and 11 from the readers.

The first component of the statement-analysis task was a rating task aiming to establish if the

participants agreed on how important they found the statements. Participants were asked to

assign each of the statements a 1-5 rating of importance using a drop-down menu, where 5

is very important, and 1 is not at all important. An example of the rating task is shown in

Figure 6.2.

Figure 6.2: Example of a question from the statement-analysis task. Participants are asked to
assign statements an importance rating from a drop-down menu.

The second component of the statement-analysis task aims to identify the extent to which the

participants agree on why statements are important. In Chapter 5, an interview with the expert

was conducted to understand why they felt specific points in the text were important. The

analysis generated a series of conceptual categories that represented the range of explanations

given by the expert. These categories are referred to as ‘independent-reasoning categories’ and

are summarised in Table 5.4. In this study the independent-reasoning categories are referred

to as ‘categories of importance’. Participants were asked to select the categories of importance

they felt best represented why the statement was important from a drop-down menu. Figure

6.3 shows an example question from this exercise.

To measure the extent of the agreement among participants, an IRR metric will be used. A
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Figure 6.3: Example of a question from the statement-analysis task. Participants are asked to
assign a category of importance to statements using a drop-down menu.

review of these metrics can be found in Section 6.1. For simplicity, it was decided to use one

metric to analyse both parts of the statement-analysis task. Since this involves the analysis

of both ordinal and categorical data, a flexible metric is needed. Therefore, the flexible κ̂G

(Eq. 6.5) was selected. This metric was selected over other surveyed flexible metrics as it does

not suffer from the kappa paradoxes. Use of this metric was implemented using the irrCAC

Python package [369].

6.3 Results

This section presents the results of this study. First, an overview of the background information

of the readers will be presented in Section 6.3.1. Second, Section 6.3.2 describes the results of

the summarisation task. Then, in Section 6.3.3, the results of the statement-analysis task will

be presented. Finally, in Section 6.3.4, the participants’ performance across the summarisation

and statement-analysis tasks will be analysed.

6.3.1 Background information of the readers

In this subsection an overview of the background information of the 25 readers will be presented.

The readers were asked to specify the number of years of experience they had in academic

research, commercial research, government research and government policy. None of the readers
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had any experience in government policy. The number of years of experience of the readers

in each of the aforementioned domains were classified into ordinal categories, e.g. 0-5, 5-10

etc. The proportion of readers by the number of years of experience in academic research,

commercial research and government research are displayed in Figures 6.4 (a), (b) and (c),

respectively2. Total number of years of experience of each reader was converted into ordinal

categories for this analysis. The proportion of readers by the total number of years of experience

is shown in Figure 6.4 (d).

(a) Proportion of readers by the number of years of
experience in academic research.

(b) Proportion of readers by the number of years of
experience in commercial research.

(c) Proportion of readers by the number of years of
experience in government research.

(d) Total number of years experience of the readers.

Figure 6.4: Overview of the number of years of experience of the readers in academic research
(a), commercial research (b), government research (c) and total (d). The number of years of
experience are divided into ordinal categories as shown in the legends.

Figure 6.4 indicates the recruited readers have a broad spectrum of backgrounds. This is in

contrast to the study conducted in Chapter 4 which recruited a small group of participants

mainly consisting of experienced academics.

In addition, the readers were also asked to list any higher-education qualifications. The inclusion

criteria for the readers (excluding the novices) was to have a STEM background. This question

2The total number of years of experience of each reader was calculated by summing the values for the number
of years of experience in academic research, commercial research, government research and government policy.
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was used to identify if the readers met the inclusion criteria. The proportion of readers by their

STEM higher-education qualifications is shown in Figure 6.5 (a). For this analysis, these STEM

higher-education qualifications were classified as ‘None’, ‘Bachelor’s’, ‘Masters’ and ‘PhD’. The

readers were also asked to rate from 1-5 their expertise in the subject matter of the text. A

score of 5 would mean the participant considers themselves an expert on the effect of electric

and magnetic fields on propellant combustion. The proportion of readers by their self-assigned

expertise rating is shown in Figure 6.5 (b).

(a) Proportion of readers by their STEM
higher-education qualifications.

(b) Proportion of readers by their self-assigned
expertise rating.

Figure 6.5: Overview of the STEM higher-education qualifications and self-assigned expertise
ratings of the readers.

It is also noted the majority of the readers are highly educated, with 52% of the readers having

STEM PhDs. From Figure 6.5 (b), 20% of the readers rated themselves as having the lowest

possible expertise rating (1); this included the novices. Thus, interestingly, some of the readers

with STEM qualifications rated themselves as having the same expertise levels as the novice

participants.

Kendall’s Tau was used to examine the relationship between the self-assigned expertise level

and the higher-education qualifications of the readers. No statistically significant correlation

was found. This process was repeated for number of years of experience of the readers in

government research, commercial research and academic research and the total number of years

of experience of the reader. No statistically significant correlations were observed apart from

the total number of years of experience of the readers. A value of 0.40 was obtained at a 0.01

significance level. This indicates that as the experience level of the reader increases, so does

their self-assigned expertise level with a moderate strength [370]. Whilst this indicates that,

as expected, the majority of more experienced readers rated themselves as having a higher-
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expertise level than those with less experience, this was not the case for every reader. This may

be because the questions asked were not specific enough. Future studies should ask specific

questions about the reader’s knowledge of, and experience in, energetic materials as a discipline.

For instance, participants could be asked to specify the number of papers they have read in the

energetic-materials domain.

In summary, the majority of readers are in the early stages of their career with the majority

having PhDs in STEM subjects. The backgrounds of the readers are considerably more varied

than the readers recruited for the study in Chapter 4.

6.3.2 The summarisation task

In this subsection, a comparison of the ability of NLP tools, novices and experts to identify

important points in the text will be conducted.

Intra-group agreement: readers vs expert vs NLP

Section 6.2 defined the RAIS ′ metric for measuring how important the readers found each

sentence in the text as a group. Each sentence in the text was assigned a RAIS ′ score. The

text has a total of 200 sentences; 89 sentences were found to be important by two or more

readers, and 38 were found to be important by one reader only, which indicated a variety

of interpretations of importance from the readers. Some of the sentences not identified as

important by the readers were identified as important by the NLP and/or the expert.

It was hypothesised the group of readers would identify sentences in the conclusion and intro-

duction of the text as important; as in academic papers/technical reports, salient information

is typically included in these sections. To examine this hypothesis, the index of each sentence

was plotted against the assigned RAIS ′ score in Figure 6.6.

Figure 6.6 shows no clear relationship between the sentence index and RAIS ′ for the bulk of

the sentences. However, there is a noticeable series of larger peaks for sentence in the range

of 190-200. This indicates that sentences in the conclusion were viewed as more important on

average than those in the main text and introduction. As illustrated in Figure 6.6, the sentences

that obtained three of the highest values of RAIS’ (including the highest value of 17) were all



6.3. Results 143

Figure 6.6: Index of each sentence plotted against the assigned RAIS ′ score.

in the document’s conclusion. However, some sentences in the conclusion were not identified

as important by any of the participants, even if they were making a conclusive remark, e.g.

‘A watching brief should be maintained for new publications on the magnetic and electrical

control of combustion.’.

One of the two novices only identified sentences in the introduction and conclusion as important.

It is well-documented that when presented with a problem, novices tend to focus on surface

features, e.g. facts and equations, rather than concepts [371]. This novice’s response to the task

may be an example of such behaviour. The relationship between other basic surface features,

such as sentence length and the number of keywords in a sentence, and the RAIS ′ score was

examined. No relationships were identified.

Intra-group agreement between the readers and the expert was conducted. The approach

followed in Chapter 4 was adapted to the data in this study. The sentences in the text were

divided into two datasets: those the expert found important and those the expert did not find



144 Chapter 6. Comparing NLP tools’, experts’ and novices’ analysis of technical text

important. Figure 6.7 shows the distribution of RAIS ′ for these two datasets of sentences.

Figure 6.7: Distribution of RAIS ′ for sentences identified (respectively, not identified) as im-
portant by the expert are on the left (respectively, right).

Figure 6.7 shows the distribution of RAIS ′ for sentences the expert did not identify as impor-

tant is heavily skewed towards lower values of RAIS ′ and thus is non-normal3. On the other

hand, the distribution of RAIS ′ for sentences the expert found important is significantly more

symmetric (except for a few outliers). In order to determine the correct statistical test, the

normality of the distributions was examined using the Shapiro-Wilkes test. P-values of 0.08 and

3× 10−19 were obtained for the RAIS ′ of sentences identified and not identified as important

by the expert, respectively. At a 0.05 significance level4, it can be determined that the distri-

bution of RAIS ′ for sentences identified as important by the expert is normally distributed,

whereas the distribution for sentences not identified as important by the expert is not normally

distributed.

Given one of the datasets is non-normal a Wilcoxon rank sum test was conducted5. This

test compares the medians between the two datasets. The median RAIS ′ for sentences not

3As mentioned in Section 4.3.3, determining the normality of the data is essential to determining the correct
statistical test.

4Here, and throughout the rest of this chapter, we assume statistical significance at a value of 0.05.
5See Chapter 4 Appendix E for an overview of the decision-making process used to determine the appropriate

statistical test.
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identified as important by the expert was 1, significantly lower than the median RAIS ′ for

sentences identified as important by the expert which was 6. The p-value of the Wilcoxon

rank sum test was 1.88× 10−6. Therefore it can be concluded the median RAIS ′ for sentences

identified as important by the expert is significantly different than the median RAIS ′ for

sentences not identified as important by the expert. The median of the difference between

a sample from RAIS ′ for sentences identified as important by the expert and a sample from

RAIS ′ for sentences identified as important by the expert was determined to be 4.76. The

size effect was measured using Vargha and Delaney’s A, a value of 0.82 was obtained, which is

interpreted as there being a large difference between the RAIS ′ of sentences identified and not

identified as important by the expert. It is therefore concluded the readers were more likely to

identify a sentence as important if the expert also identifies the statement as important. This

is in agreement with the results found in Section 4.3.3.

Intra-group agreement between the readers and the NLP was conducted. The sentences in the

text were divided into two datasets: those the NLP found important and those the NLP did

not find important. Figure 6.8 shows the distribution of RAIS ′ for these datasets.

Figure 6.8: Distribution of RAIS ′ for sentences identified (respectively, not identified) as im-
portant by the NLP are on the left (respectively, right).

The median RAIS’ for sentences not identified as important by the NLP (1) is slightly lower

than the median RAIS ′ for sentences identified as important by the NLP (2.5). Both the
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distributions of RAIS ′ are heavily skewed towards lower values indicating they are non-normal6.

Therefore a Wilcoxon rank sum test was conducted. A p-value of 0.06 was obtained. Therefore

it is concluded the median RAIS ′ for sentences identified as important by the NLP is not

significantly different from the median RAIS ′ for sentences not identified as important by the

NLP.

Inter-group agreement: readers vs expert vs NLP

Inter-group agreement is examined by first calculating the overlap between each of the readers’,

NLP’s and experts’ summaries using the FA metric (Eq. (6.8). Figure 6.9 displays the results

in the form of a lower half of a similarity matrix.

Figure 6.9 shows a significant number of pairings did not identify any of the same sentences as

being important, e.g. between readers 1 & 7, 21 & 3 and 25 & 12. This reflects the sheer variety

of sentences identified as important by the readers. This result is in agreement with Chapter 4

which similarly observed a large variation in the concepts the readers found important in the

text. As mentioned in Chapter 4, the variety of responses is unsurprising from a psychological

perspective as experts bring to any task their own set of expectations and ideas. In this

study, a broad spectrum of readers were recruited across a range of STEM backgrounds. Since

different scientific disciplines are taught to evaluate technical information in different ways, it

is unsurprising that summary overlap varied considerably. Interestingly, none of the pairings

that obtained FA = 0 included either the expert or the NLP. As mentioned in Chapter 4, the

NLP returned many conclusion-style sentences. These conclusion-style sentences often portray

important conceptual points. Hence it is unsurprising no values of FA = 0 were obtained for

any reader-NLP pairings.

6This was verified using Shapiro-Wilk tests, for which p-values of 0.001 and 1.28× 10−15 were obtained for
the RAIS′ of sentences the NLP did and did not find important respectively. Hence it can be concluded both
distributions are significantly different from the normal distribution.
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Figure 6.9 shows the highest obtained FA was between Readers 1 and 19, with a value of

FA = 0.93. These participants assigned themselves the same expertise rating and had similar

educational backgrounds but had differing years of experience in academia, commercial research,

government research and overall. In total, there were 7 pairings out of a possible 351 that

achieved FA ≥ 0.5, i.e. agreed on average on 50% of the selected sentences. A total of 6 of these

pairings were between the readers. Overall, there is low agreement between the participants

and NLP on what is important in the text.

Readers 4 and 15 are novice readers. It was expected they would produce similar summaries

as they both had little knowledge of STEM and would approach the task similarly. However,

the novice readers obtained FA = 0.11, which is a low similarity. The novices had differing

approaches to the task. As mentioned, Reader 4 conducted its analysis based on surface features

highlighting sentences exclusively found in the introduction and conclusion. Reader 15, however,

identified sentences throughout the text and interestingly had the highest similarity with the

expert’s summary, obtaining FA = 0.39. This was also the highest similarity for the expert. This

could be a coincidence. Alternatively, unlike the technically-trained readers who would have

approached the task with preconceived ideas or methods on how to evaluate the importance of

technical information in the text, the novice may have been able to distinguish what the expert,

who was also the author of the text, found important in the text by following semantic cues

in the text itself. As highlighted in Ref. [327], novices are more sensitive to the form in which

information is presented, and minor changes to the wording can influence their perception of

how important a specific point in the text is.

Participant 25 had the highest similarity with the NLP obtaining a value of 0.50. Participant

25 had highlighted a high proportion of summary style sentences this likely accounts for the

high similarity. The NLP and expert obtained FA = 0.38. This value is unsurprising since the

method used to select the techniques to generate NLP’s summary was optimised to obtain high

conceptual and uni-gram overlap with a summary generated by the expert, see Section 4.3.1.

For each of the participants and the NLP, the average FA with the other readers ⟨FA⟩′R‘
i
,

(Eq. (6.11), was calculated. This process was repeated with the novices, Readers 4 and 15,

removed. Figure 6.10 shows ⟨FA⟩′R‘
i
for each of the participants and NLP with (red line) and

without (blue line).

Figure 6.10 shows novice Reader 4, obtained low average agreement with the other readers.
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Figure 6.10: Average overlap of each of the participants/NLP summaries with all other reader
summaries, ⟨FA⟩′R‘

i
. Values are calculated with all readers (red line) and with the novices re-

moved from the dataset (blue line).

This was likely because the reader’s approach to the task differed substantially from the others

(Reader 4 exclusively highlighted sentences in the introduction and conclusion of the text).

Figure 6.10 shows only three readers, one of which was the novice participant, obtained lower

⟨FA⟩′R‘
i
values than the NLP. It can therefore be interpreted that the average agreement with

the readers is lower for the NLP than for the majority of other participants. The NLP failed

to recognise the importance of the sentences in the text as the readers did. This is in agree-

ment with the results of intra-group comparison made with the NLP summary earlier in this

subsection. Overall, the NLP failed to identify sentences that the readers as a group found

important and obtained a lower average agreement with the readers than the majority of the

other readers. This may be because the NLP identified sentences using statistical techniques

rather than conceptually. Therefore, it may have returned sentences with a high frequency of

relevant words about a specific topic but does not necessarily portray a relevant conceptual

point, or the conceptual point is portrayed better elsewhere in the text. In addition, unlike

the participants, the NLP evaluated the importance of the sentences on a sentence level. As

a result, it was common to see multiple sentences in a row highlighted in the summaries pro-

duced by the participants. These multiple sentences would express a single concept. The NLP,
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however, was unable to analyse the text in this way. Furthermore, unlike the participants, the

NLP could not identify when redundant information was returned effectively. As a result, the

NLP’s summary contained several sentences portraying the same conceptual point.

It was hypothesised the readers’ experiences impacted how they approached this task. Therefore

for each possible pairing of readers, the relationships between the difference in higher-education

qualification obtained (using the ordinal scale mentioned earlier in this section) and FA was

examined using Kendall’s Tau. A value of -0.10 was obtained. This value was statistically

significant, indicating a weak-negative association between the FA of two generated summaries

and the difference in education levels of the readers, i.e. there is a relationship between the

educational backgrounds of the summaries and the extent to which the generated summaries

overlap. This process was repeated for self-assigned expertise rating, and no statistically sig-

nificant relationship was observed7.

6.3.3 The statement-analysis task

The statement-analysis task consists of two components where participants are asked to read

and digest series of statements then assign each statement (1) a 1-5 importance-rating and (2)

a category of importance. This subsection will present the results of each component of the

statement-analysis task.

Importance ratings

To examine the agreement on the ratings of importance between every possible pair of partici-

pants, κ̂G was used. Figure 6.11 shows an agreement matrix containing the κ̂G values between

every possible pair of participants. In addition, the Landis-Koch scale is shown in the colour

bar for interpretation of κ̂G.

Figure 6.11 shows the majority of participants exhibit at least moderate levels of agreement on

the rating of statements’ importance. Approximately 10% of participants had almost perfect

7The process was repeated for the difference in the number of years of experience in academia, commercial
research, government policy, government research and the total number of years of experience using Pearson’s
correlation. Therefore, normality tests were performed using the Shapiro-Wilk test to verify the data was
normally distributed. No statistically significant correlations were found.
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agreement on ratings of importance. Furthermore, 44% of pairings had a substantial agreement

among their importance ratings. There were very few participant pairings with poor agreement.

Readers 20 and 21 had the highest agreement, obtaining a value of κ̂G = 0.93, which can be

interpreted as near-perfect agreement. Though they had the same level of higher-education

qualifications these readers had completely different backgrounds.

Overall the participants agreed to an extent on the importance of the statements given to them.

This contrasts to the results shown in a similar study conducted in Ref. [6], which saw low levels

of agreement on participants’ ratings of importance. This may be due to the choice of text,

in Ref. [6] the subject of the text is terrorism hostage-taking. Unlike the topic of the text in

this study, terrorism hostage-taking is an emotive topic even when approached from a technical

perspective. Given this and that the participants used in the said study were not familiar with

the domain from a technical perspective, the lack of agreement is expected.

Figure 6.11 shows the readers obtained fair to substantial agreement with the expert, except

for Reader 9, who obtained κ̂G = 0.01. Novice Reader 4 obtained the third lowest agreement

with the expert with a value of κ̂G = 0.39, which can be interpreted as fair agreement. It

would be expected that novices would have low agreement with experts as they do not have

an in-depth conceptual understanding of the domain. However, novice Reader 15 obtained

the highest agreement with the expert, obtaining κ̂G = 0.72. This same reader obtained the

highest agreement with the expert on the summarisation task. Unlike the technically-trained

readers who would have approached this task with their predefined ideas of importance, the

novices’ perception of importance in this domain may have been entirely shaped by reading

the text, resulting in Reader 15 rating the importance of the statements in the text similarly

to the expert.
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In addition, the agreement between the novice readers was 0.62, which can be interpreted as

substantial agreement. In Section 6.3.2, the overlap of the summaries produced by the novice

readers was 0.11. Whilst the novices did not agree on identifying important sentences in the

text, they did agree a substantial amount when it came to rating the importance of statements

about the text.

Readers 1 and 19 had a very high FA on the summary task (Section 6.3.2); likewise, on this

task, these participants had a substantial agreement on rating the importance of the categories.

Similar results are observed for Readers 14 and 16. The relationship between the performance

on each task will be explored further in Section 6.3.4.

For each participant, the average agreement with the other readers (⟨κ̂G⟩R′ ) was calculated

using Eq. (6.11) where FA is substituted with κ̂G. This process was repeated with the novice

Readers (4 and 15) removed from the dataset. Figure 6.12 displays the results for ⟨κ̂G⟩R′ for

each participant with all readers.

Figure 6.12: ⟨κ̂G⟩R′ for each participant, where all readers, and without the novices in the
dataset, are shown in red and blue respectively.

Figure 6.12 shows the effect of removing the novices from the dataset has minimal impact on

⟨κ̂G⟩R′ for each participant. Therefore, for each participant, the average agreement with the

other readers is largely unaffected by the agreement with the novices.
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In addition, Figure 6.12 shows that Reader 9 had a low ⟨κ̂G⟩R′ . Readers 7, 11 and 20 are no-

ticeable peaks in Figure 6.12 with high values of ⟨κ̂G⟩R′ indicating high levels of agreement with

the other participants. Interestingly, Reader 7 had low agreement with the other participants

in the previous task, see Figure 6.10.

As with the summarisation task (Section 6.3.2), it was hypothesised that the readers’ experi-

ences impacted how they approached this task. The procedure outlined in the previous section

was followed. Results found the difference in the number of years of experience in academic

research and κ̂G are significantly correlated with a correlation coefficient of 0.17. This can be

interpreted as a weak-positive correlation [370]. Therefore, the greater the difference in the

number of years of experience of the readers in academic research the higher the agreement.

The analysis of the importance-rating task thus far has been on an individual basis (inter-group

agreement). Here, the agreement among the readers as a group will be considered. For each

statement, the mean importance rating assigned by the readers is calculated8. This will be

referred to as MRIS ′.

The statements were segmented into two datasets: statements the expert rated as important

(assigned an importance rating of 4 or 5) and statements the expert rated as not important

(assigned an importance rating of 1 or 2). The statements the expert rated as 3, neither

important nor not important, were disregarded.

Figure 6.13 shows the distribution of MRIS ′ for statements rated as important by the expert

and for the statements rated as not important by the expert are symmetric, indicating they

are normally distributed9. As mentioned in Section 4.3.3, normality is not the only condition

for a t-test. The variances of the distribution must be equal. Variances of 0.17 and 0.40 were

obtained. Therefore, a Welch’s t-test [372] was performed. A Welch’s t-test determines if the

means of two populations populations with unequal variances are statistically different. A p-

value of 0.02 was obtained, indicating the two means of 3.63 and 3.01 for statements rated

important and not rated important by the expert, respectively, are statistically different from

8The mean was taken as opposed to the sum as some of the readers did not assign every question an
importance rating. The presence of missing data would result in lower scores (using the sum) for those with
missing data compared to those without. This would result in the perceived notion that these sentences are
less important than those without missing data. Therefore one needs to account for this by using the mean by
averaging only over participants who did assign a rating.

9Shapiro-Wilk tests were performed to determine the normality of the data. P-values of 0.27 and 0.87 were
obtained, indicating the two distributions are normally distributed.
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Figure 6.13: Distribution of MRIS ′ for statements rated as important by the author and rated
as not important by the expert.

each other. Therefore, on average, statements the author rated as important had higherMRIS ′

values, i.e. were found more important by the participants than those rated not important by

the author.

As discussed in Section 6.2, the statements used in this task were generated from the key-

points/summaries outputted from the preliminary study in Chapter 4. To examine the con-

sistency of the author’s ratings of importance, the relationship between the rated importance

of the statements in the statement-analysis task and whether the statements were identified

as important by the expert in the preliminary task was conducted. First, the statements were

divided into two datasets: those identified as important and not identified as important by the

expert in the preliminary study.

Figure 6.14 shows the distribution of importance ratings for the statements identified as im-

portant by the expert is not symmetric and is not normally distributed. The distribution of

importance ratings for the statements not identified as important by the expert in the prelim-

inary task, however, is symmetric and appears normally distributed10.

10These hypotheses were verified with Shapiro-Wilk tests. P-values of 0.006 and 0.16 were obtained for
those statements not identified as important and identified as important, respectively. It is therfore determined
the distribution of importance ratings for the statements identified as important by the expert is significantly
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Figure 6.14: Distribution of importance ratings by the expert for statements identified as
important and not identified as important by the expert in the preliminary study.

To examine the differences between the two distributions, a Wilcoxen rank test was performed.

The p-value of this test was 0.03. Therefore it can be concluded that the median importance

rating for statements identified as important by the expert (3.64) is significantly different from

the median importance rating for statements not identified as important by the expert (2.98).

The median of the difference between a sample from importance ratings of statements identified

as important by the expert and a sample from importance ratings of statements not identified as

important by the expert was 2.16. The size effect was measured using Vargha and Delaney’s A.

A value of 0.74 was obtained; this is interpreted as a medium difference between the importance

of statements identified as important by the expert and not identified as important by the

expert. It is therefore concluded the author was consistent in their evaluation of the importance

of the technical information present in the text.

different from the normal distribution and is therefore not normal. In contrast, the distribution of importance
ratings for the statements identified as important by the expert is normally distributed.
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Categories-of-importance task

Participant intra-group agreement on assignment of categories of importance is calculated using

κ̂G. Figure 6.15 an agreement matrix containing the κ̂G between participants.

Figure 6.15 shows lower levels of agreement between participants than on the importance-

rating task. Of the 325 possible pairings (excluding pairings with the participant’s self), none

of the participant pairings had greater than moderate agreement. This is in direct contrast

to the rating task, which had 54% of pairings at the aforementioned agreement levels. In

addition, on this task, 8% of the participant pairings had a moderate agreement, 46% had a

fair agreement, and 44% had a slight agreement. A small percentage of pairs of participants

had a poor agreement. This implies the participants agree with each other less on the reasons

why a particular statement is important than they do on how important a statement is. This

may be because the participants come from a broad spectrum of STEM backgrounds (Section

6.3.1), so whilst they may agree on how important a statement is, their own experiences will

have shaped their idea of why these points are important. Furthermore, there are various valid

reasons why a statement is important; therefore, it is expected that agreement is lower for this

task.

Readers 11 and 2 have the highest agreement in Figure 6.15 with a κ̂G of 0.58, which is

interpreted as moderate agreement using the Landis and Koch scale. These readers have the

same educational background and similar numbers of years experience in academic research.

Reader 2 also obtained a similarly high agreement with Reader 5 with κ̂G = 0.57. The lowest

observed agreement was between novice Reader 4 and Reader 3, with a κ̂G = −0.01. Reader

4 also obtained the second-lowest agreement, a value of κ̂G = −0.06, with Reader 7. As with

previous tasks, the agreement between the novice Readers 4 and 15 is low, 0.02. Future studies

should recruit a larger group of novice readers to see if similar results are obtained.
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As shown in Figure 6.15, the expert obtained a moderate agreement with Reader 14. Otherwise,

the agreement between the readers and the expert was in the range of poor to fair. In previous

tasks, the highest agreement with the expert has been from novice Reader 15. On this task,

Reader 15 and the expert obtained an agreement of 0.22, a significantly lower agreement with

the expert than on previous tasks. Whilst Reader 15 may have been able to use semantic clues

in the text to identify which specific sentences in the text are important and what the expert

considers to be important in the text, understanding and identifying why a specific point is

important requires a complex content schema that a novice will not possess. This may explain

why the expert exhibited higher agreement with other readers on this task.

For each of the participants, the average agreement with the other readers ⟨κ̂G⟩R′ was calculated.

This process was repeated with the novice Readers (4 and 15) removed. Figure 6.16 displays

the results for ⟨κ̂G⟩R′ for the participants with all readers and with the novices removed.

Figure 6.16: ⟨κ̂G⟩R′ for each participant. This calculation was done with all readers and with
the novices removed, shown in red and blue respectively.

Figure 6.16 shows that ⟨κ̂G⟩R′ is, in general, higher for most of the participants when the novices

are removed from the dataset indicating readers have a lower agreement with the novice readers

than the other readers. Furthermore, ⟨κ̂G⟩R′ is lowest for novice Reader 4 with a value of 0.06.

This is unsurprising since identifying why a specific statement is important requires a deeper
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understanding of the domain than a novice will possess. As shown in Figure 6.10, Reader 4

also had low levels of agreement with the other readers on the summarisation task. Readers 2

and 5 have the highest ⟨κ̂G⟩R′ , with values of 0.35 and 0.31 respectively. Reader 2 had similarly

high average reader agreement on the summarisation task. This indicates that there may be

a relationship between the agreement on different tasks, this will be investigated further in

Section 6.3.4.

As with the previous tasks in this study, it is hypothesised the readers’ background impacted

how they approached this task. Results concluded there was a statistically significant weak-

negative association (-0.13) between the difference in education levels and κ̂G. This can be

interpreted as a greater similarity in readers’ educational background corresponding to higher

agreement.

The strength of the relationship between the difference in the number of years of experi-

ence in commercial research experience/academic research/government policy/government re-

search/total number of years experience and κ̂G was measured using Pearson’s correlation11.

Only 3 of these correlations were statistically significant. The difference in the number of years

of experience in commercial research experience and κ̂G is significantly correlated with a cor-

relation coefficient of -0.15, which can be interpreted as a weak-negative correlation [370]. A

value of -0.01 was obtained for the difference in the number of years of experience in govern-

ment research experience and κ̂G, which also indicates no correlation. A value of -0.16 was

obtained for the difference in the total number of years of experience and κ̂G. Therefore, the

more similar the number of years experience in commercial research and the total number of

years experience, the higher the agreement on assigning categories of importance.

The intra-group agreement on this task was determined for each statement taking the most-

popular assigned category of importance and calculating the agreement with the expert’s as-

signments of categories of importance. A value of κ̂G = 0.33 was obtained, which can be

interpreted as moderate agreement. With the novices removed from the dataset κ̂G = 0.37 was

obtained. Overall, this indicates the readers as a group agree with the expert to a moderate

degree on assigning categories of importance, this agreement slightly increases with the novices

removed from the dataset.

11Pearson’s correlation requires normally distributed data. Normality tests were performed using the Shapiro-
Wilk test.
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6.3.4 Comparison between tasks

This subsection will combine and analyse the results across the statement-analysis (Section

6.3.3) and summarisation (Section 6.3.2) tasks.

First, the results of the two statement-analysis tasks are combined to examine if the readers

associated some categories with a higher importance rating than others. To complete this

analysis a Kruskal-Wallis test was performed. This is a non-parametric test used to determine

if there are statistically significant differences between groups of an ordinal variable [373]. A

value of 13.7 was obtained with a p-value of 0.03. It is therefore determined that there is a

statistically significant difference in how important the readers viewed each category of impor-

tance. However, further analysis using a post hoc Dunn’s test [374] determined no significant

differences between the importance ratings of the categories of importance.

Second, the agreement between pairs of participants across tasks was examined using Pearson’s

correlations for the agreement on specific tasks between pairs of participants. Results found

there was a weak-positive correlation of strength 0.19 on the agreement between participants

on the summarisation task (FA) and the importance-rating task (κ̂G). This correlation is

statistically significant with a p-value of 3.8×10−6. This is to some degree expected as the two

tasks ask the participants to perform similar tasks centred around identifying the important

points in the text. No statistically significant correlations were observed between the categories-

of-importance task and the summarisation or importance-rating tasks.

6.4 Conclusions and future work

This chapter presented a follow-up study to Chapter 4 investigating the boundary between using

NLP tools to supplement and replace human analysis in the domain of energetic materials.

Recommendations and insights from Chapters 4 and 5 were used to develop a study that

compared the ability of NLP tools, experts and novices to analyse a single document in the

domain of energetic materials (the text) according to a subjective concept (importance). This

study had two aims (1) to compare the ability of NLP tools, novices, and experts to identify

important points in the text and (2) to assess the agreement amongst experts and novices on

how they evaluate the importance of technical information in the text.
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Section 6.1 contained an overview of inter-rater reliability (IRR) metrics. For this thesis, it

was determined that IRR metrics would be interpreted as the extent to which participants

agree. First, popular metrics such as Cohen’s kappa, Fleiss’s kappa and the highly flexible

Krippendorff’s alpha were introduced. The limitations of these metrics, namely the kappa

paradoxes, were discussed. Next, Gwet’s AC1, another flexible metric developed to overcome

the kappa paradoxes, was introduced. Finally, methods for interpreting IRR metrics, such as

the Landis and Koch benchmark scales, were discussed.

In Section 6.2, a detailed overview of the methodology was given. This methodology centred

around a three-part questionnaire given to a group of 25 readers and an expert (collectively

referred to as the participants). The inclusion criteria for this study was described. An overview

of the questionnaire was given. It was described how the participants were asked to perform

exactly the same task as an extractive-summarisation algorithm and highlight the points they

felt were significant in the text. This task addresses aim (1) of this chapter. Third, a description

of the statement-analysis task was given. It was described how the participants were asked to

rate the importance of and assign a category oof, and assign a category of importance to,

30 statements derived from the keypoints/summaries generated by the NLP/participants in

Chapter 4. This task addresses aim (2) of this chapter. Finally, evaluation methods were

introduced. RAIS ′ is an intra-group agreement metric that measures how important the readers

as a group found each specific sentence in the text. FA is an inter-group agreement metric that

gives the average overlap between a pair of summaries. It was determined that Gwet’s AC1 (κ̂G)

would be used to measure agreement among participant responses in the statement-analysis

task.

In Section 6.3.1, an overview of the responses to the background-information questions from

the 25 recruited readers was given. Results revealed the majority of the readers are in the early

stages of their career. However there was a sizeable proportion of readers who were experienced.

The majority of recruited readers had STEM PhDs. The self-assigned expertise level and the

total number of years experience of the readers were determined to be correlated with moderate

strength. This indicates that, as expected, the majority of more experienced readers rated

themselves as having a higher expertise level than those with less experience. However, it is

recommended that future studies should ask specific questions about the reader’s knowledge

of and experience in energetic materials as a discipline in addition to their general experience.
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Overall, in comparison to the study conducted in Chapter 4, a significantly more varied group of

readers was recruited for this study. However no readers with experience in government policy

were recruited. Future studies may wish to recruit participants with experience in government

policy as to get a full comparison of how individuals in defence and security-related fields

interpret importance.

In Section 6.3.2, the results of the summarisation task were presented. Here, a comparison

of the ability of NLP tools, novices and experts to identify important points in the text was

conducted. The inter-group analysis determined the FA average with the readers is lower for the

NLP than for the majority of other participants. Similarly, the intra-group analysis found no

statistically significant difference in how important the participants as a group found sentences

the NLP identified and did not identify as important. However, every participant identified at

least one of the same sentences as the NLP. This was due to the NLP returning conclusion-

style sentences, which tended to be identified as important by the participants. Overall it

is concluded that in a data-limited environment, NLP algorithms cannot effectively identify

important points in a domain-specific document in the same way an expert can.

In addition, both inter and intra-group analysis revealed there was a significant variation in

reader responses. This resulted in considerable variation in FA with values in the range of 0 to

0.93 observed. This was expected because of the broad spectrum of readers recruited. Similar

variations in reader responses were observed in the study in Chapter 4, where readers were asked

to summarise the important points in the text. It was hypothesised that the readers’ experiences

impacted how they approached this task. Results revealed a weak-negative correlation between

the difference in higher-education qualifications and FA. Therefore it was concluded that readers

with the same higher-education qualifications tend to identify a higher proportion of the same

sentences in the text as important. Due to the sheer variation in reader responses, reader FA

values with the expert varied considerably. However, the intra-group analysis determined the

readers were more likely to identify a sentence as important if the expert also identified the

statement as important. This result was found to be in agreement with the results found in

Chapter 4 which similarly determined the readers as a group rated higher on average and found

more important reader-agreed points that were in agreement with the expert.

Furthermore, it was observed that the two novice participants in this study had very different

approaches to this task. Novice Reader 4 highlighted sentences exclusively in the introduction
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and conclusion of the text. This novice had a low agreement with the other readers and the

expert. However, novice Reader 15 obtained the highest FA with the expert’s summary. One

reason for this is that, unlike the technically-trained readers who would have approached the

task with preconceived ideas on how to identify important sentences in the text, the novice’s

perception of importance in this domain may have been entirely shaped by reading the text.

Therefore, by following semantic cues in the text, the novice may have identified the sentences

in the text that the expert found important.

In Section 6.3.3, the results of the statement-analysis task were presented. Here, the agreement

amongst experts and novices on how they evaluate the importance of technical information

in the text was assessed. The statement-analysis task consisted of two parts: an importance-

rating task and a categories-of-importance task. The analysis in this section determined there

was considerably more agreement on the ratings-of-importance task than on the identifying-

the-category-of-importance task. On the categories-of-importance task, none of the participant

pairings had a greater than moderate agreement. This was in direct contrast to the rating task,

which had 54% of pairings at these agreement levels. Therefore it was concluded that the par-

ticipants agree with each other less on the reasons why a particular statement is important than

they do on how important a statement is. This may be because there are various valid reasons

why a statement is important, and the assignment of these reasons may vary considerably by

field.

Similarly, it was determined that agreement with the expert on the importance-ratings task

was higher than on the categories-of-importance task. For the importance-ratings task, κ̂G

in the range of ‘fair’ to ‘substantial’ were obtained, whereas, for the categories-of-importance

task, values in the range of ‘poor’ to ‘moderate’ were obtained. The intra-group analysis

found that, on average, statements the author rated as important were more important for the

readers than those rated not important by the expert. This is in agreement with the results

of the summarisation task. It is therefore concluded that the readers largely agreed with the

expert as a group. The Intra-group analysis of the categories-of-importance task identified that

the readers as a group agree with the expert to a moderate degree on assigning categories of

importance.

In addition, analysis in Section 6.3.3 investigated the hypothesis that the reader’s experiences

impacted how they approached the tasks. For the importance-rating task, a weak-positive
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correlation between the difference in the number of years of academic experience and κ̂G was

observed. One possible explanation is that the longer the time spent in academia, the more

deep-rooted opinions on what is important become and, therefore, the lower the agreement.

In the categories-of-importance task, weak-negative correlations were observed between the

difference in the total number of years of experience in commercial research, the number of

years of experience in government research and the total number of years of experience with

κ̂G. Therefore, similar numbers of years of experience in each of these fields results in higher

agreement when assigning categories of importance. For both the categories-of-importance task

and the summarisation task there was an association between agreement and the similarity of

the highest STEM qualification obtained of the readers.

As observed for the summarisation task, there was a considerable difference in the approaches

the two novice participants took. Novice Reader 4 obtained one of the lower κ̂G values with

the expert for the importance-rating task. On the other hand, novice Reader 15 obtained

the highest agreement with the expert with a score of 0.72. However, on the categories-of-

importance task the novice readers obtained significantly lower κ̂G values with the expert. This

may be because Reader 15 could be use semantic clues in the text to identify which specific

sentences in the text are important and what the expert considers to be important in the

text. However, understanding and identifying why a specific point is important requires a

complex content schema that a novice will not possess and thus agreement on the categories-of-

importance task was lower. Future studies should recruit a larger group of novices to observe

how novice behaviour differs.

In Section 6.3.4, a comparison of the agreement across all three tasks was conducted. It was

determined that there were weak-positive correlations for the agreement on the summarisation

task and the importance-rating task only. This expected to some degree expected as the two

tasks ask the participants to perform similar tasks centred around identifying the important

points in the text. However, no statistically significant correlations were observed between the

categories-of-importance task and the summarisation or importance-rating tasks.

To conclude, this chapter aimed to (1) compare the ability of NLP tools, novices, and experts to

identify important points in the text and (2) assess the agreement amongst experts and novices

on how they evaluate the importance of technical information in the text. Results concluded

that, in a data-limited environment, NLP algorithms could not effectively identify important
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points in a domain-specific document as an expert can. Furthermore, there is considerable

variation between readers in even simple tasks such as identifying important points in a single

technical document. In this study, a novice with no STEM background obtained the highest

agreement with an expert on identifying important points in the text and rating the importance

of statements about the text. The lack of agreement among experienced readers leads to two

fundamental points. Firstly, as pointed out in Ref. [375], policymakers should rethink how they

view expert opinions and apply the same critical analysis that is applied to data. Secondly, if

experts do not agree on basic points, it brings the reliability of the data used to train algorithms

into question. Chapter 9 will explore this further by presenting a methodology to evaluate the

reliability of human annotations.



Chapter 7

Developing a preprocessing pipeline for

the energetic-materials domain

Chapter 3 identified the most fundamental barrier to successfully implementing an ontology-

learning system in the energetic-materials domain as the preprocessing and extraction of text

from text-sources. As illustrated in Chapter 4, preprocessing can significantly impact the per-

formance of downstream tasks [376]. Therefore, developing an effective preprocessing pipeline

is essential not just for developing an ontology but for any future NLP-based research in the

energetic-materials domain. This chapter, therefore, aims to identify the challenges that prepro-

cessing of text in the energetic-materials domain presents and develop a novel general-purpose

preprocessing pipeline catered for small datasets of conference proceedings in the energetic-

materials domain.

Chapter achievements:

• Identification of the challenges that preprocessing PDFs of conference proceedings in the

energetic-materials domain presents.

• Novel general-purpose preprocessing pipeline catered for preprocessing small datasets of

conference proceedings in the energetic-materials domain.

• In-depth qualitative evaluation of preprocessing pipeline.

Section 7.1 will review the relevant techniques for preprocessing conference proceedings in the

167
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energetic-materials domain. Section 7.2 gives an overview of the methodology to construct this

preprocessing pipeline. Evaluation and discussion of the performance of the pipeline on a test

set of documents is conducted in Section 7.3. Finally, in Section 7.4, the conclusions of this

chapter will be presented alongside suggestions for future work.

7.1 Preprocessing conference proceedings in the energetic-

materials domain

In this section, a literature review with the aim of identifying problems with preprocessing text

from a small corpus of conference proceedings PDFs in the energetic-materials domain will be

conducted. The appropriateness of existing techniques for various parts of the preprocessing

pipeline will be discussed.

There is only one open-source publication that mentions preprocessing text in the energetic-

materials domain [239]. In this paper, the authors introduce a preprocessing pipeline for patents

and proceeding papers from the International Detonation Symposium, Fraunhofer Institute for

Chemical Technology Annual Conference and New Trends in Research of Energetic Materials

(NTREM) abstracts. Whilst influences are drawn from the work done in Ref. [239] there are

several primary differences with the approach presented in this chapter.

Firstly, the approach presented in this chapter uses a significantly smaller quantity of data. As

a result, methods that may not be suitable for a more extensive dataset can be considered.

Secondly, the scope of this pipeline is limited to extracting text from PDFs of conference

proceedings from NTREM and High Energy Materials Conference and Exhibits (HEMCE).

Thirdly, the purpose of developing the pipeline is different from that of the pipeline developed in

Ref. [239] which is specifically catered for identifying energetic materials and their application

words. The pipeline in this chapter is a general-purpose pipeline applicable for a range of

downstream tasks. Similarities and differences between the two pipelines will be highlighted

throughout this chapter.

A preprocessing pipeline typically consists of four stages: text extraction, tokenisation (the

identification of sentence and word boundaries), text normalisation, and what in this thesis

will be referred to as ‘task-specific processing’. The purpose of this chapter is to develop
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a preprocessing pipeline that can be used on a range of different tasks, so any task-specific

processing, such as stemming and lemmatisation1 are not included in this pipeline. Therefore,

a literature review for the aforementioned three stages is conducted in Sections 7.1.1 - 7.1.3.

7.1.1 Extracting text from PDFs

The first step in preprocessing conference proceedings is to extract the text from the documents.

Conference proceedings typically appear in PDF or HTML format. This literature review

will concentrate on text extraction methods for PDFs. There is limited literature on the

preprocessing of chemistry journals. However, Ref. [376] provides a thorough overview of issues

with preprocessing text from conference proceedings in the domain of chemistry and some tools

that resolve these issues.

Extracting text from PDFs, in general, is a difficult task. The PDF is a layout-based format,

unlike other formats that specify semantic information about the text (for instance, sentences,

paragraphs, headers, footers etc.) PDFs specify the positions and the fonts of characters in the

text [377]. This makes tasks such as word identification, word order, semantic-role detection

(e.g. detecting if a piece of text is part of the title/header/main text) and paragraph-boundary

detection nontrivial. Furthermore, text extraction from conference proceedings PDFs is difficult

due to variations in style and formatting, making standard rule-based approaches error-prone.

Common errors include incorrect sentence handling in two-column documents and misplacing

paragraph separation [376].

There are a range of existing Python packages for extracting text from PDFs. Examples include

‘pdftotext’ [378], a basic library that struggles to identify paragraph boundaries or the semantic

roles of the items in the text, and ‘PyPDF2’ [379], which can extract meta-data from the PDF

such as title and page number but has limited capabilities for performing layout-aware text

extraction.

Ref. [305] uses PDF.miner.six [380] for text extraction. PDF.miner.six uses a layout-analysis

algorithm that works in stages. The first stage is grouping characters into words and lines.

Every character in a PDF has two sets of (x, y) coordinates that can be used to define a box

around the character. The layout-analysis algorithm uses these coordinates to determine which

1See Section 4.1.1 for details of stemming and lemmatisation.
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characters should be grouped into words and lines. PDFs have no notion of the space character;

at this stage, spaces are inserted if two characters are far apart. The second stage consists of

grouping lines, the output from the previous stage, into boxes. As with the characters, each

line can be defined by two sets of (x, y) coordinates that can be used to define a box around

the lines. Lines that overlap in x and have similar y values are grouped into text boxes. In

the final stage, these text boxes are grouped hierarchically by merging text boxes close to one

another. This process gives an order output of the layout of objects on a PDF page [381].

GROBID is a JAVA machine learning (ML) library for text extraction [382]. This library

does, however, have a Python client [383]. Unlike the previously described approaches which

output text files, the algorithm’s output is a structured XML TEI file. Sequence labelling is

a supervised-learning task that aims to predict a label for each element in a sequence [384].

GROBID uses several sequence-labelling models based to parse PDFs. Each model maintains

a small number of labels specialising in a specific substructure, e.g. the segmentation model is

used to detect the main parts of a document. The models can be cascaded to create detailed

nested structures that represent the document’s overall structure. GROBID uses fast linear-

chain conditional random fields and a range of deep-learning models for sequence labelling. A

more detailed overview of GROBID can be found in Ref. [385].

Unlike the other aforementioned tools, GROBID is specifically designed for PDFs of scien-

tific literature. In Ref. [377], a comparison of these tools and some not mentioned is con-

cluded. These tools were evaluated on randomly selected scientific articles and compared on

four criteria: paragraph boundaries, identification of text and non-body text, reading order and

word boundary. In general, GROBID was found to outperform PDFMiner (an earlier version

of PDFMiner.six) and pdftotext (PyPDF2 was not studied). Ref. [386] compares GROBID,

Pdfminer.six and pdftotext on sentence tokenisation and returning correct sentences on text

from the Electric Double-Layer Capacitor Domain. GROBID was found to perform the best.

PDFMiner.six and GROBID are able to perform layout-aware text extraction [380, 382], unlike

pdftotext they claim to be able to identify the main body of text [378]. This would allow

non-relevant parts of the documents (noise) such as headers, footers, and page numbers to

be removed. For smaller datasets, it is important that data is of high quality and noise is

reduced. Therefore this makes PDFMiner.six and GROBID the most appropriate choices of

the text-extraction tools reviewed.
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Initial analysis from the literature suggests GROBID may be the most appropriate choice due to

its better overall performance. However, it should be noted the performance of text-extraction

algorithms depends significantly on the text they are tested on. Therefore, to obtain an idea

of which of the algorithms are the most appropriate, a comparison should be conducted on the

conference proceedings from the energetic-materials domain. Conference proceedings in this

domain present additional challenges, such as the handling of parsing of equations, chemical

diagrams, tables, and chemical names, which include superscripts and subscripts.

7.1.2 Tokenising text

The second step in preprocessing the documents is to perform tokenisation. This step is signif-

icantly more complex for text with chemical names and symbols. Tasks relevant for developing

an ontology, such as named entity recognition, are sensitive to sentence tokenisation errors

[376].

Sentence tokenisation can be defined as the identification of sentences and their boundaries

in text. Traditional approaches to sentence tokenisation are rule-based; e.g. for English texts,

the most simplistic approach is to identify full stops and capital letters to identify sentence

tokens [376]. It is of note that such approaches are inappropriate for character-based lan-

guages. Furthermore, as highlighted in Ref. [376], full stops are not always indicators of the

end of a sentence, particularly in chemistry-based conference proceedings. Full stops can ap-

pear in initials, as decimals, in-text citations, acronyms and most notably in chemical en-

tities (e.g. C34H24N6O14S4.4Na, 5,10,11,16,17-pentaisocyano-3,6,9,12,15,18-hexazatetracyclo

[12.4.0.02,7.08,13]octadeca-1(14),2, 4,6,8(13),9,11,15,17-nonaene-4-carbonitrile). As a result,

rule-based tokenizers tend to use hand-crafted lists to identify abbreviations.

Recent tools for sentence tokenisation use ML algorithms. Supervised approaches are trained

on text annotated with sentence boundaries. Currently, there is no such dataset available

for the energetic-materials domain. Most supervised tools for sentence tokenisation used in

the chemical domain use tools trained on either general domain corpora or the resource-rich

biomedical domain [376]. For instance, the JULIE sentence tokeniser [387] is a widely used

JAVA-based tool trained on a biomedical corpus that has been used in the chemical domain

[388].
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Unsupervised approaches are trained on raw text. The widely used NLTK sentence tokeniser

uses the Punkt algorithm for sentence tokenisation [389]. The Punkt algorithm is a language-

independent approach that assumes that errors from sentence tokenisation can be mainly elimi-

nated by identifying abbreviations. The algorithm learns to identify abbreviations, collocations

(words that commonly occur together) and sentence starters in an unsupervised fashion with

the aim of identifying sentence boundaries. The algorithm tends to perform best when trained

on the target domain [390]. The NLTK sentence tokeniser is trained on a non-scientific corpus.

In Chapter 4, the NLTK tokeniser was used on text in the energetic-materials domain and

struggled in the presence of chemical entities and abbreviations. The Punkt algorithm is ideal

for applications in the chemical domain, as it is unsupervised, and there are large quantities of

unlabelled data but few examples of labelled corpora.

ChemDataExtractor is a recently developed Python toolkit designed for preprocessing chemical

documents [247]. This sentence tokeniser is based on the Punkt algorithm trained on text from

conference proceedings published in the Royal American Chemistry Society.

Word tokenisation is the process of dividing sentences into their constituent components (words,

punctuation and numbers) and is a critical step in a preprocessing pipeline that relies on the

identification of word breaks. As observed in Section 4.3.1, word tokenisation can significantly

impact downstream tasks. In general, word tokenisers in the English domain rely on identifying

punctuation marks and whitespace. This is more complex for chemistry corpora as tokenisers

need to be adapted to cope with chemical or mathematical formulae. Chemical entities can

contain hyphens, whitespace, punctuation marks, e.g. brackets, super- and sub-scripts and

numbers. These features can confuse traditional English tokenisers, making them insufficient

for use on chemical text [391]. Furthermore, in scientific fields, it is not uncommon for entities

to have complex naming structures or nested terms. Traditional tokenisers will not be able to

identify the boundaries of these entities correctly.

Popular chemical tokenisers include the JAVA-based tools OSCAR4 [392], and ChemTok [393].

These tools rely on manually-defined rules to identify word boundaries. ChemDataExtractor

is a Python package that contains a word tokeniser adapted to the chemical domain. The base

of the tokeniser is similar to the widely used English tokeniser, the Penn Treebank tokeniser

[394]. The ChemDataExtractor tokeniser is adapted to the chemical domain by splitting most

tokens on the basis of whitespace and punctuation characters except for brackets, and colons
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[247]. The tokeniser also implements several custom rules.

Most of the aforementioned tools are JAVA-based. Given the pipeline presented in this chapter

will be developed in Python, ChemDataExtractor will be used.

7.1.3 Normalising text

Text normalisation removes inconsistencies in the text that may later influence the performance

of downstream tasks [247]. Standard text-normalisation procedures include correcting human-

based errors, for instance, spelling errors or Homoglyph substitution. This is when a character

or symbol is mistaken for a similar looking character/symbol, e.g. ‘1’ for ‘l’ or ‘0’ for ‘o’ [376].

As noted in Section 3.6, the energetic-materials domain requires some additional steps for nor-

malisation. Acronyms and abbreviations are frequently used in the energetic-materials domain.

Mapping terms to their variants will often reduce the size of a numeric representation of the text

and will result in improved semantic representations. Abbreviations often have domain-specific

meanings; therefore, exploring domain-specific solutions makes sense. Existing approaches to

abbreviation mapping include the use of hand-crafted domain-specific lists. The development

of these lists is a time-exhaustive and expensive solution. It is also noted that, even within the

same domains, the same abbreviation can denote different things. For instance, the acronym

‘IR’ can be used to denote infra-red or the chemical name ‘Iridium’.

ChemDataExtractor has a tool for detecting definitions of chemical abbreviations. This tool is

based upon the algorithm described in Ref. [395]. The algorithm aims to identify abbreviations

by searching for an unabbreviated word followed by an abbreviated word or an abbreviated

word followed by unabbreviated word. On identification of one of these pairs, the algorithm

examines the word pair. For instance, an unabbreviated word is only considered valid if it

consists of a maximum of two words and its length is between 2-10 characters. Full details of

the algorithm can be found in Ref. [395]. This simple algorithm was developed for identifying

acronyms in biomedical text and claims to obtain a precision of 92% on a corpus of MEDLINE

articles. No other tools for the chemistry domain were found.

Chemical entities can appear in the text in various forms, for instance: molecular formulae,

IUPAC names, Canonical SMILES or even CAS numbers. However, as with abbreviations, these
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chemical entities must be mapped to a single format. In order to do this, chemical entities in

the text must first be identified. This task is referred to as chemical entity recognition (CER).

Refs. [376, 396] provide a thorough overview of CER. Approaches to entity recognition have

been discussed in Section 3.3.1. CER approaches tend to be either dictionary-based, ML-based

or statistical. To develop and test such a technique requires resources that do not currently

exist in the energetic-materials domain, e.g. a labelled corpus or a parsable dictionary. The

best-performing approaches to CER tend to combine dictionary and rule-based methods with

ML-techniques [247]. CER is a research area in its own right. Given the purpose of this

pipeline is to preprocess text for a range of different downstream tasks, only preexisting tools

are considered.

There are a range of different off-the-shelf CER-tools, to name a few: BANNER-CHEMDNER

[397], ChemEx [398], OCSCAR4, LeadMine [399], chemtagger [400] and Chemspot [401]. The

scope of the investigation is limited to open-source tools that can be implemented in Python.

This leads to the ChemDataExtractor package. The ChemDataExtractor package is an off-the-

shelf CER Python package. It has a hybrid approach combining a CRF-based recogniser with

a dictionary-based recogniser that uses a wordlist from the ‘Jochem’ chemical dictionary and

an automatic filtering process based on the method used in LeadMine [399].

In Ref. [239], the package ChemDataExtractor was used to identify chemical names in the text.

Whilst the paper makes no specific reference to how well the algorithm performed, it appears to

allow successful implementation of downstream tasks in the energetics domain. In Ref. [402],

this tool was evaluated against a range of other off-the-shelf NER-tools and was found to

outperform the tools on biomedical text with a precision of 88%. In Ref. [247], Chemmtagger

achieved an F score2 of 88% on the CHEMDNER corpus.

Common errors with CER systems include sensitivity to spelling and tokenisation errors [403,

401]. In addition, the CER systems can be confused by identifying part of a chemical entity

instead of the complete chemical entity [376]. Qualifiers are a cause of this; for instance,

‘Ammonia Aqueous’ could be misidentified as ‘Ammonia’.

Once chemical entities have been identified, they must be mapped to a consistent form. This

is typically done through the use of a dictionary or gazetteer3. Ref. [376] provides a list of

2This metric was introduced in Eq. (3.6).
3A gazetteer is a list of entities and their synonyms.
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chemical gazetteers, most of which are relevant to the biomedical domain. Chemspider [404] is a

popular chemical-structure database that enables retrieval of chemical properties and associated

synonyms; it also has a Python interface [405]. PubChem [406] is the world’s most extensive

dynamic collection of freely accessible chemical information; like Chemspider, PubChem enables

retrieval of synonyms and molecular formulae and has a Python interface [407]. There is no

currently open-source database specific to the energetic-materials domain. One possible error

with dictionary lookup is that the dictionary may not contain the chemical entity. This error

seems unlikely if the dictionary method is comprehensive enough.

7.2 Methodology

The literature review in the previous section identified the following key challenges: layout-

aware text extraction and parsing of chemical names. In addition, tools to overcome these

challenges were identified. This section presents the methodology used to develop a preprocess-

ing pipeline catered for preprocessing small datasets of conference proceedings in the energetic-

materials domain. Figure 7.1 gives an overview of the preprocessing pipeline.

Figure 7.1: Overview of the proposed preprocessing pipeline, consisting of three main stages:
text extraction, tokenisation and text normalisation.
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The pipeline can be divided into three parts: text extraction, tokenisation and normalisation.

Sections 7.2.1 - 7.2.3 will discuss details of each of the aforementioned parts of the pipeline.

Following this, methods to evaluate the performance of the pipeline will be discussed in Section

7.2.4.

7.2.1 Text extraction from PDFs

The literature review in Section 7.1.1 determined GROBID was the most appropriate tool

of those reviewed for extracting text from PDFs of conference proceedings in the energetic-

materials domain. However, it was recommended that since no direct comparison between

text-extraction tools has been conducted on energetic-materials text in the literature, these

tools should be tested to determine the best-performing tool. Therefore, PDFMiner.six and

GROBID were tested on a small sample of randomly selected NTREM and HEMCE conference

proceedings. An evaluation was conducted using qualitative analysis with the criteria (1)

extraction of full text without headers, footers and page numbers and (2) correct parsing of

chemical names in mind.

PDFMiner.six did not perform semantic-role detection effectively - the package failed to dis-

tinguish between the body of the text, headers, footers, references and page numbers. For

the NTREM conference proceedings, it was found that PDFMiner.six failed to extract large

quantities of the main body of the text for some documents. This was not observed for the

HEMCE conference proceedings. PDFMiner.six effectively parsed most chemical names but

added unnecessary whitespace between chemical names with hyphens.

The output of GROBID’s text-extraction tool is a TEI file. Since the desired output format is

raw text, this file must be parsed. GROBID has a module for parsing TEI files; however, this

module did not perform well with the conference proceedings used in this study, sometimes

failing to return the full text. It was therefore decided to use the Python package XML.ETree

to write a custom script for parsing the TEI files. It was found that a straightforward script

could parse both HEMCE and NTREM conference proceedings effectively. Using a custom

script meant the abstract, title, author keywords and the main body of text could be effectively

extracted separately.

The GROBID tool effectively performed semantic-role detection, it returned the body of the
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text without headers, footers, and page numbers. However, the GROBID tool struggled to

parse super- and sub-scripts, adding unnecessary whitespace between the tokens resulting in

unusually separated chemical names4. This seperation is confusing to word tokenisers. For

instance, ‘H2O’ became ‘H 2 O’. This error could be corrected at the tokenization stage, whereas

the error of leaving out large quantities of text associated with the PDFMiner.six tool cannot

be resolved. It was therefore decided to use GROBID with a custom script for parsing the

TEI file for extraction of text from the PDFs. Figure and table captions were included in the

extracted text as they were found to contain semantically-meaningful information.

The output of this stage of the preprocessing pipeline is the raw text of the main body of the

articles, abstracts and author-selected keywords. This was stored in a Pandas data frame5.

7.2.2 Chemical entity recognition and tokenisation

The next step in the pipeline is to perform tokenisation of the text; however, as mentioned in

Section 7.2.1 incorrect parsing of super- and sub-scripts results in errors in parsing chemical

names. This error needs to be resolved at the tokenisation stage. To do this, chemical entities

in the text need to be identified.

The approach used in Ref. [239] to identify chemical entities in the text was adapted to this

pipeline. Ref. [239] first used ChemDataExtractor to identify chemical entities and then verified

the identified chemical entity was, in fact, a chemical entity by performing a PubChem search

using its Python interface.

To develop the pipeline in this chapter, first ChemDataExtractor’s chemical-entity detector

was run on the extracted text to obtain a list of chemical entities in each paper. This method

was found to have high recall of chemical entities but low precision. Non-chemical entities were

frequently incorrectly identified as chemical entities, e.g. it incorrectly identified ‘cook-off’ and

‘shock energy’ as chemical entities. The chemical-entity detector identified a total of 33,814

unique chemical entities in a corpus consisting of 1160 NTREM papers.

To verify if the chemical entities were in fact chemical entities, a search of PubChem using

its Python interface was performed. For each element in the list, the following process was

4This is mentioned as an open issue on the Github of GROBID.
5This stage of the preprocessing pipeline is noticeably different from the pipeline in Ref. [239].
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followed: first, a compound search was performed by name; if no result was yielded, then the

search was repeated by formula, then CID (compound ID), IUPAC name and finally SMILES.

If this yielded no result, a substance search was performed first by name, then by formula,

SID (substance ID), IUPAC name, and finally SMILES. This iterative approach is very time

consuming and is only suitable for small datasets. If a chemical entity was verified, its synonyms

and molecular formula were identified using the PubChem Python interface and were stored in

a local dictionary. This analysis reduced the number of unique identified chemical entities that

had not been verified from 33,814 to 26,168.

Qualitative analysis was then conducted on the 26,168 unverified chemical entities to identify

why PubChem did not identify them as chemical entities. The primary reason was Chem-

DataExtractor incorrectly identifying names, formulae etc. as chemical entities. In addition,

many possible entities had incorrect insertion of whitespace, mainly in the form of double

whitespace. Therefore, potential entities in the list with double or triple whitespace were iden-

tified and had the excess whitespace removed before rerunning the Pubchem searches described

above. Unverified entities with hyphens in had the hyphens removed and the PubChem searches

were rerun. This was done assuming that chemical names with hyphens such as ‘C-H’ would

have already been identified in the previous steps of the pipeline. This analysis reduced the

number of identified chemical entities not verified from 26,168 to 22,001.

Another cause of PubChem’s inability to identify chemical entities included typos in chemical

names. Although this could be resolved with a custom dictionary of chemical elements and

common misspellings, developing such a list would be very time consuming. Furthermore,

PubChem did not identify some valid chemical names as they are not in the PubChem database

e.g. ‘2-tert-butylnitroamino-4,6-bis(trinitromethyl)-1,3,5-triazine’.

For each paper, a dictionary containing chemical entities as they appear in the text and their

corrected form (e.g. without whitespace) is used to remove parsing errors introduced by parsing

via GROBID. In addition, the whole text is searched to remove double and triple spaces.

Finally, sentence and word tokenisation is performed using ChemDataExtractor chemically-

aware tokenisers.

The output of this part of the text tokenisation pipeline is an updated data frame containing

the tokenised full text, abstract and author keywords and a chemical dictionary containing all

identified chemical entities in the text, their synonyms and chemical formulae.
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7.2.3 Text normalisation

The final stage of the preprocessing pipeline is to normalise the text.

First, in-text citations were removed. Then, the issue identified in Section 7.1.3, whereby

CER systems can be confused by identifying part of a chemical entity instead of the entire

chemical entity, is addressed. All combinations of consecutive tokens in the range of 2 to 6 were

merged into a single token. i.e. consider the tokenised sentence [‘Hydrogen’, ‘-peroxide’, ‘was’,

‘added’]. In this case, the following merged tokens would be generated: ‘Hydrogen-peroxide’,

‘-peroxidewas’, ‘wasadded’, ‘Hydrogen-peroxidewas’ etc. If the merged token was found to have

an exact match in the chemical dictionary, then the single tokens were replaced with the merged

token in the text. This also resolves errors in CER associated with tokenisation. This may

result in an error in rare instances, but the probability of consecutive chemical names being

incorrectly merged to form another chemical name seems rare given the presence of punctuation.

Following this, every chemical entity in the text was mapped to a single form, using the chemical

dictionary generated in Section 7.2.2. It is noted this meant that qualifiers adjacent to chemical

elements were ignored. For instance, ‘titanium powder’ was mapped to ‘titanium’.

A general search in the text was then performed, whereby any identified tokens in the dictionary

were mapped to the root form of the chemical entity. It was quickly realised, however, that

this approach meant chemical names with chemical symbols that are also common words in

the English language, such as arsenic (As) and indium (In), proved problematic. This step

meant commonly occurring English words were mapped to chemical elements. In addition, it

also meant acronyms with the same form as chemical symbols were also incorrectly mapped

to chemical entities. It was, therefore, decided to add a caveat to this step whereby this step

only took place if the word being considered was not in a custom stopword list. The custom

stopword list was created by combining Genism’s English stopword list [408] with punctuation

marks, numbers, percentage signs and common phrases, e.g. ‘fig.’, ‘table’, ‘No.’.

As mentioned in Section 7.1.3, ChemDataExtractor does have a function for identifying acronyms

in the text. However, manual inspection of this function on a small subset of documents found

it was very imprecise. It would often identify acronyms not present in the text. For instance,

identifying ‘NOZZLE’ as an acronym for the phrase ‘the rocket propellant was added to’.

Therefore, it was determined that this function would not be used in the pipeline.
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Different text-representation methods require different techniques for downstream processing.

For instance, BERT requires minimal processing and contains an in-built tokeniser. Therefore,

the data frame contained two versions of the processed text: a detokenised version (obtained by

performing detokenising using NLTK’s Treebank dentokenisers [311] suitable for BERT, and a

tokenised version with the stopwords removed for alternative feature-representation methods.

7.2.4 Pipeline evaluation

The purpose of this pipeline is to extract text from conference proceedings to allow for down-

stream NLP tasks such as classification. The ultimate evaluation of the pipeline’s performance

is if it allows for downstream tasks to be completed effectively. This will be tested in Chapters

8 and 9. Nevertheless, in this subsection, a method used to evaluate elements of the pipeline’s

performance on two small datasets will be detailed.

The two datasets used to evaluate the performance of the pipeline consists of 10 randomly-

selected papers from each of the HEMCE and NTREM proceedings. These are henceforth

referred as the HEMCE and NTREM test sets. The papers in each test set vary in length

from 2 to 10 pages. Evaluation of the pipeline will be conducted after the normalisation stage

before the text has been detokenised/has stopwords removed. Conducting an in-depth analysis

using small sample sizes is an obvious limitation of this method. However, a full-scale in-depth

analysis of the performance of the pipeline would require a large annotated corpus. No such

resource exists for the energetic-materials domain.

The pipeline will be evaluated against its ability to return correct sentences and correctly

identify chemical entities in the text. For the former criteria, the average percentage of correct

sentences returned by the pipeline S%A∩B and the average percentage of incorrect sentences

retrieved, S%A∩B′ are introduced as evaluation metrics.

The metric S%A∩B is defined as

S%A∩B =
1

N

N∑
i=1

Ai ∩Bi

Bi

, (7.1)

where Bi is the set of ground-truth sentences6 in the main text and abstract for document i, Ai

6The actual sentences in the PDF.
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is the set of sentences returned by the pipeline, therefore Ai ∩Bi is the total number of correct

sentences retrieved by the pipeline in document i, and N is the total number of documents.

The metric S%A∩B′ is defined as

S%A∩B′ =
1

N

N∑
i=1

Ai ∩B′
i

Ai

, (7.2)

where Ai ∩ B′
i is the set of total number of incorrect sentences retrieved in document i, i.e.

those found in Ai but not Bi.

To evaluate the performance of the pipeline against its ability to identify chemical entities in the

text correctly, the following metric is introduced: the average percentage of chemical entities

returned by the pipeline CE%A∩B across a set of N documents, i.e.

CE%A∩B =
1

N

N∑
i=1

CEAi∩Bi

CEBi

, (7.3)

where CEBi
is the set of the ground-truth chemical entities in the main text and abstract of

document i, and CEAi∩Bi
is the set of correct chemical entities retrieved in document i7.

The average percentage of unique chemical entities returned by the pipeline correctly CE%A∗∩B∗

across a set of N documents is defined as

CE%A∗∩B∗ =
1

N

N∑
i=1

CEA∗i∩B∗i
CEB∗i

, (7.4)

where CEB∗i is the set of the ground-truth chemical entities in the main text and abstract

of document i. In this set, each element can appear only once. The set of incorrect chemical

entities retrieved in document i is denoted by CEA∗i∩B∗i . This is the number of unique chemical

entities in the PDF also found in the preprocessed text.

To summarise, CE%A∩B is a measure of how well the pipeline performs at identifying the fre-

quency of chemical entities, which is important for some text-representation methods, whereas

CE%A∗∩B∗ is a measure of how well the pipeline performs at identifying different types of

chemical entities.

7This is defined as the number of chemical entities in the PDF that are also found in the preprocessed text.
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7.3 Evaluation and discussion of pipeline performance

In this section, general observations on the performance of the pipeline described in Section 7.2

will be discussed then a more detailed evaluation on two test sets will be conducted.

The developed pipeline did not handle units in the text consistently. For example, across the

NTREM corpus, several different versions of ‘degrees Celsius’ were seen: (‘◦’ ‘C’), (‘◦C’), (‘◦

C’), (‘◦’ ‘Celsius’), (‘◦ Celsius’), (‘◦Celsius’), (‘θ C’). Future work to correct this depends on the

downstream task. If units are deemed to be of little significance to the downstream task, it is

recommended to remove units from the text using a custom stopword list. On the other hand,

if the units are deemed to be relevant to the downstream task, a dictionary-based approach

could be used to normalise the units in the text.

Furthermore, it is common practice in the energetic-materials domain to label complex chemical

names. For example, in one article, chemical entities were referred to as compounds A, B, C,

etc. The pipeline developed in this chapter could not map the labels to the chemical names.

One solution would be to create a dictionary mapping the label to the chemical name for each

paper. However, developing an algorithm to identify this mapping for each paper would be

error prone as there is no set convention for labelling. Moreover, developing such a dictionary

by hand would be very time consuming.

A further observation is that qualifiers in front of chemical names were often either not recog-

nised as part of the chemical name or when recognised as part of the chemical name, were

mapped to the base chemical entity. Whether or not this is positive depends on the down-

stream task/representation method. For example, in some applications distinguishing between

‘Titanium’ and ‘Titanium powder’ may not be helpful to the overall goal.

Also, the HEMCE proceedings had a more significant variation in formatting than the NTREM

proceedings as they included abstracts for papers that did not submit in time and, in some cases,

incomplete papers. These incomplete papers and abstracts were not subject to peer review

and, as a result, some were poorly formatted; for instance, the font changing style and size

mid sentence. There were also more spelling and typographical errors. Despite the formatting

issues, the developed pipeline successfully extracted text from the PDFs of the proceedings,

even in the aforementioned instances of poor formatting. However, the typographical and

spelling errors did result in errors in the tokenisation of sentences and words.
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For each of the HEMCE and NTREM test sets, each sentence in the PDF of each document

was copied and pasted into a Microsoft Excel table. The chemical entities in each sentence were

recorded along with the frequency of occurrence in the sentence. This process was then repeated

using the text generated by the pipeline. Using these values, metrics given in Eqs. (7.1)-(7.4)

were calculated for each test set. The results are summarised in Table 7.1.

Test set S%A∩B S%A′∩B CE%A∩B CE%A∗∩B∗

NTREM 97 % 1% 85% 93%
HEMCE 97% 1% 88% 96%

Table 7.1: Average percentage of correct sentences returned by the pipeline (S%A∩B), incorrect
sentences retrieved (S%A′∩B), chemical entities returned by the pipeline (CE%A∩B), and unique
chemical entities returned by the pipeline (CE%A∗∩B∗) for the HEMCE and NTREM test sets.

In Table 7.1 the S%A∩B column shows a high percentage of correctly returned sentences by

the algorithm for both test sets (97%). A manual inspection of the documents identified the

causes of error. These causes of error included diagrams of chemical structures containing text

confusing the GROBID parser. This led to some sentences not being returned. For instance,

in Ref. [409], there are several large diagrams of chemical structures which do not have figure

captions. GROBID mistakenly parsed some of the body of the text surrounding these diagrams

as either the figure caption or part of the headers/footers. Whilst the pipeline did return figure

captions, it deliberately filtered out headers and footers. This led to some of the main body of

text not being returned by the pipeline.

Another cause of error was generated by roman numerals. Roman numerals are used in chemical

text to label chemical entities, e.g. referring to a chemical entity as compound V or even in

chemical names. For instance, methyl carbanilide is sometimes referred to as Acardite II.

In some instances, the presence of roman numerals caused the sentence tokeniser to insert

a sentence break incorrectly. This resulted in some sentences not being returned correctly.

Furthermore, typographical errors whereby an extra full stop was inserted by mistake (e.g.

‘.One’ instead of ‘one’) also resulted in incorrect sentences being returned.

Table 7.1 shows the S%A∩B′ values for both test sets are very low (1%). This positive result

indicates the pipeline can successfully perform semantic-role labelling. The only incorrect

sentences that were returned were footers found in some of the NTREM 2007 proceedings after

the presence of chemical-structure diagrams. The pipeline performed equally well on both

journal types indicating it is adaptable to different styles and formatting.
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In addition, Table 7.1 shows CE%A∗∩B∗ values of 93% and 96% were obtained for NTREM

and HEMCE test sets respectively. This indicates the pipeline performed better at identifying

different chemical entities for the HEMCE test set. Manual inspection revealed most errors

occurred due to incorrect tokenisation, which could not be resolved as the chemical entities did

not appear in the PubChem database. The papers included in the test set for NTREM had

a higher number of different chemical entities that were not found in the PubChem database

than those in the HEMCE test set hence resulting in a lower value of CE%A∗∩B∗.

CE%A∩B values of 85% and 88% were obtained for NTREM and HEMCE test sets, respectively.

These values are similar to those found in the literature [402, 247]. The smaller value obtained

for the NTREM test set is expected given the lower value of CE%A∗∩B∗ for NTREM since

these two metrics are related. If a particular chemical entity is not identified as appearing once

in the text, it will have a low frequency of identified occurrence. Errors included misspelling

chemical names, e.g. 1-nitronphtalene, and the chemical entities in the text not appearing in

PubChem. If PubChem does not recognise a chemical entity, additional preprocessing steps,

such as correcting tokenisation errors, are not applied. This may result in the entity not

appearing in the correct form, thus lowering the value of CE%A∩B. To increase the performance

of the pipeline, spelling errors could be corrected using chemistry-based spell checkers.

There are a few noticeable design limitations of the pipeline that should be mentioned. This

pipeline was designed to only process PDFs of conference papers and focused on extracting the

main body of the text only. Information in tables and figures is ignored. Both GROBID [382]

and ChemDataExtractor [247] have tools for extracting data from tables; these tools could be

used to increase the performance and capabilities of the pipeline. In addition, Optical Character

Recognition (OCR) tools such as Tesseract [410] could be used to transform text in figures into

raw text. This pipeline can be easily expanded to extract text from other PDF documents such

as patents by writing additional scripts to parse the XML file produced by GROBID correctly.

7.4 Conclusion

This chapter aimed to identify the challenges that preprocessing of text in the energetic-

materials domain presents and develop a novel general-purpose preprocessing pipeline for a

small dataset of conference proceedings in the energetic-materials domain.
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In Section 7.1, a review of the literature surrounding the development of a preprocessing pipeline

for the energetic-materials domain was conducted. In Section 7.1.1, challenges associated with

extracting text from PDFs of journal articles were identified. It was determined that text

extraction in the energetic-materials domain poses additional challenges due to chemical entities

and inline formulae. Therefore, tools for extracting text from PDFs were reviewed. This initial

analysis determined that GROBID, a layout-aware tool designed to extract text from scientific

literature PDFs, would be the most appropriate tool for developing a preprocessing pipeline

in the energetic-materials domain. However, since the performance of text-extraction tools

depends on the text and no in-domain comparison had previously been completed, a comparison

of GROBID and another popular tool (PDF.Miner.six) was recommended.

In Section 7.1.2, it was identified that tokenisation of extracted text in the energetic-materials

domain is problematic due to chemical names and symbols and, as a result, traditional rule-

based tokenisers do not suffice. A range of sentence and word tokenisers suitable for chemical

tokenisation were discussed, but most of the tools were JAVA based. Given this pipeline was

to be developed in Python, the only Python-based tool (ChemDataExtractor) was identified

as the most appropriate of these tools.

Section 7.1.3 discussed issues concerning normalising text. Mapping abbreviations to their

unabbreviated form and mapping chemical entities to the same form is an essential step in text

normalisation for text in the energetic-materials domain. The ChemDataExtractor package

was found to be a tool identified as useful for this.

Section 7.2 gave a detailed description of the method used to produce the preprocessing

pipeline. First, in Section 7.2.1, a qualitative comparison of the performance of GROBID

and PDFMiner.six on a small sample of randomly selected NTREM and HEMCE conference

proceedings determined that GROBID performed the best at text extraction. However, it was

decided to create a custom script to parse the TEI files outputted by GROBID instead of using

GROBID’s in-built module. Second, in Section 7.2.2, the techniques for chemical entity recogni-

tion and tokenisation were described. It was identified that the ChemDataExtractor’s acronym

tool did not perform well on text in this domain. It was, therefore, not included in the proposed

pipeline. Third, in Section 7.2.3, the techniques for text normalisation were described. Finally,

in Section 7.2.4, a description of the techniques used to evaluate the pipeline were given. A

series of four evaluation metrics were introduced: the average percentage of correct sentences
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returned by the pipeline S%A∩B, the average percentage of incorrect sentences retrieved S%A′∩B,

the average percentage of chemical entities returned by the pipeline CE%A∩B, and the average

percentage of unique chemical entities returned by the pipeline correctly CE%A∗∩B∗.

Section 7.3 presented the performance of the developed pipeline on a small subset of 20 hand-

annotated papers from NTREM and HEMCE conference proceedings. Overall, the prepro-

cessing pipeline appeared to perform well on both proceedings. However, some issues were

identified, e.g. some chemical entities were not in the PubChem database. This is problem-

atic as the preprocessing pipeline relies on identifying the chemical entities using PubChem to

normalise the text and resolve tokenisation errors. A suggestion for further work would be to

investigate using more advanced chemical entity detection methods for implementation in this

pipeline.

Another identified issue is the inability to map abbreviations to their unabbreviated form and

the developed pipeline’s mishandling of units. Further work should aim to correct this by

developing hand-curated dictionaries. Spelling errors were also a cause of error. This could

be resolved through the use of chemistry-aware spell checkers. This pipeline could be easily

expanded to extract text from other useful PDF documents such as patents by writing additional

scripts to parse the xml file produced by GROBID correctly.

To conclude, this chapter introduced a general-purpose preprocessing pipeline for conference

proceedings in the energetic-materials domain. Evaluation of the pipeline on a small dataset

showed the pipeline performed well on both HEMCE and NTREM proceedings. Whilst the

pipeline’s performance appears to be promising, the developed pipeline’s usefulness will be ulti-

mately determined on its ability to facilitate downstream tasks. This will be examined further

in Chapters 8 and 9 whereby the pipeline will be used to facilitate document classification.



Chapter 8

Predicting the Technology Readiness

Level (TRL) of journal articles

As discussed in Chapter 1, the underlying theme of this thesis is examining the limitations of

NLP tools in small-data environments. Chapters 3 and 4 discussed the approaches to various

NLP tasks, such as text summarisation in the data-limited environment of energetic materials.

Supervised algorithms were identified as high-performance methods but were ruled out as they

require large labelled datasets. As mentioned in Chapter 4, training supervised algorithms on

small datasets can lead to overfitting, particularly when the dataset’s number of input features

(dimensions) is greater than the number of training samples [296], as is often the case with text

data. Despite small sample sizes being common in a range of different domains, there are a

limited number of papers on the topic [411].

In this chapter, a preliminary study will compare the use of supervised and unsupervised tech-

niques for document classification on a small dataset of NTREM journal articles. The work in

this chapter will also evaluate the usefulness of the preprocessing pipeline developed in Chap-

ter 7 by examining its ability to facilitate document classification. The desired outcome of this

chapter is to identify the problems that document classification in a data-limited environment

presents and summarise a series of guidelines to inform future studies. This study is novel as

it is the first study into the NLP-based classification of documents by the inherently subjective

concept of Technology Readiness Level (TRL).

TRLs assign a numerical value to the maturity of a technology, allowing for comparison of
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maturity across a range of different technologies [412]. TRLs allow for effective communication

and understanding between researchers and policymakers [413] and are used in defence to assist

decision making in the development and usage of a technology [414]. Using NLP to classify

scientific journal articles by TRL is a document classification problem of interest to private

industry and government. The UK MoD’s definition of TRLs is displayed in Table 8.1 [415].

TRL MoD Definition

1 Basic principles observed and reported
2 Technology concept and/or application formulated
3 Analytical and experimental critical function and/or

characteristic proof of concept
4 Technology basic validation in a laboratory environment
5 Technology basic validation in a relevant environment
6 Technology model or prototype demonstration in a rel-

evant environment
7 Technology prototype demonstration in an operational

environment
8 Actual technology completed and qualified through test

and demonstration
9 Actual technology qualified through successful mission

operations

Table 8.1: UK MoD’s definition of Technology Readiness Levels (TRLs) [415]

Chapter achievements:

• Examination of a range of preexisting tools for their suitability for document classification

for small datasets.

• Established a series of recommendations applicable to future studies classifying long text

in data-limited environments.

• The initial results of this study were published in NTREM 2022 conference proceedings

[416].

• Demonstration of the usefulness of the Chapter 7 preprocessing pipeline.

The content of this chapter largely follows that of my published work in the proceedings of the

2022 conference on New Trends in Research of Energetic Materials (NTREM) [416].
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In Section 8.1, an overview of the relevant theoretical background behind developing a text

classification pipeline in a data-limited environment will be given. In Section 8.2, a summary

of the methodology used in this study is presented. In Section 8.3, the results are presented

and discussed. Finally, in Section 8.4 the key findings are discussed and summarised.

8.1 Background

Document classification is the process of sorting documents into categories based on the doc-

ument’s content [314]. A document-classification pipeline consists of dataset development,

feature representation, model development, model validation and model evaluation. This sec-

tion presents an overview of the theoretical information relevant to developing a document-

classification pipeline in a data-limited environment. In Section 8.1.1, feature representation

and transfer learning will be discussed. In Section 8.1.2, classification algorithms will be re-

viewed and Section 8.1.3 will review model validation for small datasets. Common evaluation

metrics for classification will be introduced in Section 8.1.4.

8.1.1 Feature representation and transfer learning

Feature representation for classification is the process of converting text into a numerical rep-

resentation. In Section 3.3.1, traditional vector representations of words and documents using

Term Frequency - Inverse Document Frequency (TF-IDF) (Eq. (3.3)) were introduced. Previ-

ous work in Ref. [417] has found that using bigram representations to generate TF-IDF vectors

has increased performance on downstream tasks such as classification.

Briefly introduced in Chapters 3 and 4, transfer learning is the process of using knowledge learnt

on a previous task to improve the learning of a new somewhat-related task [261]. Pretrained

language models1 such as Bidirectional Encoder Representations from Transformers (BERT)

[129] are an effective tool for transfer learning in NLP.

BERT is a transformer-based network that has achieved state-of-the-art performance on various

downstream NLP tasks such as text classification and entity recognition. BERT is pretrained

1See Section 3.2 for an overview of language models.
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on a large corpus. The original ‘BERT-base’ model was trained on 3.3 billion words in a self-

supervised fashion. Contextualised representations of text learnt using BERT capture linguistic

knowledge, making them ideal for transfer learning on downstream tasks [418]. Applying BERT

to downstream tasks has achieved good results, even for small datasets, and reduces the risk of

overfitting [419]. There are two strategies for applying pretrained language representations to

downstream tasks: feature-based and finetuning [129].

Finetuning is training a pretrained model on a downstream task. A language model is initialised

with the pretrained model’s parameters, and all the parameters are fine-tuned using a labelled

dataset [420]. This approach introduces minimal task-specific parameters, thus reducing the

risk of overfitting whilst ensuring the nuances of the target dataset are learnt. Finetuning deep

pretrained models has significantly improved state-of-the-art performance on NLP tasks, and

BERT is one of the most effective models for this process [421].

Feature-based transfer learning uses a pretrained language model to generate numerical repre-

sentations of the text and use the representations in task-specific architectures [129]. Sentence

Transformers (S-BERT) is a modification of a pretrained BERT network that uses Siamese and

triplet network structures to obtain semantically meaningful sentence/paragraph embeddings

[319]. S-BERT offers a range of pretrained models that can be used to generate paragraph

embeddings [422].

8.1.2 Classification algorithms

Machine-learning (ML) classification algorithms can be divided into three categories: super-

vised, unsupervised and semi-supervised. Supervised algorithms use labelled training data,

where each input has a corresponding output, to build a model that can predict an output

from an input. Unsupervised approaches find patterns in unlabelled data to identify groups of

similar samples. Typically, unsupervised approaches do not give a class label. Semi-supervised

approaches combine a small portion of labelled data and lots of unlabelled data. In this study,

supervised and unsupervised approaches are considered only as these are easy to implement in

Python. Semi-supervised approaches to text classification can be found in Refs. [423, 424].
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Supervised approaches

There are a range of supervised classification models that are easily implemented using the

Python package scikit-learn [425]. This section provides an overview of these approaches.

Logistic regression

The logistic regression classifier is a simple linear discriminative classifier effective at modelling

linearly-separable classes. Discriminative classifiers learn which input features are the most ef-

fective for distinguishing between classes. Logistic regression is considered the ‘go-to’ algorithm

for classification problems.

The logistic regression model uses the logistic function to model the probability of a feature

vector X⃗ to be a binary output variable y

p(y = 1|X⃗;w, c) =
1

e−(X⃗T
i w+c)

, (8.1)

where w and c are weights and intercepts of the logistic regression model respectively. Using

maximum-likelihood estimation, the optimal w and c values are determined through optimi-

sation. A detailed derivation can be found in Ref. [426], and details of the specific functions

optimised in Python’s scikit-learn’s implementation can be found in Ref. [425].

Logistic regression assumes a non-complex linear decision boundary making it less prone to

overfitting than other non-linear classifiers [427]. Identifying models that are less prone to

overfitting is important in data-limited environments. Logistic regression is often combined

with regularisation, which attempts to overcome overfitting by penalising model complexity

[428]. This reduces the magnitude of model coefficients so they are less tailored to the data

used to tune model parameters and therefore are better at generalisation [429]. Logistic regres-

sion has two primary types of regularisation terms: L1 and L2 [425]. L1 penalises the absolute

values of the weights, and it is used for feature selection and shrinkage. L2 penalises the sums of

squares of the weights and does not perform feature selection [430]. When c is sufficiently large,

the coefficient estimates for L1 will become zero, whereas, for L2, this will go to approximately

zero [431].

Support-vector machine
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Support-vector machines (SVMs) are another discriminative classification method that are

effective in a range of classification problems [432, 433, 434] including document classification

problems [435]. SVMs aim to separate training examples according to their classes using a

hyperplane that maximises the margin between them, i.e. the distance between the hyperplane

to the nearest of each of the points [436]. SVMs maximise the model’s generalisation ability

[437]. When the data is not linearly separable, kernel functions can be used to map the input

data into a higher-dimensional space so that an optimal separating hyperplane can be identified

[438]. The complexity parameter C is the sum of the distances of all the points on the wrong

side of the hyperplane. C can be considered as the amount of error that can be ignored in the

classification [436, 425].

An advantages of SVMs is good performance even when the number of dimensions exceeds the

number of samples. In such situations, to avoid overfitting, choosing the correct kernel function

and regularisation term is crucial [425]. SVMs are argued to be less prone to overfitting and

generalise better than other supervised classification algorithms [439].

Naive Bayes

Naive Bayes (NB) methods are a set of supervised generative (meaning they model the dis-

tributions of the individual classes) learning algorithms based on applying Bayes’ theorem

[425, 440]. Bayes’ theorem states that given a class variable y and a set of dependent feature

vectors x1, . . . , xn, the following relationship exists

P (y|x1, ...., xn) =
P (y)P (x1, . . . , xn|y)

P (x1, . . . , xn)
. (8.2)

Scikit-learn contains a range of implementations of NB classifiers, the most common for im-

plementation in text analysis is the multinomial NB classifier [425]. This classifier is recom-

mended for discrete features such as word-frequency counts. Multinomial NB is recommended

for small sample sizes due to its inherent regularisation making it less susceptible to overfitting

[441, 440, 442].

k-nearest neighbours

k-nearest neighbours (k-NN) is a non-linear discriminative learning algorithm [443]. The algo-

rithm identifies the output class of an item by first computing the ‘similarity’ (via Minkowski
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distance) to every other item in the dataset. The kn most highly ranked samples are the item’s

nearest neighbours. Voting is then performed using the class labels of the item’s nearest neigh-

bours. In theory, the underlying rules in the algorithm can be applied to datasets of small

sample size and high dimensions [444]. However, the ‘curse of high dimensionality’ means dis-

tance at high dimensions has little meaning [445]. As a result, k-NN tends to perform poorly

with high numbers of features, and small sample sizes [440]. Choosing distance metrics ad-

justed for high dimensional data such as the one introduced in Ref. [445] can lead to improved

performance for textual data with high dimensions; however, some studies have found k-NN is

prone to overfitting [446].

Decision tree

Decision tree classifiers are discriminative supervised classification models [425]. A decision-

tree algorithm aims to create a model that can predict an outcome by using the input features

of the data to make simple decisions. This process consists of forming a tree-like structure

[447] by partitioning the input features of the dataset into smaller subsets until some stopping

criteria is reached. This splitting process is referred to as recursive partitioning. A range of

different metrics can be used to determine the nature of a split, example metrics include the

Gini index, and information gain. Ref. [448] gives a comparison between these two metrics.

CART (Classification and Regression Trees) [449] is a popular decision-tree algorithm. Python’s

scikit-learns implementation of decision-tree classification is based upon the CART algorithm

[425]. The CART algorithm is categorised by the fact that it constructs binary trees. A detailed

overview of CART can be found in Ref. [450]. Other popular tree-based classifiers include C4.5

[451] and ID3 [425].

Decision-tree models can be overcomplicated, which can lead to overfitting. However, there are

tactics to limit the tree complexity, e.g. pruning and setting the maximum depth of the tree

[425]. Furthermore, decision trees can be unstable and create biased learners when there are

dominant classes [425]. Ensemble methods such as random forest classifiers are a solution to

this.

Random forest

Random forest classifiers are discriminative, consisting of a range of decision trees trained on a

random subset of input features. The random forest then uses the votes of each decision tree to

determine the class of each sample. This process is referred to as bagging [452]. As a result of
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bagging, random forest classifiers are less noisy and affected by outliers; hence there is a lower

risk of overfitting than with decision tree classifiers [453, 454, 452].

Unsupervised approaches to classification

Unsupervised ML algorithms identify patterns in unlabelled data. Clustering, the process of

finding groups of data (clusters) in a dataset, is an example of an unsupervised ML-approach

first introduced in Chapter 3. By setting the number of clusters to two and using an additional

algorithm to assign a label to each cluster, clustering can be applied to binary classification.

There are a range of different approaches to clustering (e.g. DBSCAN [455], spectral clustering

[456], OPTICS [457]). However, for a clustering algorithm to be applied to binary classification,

it must have the number of output clusters specified as an input parameter and be able to predict

cluster assignments for unseen data. K-means clustering, a popular clustering approach, is the

only clustering algorithm with a Python implementation able to do both. See Section 4.1.6,

Eq. (4.13), for an explanation of the K-means clustering algorithm.

8.1.3 Model validation with small datasets

An important step in the development of an ML model is model validation. This is the process

of quantifying the ability of an ML model to produce predictions on an unseen test set [458].

Model validation can be used to identify problems such as overfitting as well as to optimise

model performance [411].

A common approach to model validation in ML is the ‘train/test split’ approach. This evaluates

the performance of a model on a portion of the data kept separate from the training data. The

trained model can then be tested on an independent test dataset. However, this approach

requires a substantial amount of data and is not suitable for data-limited environments. Cross-

validation is a solution for model validation in data-limited environments [459]. K-fold cross-

validation is a common cross-validation approach. This involves splitting a training dataset

into K subsets. The model is trained on K − 1 of these subsets, and its performance is then

evaluated on the remaining subset. This process is repeated K times. In each iteration, the

model is tested on a different subset of the data. All the data is used for validation. The total of
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Figure 8.1: 5-fold cross-validation. A training dataset is partitioned into 5 subsections. Then,
the model is trained on 4/5 of the training dataset and tested on the remaining 1/5 of the
training dataset to obtain an estimate of model performance. This process is repeated 5 times:
testing and training on different combinations of the subsets of the training data. Finally, an
estimated accuracy (Estimated A) and a generalisation error is generated by taking the mean
and standard deviation of the 5 estimated accuracies Aei .

K scores of the model’s performances are averaged to estimate the overall model performance.

Testing the model on different sections of the training data in each iteration or ‘fold’ indicates

the model’s generalisation performance [460]. Basic five-fold cross-validation is illustrated in

Figure 8.1. Repeated K-fold cross-validation performs the splitting process N times to generate

N ×K estimates of model performance.

Model optimisation is part of model validation. ML algorithms have hyperparameters (tuning

parameters) that need to be tuned to a specific dataset [461]. Selection of model hyperpa-

rameters is typically performed through optimisation algorithms that evaluate the model’s

performance with a specific set of hyperparameters using cross-validation such as grid search

[462]. However, since hyperparameters can significantly impact algorithm performance, per-

forming hyperparameter tuning separate from cross-validation can lead to a biased estimate of

algorithm performance [461].

Nested cross-validation estimates the model’s generalisation error and its hyperparameter search.

It consists of an inner loop responsible for hyperparameter optimisation and an outer loop for
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estimating the generalisation error [461]. When K-fold cross-validation is used for the inner and

outer loops, the training data for the outer layer of the nested cross-validation is partitioned

into K folds. Each fold uses a fraction (K-1)/K of the original training data to train the model

and the remaining 1/K to estimate the cross-validation error on that loop. This is iterated for

the inner loop by using 1/K of the remaining training data from the outer loop ((K-1)/K2

of the original training data) to compute the cross-validation error for the inner loop. The

inner loop identifies the optimal hyperparameters for the fraction (K − 1)2/K2 of data it is

trained on. Nested cross-validation is recommended for small datasets as studies have shown

it produces unbiased estimates of model performance [411, 461].

8.1.4 Evaluation metrics

In this section, standard metrics for evaluating the performance of ML algorithms will be

introduced. These metrics are based on the following:

• True positives (TP ) are the number of items correctly labelled as the positive class (High-

TRL).

• True negatives (TN) are the number of items correctly labelled as the negative class

(Low-TRL).

• False positives (FP ) are the number of items incorrectly labelled as the positive class

(High-TRL).

• False negatives (FN) are the number of items incorrectly labelled as the negative class

(Low-TRL).

Using these interpretations of TP , TN , FP and FP , the metrics recall R (Eq. (3.4)), precision

P (Eq. (3.5)) and F (Eq. (3.6)) introduced in Section 3.4 can hence be adapted to binary

classification. F-measure in this context will be referred to as F1.

R is the ratio of the number of positive predictions to the number of true positive items. R is

a value between 0 and 1, the closer to 1, the better the model’s ability to predict the positive

class [463]. P is the ratio of the number of positive class predictions to the number of items

belonging to the positive class [463]. An intuitive interpretation of precision indicates how
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much a model can be trusted when an item is labelled as positive [463]. Like recall, precision

and F1 are values between 0 and 1, the closer to 1, the better the model.

Accuracy

Accuracy, A, is defined as the probability that a model’s prediction is correct, i.e.

A =
TP + TN

TP + TN + FP + FN

. (8.3)

As with the metrics mentioned earlier, accuracy is between 0 and 1, where a higher value

indicates better performance.

Area under the receiver operating characteristic curve (AUC ROC)

Area under the receiver operating characteristic curve, AUC ROC is a standard metric for

evaluating classifiers. A receiver operating characteristic curve (ROC curve) is a probabilistic

graphical representation of the true positive rate (the number of true positives divided by the

total number of positives) vs the false positive rate (number of negatives incorrectly identified

as positives divided by the total number of negatives) [464]. The AUC ROC gives a value

between 0 and 1 to the ability of the classifier to distinguish between two classes. The closer to

1, the better the ability of the classifier to distinguish between classes. One advantage of this

metric is it can be used to evaluate classifiers with a class imbalance [465].

Silhouette coefficient

The silhouette coefficient is a measure of the effectiveness of a clustering algorithm. It measures

the cohesiveness of items in a cluster, and the separation between clusters [466]. The silhouette

coefficient is a value between 1 and -1. A score of 1 indicates well-defined clusters.

The silhouette coefficient is defined as

Sc =
N∑
i=1

b(i)− a(i)

max(a(i), b(i))
, (8.4)

where a(i) is the mean distance between sample i and all other samples in the same cluster
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(CI), i.e.

a(i) =
1

|CI | − 1

∑
j∈CI ,i ̸=j

d(i, j), (8.5)

where d(i, j) is the distance between data points i and j in cluster CI . One interpretation of

the value of a(i) is how well a sample is assigned to its cluster.

The minimum mean distance of sample i to all other samples contained in any other cluster of

which i is not a member (b(i)) is defined as

b(i) = min
J ̸=I

1

|CJ |
∑
j∈CJ

d(i, j). (8.6)

The metric b(i) can be interpreted as a measure of cluster separation [466].

8.2 Methodology

In this section, the methodology used in this study will be described. Section 8.2.1 will detail

the data used in this study and the methods used to preprocess the data. In Sections 8.2.2 -

8.2.6, details of the algorithms used and how they are implemented will be discussed.

8.2.1 Dataset production and preprocessing

The dataset used in this study consists of 148 NTREM 2018 papers hand labelled by an expert

with over 30 years of experience in the domain of energetic materials. The expert determined

whether each paper presented a technology that was either ‘High-TRL’ or ‘Low-TRL’ according

to the MoD’s definition of TRL levels (see Table 8.1). Papers associated with TRLs 1-5 were

defined as being Low-TRL, and those of TRLs 6-9 were defined as High-TRL. This information

was elicited by a questionnaire in the form of a two-column spreadsheet consisting of document

titles and a blank column for the expert to assign the TRL. Of the documents labelled by the

expert, 81 (54.7%) were labelled as Low-TRL, and 67 (45.3%) were labelled as High-TRL. A

separate dataset of 1120 unlabelled NTREM papers were used for unsupervised algorithms.

This set of conference proceedings was chosen because it comes from a peer-reviewed journal

in the field of energetic materials. The proceedings contain a broad spectrum of topics and
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research areas within energetic materials, making it ideal for classification via a subjective

concept such as TRL.

A keyword-matching algorithm was used as a baseline measure of performance. This required

an input of two lists of keywords associated with High- and Low-TRLs. The keywords generated

by the expert are shown in Table 8.2. Each list contains 34 keywords.

TRL Expert keywords
Low ‘Synthesis’, ‘Milligram’, ‘Purity’, ‘Impurity’, ‘Spec-

tra’, ‘Laboratory-scale’, ‘Reflux’, ‘Nitration’, ‘Reaction’,
‘Calorimetry’, ‘Test-tube’, ‘Bunsen-burner’, ‘Solvent-
extraction’, ‘Reagent’, ‘reactant’, ‘Side-product’, ‘by-
product’, ‘Crystallisation’, ‘Filtration’, ‘Chromatog-
raphy’, ‘Nuclear-magnetic-resonance’, ‘%yield’, ‘Re-
search’, ‘science’, ‘Spectroscopy’, ‘laboratory’, ‘lab’,
’small-scale’, ‘future’, ‘next-generation’, ‘patent’, ‘inven-
tion’, ‘laboratory-based’, ‘mg’

High ‘Output’, ‘Additives’, ‘Factory’, ‘Processing’, ‘Field-
trial’, ‘Range-trial’, ‘Diagnostics’, ‘Adhesion’, ‘De-
bris’, ‘Fragment’, ‘Application’, ‘Mixing’, ‘Mixer’, ‘En-
hanced’, ‘Blast’, ‘Detonation’, ‘velocity-of-detonation’,
‘Ageing’, ‘Storage’, ‘Transport’, ‘Packaging’, ‘Develop-
ment’, ‘technology’, ‘safety’, ‘compatibility’, ‘vulnera-
bility’, ‘utility’, ‘large-scale’, ‘upscaling’, ‘manufacture’,
‘demonstrator’, ‘preproduction’, ‘monitoring’, ‘through-
life’, ‘range-testing’, ‘trial’

Table 8.2: Lists of keywords associated with High-TRL and Low-TRL generated by the expert.

For the NTREM proceedings to be suitable for NLP, the articles’ text needs to be extracted

from PDF documents of the articles. The preprocessing pipeline outlined in Chapter 7 was used

to extract text from the proceedings. Task-specific processing then needs to be performed. As

discussed in Chapter 7, different feature-representation methods require different preprocessing

methods. Therefore, the pipeline outputs preprocessed text in two forms: (1) detokenised

text and (2) processed text with stop words removed. This study examines two different

feature representations, each requiring its own downstream preprocessing method (method A

and method B).

Method A was used for supervised classification using TF-IDF and the keyword-matching

algorithm. This method takes an input of processed text with stop words removed from the

preprocessing pipeline. The text is further normalised by performing lowercasing. Non-chemical
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names were stemmed using the Porter stemmer algorithm [467]2. These steps significantly

reduced the dimensions of the vocabulary of the corpus thus reducing the dimensions of the

numerical representations of the documents.

Method B was developed for finetuning BERT and supervised classification using S-BERT.

BERT-based models have a maximum number of input tokens of 512 [129]. Therefore, the

articles were truncated so they were suitable to be input into the keyword-matching algorithm.

Following the preprocessing, the datasets were split into a training set of 118 documents and

an independent test set. The independent test set consisted of 30 instances: 16 documents of

Low-TRL and 14 of High-TRL.

8.2.2 Keyword-matching algorithm

The keyword-matching algorithm followed preprocessing method A to preprocess the text. The

keyword lists given in Table 8.2 were also stemmed. The algorithm totalled the frequency of

High (CH) and Low (CL) TRL keywords in each document. The number of matches for High

(MH) and Low (ML) TRL words was also calculated to give the coverage of the keywords.

Eq. (8.7) denotes how the algorithm determines each journal article’s TRL

Predicted TRL =


High, if CH > CL or if CH = CL and MH ≥ ML

Low, if CL < CH or if CH = CL and MH < ML.

(8.7)

The keyword-matching algorithm assumes a higher frequency of associated TRL words corre-

sponds to a higher likelihood the document is of that TRL. In instances where the frequency

of High- and Low-TRL words are identical, the coverage of the keywords in the documents is

considered. Since this is an unsupervised statistical method, requiring no model training, the

algorithm is tested on both the training set and the independent evaluation set, a total of 148

documents.

2In Chapter 4, a small comparative study of the performance of stemming algorithms in the energetic-
materials domain concluded the Porter stemmer performed the best.
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8.2.3 Finetuning Sci-BERT

Preprocessing method B was used to generate the input text for finetuning Sci-BERT. When

conducting transfer learning, it is advantageous to utilise a pretrained model that has been

trained on text as close as possible to the domain of interest. This will mean the model will be

better at capturing the semantic nuances of the field. There is currently no open-source BERT

language model trained on text in the energetic-materials domain. Sci-BERT is a pretrained

model trained on a large corpus of scientific publications. It was developed to address the

lack of large-scale labelled scientific data and is found to improve performance on a range of

different downstream tasks [315]. Sci-BERT was determined to be the most appropriate of the

pretrained BERT models available and was therefore finetuned on the training dataset of 118

documents. This is a very small dataset for finetuning and will likely yield unstable results.

Following recommendations found in the literature for small datasets, a small batch size of 8

and low learning rate of 10−5 was chosen [129, 421]. Class weights were adjusted to enable

mistakes in under-represented classes to be penalised to a higher degree. The performance of

the model was evaluated using the independent evaluation test set.

8.2.4 TF-IDF and S-BERT feature representation and feature se-

lection for clustering and supervised classification

The TF-IDF procedure explained in Section 8.1.1 was applied to the preprocessed text using

preprocessing method A. This produced 17419-dimensional TF-IDF vectors.

The sentence-transformers framework in Python for S-BERT was used on text preprocessed

using Method B to generate embeddings of the first 512 tokens of the documents [319]. S-BERT

has various pretrained models available [422]. In this study, the ‘all-distilroberta-v1’ model

was chosen as it is a general-purpose model [468]. This model was developed by finetuning

the pretrained ‘distil-roberta-base’ model (a variant of the BERT model) on 1 billion sentence

pairs [469]. Typically, S-Bert is used for comparisons of semantic similarities between sentences.

However, there are examples in the literature of S-BERT used to generate sentence embeddings

for classification models [470]. This technique produced embeddings of 768 dimensions.

For both TF-IDF and S-BERT, the vector representations of text were produced before splitting
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the data into training and test sets.

Both feature-representation methods generated high-dimensional embeddings. Training small

sample sizes using high-dimensional embeddings can result in overfitting. Given this, an impor-

tant step in producing a classifier is to perform feature selection (selecting a subset of features to

reduce the dimensions of the data inputted into the classifier) and/or feature reduction (trans-

forming data to lower dimensions) [471]. There are a range of different methods available for

feature selection/reduction, Ref. [472] gives a good survey. In this initial study, based on some

exploratory analysis, the KBest feature-selection approach was used to reduce the dimensions

of the embeddings produced. For each feature-representation method, the dn most relevant

features of the embeddings were selected using the KBest function in scikit-learn [425]. The

KBest function ranks every feature by their mutual information value and returns the dn most

relevant features, which generates vectors of dn dimensions [425]. The number of dimensions

dn was selected as 503.

After performing feature-representation-specific processing and feature selection, the data is

inputted into the K-means clustering algorithm (Section 8.2.5). For supervised classification

approaches, model validation and hyperparameter optimisation are additional steps requiring

further discussion (Section 8.2.6).

8.2.5 K-means clustering

K-means clustering (Eq. 4.13) was applied to binary classification by setting the number of

clusters to two and using an additional algorithm to assign a label to each cluster. The algorithm

used to assign labels to the clusters was voting-based. First, for every document in each cluster,

the keyword-matching algorithm was used to assign each document a TRL. Secondly, the ratio

of High-TRL documents to Low-TRL documents was calculated for each cluster. Then, the

cluster with the highest ratio was labelled High-TRL, and the other cluster was labelled Low-

TRL. Due to the algorithm’s unsupervised nature, the clustering algorithm was trained on 1120

unlabelled documents.

3This value was selected as it is the smallest number of dimensions commonly observed in the literature for
text representation [122].
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8.2.6 Model validation and hyperparameter optimisation for super-

vised classifiers

For supervised classification approaches, model validation and hyperparameter optimisation

are additional steps requiring further discussion.

For model validation, nested cross-validation was performed4. The inner and outer loops con-

sisted of 5-fold repeated cross-validation. This number of folds is a typical value ofK commonly

found in the literature [473]. In addition, hyperparameter optimisation was performed in the

inner loop of the nested cross-validation.

The supervised algorithms have a range of hyperparameters. In the nested-cross-validation

process, some hyperparameter optimisation is performed. Since this study aims to compare the

performance of different algorithms, the size of the hyperparameter grid (number of hyperpa-

rameters optimised × their possible input values) is kept constant at 9 dimensions.

For the SVM classifier, a linear-kernel function was selected as using simple models reduces the

risk of overfitting. Linear SVM has one hyperparameter requiring optimisation. The regularisa-

tion parameter C determines the strength of the regularisation and is the only hyperparameter

that needs to be optimised. The regularisation parameter determines the algorithm’s tolerance

when identifying the decision boundary, i.e. it determines how much the algorithm wants to

avoid classifying each training example [474]. A significant value of C could lead to overfitting.

Therefore, when performing hyperparameter optimisation, the parameter grid over which the

optimisation is performed was restricted to smaller values of C, namely [10, 1, 0.5, 1.5, 0.1,

0.01, 0.001, 0.0001, 5]. The class weights parameter determines the weighting that different

classes are given. The default value is 1. A value of 1 means mistakes in the classification of

the two classes are treated as being of equal importance. Adjusting the class weights parameter

can enable mistakes in under-represented classes to be penalised to a higher degree. This is

useful for datasets with imbalanced classes. As mentioned in Section 8.2.1, the TRL dataset is

unbalanced. Therefore, the class-weights parameter was set to ‘balanced’. This sets the class

weights to values inversely proportional to the class frequencies [425].

The logistic regression classifier was used with L2 regularisation to reduce the risk of overfitting.

As with the SVM classifier, the class-weight parameter was set to ‘balanced’ to account for the

4See Section 8.1.3 for an overview of nested cross-validation.
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slight class imbalance. The tolerance was set to the default value [425]. As with the SVM

classifier, the parameter C controls the strength of the regularisation and the smaller the

value, the higher the regularisation. The logistic regression model was therefore optimised for

parameter C over the following grid: [10, 1, 0.5, 1.5, 0.1, 0.01, 0.001, 0.0001, 5].

The number of neighbours, kn, in a k-NN classifier has a significant influence on results. Smaller

values of kn are associated with overfitting. For the k-NN classifier, hyperparameter optimisa-

tion is performed over the following values of kn, [4, 5, 6,7, 8, 9, 10, 11, 12]. The distance metric

used in this classifier was selected as the Manhattan distance as it tends to perform better in

high-dimensional spaces than other metrics such as Euclidean distance [475].

Decision tree and random forest classifiers have several different parameters. In this study, the

number of minimum samples required to split a node will be optimised. When this value is

high, it will result in trees of a smaller depth, avoiding overfitting. The following grid: [5, 6, 7,

8, 9, 10, 11, 12], was used for hyperparameter optimisation of minimum samples per split for

both the decision tree and random forest classifiers. Post-pruning of the decision tree is not

used in the scikit-learn implementation of the algorithm [425]. However, this can reduce the

risk of overfitting [476].

Performing nested cross-validation will generate a series of estimated accuracies (Ae), the mean

and standard deviation of these values can be taken to obtain the Estimated A and generalisa-

tion error.

After model validation, hyperparameter optimisation is performed using grid-search with 5-fold

repeated cross-validation. Using the optimised hyperparameters, the classifiers are trained on

the whole training set. The performance of the model is evaluated on the independent test set.

8.3 Results and discussion

The results generated using the keyword-matching algorithm, finetuning Sci-BERT, supervised

algorithms, and K-means clustering with TF-IDF and S-BERT for feature representation are

summarised in Table 8.3. The metrics F1, R, P , ROC AUC and A (see Section 8.1.4) are used

to evaluate the performance of the algorithms. Estimated A of the linear SVM, decision tree,

k-NN, NB, logistic regression and random forest classifiers are also displayed. These values are
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calculated by taking the mean and standard deviation of the accuracy estimates Ae outputted

by the nested cross-validation.

Algorithm F1 P R ROC AUC A Estimated A

Keyword matching 0.74 0.65 0.85 0.73 0.73
Finetuning Sci-BERT 0.77 0.66 0.92 0.77 0.77
K-means S-BERT 0.62 0.62 0.62 0.62 0.62
K-means TF-IDF 0.82 0.72 0.77 0.79 0.78

Linear SVM TF-IDF 0.81 0.72 0.93 0.81 0.80 0.78 ±0.08
Linear SVM S-BERT 0.90 0.87 0.93 0.90 0.90 0.80±0.10
Decision tree TF-IDF 0.66 0.71 0.67 0.68 0.67 0.67 ± 0.06
Decision tree S-BERT 0.77 0.77 0.77 0.76 0.77 0.73 ± 0.10

k-NN TF-IDF 0.77 0.77 0.77 0.77 0.77 0.70 ± 0.06
k-NN S-BERT 0.87 0.87 0.87 0.87 0.87 0.83 ± 0.08
NB TF-IDF 0.65 0.74 0.67 0.68 0.77 0.70 ± 0.09
NB S-BERT 0.90 0.92 0.90 0.91 0.90 0.82 ± 0.08

Logistic regression TF-IDF 0.79 0.85 0.80 0.79 0.80 0.71 ± 0.08
Logistic regression S-BERT 0.93 0.94 0.93 0.94 0.93 0.80 ± 0.08
Random forest TF-IDF 0.90 0.90 0.90 0.90 0.90 0.81 ± 0.07
Random forest S-BERT 0.93 0.94 0.93 0.94 0.93 0.81 ± 0.08

Table 8.3: Performance of the algorithms evaluated using the metrics F1, R, P , ROC AUC and
A. Estimated values of A are displayed for the linear SVM, decision tree, k-NN, NB, logistic
regression and random forest classifiers, as these methods used nested cross-validation.

From the results shown in Table 8.3, it is evident that the preprocessing pipeline designed in

Chapter 7 has effectively facilitated document classification.

The keyword-matching algorithm (Section 8.2.2) obtained a R of 0.85, meaning 85% of all High-

TRL documents were identified correctly, implying a small proportion of Low-TRL documents

were incorrectly labelled. The P of 0.65 indicates when a document is predicted to be of High-

TRL, a significant proportion of these predictions (35%) are incorrect. Ideally, a classification

algorithm will have high R and high P , returning most of all labelled High-TRL documents

accurately. The difference in P and R may have resulted from the class imbalance since there is

a higher number of Low-TRL documents to incorrectly label than High-TRL documents. The

A of the keyword-matching algorithm (how many documents were classified correctly) was 0.73.

Previous studies have shown a class imbalance can impact the value and meaning of A, R and

P [477]. Metrics such as ROC AUC and F1 are less influenced by class imbalance. According

to Refs. [478, 479], an ROC AUC value of 0.73 is considered ‘good’ or ‘fair’ [480].

The keyword-matching algorithm could be of use when the goal is to return most of the High-
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TRL documents regardless of whether some Low-TRL documents are misclassified as High-

TRL. However, the overall ability of the algorithm to distinguish between documents of High-

and Low-TRL is suboptimal. There are a few possible reasons for this. Firstly, whilst the

frequency of keywords in a document might indicate the TRL of a document, using keywords

alone is not enough information to decide on the TRL. The context in which the keywords

appear is not considered. In specific contexts, a TRL keyword may not be a good indicator

of the associated TRL. For instance, ‘small-scale’ is a Low-TRL keyword; however, in specific

contexts, it can indicate High-TRL, e.g. in the sentence ‘Analysis is not conducted on a small-

scale’. Secondly, the algorithm assumes the number of keywords used in the list is sufficient,

which may not be the case. As a result, the algorithm could be improved by expanding the

list of keywords and phrases. This could be achieved by consulting a larger group of experts

or performing unsupervised training of a word-embedding algorithm, such as Word2Vec, on an

extensive collection of energetic-materials-based papers. The trained word-embedding model

could then be used to identify semantically similar keywords which could be added to the

existing keyword list.

Similar to the keyword-matching algorithm, Sci-BERT (Section 8.2.3) was found to have a low

P (0.66) and high R (0.92). These values indicate that most of the High-TRL documents are

identified, but many documents are incorrectly identified as High-TRL. This trend of higher

R and lower P is also observed in the results generated for supervised classifiers using both

TF-IDF and S-BERT. Again, this may be due to the class imbalance. It is also noted that

with a smaller number of High-TRL documents to learn from, the ability for the classifier to

identify a High-TRL document correctly will be poorer than its ability to identify a Low-TRL

document correctly. Whilst the effect of the class imbalance was attempted to be mitigated

through adjusting the class weights parameter, this may not be sufficient as the impact of class

imbalance at a small sample size is significant.

Overall, finetuning Sci-BERT achieved A and ROC AUC values of 0.77. This is a slight im-

provement on the keyword-matching algorithm and in line with results achieved on similar

sample sizes [481]. Most likely, the suboptimal result is due to the lack of training data. Fine-

tuning BERT on small datasets is unstable, and this instability was unmeasured. It is noted

that this approach had several limitations. Firstly, only the first 512 tokens of the text were

used. A suggestion for future work would be to utilise other language models, such as Long-
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former, designed for longer text as an input [482]. It could be the case that the first 512

tokens of the text are not sufficient for predicting the TRL of the model. Universal Language

Model finetuning (ULMFiT) is an effective transfer learning method for NLP that has achieved

promising results with as few as 100 samples [483]. Future work should utilise this framework.

The method described in Sections 8.2.4 and 8.2.6 was used to obtain measures of the supervised

classifiers’ performances. First, the distribution of Ae will be examined. Figure 8.2 displays

the distribution of Ae for each supervised classifier for both TF-IDF and S-BERT feature-

representation methods.

Figure 8.2 shows a significant variation in the predicted Ae of the classifiers depending on what

portion of the data it was tested/trained on. For the decision tree, k-NN, linear SVM and NB

classifiers, the distribution of Ae is higher when using S-BERT for feature representation. This

implies the classifiers are more stable, utilising TF-IDF as a feature-representation method.

However, as mentioned in Section 8.2.4, TF-IDF and S-BERT vector representations of text

were produced before splitting the dataset into training and test sets. Whilst generating S-

BERT representations before splitting the data into training and test sets is no different from

generating the representations after the split, this is not true for TF-IDF representations. This

is because TF-IDF values and the generated document vectors depend on all the documents

in a corpus. Therefore, if feature representation with TF-IDF is performed before splitting the

data into training and test sets, and is not performed as part of the nested cross-validation

process, there will be substantial data leakage which will introduce bias. This may lead to

over or underestimates in classifier performance. Furthermore, due to the variances in fitting

TF-IDF not being fully captured as part of the validation process, the error in the Estimated

A for TF-IDF feature-representation methods in Table 8.3 and the distributions in Figure 8.2

are likely underestimating the actual variance.
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To understand the significant variance ofAe observed in Figure 8.2, the hypothesis that variation

in the selection of hyperparameters in the inner loop of cross-validation as the predominant

cause of model variance is investigated.

The example of linear SVM is considered. The frequency of hyperparameter C’s selection on

the inner loop of nested cross-validation is displayed in Figure 8.3.

(a) S-BERT (b) TF-IDF

Figure 8.3: Frequency of selection of the hyperparameter C as a result of hyperparameter
optimisation in the inner loop of nested cross-validation over the hyperparameter grid [0, 1,
0.5, 1.5, 0.1, 0.01, 0.001, 0.0001, 5] for a linear SVM classifier.

Figure 8.3 shows a significant variation in the hyperparameters selected as part of the inner loop

of the nested cross-validation for both S-BERT and TF-IDF feature-representation methods.

Despite observing more variation in the distribution of Ae for TF-IDF than S-BERT in Figure

8.2, Figure 8.3 shows very similar levels of variation in hyperparameter selection. This disproves

the hypothesis that variation in the selection of hyperparameters in the inner loop of cross-

validation is the predominant cause of the model variance. However, as mentioned previously,

due to TF-IDF fitting not being included as part of the nested cross-validation, there is an

unaccounted for cause of error.

Training a classifier on a small dataset such as the one in this study will likely result in significant
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variances. Here, 5-fold cross-validation was performed on a training set of 118 documents. This

means the model performance was validated for 23-24 documents for each fold of the cross-

validation algorithm. The inner fold used approximately 75 documents for hyperparameter

optimisation and around 18 documents for testing performance. This is a tiny test size. Whilst

the ability of the data to generalise to new data is being measured, at such a small sample size,

the presence of outliers could affect results considerably. This explains the significant variance

observed in Figure 8.2 and the instability in the selected hyperparameters discussed previously.

The results in Table 8.3 are used to identify overfitting for the supervised classification methods

by comparing the Estimated A with the model’s accuracy on the independent test set (A). If A

is within one standard deviation of the Estimated A it is assumed the classifier has not overfit.

Logistic regression and random forest classifiers were found to overfit. It is unsurprising that

overfitting is observed particularly for complex algorithms such as random forest at such a small

training size.

Overall, the supervised classifiers performed better using the transfer-learning technique S-

BERT for feature representation. This supports the hypothesis that transfer learning can

improve performance for smaller datasets. However, it is noted that when using TF-IDF, the

vectors are fit before splitting the data. This could have resulted in data leakage, which would

have led to biased results. Therefore, future implementations of this method should perform the

TF-IDF fitting after splitting data into training and test sets and as part of the cross-validation

process. Furthermore, feature selection is not included as part of the nested cross-validation

process. In this study, feature selection was performed arbitrarily. Therefore, it is unclear what

effect this has on algorithm performance. There are various feature-selection methods available

in Python, so it would be interesting to see how these other methods impact the results for

algorithm performance. Ref. [461] demonstrated that using feature selection in nested cross-

validation can improve performance. Further work should incorporate feature selection as part

of the nested cross-validation.

The best-performing supervised classifier can be identified from Table 8.3. When considering all

metrics, linear SVM and NB with S-BERT performed the best with an A of 0.90. NB slightly

outperforms linear SVM as it has a lower error in its Estimated A and a higher ROC AUC

score of 0.91. Whilst these results appear positive, in Figure 8.2 these algorithms were observed

to have a large distribution of Ae, which indicates a lack of model stability.
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The results of the K-means clustering approach to classification described in Section 8.2.5 will

now be discussed. In order to visualise algorithm performance, the vector representations of

the documents in the test set were transformed to 2D coordinates using the feature-reduction

technique Principal Component Analysis (PCA)5. The generated 2D coordinates for S-BERT

and TF-IDF feature-representation methods were then plotted in Figures 8.4 (a) and (b) re-

spectively.

Figures 8.4 (a) and (b) show the clusters are not clearly defined for both vector representations

with Figure 8.4 (b) showing overlapping clusters. Values of Sc were calculated, and values of

0.14 and 0.02 for TF-IDF and S-BERT were obtained. These low values are further evidence

of the poor quality clusters.

The suboptimal performance illustrated in Figures 8.4 is further observed in Table 8.3. The

algorithm’s performance on the test set shows feature representation with TF-IDF outperforms

feature representation with S-BERT across all metrics. This is in line with the values of

Sc, which also indicated TF-IDF as a feature-representation method generated better-defined

clusters. It is noted this may be because the TF-IDF vectors are fit before splitting the data. As

previously explained, this could have resulted in data leakage, leading to improved performance.

As previously noted for supervised techniques, the TF-IDF fitting should be done after splitting

the data into training and test sets.

Generally speaking, the supervised classification algorithms outperformed K-means cluster-

ing with TF-IDF. K-means clustering with TF-IDF outperforms the baseline of the keyword-

matching algorithm and finetuning Sci-BERT, with A = 0.78. In contrast, K-means clustering

with S-BERT outperforms all other examined approaches, obtaining A = 0.62 (which is low).

5See Ref. [484] for a detailed overview of PCA.
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(a) Feature representation with S-BERT.

(b) Feature representation with TF-IDF.

Figure 8.4: Visualisation of K-means clustering algorithm performance. Each document in the
test set is transformed to 2D coordinates using PCA. Documents labelled as High-TRL are
shown in blue and documents labelled as Low-TRL as shown in green. Misclassified documents
have a superimposed red cross.
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The results appear promising, with most approaches exceeding the baseline value of A = 0.73.

K-means clustering with S-BERT was the worst-performing algorithm of those examined. The

best-performing algorithm that did not overfit was Gaussian NB. This algorithm achieved an A

of 0.90 and a F1 score of 0.90, indicating good classifier performance for such a small dataset.

Whilst these results indicate the algorithms perform relatively well. It is noted that with such

a small sample size for evaluation, the results should be taken with a pinch of salt.

8.4 Conclusions of preliminary study

This chapter aimed to compare the use of supervised and unsupervised techniques for document

classification on a small dataset of NTREM journal articles and evaluate the usefulness of the

preprocessing pipeline developed in Chapter 7.

In Section 8.1, an overview of the relevant theoretical information for document classification

was presented. An overview of feature representation with TF-IDF and transfer learning was

given in Section 8.1.1, and Section 8.1.2 gave an overview of classification algorithms. Section

8.1.3 introduced the problem with model validation for small datasets. A review of the literature

identified nested cross-validation as a potential solution. In Section 8.1.4, evaluation metrics

were introduced.

In Section 8.2, the methodology used in this study was described. Section 8.2.1 detailed the

process used to develop the dataset and described how the preprocessing methodology developed

in Chapter 7 was used in this study. Downstream preprocessing methods were also described.

Sections 8.2.2 and 8.2.3 described a simple keyword-matching algorithm used as a baseline

measure of performance and the transfer-learning technique of finetuning Sci-BERT. Sections

8.2.5 - 8.2.6 described the methods used for K-means clustering and supervised classifiers with

two different feature-representation methods, TF-IDF and S-BERT.

The results of this study were presented and discussed in Section 8.3. The results showed

the preprocessing pipeline designed in Chapter 7 effectively facilitated document classification.

The results of the keyword-matching algorithm yielded a suboptimal A = 0.73. Suggestions to

improve algorithm performance are made, e.g. by expanding the list of keywords. The transfer-

learning technique of finetuning Sci-BERT achieved A = 0.77, improving upon the performance
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of the keyword-matching algorithm. However, the method used in this approach did not capture

the instability of finetuning. The model was trained on a very small sample size therefore this

model was likely overfitting.

A range of supervised classification algorithms was examined with two different feature-representation

methods (TF-IDF and the transfer-learning technique S-BERT). Nested cross-validation was

used for hyperparameter optimisation and to estimate classifier accuracy. The generated esti-

mated accuracies were observed to be of high variance. It was hypothesised that variation in

the selection of hyperparameters in the inner loop of cross-validation is the predominant cause

of the model variance. Although this hypothesis was disproven, it was concluded that model

variance occurred predominately due to the small sample size.

The estimated accuracies were compared with performance on an independent test set to iden-

tify overfitting. Logistic regression and random forest were the only two algorithms found to

overfit. The majority of these supervised algorithms outperformed finetuning Sci-BERT and

the keyword-matching algorithm on the test set. The best-performing algorithm overall was

the supervised approach of Gaussian NB with S-BERT for feature representation. This al-

gorithm achieved A = 0.90 and F1 = 0.90, indicating good classifier performance for such a

small dataset. For all supervised classifiers, the performance was higher when using S-BERT as

a feature-representation method. This implies transfer learning can improve classifier perfor-

mance at small sample sizes. However, it was noted this might be because the TF-IDF vectors

were generated before splitting the data into training and test sets. This could have resulted in

data leakage leading to biased performance. This also may explain the more significant variance

in the estimated accuracies of classifiers using S-BERT as TF-IDF fitting not being included

as part of the nested cross-validation is an unaccounted cause of error.

This same error in methodology may also explain the K-means clustering results. The algo-

rithm’s performance on the test set shows feature representation with TF-IDF outperforms

the feature representation with S-BERT across all metrics. This may be because the fitting

of TF-IDF vectors was performed before splitting the data. This could result in data leakage,

which could have led to improved performance.

It is noted that the majority of examined approaches saw a high R and lower P , indicating that,

whilst the algorithms could return the majority of High-TRL documents, a significant portion

of these documents were incorrectly labelled. The dataset has a slight class imbalance that
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could cause this as there are a more significant number of Low-TRL documents to misclassify

and fewer High-TRL documents to learn from. Techniques to mitigate the effects of a class

imbalance will be investigated in Chapter 9.

Overall, the initial results are promising. However, these promising results should be viewed

with caution due to the small sample size for evaluation. Further work will involve collecting

more data to see how the performance of these models changes with larger sample size. The

desired outcome of this study was a series of recommendations to guide future studies. These

recommendations are summarised as

• Feature selection or feature reduction should be included as part of the cross-validation

process. This will allow for a more accurate generalisation error to be calculated and for

optimisation of the number of dimensions of the input-document vectors.

• Generating TF-IDF vectors should be performed separately for the test and training

datasets. It should also be performed as part of the inner loop cross-validation process for

supervised techniques. This will reduce model bias and lead to a more realistic calculation

of generalisation error.

• The dataset used in this study had a slight class imbalance. Techniques to mitigate the

effects of a class imbalance should be investigated.

These recommendations will be explored further in Chapter 96.

6An additional recommendation would be to explore other finetuning approaches such as using ULMFit and
long-former. However, time did not permit the investigation of these methods.



Chapter 9

Comparing experts’ and NLP tools’

classification of journal articles by TRL

This chapter is the second part of a two-chapter study addressing the limitations of using NLP

tools in a small-data environment. In Chapter 8, a preliminary study was conducted compar-

ing supervised and unsupervised techniques for document classification on a small dataset of

NTREM journal articles. In this chapter, recommendations from Chapter 8 will be applied to

refine the methodology presented in Chapter 8 in order to compare the ability of supervised and

unsupervised classifiers to classify the TRL of a small dataset of NTREM articles hand-labelled

by an expert. The flexibility of the classifiers will be tested by examining their ability to classify

a dataset of HEMCE articles. In Chapters 4, 5 and 6, the interface between using NLP tools to

either supplement or replace human analysis in the energetic-materials domain was examined.

The work in these studies identified little agreement among experts and raised the point that

if experts don not agree on basic points then the reliability of human-annotated data used to

train algorithms is brought into question. This chapter will explore this further by presenting a

methodology to examine the reliability of the data used to train the aforementioned classifier.

Chapter achievements include:

• Examination of the effectiveness of a range of techniques to mitigate the negative effects

of a class imbalance on supervised classifiers in a data-limited environment.

• Exploration of the impact of PCA transformations on classifier performance.

216
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• Comparison of supervised, unsupervised and statistical methods on long text classification

by TRL for small datasets.

• Demonstration of the importance of identifying the correct agreement metric for a specific

dataset.

• Presentation of methodology used to assess the reliability of human annotations.

In Section 9.1, a literature review of standard methods for mitigating the effects of a class

imbalance will be given. In Section 9.2, an overview of the methodology used in the present

study is outlined. In Section 9.3 results are presented and discussed. In Section 9.4, the

conclusions of this study are discussed and suggestions for further work are made.

9.1 Class imbalance

In Chapter 8, a limitation of using real-world data, class imbalances, were identified as problem-

atic, particularly for small datasets. As a result, a recommendation from the aforementioned

chapter was to investigate methods that can mitigate the negative effects on classifier per-

formance of a class imbalance. This section will give an overview of the theory behind such

techniques.

Class imbalance, where the frequency of one class is much higher than the frequency of another,

is a common problem presented by many real-world datasets [485]. Examples of datasets that

commonly experience class imbalances include those developed for medical diagnosis [486, 487],

fault diagnosis and anomaly detection [488]. A classifier trained on an imbalanced dataset will

be biased towards the major class, thus resulting in poor performance on the minority class.

This is a well-studied problem [489]. Techniques for mitigating the effects of a class imbalance

can be divided into data-driven and algorithmic.

The most common approach to mitigating the effects of a class imbalance are data-driven sam-

pling approaches [485]. Sampling approaches aim to balance the classes by either increasing

the frequency of members in the minority class (oversampling), decreasing the number of mem-

bers in the majority class (undersampling), or employing a combination of undersampling and

oversampling techniques.
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Randomised oversampling is a simplistic oversampling approach. This is the process of increas-

ing the frequency of the minority class by duplicating randomly selected members of the class

[490]. One limitation of this approach is it increases the probability of overfitting [465, 491].

Randomised undersampling (RUS) is a basic undersampling technique. It randomly selects

members of the majority class and deletes them from the dataset. This approach removes

potentially valuable data from the dataset, which can negatively impact classifier performance.

This approach is helpful for large datasets, but with a small dataset, removing any training

examples is generally not advisable as this will likely lower the classifier’s overall performance

[492].

Synthetic minority oversampling technique (SMOTE) is an oversampling technique developed

to avoid the overfitting associated with random oversampling. The most simplistic version of

SMOTE creates synthetic instances of the minority class by selecting a member of the minority

class and randomly interpolating together kn of its nearest neighbours to create a new minority

class datapoint [493]. More complex versions of the SMOTE algorithm include SMOTE-SVM

[494] and MWMOTE [495]. SMOTE has been used widely to counteract class imbalance

problems [465] including in text-classification problems [496, 497].

Synthetic labelling is another data-driven approach to mitigating class imbalances. This tech-

nique is used when there is an unlabelled dataset and an imbalanced labelled dataset. Items

in the unlabelled dataset are labelled using an unsupervised labelling technique and added to

the labelled dataset. There are a range of task-specific approaches to synthetic labelling. Ex-

amples of synthetic labelling for text classification include clustering [498] and keyword-based

approaches.

Algorithmic approaches to class imbalance include modifying the sensitivity of classification

algorithms so that errors in minority classes are more costly than in the majority class. This

technique was used in Chapter 8, whereby the class-weighting parameter of a range of differ-

ent supervised classifiers were modified to enable mistakes in under-represented classes to be

penalised to a higher degree.



9.2. Methodology 219

9.2 Methodology

The methodology used in this study consists of two parts: (1) comparing the ability of NLP

tools’ to classify journal articles by TRL and (2) measuring agreement among experts for

classification of journal articles by TRL. First, the two primary datasets used in this study

will be described (Section 9.2.1). Second, the methodology for comparing the ability of NLP

tools to classify journal articles by TRL will be presented in Section 9.2.2. Finally, the method

for measuring agreement among experts for classification of journal articles by TRL will be

outlined in Section 9.2.3.

In this study, the definitions of High-TRL and Low-TRL specified in Section 8.2.1 will be

followed throughout. In addition, the same lists of High-TRL and Low-TRL keywords specified

in Table 8.2 will be used.

9.2.1 Dataset production and preprocessing

The two primary datasets used in this study were produced by the same expert used in the

study in Chapter 8, the expert will be referred to as Participant B for the purposes of this

study. In addition, these datasets were elicited using the same format as in Section 8.2.1, a

questionnaire in the form of a two-column spreadsheet consisting of document titles and a blank

column for Participant B to assign the TRL.

The dataset described in Section 8.2.1 was expanded by asking Participant B to assign a TRL to

an additional 294 papers. This expanded dataset, referred to as the NTREM dataset, consists

of 442 labelled NTREM papers from NTREM 2012, 2015 and 2017-2019. This dataset has a

significant class imbalance with 63% of documents labelled as Low-TRL and 37% labelled as

High-TRL. This imbalance is expected as most papers published in an academic journal are of

Low-TRL content.

This dataset is split into an NTREM training dataset of 353 documents and an NTREM

independent test set of 89 documents for the supervised classifiers examined in this study. The

NTREM training and NTREM independent test datasets maintain the balance of the classes

found in the dataset as a whole. For the unsupervised methods examined, the entire dataset
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of labelled NTREM papers will be used to test the performance of the algorithms. A total of

756 unlabelled NTREM papers will be used to train the unsupervised algorithms.

The performance of the trained algorithms will also be evaluated on an additional dataset of

209 HEMCE journal articles. As discussed in Chapter 7, the topic of HEMCE and NTREM

papers are similar, but the style in which the journal articles are written varies considerably.

The classes of the the HEMCE dataset, like the NTREM dataset, are unbalanced (60% are of

Low-TRL and 40% are of High-TRL).

9.2.2 Comparing the ability of different NLP tools to classify journal

articles by TRL

This section will describe the method used to compare the ability of supervised and unsuper-

vised classifiers to classify journal articles by TRL. This methodology consists of three parts.

First, the best-performing supervised classifier will be identified, then the best-performing un-

supervised classifier will be identified, and finally, the best-performing supervised and unsuper-

vised classifiers will be compared.

As in the preliminary study (Chapter 8) two different feature-representation methods, TF-

IDF and S-BERT, will be compared. The preprossessing methodology specified in Section

8.2.1 will be followed with one amendment (suggested in Section 8.4): the generation of vector

representations of the documents will not be included as part of the preprocessing. This allows

for TF-IDF fitting to be performed separately for the test and training sets, avoiding data

leakage which can result in biased performance. Generating S-BERT vectors for documents is

independent of the wider corpus so fitting the training and test set together does not result in

data leakage.

As illustrated by Section 9.2.1, there is a significant class imbalance in the NTREM and HEMCE

datasets. In Section 8.1.4, the metric F1, an adaptation of F-measure for classification, was in-

troduced whereby positive classes were defined as High-TRL. Here, the metric F0 is introduced.

This is an adaptation of Eq. (3.6) using the following values:

• True positives (TP ) are the number of items correctly labelled as the positive class (Low-

TRL).
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• True negatives (TN) are the number of items correctly labelled as the negative class

(High-TRL).

• False positives (FP ) are the number of items incorrectly labelled as the positive class

(Low-TRL).

• False negatives (FN) the number of items incorrectly labelled as the negative class (High-

TRL).

Due to the significant class imbalance, F1 and F0 will be skewed. Therefore, a third metric is

introduced, F<01>, which is defined as the mean of F1 and F0 and gives a measure of overall

classifier performance. The metrics AUC ROC (Section 8.1.4), Sc (Eq. (8.4)) and A (Eq. (8.3))

will also be used.

Identifying the best supervised classifier

In this study, the following supervised classifiers are examined: Linear Support Vector Machine

(SVM), Gaussian Naive Bayes (NB), decision tree, logistic regression and random forest (see

Section 8.1.2 for descriptions) for feature representation using S-BERT1.

First, an overview of the method used for supervised classifiers in this study will be specified.

As in Chapter 8, model validation will be performed using nested cross-validation, and the

inner and outer loops will consist of 5-fold repeated cross-validation. Section 8.4 recommended

that feature selection be included as part of the cross-validation process for a more accurate

generalisation error to be calculated and to optimise the number of dimensions (dn) of the input

document vectors. In Chapter 8, KBest was used for feature selection. In this study, KBest for

feature selection is replaced with Principal Component Analysis (PCA) as PCA is significantly

less computationally expensive2. The number of dimensions (dn) will be optimised over the

following grid: [50, 60, 70, 80, 90, 100]. Hyperparameter optimisation is also performed as part

1Results were initially generated using both S-BERT and TF-IDF feature-representation methods. However,
the results generated using TF-IDF overfit for every classifier. Therefore, with the fact that, in Section 8.3,
TF-IDF was outperformed by S-BERT for every supervised classifier, it was decided not to include the results
of the TF-IDF feature-representation method in this thesis. Therefore, in this section, the method for S-BERT
is discussed only.

2PCA rotates and transforms data by keeping the features with the highest variance. Further details on
PCA can be found in Ref. [484]. This change was observed to have a limited impact on classifier performance.
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of the inner loop. The hyperparameters optimised in this study are unchanged from Section

8.1.3. Model validation will generate an Estimated A with an associated generalisation error.

Following this, document vectors for the NTREM training dataset will be generated using

S-BERT. Next, optimisation of the dn for PCA and hyperparameters is performed using grid-

search with 5-fold repeated cross-validation. These optimised values are then input into the

classifier, which is then trained on the whole training set. Then, document vectors for the

NTREM test set are generated, and classifier performance on the test set is evaluated.

The first experiment with the supervised classifiers will examine the impact of including PCA in

the nested cross-validation on the performance of supervised classifiers. This experiment con-

ducts a direct comparison of the effect on algorithm performance between PCA being included

in the nested cross-validation (dn is optimised) and not included in the nested cross-validation

(dn is set arbitrarily to 503).

The second experiment will compare the three best-performing supervised classifiers from the

first experiment using various techniques to mitigate the effects of class imbalance. This is

a recommendation for further research given in Chapter 8. For each classifier, four different

approaches to mitigating a class imbalance will be examined and compared to the classifier’s

performance with no class-imbalance-mitigation techniques. The four examined approaches

are: the algorithmic approach of altering the class-weighting parameter to exaggerated values,

RUS, SMOTE, and generating synthetic labels. These approaches are introduced in more detail

in Section 9.1. RUS and SMOTE will be included as part of the nested cross-validation. The

synthetic-labelling method is independent of all other documents in the dataset, so it is not

included as part of the nested cross-validation.

The labelling method used the the keyword-matching algorithm to label the unlabelled doc-

uments as High and Low-TRL. Documents labelled as High-TRL were then ranked using the

following metric

DC = CH − CL. (9.1)

This is the difference between the number of counts of High-TRL words (CH) and Low-TRL

words (CL) in a document. The top 114 scoring documents were identified and added to the

training dataset to balance the classes. The desired outcome of this experiment will be the

3As explained in Chapter 7, this value was selected as it is the smallest number of dimensions commonly
observed in the literature [122] for text representation.
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identification of the best-performing supervised classifier and a refinement of the methodology

introduced in Chapter 8.

Identifying the best unsupervised classifier

Identifying the best unsupervised classifier will consist of two experiments.

The first experiment for unsupervised classification will compare the performance of K-means

clustering classifiers using two different feature-representation methods: S-BERT and TF-IDF.

The method described in Section 8.1.2 will be followed with one notable exception: TF-IDF

fitting will be applied to the training and test sets separately. Algorithms will be trained on the

unlabelled NTREM dataset of 756 documents and evaluated on the labelled NTREM dataset

using F<01> and AUC ROC. Silhouette coefficients (Sc) (Eq. (8.4)) will be used to evaluate

the quality of generated clusters. The best-performing feature-representation method will be

identified in this experiment.

The second experiment will examine the impact of applying PCA transforms prior to cluster-

ing on the performance of the K-means clustering classifier with the best-performing feature-

representation method. Recommendations for further work in Section 8.4 were to explore using

a smaller dn to perform K-means clustering. K-means clustering algorithms perform better

in lower dimensions due to the curse of high dimensionality4. As mentioned in Chapter 3,

featureless metrics such as the normalised web distance have been developed to resolve this

problem [171]. However, reducing the dimensions of the data using techniques such as PCA is

a proven way to improve the performance of clustering algorithms [501, 499]. To examine this,

PCA transforms to dn in the range of 2 to 7185 will be fit to the unlabelled NTREM training

set in feature space. The data will then be used to train a K-means classifier. The classifier’s

performance will then be evaluated on the NTREM dataset using Sc, F<01>, A and AUC ROC.

The desired outcome of these experiments is the identification of the best-performing unsuper-

vised classifier and a refinement of the methodology introduced in Chapter 8.

4This is the theory that objects become almost equidistant in high dimensions, and metrics such as cosine
similarity become meaningless [499]. Furthermore, as the dn increases, the distance between a data point and
its nearest neighbour tends toward the distance to its furthermost point [500].

5The maximum dn that a PCA transform can be applied to is equal to the number of samples in the dataset.
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Comparing supervised and unsupervised classifiers

The performance of the best-performing supervised and K-means clustering classifiers described

above will be compared to the keyword-matching algorithm (Eq. 8.7) for the NTREM dataset.

This process will then be repeated for a dataset of HEMCE journal articles.

9.2.3 Measuring agreement among experts’ classifications of journal

articles by TRL

This section will present the method used to examine the reliability of the data used to train the

NLP tools described in Section 9.2.2. The reliability of the data will be examined by measuring

the extent to which a group of experts agree with Participant B (inter-participant agreement)

and the extent to which Participant B agrees with their own assigned labels when asked to

complete the same task at a later time (test-retest agreement).

The participants for this study are technically trained. They all possess a STEM degree and

have several years of experience in the field of energetic materials. The identity of the partic-

ipants will be kept anonymous. Therefore, participants are referred to by the letters A - D.

Some participants (Participants C and D) were paid for their time contribution to this project.

Participants A and B were recruited voluntarily. All participants completed the study inde-

pendently. No background information on the participants was collected as the sample size was

too small for any meaningful comparison by background information factors to be conducted.

However, it is noted that Participants C and D are from the same organisation.

Data collection was performed over three stages. The first stage was to collect the data used

for the NLP analysis in Chapters 8 and 9. Section 9.2.1 describes how the dataset developed

in Section 8.2.1 is expanded to 442 labelled NTREM papers from NTREM 2012, 2015, 2017,

2018 and 2019. These datasets were labelled by Participant B.

The second stage generated data for inter-participant comparison. The procedure to obtain

TRL labels described in Section 9.2.1 was repeated. Participant A completed the exercise for

104 documents from NTREM 2019. Participants C and D completed the exercise for the same

104 documents from 2019 and 148 documents from 2018.
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The third stage generated data for test-retest comparison. The ratings that Participant B

generated formed the basis of two studies. It was therefore decided to evaluate the test-retest

agreement of this data. This was done by asking the participant to repeat the exercise for 20

randomly selected NTREM documents.

An inter-group comparison will be conducted in 2 stages. Using participant assignments of TRL

from NTREM 2019 only for all four participants and using participant ratings from NTREM

2019 and 2018 for Participants A, C and D. Section 6.1 gave an overview of inter-rater reliability

metrics. In this study, a comparison of two inter-rater reliability metrics, Cohen’s kappa κ and

paradox-proof Gwets AC1 κ̂G, will be given. Test-retest agreement will be measured using

κ̂G. As discussed in Section 6.1, various benchmark scales are used for interpreting agreement

metrics. The Landis and Koch scale will be used in this study. Gwet’s statistical approach for

interpreting κ̂G, described in Section 6.1, will also be used to interpret κ̂G.

9.3 Results and discussion

The results will be presented in four sections. First, the results for comparing the ability of

NLP tools to classify journal articles by TRL will be presented. In Section 9.3.1, a series

of experiments will be conducted to identify the best-performing supervised classifier. Then,

in Section 9.3.2, experiments will be conducted to identify the best-performing unsupervised

classifier. In Section 9.3.3, the best-performing unsupervised and supervised classifier will be

compared to a keyword-matching algorithm. Finally, Section 9.3.4 will present the results of

evaluation of reliability of the data.

9.3.1 Identifying the best-performing supervised classifier

As detailed in Section 9.2.2, the method used to identify the best-performing supervised clas-

sifier consists of two experiments: examining the impact of including PCA in the nested cross-

validation and mitigating the effects of class imbalance on supervised classifiers. The results of

these experiments will be presented in the aforementioned order.
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Examining the impact of including PCA in nested cross-validation

This experiment examines the impact of including PCA in the nested cross-validation with

optimisation of the dn for PCA, using a training dataset of 353 documents and a test set of 89

documents.

Table 9.1 displays the results of the performance of supervised classifiers with S-BERT for

feature representation on the extended study dataset. For each supervised classifier, the table

displays the classifier performance with PCA included as part of the nested cross-validation

and without.

Algorithm PCA in CV Evaluation Metrics
F<01> AUC ROC A Estimated A

Linear SVM Yes 0.66 0.67 0.67 0.52 ± 0.05
No 0.65 0.65 0.66 0.55 ± 0.07

NB Yes 0.67 0.65 0.66 0.56 ± 0.05
No 0.49 0.49 0.56 0.56 ± 0.05

Decision tree Yes 0.58 0.58 0.61 0.55 ± 0.07
No 0.58 0.58 0.61 0.55 ± 0.06

Logistic regression Yes 0.56 0.58 0.65 0.62 ± 0.02
No 0.56 0.58 0.65 0.62 ± 0.02

Random forest Yes 0.50 0.54 0.64 0.62 ± 0.04
No 0.42 0.52 0.64 0.63 ± 0.01

Table 9.1: Performance of supervised classifiers using S-BERT for feature representation with
PCA included as part of the nested cross-validation (CV) and without. Evaluation is conducted
using the metrics: F<01>, AUC ROC and A. Estimated A is generated using nested cross-
validation.

The results in Table 9.1 show minor differences in the performance of the classifiers with PCA

included as part of the nested cross-validation and without. Including PCA in the nested cross-

validation should increase the generalisation error (error in estimated A) as the error will now

include the variance generated by the different PCA transformations and the additional opti-

misation. An increased generalisation error for PCA in the nested cross-validation is observed

for the decision tree and random forest classifiers. Unsurprisingly, this pair of algorithms are

affected similarly since, as described in Section 8.1.2, these algorithms are heavily related. The

generalisation error of the linear SVM classifier decreased from 0.07 to 0.05 for PCA being

in and not in the nested cross-validation. This was because the stability of hyperparameter

optimisations was higher with the PCA in the nested cross-validation. With PCA in the nested
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cross-validation, optimisation of the dn selected 100 on 72% of the loops and optimising the

parameter C selected 10 on 60% of the loops. When PCA was not included as part of the

nested cross-validation, there was considerably more variation in the selection of C. There was

not a single dominant value.

For the logistic regression classifier, no changes to the generalisation error were observed because

the optimised dn was most frequently selected to be 50. Since 50 is the dn set arbitrarily when

PCA is not part of the nested cross-validation, there is no observed change to the generalisation

error. This was also observed for the NB classifier.

There are only minor changes to the performance of the classifiers on the test set. It would be

expected that including PCA in the nested cross-validation would allow for increased perfor-

mance as the dn would be optimised. This is observed for linear SVM, NB, and the random

forest classifier. For the decision tree and logistic regression classifiers, there is no difference in

the algorithm’s performance on the test set between PCA being in the nested cross-validation

and not being in the nested cross-validation. This is because, again, the optimised dn selected

by the cross-validation loop was 50, the same dn set arbitarily when PCA is not part of the

nested cross-validation.

To identify if a classifier has overfit, the Estimated A is compared with the A on the test set. If A

lies above the error range of the Estimated A, then the algorithm can be identified as overfitting.

Including PCA in the nested cross-validation had no impact on whether or not a classifier

overfits for all classifiers except for the NB classifier. For the NB with PCA not in the nested

cross-validation, A = 0.56 which is within the error range of the Estimated A = 0.56 ± 0.05.

However, with PCA in the nested cross-validation, the Estimated A = 0.56 ± 0.05 but A

increases to 0.66, above the error range of Estimated A. The NB classifier has hence overfit.

This classifier selected 100 as the optimal dn for the PCA. This is a high number and could be

the cause of the overfitting. As mentioned in Chapter 8, classifiers trained on small datasets of

high-dimensional data are likely to overfit.

To summarise, the method that optimises dn for PCA lead to improved estimation of the

generalisation error. As a result, this method will be applied for all future experiments with

supervised classifiers.

The performance of the classification algorithms (with PCA in the nested cross-validation)
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will now be discussed. The results in Table 9.1 indicate the linear SVM, NB, and the logistic

regression classifiers have overfit. For linear SVM and Gaussian NB, the classifiers were trained

on data of 100 dimensions. It is, therefore, unsurprising that they overfit. To avoid overfitting in

future experiments, the grid used to optimise the number of output dimensions of PCA should

be altered to remove high dimensions. In contrast to linear SVM and NB, the logistic regression

classifier’s A = 0.65 is only slightly larger than the Estimated A plus the generalisation error

(0.62+0.02).

Overall, the performance of the classifiers examined here is poor. The values of A are in the

range of 0.54 to 0.67. Achieving an A = 0.50 is no different from selecting the TRL of the journal

papers at random. The classifier that performed the best was the decision tree classifier, where

an AUC ROC and F<01> of 0.58 was obtained. These values are suboptimal. There are a

range of plausible reasons for the poor performance. However it is hypothesised that this poor

peformance is due to the datasets’ significant class imbalance. This pronounced class imbalance

could result in poor overall performance as the classifier cannot accurately identify members

of the under-represented class. The next experiment in this study will address this hypothesis

by investigating techniques to mitigate the effects of the class imbalance on the three best-

performing classifiers from this study. The random forest and decision tree classifiers did not

overfit, and the logistic regression classifier overfit less drastically than the other two classifiers;

therefore, the three best-performing classifiers are identified as logistic regression, decision tree

and random forest.

Mitigating the effects of class imbalance on supervised classifiers

This experiment will investigate a range of techniques to mitigate the effects of a class imbalance

on the three best-performing classifiers from the previous experiment: decision tree, random

forest and logistic regression.

Four approaches to mitigating the effects of a class imbalance were examined: RUS, adjust-

ing the class-weighting parameter, SMOTE and synthetic labelling. Results are compared to

classifier performance without using any of these techniques. Table 9.2 summarises results.

Table 9.2 shows RUS decreased the overall performance of the decision tree classifier across

all metrics. This is unsurprising as RUS removes items from the dataset, giving the classifier
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Algorithm Class Imbalance
Method

Evaluation Metrics
F<01> AUC ROC A Estimated A

Decision tree None 0.58 0.58 0.61 0.55 ± 0.07
RUS 0.54 0.55 0.54 0.51 ± 0.05

Class weighting 0.60 0.60 0.64 0.51 ± 0.05
Synthetic labels 0.56 0.56 0.56 0.53 ± 0.05

SMOTE 0.56 0.57 0.57 0.53 ± 0.06
Random forest None 0.50 0.54 0.64 0.62 ± 0.04

RUS 0.60 0.61 0.60 0.51 ± 0.07
Class weighting 0.58 0.58 0.64 0.59 ± 0.05
Synthetic labels 0.58 0.58 0.58 0.57 ± 0.05

SMOTE 0.66 0.65 0.70 0.60 ± 0.05
Logistic regression None 0.54 0.56 0.65 0.62 ± 0.02

RUS 0.63 0.63 0.64 0.51 ± 0.05
Class weighting 0.56 0.58 0.66 0.62 ± 0.02
Synthetic labels 0.65 0.65 0.65 0.61 ± 0.05

SMOTE 0.63 0.64 0.65 0.63 ± 0.05

Table 9.2: Performance of decision tree, logistic regression and random forest classifiers with
and without techniques to mitigate the class imbalance (RUS, class weighting, synthetic labels
and SMOTE). Evaluation is conducted using the metrics: F<01>, AUC ROC and A. Values of
Estimated A are generated using nested cross-validation

fewer examples to learn from and therefore negatively impacting classifier performance. The

logistic regression and random forest classifiers saw a decrease in A but an increase in F<01>

and AUC ROC. This implies that, whilst the classifier’s ability to identify elements of the

majority class has decreased (resulting in a lower overall A), its ability to identify members of

the minority class has improved (resulting in higher F<01> and AUC ROC). This can be verified

by examining the individual classes’ F<01> scores. The F1 for the minority classes (High-TRL)

increased when RUS was applied (0.31 to 0.56 and 0.24 to 0.56 for the logistic regression and

random forest classifiers respectively). Conversely, the F0 for the majority classes (Low-TRL)

decreased when RUS was applied (0.77 to 0.70 and 0.76 to 0.63 for the logistic regression

and random forest classifiers respectively). This result highlights the inability of A to capture

classifier performance on datasets with a class imbalance6. Whilst the classifiers’ ability to

distinguish between items has improved, overall A has decreased.

The Estimated A is compared to A for each classifier to identify overfitting. The logistic

regression and random forest classifiers achieved A on the test set higher than the Estimated

6A is the ratio of correctly classified instances to all instances in a dataset. To illustrate how misleading it is
in situations with a class imbalance, consider the following example of a dataset of 10 documents: 9 are in Class
A, and 1 is in Class B. A classifier classes them all as Class A. The A in this case would be 0.9, a misleadingly
high value.
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A plus the generalisation error. This indicates overfitting. RUS decreases the size of the

dataset by downsizing the majority class; with less data to train the model on there is a higher

risk of overfitting. An increase in the generalisation error was also observed. This reflects the

randomised nature of the RUS, which introduces further variance into the classification models.

Altering the class-weighting parameter to exaggerated values in favour of the minority class

increased the performance of all examined classifiers. The F<01> and AUC ROC increased for

all classifiers indicating an improved ability for the classifiers to distinguish between the classes.

For the logistic regression classifier, F0 does not change, but F1 increases from 0.31 to 0.35.

A similar pattern is observed for the decision tree and random forest classifiers. All classifiers

for the altering the class-weighting parameter method did not overfit. Overall, these results

indicate that altering of the class-weighting parameter to exaggerated values in favour of the

minority class improves classifier performance and does not result in overfitting.

Generating synthetic labels was found to have a varied impact on classifier performance. The

logistic regression and random forest classifiers values of F<01> and AUC ROC increased. The

overall ability of these classifiers to distinguish between the two classes and classify items

correctly improved. The A of the logistic regression classifier remained constant, but the A

of the random forest classifier decreased. The individual classes’ F<01> scores are examined.

The F0 for the random forest classifier decreased from 0.76 to 0.59, and the minority class F1

score increased from 0.24 to 0.57. The F<01> scores of the two classes are significantly more

balanced, indicating a better classifier that is less likely to be overfitting on the majority class.

The majority class has more instances. Therefore, the lower F0 explains why A of the model

has decreased. Table 9.2 indicates the random forest classifier is not overfitting.

The logistic regression classifier’s F1 increased from 0.31 to 0.68, and the majority class F0

decreased from 0.77 to 0.68. Again, the ability of the classifier to classify individual classes

is significantly more balanced, indicating a better overall classifier. Results for A indicate the

logistic regression classifier is not overfitting7.

An increase in the classification algorithms’ overall performance is expected as generating syn-

thetic labels results in a significant increase in the number of samples the algorithm is trained

on. This gives the classifiers more examples to learn from, which should thus result in improved

7A comparison between A = 0.65 and the Estimated A = 0.61±0.05 indicates the logistic regression classifier
is not overfitting.
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performance and a reduced risk of overfitting.

The decision tree classifier’s performance decreases across all three examined metrics when

synthetic labels are used. The majority class F0 score fell from 0.69 to 0.57 and the minority

class F1 score increased from 0.46 to 0.56. Whilst using synthetic labels balances out the F<01>

scores, meaning the model is less likely to be overfitting on the majority class, as discussed for

the random forest classifier, this balancing can decrease the model’s performance. Furthermore,

synthetic labelling is only effective if the synthetic labels are accurate. Whilst efforts were made

to generate high-quality synthetic labels, the methodology may be error-prone. This may have

resulted in errors in the performance of the decision tree classifier, which typically exhibits

higher variance than random forest classifiers [425]. A comparison between the synthetic-

labelling method and the participants’ own labels should be conducted to explore this hypothesis

further.

SMOTE increased the performance of the random forest classifier across all metrics. The value

of F1 increased from 0.24 to 0.54 indicating SMOTE reduced the impact of the class imbalance.

A value of A = 0.70 was obtained, which is out of range of the Estimated A = 0.60 ± 0.05

and is a strong indication of overfitting. The optimisation determined dn = 100. Such a high

value of dn is error prone [502], which could have resulted in the observed overfitting. Unlike

the synthetic-labelling method, there is no way to evaluate the quality of the synthetically

generated points.

The logistic regression classifier’s overall performance increased when SMOTE was used. F<01>

increased from 0.54 to 0.63, AUC ROC increased from 0.56 to 0.64, and A remained constant.

The F1 increased from 0.31 to 0.55, and F0 decreased from 0.77 to 0.69. The F scores for the

majority and minority classes are not balanced. This may be an indication that there is some

overfitting on the majority class. However, a comparison between A and Estimated A does not

support this conclusion.

It is expected that using SMOTE would increase classifier performance as there is an increase

in the size of the data that the models are trained on. Whilst this increase in performance is

observed for the logistic regression and random forest classifiers for the decision tree classifier,

the overall performance decreased. F<01> decreased from 0.58 to 0.56, AUC ROC decreased

from 0.58 to 0.57 and A fell from 0.61 to 0.57. The F0 decreased from 0.69 to 0.63, and F1

increased from 0.46 to 0.49. The ratio of decrease in the majority class to increase in the
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minority class is high. This would significantly impact the classifier’s performance as there are

significantly more instances of the majority class. This model does not appear to be overfitting.

Table 9.2 shows the best-performing algorithm when no sampling method is applied is the

decision tree classifier. The generalisation error in this classifier is on the order of 10%, which

is similar to the preliminary results seen in Chapter 8. From the Table 9.2, the best-performing

approach that does not show clear indications of overfitting is the logistic regression classifier

with SMOTE. This achieved an overall A = 0.65, which is poor.

To summarise the above, RUS decreased the performance of all classifiers. Adjusting the class-

weighting parameter to exaggerated values in favour of the minority class is found to positively

impact algorithm performance without resulting in overfitting for all examined approaches.

SMOTE and synthetic labelling were found to have a varied impact on classifier performance.

The best-performing algorithm that did not overfit was logistic regression using synthetic labels.

9.3.2 Identifying the best-performing unsupervised classifier

As described in Section 9.2.2, the method used to identify the best-performing unsupervised

classifier consists of two experiments: comparing S-BERT and TF-IDF feature-representation

methods for a K-means clustering classifier and examining the impact of applying PCA trans-

forms prior to clustering on the performance of a K-means clustering classifier. The results of

these experiments will be presented in the order above.

Unsupervised clustering classifier: S-BERT versus TF-IDF

The K-means clustering approach described in Section 9.2.2 is fit to a dataset consisting of

document vectors of 718 unlabelled NTREM papers. The algorithm’s performance is then

evaluated on 442 labelled NTREM papers. Two different feature-representation approaches

were examined; S-BERT and TF-IDF. Figure 9.1 shows a visualisation of the results of the K-

means clustering classifier, whereby PCA is used to generate 2D representations of the document

vectors.

Figures 9.1 (a) and (b) show 2D representations of the document vectors generated using TF-

IDF and S-BERT respectively. As with the results presented in Section 8.3 for both feature-
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(a) TF-IDF document vectors

(b) S-BERT document vectors

Figure 9.1: Visualisation of K-means clustering classifier performance with feature represen-
tation of TF-IDF (a) and S-BERT (b). Each document in the test set is transformed to 2D
coordinates using PCA. Documents labelled as High-TRL are shown in blue and those labelled
as Low-TRL are shown in green. Misclassified documents have a superimposed red cross.
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representation methods, the clusters are not clearly defined. The TF-IDF and S-BERT rep-

resentation methods generated Sc values of 0.02 and 0.07 respectively. These scores are very

close to 0, implying the clusters are ill-defined and overlapping. This indicates a poorly defined

decision boundary and hence poor classifier performance.

The performance of the K-means classifier for both TF-IDF and S-BERT feature-representation

methods is summarised in Table 9.3.

Algorithm F<01> AUC ROC A
K-means TF-IDF 0.64 0.69 0.69
K-means S-BERT 0.54 0.55 0.55

Table 9.3: Performance of the K-means clustering classifier for S-BERT and TF-IDF feature-
representation methods. Evaluation is conducted using the metrics: F<01>, AUC ROC and A.

K-means clustering using S-BERT did not perform well on the test set. A value of A = 0.55

was obtained, which is marginally better than guessing. To further understand the algorithm’s

poor performance, the F-measure of the classes are examined individually. Values of F0 = 0.59

and F1 = 0.49 were obtained. The difference in these scores shows the class imbalance affects

the algorithm. This is in line with results in the literature that show K-means clustering is

an algorithm that is affected by imbalanced classes [503]. K-means clustering is subject to the

‘uniform effect’, whereby the algorithm is prone to developing uniform clusters even if the data

is skewed [504]. K-means clustering approaches are prone to assigning members of a majority

class to the minority class in order to balance the size of the clusters. Ref. [504] provides a

comprehensive overview of the uniform effect in the context of K-means clustering.

In contrast, K-means clustering using TF-IDF showed better performance with A = 0.69. This

value is higher than the best-performing supervised approach. Values of F<01> = 0.64 and

AUC ROC = 0.69 were also obtained. These values indicate the K-means classifier with TF-

IDF classifier can better distinguish between classes than the K-means classifier with S-BERT.

Furthermore, F0 = 0.64 and F1 = 0.65 were obtained. These scores are relatively balanced

indicating the K-means clustering algorithm is less affected by the class imbalance in TF-IDF

feature-representation space.

Whilst the K-means clustering with TF-IDF approach performed the best (obtaining A = 0.65),

its performance is too poor for a system using this method to be implemented reliably. It may be

the case that K-means clustering is not the most appropriate clustering algorithm. Therefore,
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it is interesting to consider what algorithms may have been a more appropriate choice. One

technique to identify other appropriate clustering algorithms is to visualise the labelled dataset

and see if any obvious visual patterns emerge that may be more suited to specific clustering

algorithms. Figure 9.2 shows 2D PCA transformations of TF-IDF and S-BERT document

vectors labelled according to TRL.

Qualitative analysis of Figures 9.2 (a) and (b) show very undefined decision boundaries between

the High-TRL and Low-TRL document vectors for both feature-representation methods. Figure

9.2 (a) shows the majority of High-TRL documents are concentrated on the left of the plot,

and Low-TRL documents are concentrated on the right-hand side of the plot. This suggests

that a density-based clustering algorithm may yield better results, e.g. DBSCAN [505].

Figure 9.2 (c) shows no clear patterns or decision boundary. This indicates that no one specific

clustering algorithm may produce better results. It is noted this analysis is limited in its

approach, as Figures 9.2 (a) and (b) show 2D representations of the document vectors. It may

be the case that specific patterns may become clearer in higher dimensions. In addition, the

choice of algorithm to investigate is somewhat limited by the need for the number of clusters

to be a parameter of the algorithm. Clustering algorithms are not designed for classification.

The K-means clustering algorithm is one of the few clustering implementations on scikit-learn

[425] that has the number of clusters as an input parameter for this parameter.

To conclude, K-means clustering with TF-IDF outperformed K-means clustering with S-BERT.

Qualitative evaluation of 2D projections of the labelled data revealed that a density-based

algorithm might be a more appropriate clustering algorithm for TF-IDF. However, the number

of clusters needs to be an input parameter for the clustering algorithm in order for it to be

applied to classification; therefore, exploring this further was ruled out. No noticeable patterns

were observed for S-BERT. K-means clustering algorithms are distance-based due to the curse

of high dimensionality. Therefore, they tend to perform better in lower dimensions. The

next experiment in this section will examine the impact of applying PCA transforms prior to

clustering on the performance of the K-means clustering classifier with TF-IDF.
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(a) TF-IDF document vectors

(b) S-BERT document vectors

Figure 9.2: 2D PCA representation of document vectors labelled by their assigned TRL. Doc-
uments labelled as Low-TRL are shown in green, and documents labelled as High-TRL are
shown in blue.



9.3. Results and discussion 237

PCA for K-means clustering with TF-IDF

The results of the previous experiment showed the K-means clustering classifier performed best

using the TF-IDF feature-representation method. This experiment will examine the impact

of applying PCA transforms prior to clustering on the performance of the K-means clustering

classifier with TF-IDF.

PCA transforms to dn from 2 to 718 are fit to the unlabelled NTREM training set in TF-IDF

feature-space. This data is then used to train the classifier.

Figure 9.3: AUC ROC, F<01> and Sc of K-means clustering classifier with TF-IDF whereby a
PCA transform has been applied versus the dn after reduction.

Figure 9.3 shows that, as the dimensions of the data decrease, the Sc (Eq. (8.4)) decreases. This

is expected as the Sc uses the mean distances between clusters to measure how well defined

the clusters are and, at higher dimensions, distance is less defined. The Sc decreases with dn

rapidly. For a dn higher than 60, the Sc is below 0.20. The effect of the dn on F<01> and

AUC ROC is less clear. For numbers of features less than 300, lower values of F<01> and

AUC ROC are observed. This is somewhat expected as the loss of information to transform

data to these dimensions is significant. There is, however, some exception to this observation:

for dimensions 8 and 9, high values for F<01>, AUC ROC and Sc are obtained. This may be

due to random variation in the PCA algorithm or because these are the most optimal values of
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dn where all information necessary for classification is retained. For dn above 400, the values

of F<01> and AUC ROC remain constant. For F<01> and AUC ROC evaluation, it is expected

the performance of the clustering algorithm will decrease as the dn decreases as information

is lost. It may be the case that for a dn above 400 all necessary information for performing a

classification is retained. PCA is an algorithm with inherent variance. The variance observed

in Figure 9.3 reflects this.

From Figure 9.3, the optimal dn can be identified by examining the peak values of AUC ROC,

F<01> and Sc. The optimal dn is 9. At this dn, values of 0.71, 0.69 and 0.17 are obtained for the

AUC ROC, F<01>, and Sc respectively. This minor increase in performance from the results

in Table 9.3 demonstrates that using PCA as part of the classification process can increase

the model’s performance if the PCA is performed to an optimised dn. This conclusion is in

agreement with other studies in the literature [501, 499].

To conclude, the best-performing unsupervised algorithm was K-means clustering using TF-

IDF for feature representation and performing a PCA transform to 9 dimensions. There are

alternative methods of feature reduction and feature selection that may prove to be more fruit-

ful; examples include non-negative matrix factorisation [506] and linear discriminant analysis

[507]. Identification of the best feature-reduction method is normally performed on a trial-

and-error basis. Future studies should explore a range of different feature reduction/selection

methods.

9.3.3 Comparing supervised and unsupervised classifiers

In this section, the performance of the best-performing supervised and unsupervised algorithms

from Sections 9.3.1 and 9.3.2 for classification of journal articles by TRL are compared. Section

9.3.1 examined a range of supervised classification algorithms and approaches to tackling class

imbalances. This work identified the best-performing supervised classifier as a logistic regres-

sion classifier using S-BERT for feature representation and the synthetic-labelling approach to

mitigate the class imbalance. This algorithm will henceforth be referred to as ‘logistic regres-

sion (S-BERT SL)’. In Section 9.3.2, unsupervised clustering algorithms were examined. This

analysis concluded the best-performing unsupervised algorithm was K-means clustering using

TF-IDF for feature representation and performing a PCA transform to 9 dimensions. This
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algorithm will henceforth be referred to as ‘K-means clustering (TF-IDF 9)’.

The performance of K-means clustering (TF-IDF 9), logistic regression (S-BERT SL) and a

baseline performance measure (the keyword-matching algorithm) on the NTREM dataset is

summarised in Table 9.4.

Algorithm F<01> AUC ROC A Estimated A

Logistic regression (S-BERT SL) 0.65 0.65 0.65 0.61 ±0.05
K-means clustering (TF-IDF 9) 0.69 0.71 0.69

Keyword matching 0.58 0.62 0.58

Table 9.4: Results of K-means clustering (TF-IDF 9), logistic regression (S-BERT SL) and a
keyword-matching algorithm for document classification by TRL on the NTREM dataset.

Table 9.4 shows the keyword-matching algorithm is outperformed by both the supervised and

unsupervised algorithms. In Chapter 8, the performance of the keyword-matching algorithm

was evaluated on a smaller dataset of 148 documents. The results can be found in Table 8.3. The

performance of the keyword-matching on this larger dataset dropped considerably, achieving

an AUC ROC of 0.73 in the Chapter 8 study compared to 0.62 in the present study. This could

be because keywords are a good indicator of TRL for some but not all journal articles so on a

larger dataset the performance of the model drops. This ties into the discussion in Chapter 4

that different conceptual ideas can be portrayed using similar words, as using keywords alone

is insufficient to identify if a particular concept is being discussed. As suggested in Chapter 8,

one method of improving this algorithm would be to expand the keywords list. Alternatively,

given the process of assigning TRL is subjective and the labels are human-generated, the

labels generated for this dataset may be inconsistent or erroneous. The quality of the dataset

will be evaluated in Section 9.3.4. The keyword-matching algorithm was unaffected by the

class imbalance since F0 and F1 were equal values. This is an entirely unsupervised statistical

algorithm. It is therefore unaffected by the class imbalance.

K-means clustering (TF-IDF 9) achieved the best performance of the algorithms investigated,

obtaining values of 0.69, 0.71 and 0.69 for F<01>, AUC ROC and A respectively. Whilst these

values demonstrate this algorithm is better than random guessing, the overall performance

is still suboptimal and error-prone, meaning it cannot be reliably deployed in a real-world

application. Values of 0.68 and 0.69 were obtained for F1 and F0 respectively, indicating the

K-means clustering (TF-IDF 9) algorithm is affected minimally by the class imbalance as this

is not the cause of the poor performance.
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As discussed in Section 9.3.1, the logistic regression (S-BERT SL) classifier was largely unaf-

fected by the class imbalance. However, the model’s overall performance is suboptimal, ob-

taining A = 0.65. The logistic regression (S-BERT SL) classifier did not overfit. However, the

obtained generalisation error was approximately 8%. This is on the order of the results in Table

8.3. To understand the cause of this generalisation error, the stability of the hyperparameters

and the dn optimised as part of the inner loop of the nested cross-validation was investigated.

Logistic regression (S-BERT SL) optimised one hyperparameter C. Surprisingly C was stable

for all optimisations performed. However, the dn was found to vary significantly. Figure 9.4

displays the frequency of selection of dn for PCA as a result of optimisation in the inner loop

of nested cross-validation.

Figure 9.4: Frequency of selection of dn for PCA as a result of optimisation in the inner loop of
nested cross-validation over the grid [50,60,70,80,90,100], for logistic regression (S-BERT SL).

Figure 9.4 shows a range of values of dn were deemed optimal depending on what portion of

the data the algorithm was trained on. This variance is unsurprising for a small dataset. This

observed lack of stability in dn is likely a key cause of the generalisation error. This is a clear

indication that feature-reduction methods can be a significant cause of variance and therefore

impact the overall performance of an algorithm.
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The performance of the classifiers in this study are suboptimal. When the values of A and

AUC ROC in Table 9.4 are compared to those obtained by the study conducted in Chapter 8

(Table 8.3), there is a significant difference in performance. One possible reason for this is that

the supervised results in Table 8.3 exhibited severe overfitting that was not picked up by the

cross-validation, possibly due to feature-selection not being included as part of the nested cross-

validation. The decrease in performance of the K-means clustering classifiers may be because

the algorithm is fitted on fewer documents in Table 9.4. The performance of the keyword-

matching algorithm also decreased. The overall decrease in performance could be due to the

increased class imbalance (though analysis completed earlier in this section suggests otherwise)

or due to errors in labelling the dataset.

The flexibility of the K-means clustering (TF-IDF 9), logistic regression (S-BERT SL) and

keyword-matching classifiers will be examined by testing their performance on the HEMCE

dataset decribed in Section 9.2.1.

Algorithm F<01> AUC ROC A Estimated A

Logistic regression (S-BERT SL) 0.55 0.55 0.54 0.61 ±0.05
K-means clustering (TF-IDF 9) 0.61 0.61 0.62

Keyword-matching 0.48 0.58 0.50

Table 9.5: Results of K-means clustering (TF-IDF 9), logistic regression (S-BERT SL) and
keyword-matching classifiers on the HEMCE dataset.

Table 9.5 shows the performance of the K-means clustering (TF-IDF 9) and logistic regression

(S-BERT SL) classifiers decreased for the HEMCE dataset. The algorithms were fit/trained

on NTREM papers. The performance on this dataset shows a more diverse training dataset is

needed to generate an algorithm flexible enough to perform classification on different journals.

In addition, Table 9.5 shows the performance of the keyword-matching algorithm declined from

an A = 0.58 on the NTREM dataset to A = 0.50 on the HEMCE dataset. An A of 0.50 is no

better than flipping an unbaised coin to assign labels. This decline in the performance of the

keyword-matching algorithm is examined further by considering the performance of individual

classes. Values of 0.35 and 0.60 were obtained for F0 and F1 respectively. This implies the Low-

TRL keyword list may be less effective than the High-TRL keyword list for HEMCE papers.

This could be because the experts who generated the keyword lists developed the lists with

NTREM in mind or because HEMCE uses different terminology than NTREM.



242 Chapter 9. Comparing experts’ and NLP tools’ classification of journal articles by TRL

Despite the class imbalance being less pronounced for the HEMCE dataset, it is found to

significantly impact the performance of both the logistic regression (S-BERT SL) and K-means

clustering (TF-IDF 9) classifiers. The logistic regression (S-BERT SL) classifier obtained values

of 0.57 and 0.50 for F0 and F1 respectively. The logistic regression (S-BERT SL) classifier used

a synthetic-labelling method to label High-TRL documents and add them to the dataset to

mitigate the effects of the class imbalance. As shown in Eq. (9.1), the synthetic-labelling

method is based upon the keyword-matching algorithm, which, as explained above, is less

accurate for the HEMCE dataset. This, therefore, explains the decline in the performance of

the algorithm. K-means clustering (TF-IDF 9) obtained an F0 of 0.68 and an F1 of 0.54. Overall

the K-means clustering (TF-IDF 9) algorithm performed the best on the HEMCE dataset. K-

means clustering (TF-IDF 9) and logistic regression (S-BERT SL) outperformed the statistical

keyword-matching algorithm indicating that, even in small-data environments, ML approaches

can yield better results than statistical algorithms.

To conclude, the performance of these algorithms was suboptimal. The best-performing al-

gorithm on both datasets was K-means clustering (TF-IDF 9). Both ML approaches, K-

means clustering (TF-IDF 9) and logistic regression (S-BERT SL), outperformed the statistical

keyword-matching algorithm on both datasets. The performance of all three algorithms de-

clined from the results shown in Chapter 8. This could be due to errors in labelling the

dataset. Section 9.3.4 will investigate this further.

9.3.4 Results of comparing experts’ classifications of journal arti-

cles’ TRL

This section will examine the reliability of the data used to train the NLP tools in previous

sections. The method for this analysis is presented in Section 9.2.3.

Inter-participant agreement

Table 9.6 displays the inter-participant agreement between all four experts on their classification

of 108 NTREM articles by TRL. Cohen’s Kappa (κ) is used to calculate agreement, and the

Landis and Koch benchmark scale is used for interpretation (see Table 6.2).
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Pair κ Interpretation

A & B 0.08 Slight
A & C 0.33 Fair
A & D 0.33 Fair
B & C 0.20 Slight
B & D 0.33 Fair
C & D 0.39 Fair

Table 9.6: κ for all possible pairings of experts on their classification of 108 NTREM articles
by TRL. Interpretation of κ is completed using Landis and Koch benchmark scales.

Table 9.6 shows only slight agreement between A & B and B & C. Fair agreement is observed

between pairs C & A, A & D, B & D, and D & C. Classifying a document by TRL is a

subjective process, and different experts, even when presented with the same set of keywords

and definitions for High-TRL and Low-TRL, will likely have different approaches to evaluating

the TRL of a document. However, given the MoD has nine TRL levels, it was expected that

reducing this to a two-point scale would reduce the number of instances where experts would

disagree on TRL assignments. As a result, the low levels of agreement observed here are

unexpected.

However, as mentioned in Section 6.1, there are certain conditions under which κ is an invalid

metric. This is referred to as the kappa paradox, which can lead to low κ for high agreement

when the marginals of a contingency table are unbalanced (bais) or asymmetric (prevalence).

To examine if this is the cause of the low observed κ, contingency tables are obtained for each

pair and values of R1A, R2A, R1B, and R2B are computed. These values are then compared to

check for bias and prevalence. This is displayed in Table 9.7.

Pair R1A R2A R1B R2B Bias Prevalence

A & B 76 28 94 10 ✗ ✓

C & B 65 39 94 10 ✗ ✓

D & B 74 30 94 10 ✗ ✓

A & C 76 28 65 39 ✗ ✓

A & D 76 28 74 30 ✗ ✓

C & D 65 39 74 30 ✗ ✓

Table 9.7: Marginals for all possible pairings of experts on their classification of 108 NTREM
articles by TRL. The marginals are examined for bias and prevalence.

Table 9.7 shows that for all combinations of pairs give symmetric but unbalanced marginals, i.e.

no bias but prevalence. This is an example of the second kappa paradox introduced in Section

6.1. It is noted some combinations of pairs, notably C & D, A & D and A & C, have less
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unbalanced marginals. These pairings resulted in the three highest κ scores given in Table 9.6.

Observing unbalanced marginals is not surprising since the NTREM datasets have a clear class

imbalance. This implies the results in Table 9.6 do not reflect the true agreement. Therefore,

the analysis will be repeated using the more paradox-resistant Gwet’s κ̂G.

Agreement metrics are now recalculated using κ̂G. Interpretation of κ̂G and obtaining an error

in κ̂G (SE) is completed using the statistical approach described in Section 6.1 with Landis and

Koch benchmark scales. Results are displayed in Table 9.8 alongside the interpretation of the

κ score shown in Table 9.7.

Pair κ̂G SE Interpretation of κ̂G Interpretation of κ

A & B 0.59 0.08 Moderate Slight
A & C 0.50 0.09 Fair Fair
A & D 0.69 0.07 Moderate Fair
B & C 0.47 0.09 Fair Slight
B & D 0.55 0.08 Moderate Fair
C & D 0.50 0.09 Fair Fair

Table 9.8: κ̂G and associated error (SE) for all possible pairings of experts on their classification
of 108 NTREM articles by TRL. Interpretation of κ̂G is completed using a statistical approach
described in Section 6.1 with Landis and Koch benchmark scales. Interpretation of κ using
Landis and Koch benchmark scales is computed for each pair.

The results in Table 9.8 show that for all pairings, except A & C and C & D, κ generated

underestimates of the agreement between individuals. The reasons for this can be established by

examining Table 9.7. All pairings showed an imbalance in the marginal distributions. Therefore,

it is expected that κ would provide underestimates of agreement between pairs. Pairings A &

C and C & D show the least imbalance in their marginals. Therefore, these pairs should see a

minor variation between the interpretation of κ and κ̂G. The pairing with the most unbalanced

marginals is A & B. This is predictably the pairing in which there is the most change in the

interpreted agreement between the two metrics (from moderate to slight). This analysis has

shown the importance of evaluating the appropriateness of an agreement metric before using

it.

Participants A, B and D are the most ‘agreeable’ participants, each having a moderate agree-

ment with two other experts and fair agreement with one other expert. Since the majority

of analysis in this chapter is based on the labels generated by Participant B, this is positive.

However, overall, participant B’s agreement with the other participants is moderate at best,

indicating the data used to train and evaluate the performance of the algorithms is not reliable.
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Three participants (including Participant B) classified a total of 252 NTREM documents by

TRL. The process of identifying an appropriate agreement metric by examining prevalence and

bias in the values of R1A, R2A, R1B, and R2B is repeated. The results are displayed in Table

9.9.

Pair R1A R2A R1B R2B Bias Prevalence

C & B 161 91 157 95 ✗ ✓

D & B 190 62 157 95 ✗ ✓

D & C 190 62 161 91 ✗ ✓

Table 9.9: Marginals for all possible pairings of experts on their classification of 252 NTREM
articles by TRL. The marginals are examined for bias and prevalence.

Table 9.9, similarly to the results in Table 9.7, shows symmetrical unbalanced marginals for

all pairs of participants. This indicated the data is subject to the second kappa paradox

(prevalence). Therefore, κ̂G will be used to calculate the agreement among participants. These

results are displayed in Table 9.8 along with the agreement calculated using κ for comparison.

The standard error in the obtained κ̂G is also shown. Interpretation of κ̂G is completed using

a statistical approach described in Section 6.1 with Landis and Koch benchmark scales.

Pair κ̂G SE Interpretation of κ̂G κ Interpretation of κ

B & C 0.42 0.06 Fair 0.34 Fair
B & D 0.51 0.06 Moderate 0.37 Fair
D & C 0.57 0.05 Moderate 0.42 Moderate

Table 9.10: κ̂G and associated error (SE) for all possible pairings of experts on their classification
of 108 NTREM articles by TRL. Interpretation of κ̂G is completed using a statistical approach
described in Section 6.1 with Landis and Koch benchmark scales. For comparison, agreement
using κ is calculated. Interpretation of κ using Landis and Koch benchmark scales is computed
for each pair.

Table 9.10 shows that, whilst for the pairs B & C and D & C there is no difference in the

interpretation of the agreement when using κ̂G and κ, this is not the case for B & D. Using κ for

B & D would lead to an underestimate of the agreement. Table 9.9 shows this is the pair with the

most unbalanced marginals; therefore, observing a difference between the interpretation of κ̂G

and κ is expected. If the agreement between pairs on the smaller dataset (Table 9.8) is compared

to the agreement on this larger dataset, it is observed that for pairs B & C and B & D, there is no

change in the interpreted agreement. However, the agreement of the pair D & C increased from

fair to moderate. This indicates there were higher levels of agreement between the participants

on the 2018 proceedings as opposed to the 2019 proceedings. Again, the agreement between
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Participant B (who labelled the NTREM datasets) and the other participants is lower than

expected.

Thus far, the agreement between pairs of participants on assigning the TRL of journal articles

has been calculated. Here, the agreement across participants will be calculated using κ̂G for

the dataset of 104 documents and participants A, B, C & D and the dataset of 252 documents

and participants B, C & D. The results are displayed in Table 9.11.

Dataset Participants κ̂G Interpretation of κ̂G

252 documents B,C and D 0.49847± 0.04381 Moderate
104 documents A, B, C and D 0.55131± 0.06087 Moderate

Table 9.11: κ̂G for the dataset of 104 documents and participants A, B, C, D)and the dataset
of 252 documents and Participants B, C, D.

Table 9.11 shows the agreement across all participants for both datasets can be interpreted

as ‘moderate’. The moderate agreement may be because the definition of TRL given to the

participants may not have been specific enough. Alternatively, there may have been several

papers in the proceedings that were on the boundary between Low-TRL and High-TRL so were

difficult to assign a TRL to. The feedback from the participants was that some articles were

more straightforward to assign a TRL to than others, where it was more subjective. Future

studies could investigate this further by asking participants to give a 1-5 confidence score in

their assignment of TRL. This would not only allow those documents that are difficult to

classify to be identified but enable the uncertainty in the participant’s assignment of a label to

be measured.

The results must be considered in the context of the study’s limitations. Firstly, there was a

limited sample size of participants and documents to assign a TRL. The results would be more

accurate if a larger sample size were used. Future studies of this nature should gather more

data. Secondly, some participants were paid for their participation, and others were recruited

voluntarily. This may explain the low agreement as it may have been the case that those that

were paid assigned more time to the task than those that were not and ultimately approached

the task using different methods on account of this time allowance. Future studies should avoid

this.



9.4. Conclusions and further work 247

Test-retest

In order to assess the reliability of the data, Participant B was asked to complete a retest

study. This was done on a separate occasion over a month after prior data collection had been

completed on a sample size of 20 documents. κ̂G was used to measure reliability. A value

of κ̂G = 0.55 ± 0.06 was obtained. Interpretation of this value is completed using a statistical

approach detailed in Section 6.1. This can be interpreted as moderate agreement to a confidence

level of 95%. Whilst this restest study was conducted on a small sample size, this result implies

a lack of consistency in Participant B’s judgement of document TRL. This lack of consistency

in the participant’s judgements could be because their understanding of TRL evolved with time

or because the subset of documents chosen were difficult to classify. Regardless of the reason,

the lack of consistency in the labelling of Participant B may explain the poor performance of

the algorithms in Sections 9.3.1, 9.3.2 and 9.3.3. This could also explain why the results in

Chapter 8 were more promising than the results in this chapter: unlike the study in Chapter

8, this study used a dataset generated over several months.

9.4 Conclusions and further work

This chapter presented the second part of a two-chapter study addressing the limitations of using

NLP tools in a small-data environment. Recommendations to refine the Chapter 8 methodology

were applied to refine the methodology presented in Chapter 8. The ability of supervised and

unsupervised classifiers to classify the TRL of a small dataset of NTREM articles hand-labelled

by an expert was compared. In addition, the reliability of the data used to train these classifiers

was examined.

In Chapter 8, a limitation of using real-world data, class imbalance, was identified as prob-

lematic, particularly for small datasets. It was therefore recommended to investigate methods

that can mitigate the adverse effects on classifier performance of a class imbalance. Section 9.1

provided an overview of standard approaches to dealing with class imbalances that are suitable

for data-limited environments.

Section 9.2 presented an overview of the methodology used in this study. Metrics to examine

the performance of each class in the dataset were introduced (F0 and F1). A description of the
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primary datasets NTREM and HEMCE was given. Then an overview of the method used to

compare the ability of NLP tools to classify journal articles by TRL was given. This consisted

of three parts. The first part was the method for identifying the best-performing supervised

classifier (comprised of two experiments: examining the impact of including PCA in nested

cross-validation and various techniques to mitigate the effects of class imbalance).

The first experiment compares the performance of linear SVM, naive bayes (NB), decision tree,

logistic regression and random forest classifiers using a small dataset of 442 NTREM papers.

S-BERT was used for feature representation. As this is a small dataset, nested cross-validation

was used to optimise hyperparameters and generate estimates of the model’s performance. This

experiment examined the impact of including optimisation of the number of dimensions (dn)

and therefore PCA as part of the nested cross-validation by comparing it to an implementation

whereby PCA was performed arbitrarily to dn = 50 outside of the nested cross-validation. This

was a recommendation from Section 8.4 as it was expected that including PCA optimisation as

part of nested cross-validation would generate a more accurate generalisation error and increase

the model’s performance. The second experiment examined the impact of a range of techniques

to mitigate the effects of a class imbalance (introduced in Section 9.1) on the performance of

supervised classifiers. The investigated techniques are random undersampling (RUS), adjusting

the class-weighting parameter, Synthetic minority over sampling technique (SMOTE) and a

synthetic-labelling algorithm based upon a keyword-matching algorithm. Performance was

evaluated on the NTREM dataset.

The second part of the study methodology was to identify the best-performing unsupervised

classifier. This also consisted of two experiments (comparing the performance of K-means

classifiers using two different feature-representation methods, S-BERT and TF-IDF, and ex-

amining the impact of applying PCA transforms prior to clustering on the performance of the

K-means clustering classifier). The first experiment compared the performance of a K-means

clustering classifier using two different feature-representation methods, S-BERT and TF-IDF.

The algorithm was trained using a dataset of 718 unlabelled NTREM articles and tested on

442 labelled NTREM articles. K-means clustering algorithms are distance-based algorithms.

Therefore, they suffer from the curse of high dimensionality and tend to perform better in lower

dimensions. Therefore, the second experiment sought to optimise the performance of the best-

performing K-means clustering classifier by examining the effect of applying PCA transforms
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to values of dn in the range of 2 to 718 on classifier performance.

The third part of the study methodology was to compare the performance of the best-performing

supervised and unsupervised classifiers on the NTREM and HEMCE datasets. The final part

of this section introduced a methodology to compare experts’ classifications of journal articles’

TRL. This aimed to investigate the reliability of the data used to train the algorithms in the

previous sections. Three additional experts were asked to classify a series of NTREM papers by

TRL, and inter-participant agreement was computed. The expert who generated the datasets

(Participant B) was asked to repeat the classification task for a small subset of documents. This

data was then used to measure participant B’s agreement with their labels. A comparison of

two agreement metrics was conducted: Gwets AC1 κ̂G and Cohen’s kappa (κ). Interpretation

of these values was performed using the Landis and Koch benchmark scales.

Section 9.3 presented the results. The first set of results (Section 9.3.1) presented a series

of experiments to determine the best-performing supervised classifier. First, the results of

examining the impact of including PCA in nested cross-validation were presented. Despite the

expectation that including PCA in the nested cross-validation would increase the performance

of the classifiers, only marginal changes were observed. For the linear SVM, NB, and random

forest classifiers, the model’s performance increased with PCA in the nested cross-validation

loop. However, for the decision tree and logistic regression classifiers, no difference between the

two methods was observed, as for the method where dn was optimised, dn was determined to

be 50, the same dn set arbitrarily for the method where PCA is not part of the nested cross-

validation. More accurate generalisation errors were observed for the majority of classification

algorithms. Therefore, it was determined the method that used optimisation of dn for PCA

in the nested cross-validation loop should be used going forward. Values of A in the range of

0.67 to 0.54 were observed, which is suboptimal. It was hypothesised that the poor classifier

performance was due to the class imbalance.

The three best-performing classifiers from this experiment: logistic regression, decision tree

and random forest, are used to investigate this hypothesis in the second experiment. This

experiment examined the impact of techniques (RUS, adjusting the class-weighting parameter,

synthetic labelling and SMOTE) to mitigate the effects of a class imbalance on classifier per-

formance. Results indicated that altering the class-weighting parameter to exaggerated values

in favour of the minority class increased the performance of all examined classifiers without



250 Chapter 9. Comparing experts’ and NLP tools’ classification of journal articles by TRL

overfitting. RUS decreased the performance of all classifiers. SMOTE varied on classifier per-

formance: increasing the performance of the random forest and logistic regression classifiers

but decreasing performance for the decision tree classifier. Logistic regression with SMOTE

was found to overfit. Using synthetic labels also had a varied impact on classifier performance,

significantly increasing the performance of the logistic regression algorithm and reducing the

performance of the decision tree and random forest algorithms. The best-performing algorithm

was logistic regression using synthetic labels. This obtained A = 0.65.

In Section 9.3.2, the second set of results were presented. This consisted of two experiments to

identify the best-performing unsupervised classifier. The first of these experiments compared

the performance of the K-means clustering classifier using TF-IDF and S-BERT for feature

representation. The results indicated using TF-IDF outperformed using S-BERT. Using S-

BERT, the classifier obtained A = 0.55. This is marginally better than random guessing.

Using TF-IDF, a value of A = 0.69 was obtained, outperforming the best-performing supervised

algorithm. It was noted that K-means clustering algorithms are prone to the ‘uniform effect’,

which can be problematic when the data has unbalanced classes. Despite this, the performance

of the K-means clustering method using TF-IDF on each class was relatively balanced, obtaining

F0 and F1 of 0.64 and 0.65 respectively. Qualitative evaluation of 2D projections of the labelled

data revealed a density-based algorithm might be a more appropriate clustering algorithm for

TF-IDF. However, the number of clusters needs to be an input parameter for the clustering

algorithm in order for it to apply to clustering. Therefore, such an approach was ruled out.

No noticeable patterns were observed for S-BERT. The second experiment examined the effect

of applying PCA transforms to dn in the range of 2 to 718 on classifier performance. This

analysis determined that performing PCA transforms can optimise classifier performance. The

best-performing value of dn was 9, and this obtained a F<01> = 0.71.

In Section 9.3.3, the results of comparing the best-performing supervised and unsupervised

classifiers identified in the studies in Sections 9.3.1 (logistic regression (S-BERT SL)) and 9.3.2

(K-means clustering (TF-IDF 9)) to a keyword-matching algorithm was presented. First, the

results were analysed on the NTREM dataset. The keyword-matching algorithm was outper-

formed by both Logistic regression (S-BERT SL) and K-means clustering (TF-IDF 9). The

logistic regression (S-BERT SL) obtained a large generalisation error of 8%. This was at-

tributed to a lack of stability in the optimisations of dn. This further indicates that feature
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selection/reduction and its optimisation should be included as part of cross-validation. K-means

clustering (TF-IDF 9) was the best-performing method obtaining A = 0.69. The performance

of the examined classifiers is suboptimal. There is a notable drop in the performance of the

classifiers in this chapter compared to the results in Chapter 8. There is a range of plausible

reasons, such as the supervised results in Section 8.3 exhibiting severe overfitting that was

not picked up by the nested cross-validation. The decrease in performance of the clustering

algorithms may be due to a decrease in the number of documents on which the algorithm is

fitted. These reasons do not explain why the performance of the keyword-matching algorithm

decreased. In Chapter 8, the keyword-matching algorithm obtained ROC AUC = 0.73, which

contrasts with the ROC AUC = 0.62 obtained in this study. This could be because keywords

are a good indicator of TRL for some but not all journal articles, so the algorithm’s perfor-

mance dropped on a larger dataset. As suggested in Chapter 8, one method of improving this

algorithm would be to expand the keywords list. Alternatively, given the process of assigning

TRL is subjective and the labels are human-generated, the labels generated for this dataset

may be inconsistent or erroneous.

The flexibility of the logistic regression (S-BERT SL), K-means clustering (TF-IDF 9) and

keyword-matching classifiers was then analysed by evaluating the performance on a dataset of

HEMCE articles (a similar journal in the domain of energetic materials). The performance of

all the algorithms dropped. Despite the class imbalance being less pronounced for the HEMCE

dataset, it is found to significantly impact the performance of both the logistic regression (S-

BERT SL) and K-means clustering (TF-IDF 9) classifiers. The synthetic-labelling approach

used for the Logistic regression classifier is based upon the keyword-matching algorithm. Since

the performance of the keyword matching algorithm dropped, it is unsurprising the performance

of the logistic regression (S-BERT SL) classifier dropped. Overall the K-means clustering (TF-

IDF 9) algorithm performed the best on the HEMCE dataset. This result shows ML approaches

can yield better results even in small-data environments than standard statistical algorithms.

In Section 9.3.4, the reliability of the data used to train the algorithms was examined. Inter-

participant agreement was computed using κ̂G and κ. Analysis showed that for data with a

class imbalance, the second kappa paradox is satisfied and using κ can lead to under estimated

agreement levels. In such situations, the paradox-resistant κ̂G should be used for analysis.

The inter-participant agreement was fair to moderate. Agreement across all participants was
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moderate. Given TRL is normally on a 9-point scale, and for this study a two-point scale was

used, this level of agreement is lower than expected. This could be because the definition of

TRL was not specific enough or because TRL assignment is inherently subjective. Alternatively,

this could be because several articles were on the boundary between High-TRL and Low-TRL.

Feedback from the participants was that some articles were more straightforward to assign a

TRL to than others, where it was more subjective. A recommendation for future work is to

investigate this further by asking participants to give a 1-5 confidence score in their assignment

of TRL. This would allow documents that are difficult to classify to be identified and enable the

uncertainty in the participant’s assignment of a label to be measured. The reasons why specific

documents are hard to classify should also be elicited using a similar format to the interview

conducted in Chapter 5. It is noted the results here must be considered in the context of the

study’s limitations, namely the small sample size of participants and the variation in recruitment

methods (some participants were paid).

The results of the test-retest study showed participant B had a moderate agreement level with

their classification of document TRL. Whilst this is a low sample size, this result indicates a

lack of consistency in their assignment of TRL. There are many reasons, such as the expert’s

understanding of TRL evolving with time. However, this lack of consistency in the data may

ultimately explain the poor performance of the algorithms in this section. It is therefore

recommended that future studies using human-generated labels for subjective concepts conduct

test-retest studies to check the consistency in the produced dataset. In addition, future work

should also conduct test-retest studies for several participants.

Overall, the work in this chapter has refined the methodology introduced in Chapter 8 for

classification of journal articles in the energetic-materials domain by TRL. The importance

of evaluating the reliability of data used to train a ML model, and determining the most

appropriate metric to do this with, is highlighted by this work.



Chapter 10

Conclusion

This chapter will summarise the key findings in relation to the aims of this thesis in Section

10.1, the impact of the research conducted in this thesis in Section 10.2, and future work in

Section 10.3.

10.1 Research summary

The underlying theme of this thesis was the limitations of NLP tools in small-data environments

in the energetic-materials domain. The aims of this thesis were to identify the challenges of

using NLP tools to develop an expert system in the energetic-materials domain and examine

the interface between using NLP tools to supplement or replace human analysis.

In Chapters 2 and 3, a two-chapter literature review identified the challenges of using NLP tools

to develop an expert system in the energetic-materials domain. The novel work in these chapters

is the first of its kind in the energetic-materials domain. Ontologies were identified as a popular

knowledge-representation technique widely implemented in many other scientific domains. The

absence of domain resources, such as pretrained language models, and labelled datasets were

identified as significant barriers for ontology construction. The most fundamental barrier to the

successful implementation of an ontology learning system was identified as the preprocessing

and extraction of text from text sources. In Chapter 7, this limitation was addressed through

the development of a novel general-purpose preprocessing pipeline for the energetic-materials
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domain. The development of this pipeline will facilitate the adoption of NLP in the energetic-

materials domain and other related fields. The effectiveness of the pipeline was demonstrated

in Chapter 8 by its ability to classify long text.

In Chapters 4, 5 and 6, examination of the interface between using NLP tools in data-limited

environments to either supplement or replace human analysis was conducted for the subjective

concept of ‘importance’. Chapter 5 presented the first open-source investigation into the elici-

tation of knowledge in the domain of energetic materials. The studies conducted in Chapters 4

and 6, comparing the ability of NLP and experts to identify important points in a scientific text,

are the first in the domain of energetic materials. Chapter 6 presented a novel methodology al-

lowing for direct comparison of the ability of NLP tools and experts to identify important points

in the text. The overall conclusions of these studies are that, in a data-limited environment,

the NLP algorithms used here cannot effectively identify important points in a document or

generate a summary akin to the way an expert can. There was considerable variation between

the participants in even simple tasks such as identifying important points in a single technical

document. Agreement between the NLP, expert and participants tended to be on general or

conclusion-style statements only. However, as a group, the participants agreed with the expert.

It was further concluded that the participants tended to agree with each other less on the rea-

sons why a particular statement is important than they do on how important a statement is.

The research conducted in these studies indicated there is a link between background factors

and agreement among participants.

Chapters 8 and 9 addressed the limitations of using NLP tools in data-limited environments

by developing a methodology for the classification of journal articles in the energetic-materials

domain by TRL. The work in these chapters presents the first ever study into NLP-based doc-

ument classification by TRL. Challenges with using real-world data, such as class imbalances,

were addressed and approaches to overcome these challenges were investigated. Chapter 9 also

examined the interface between using NLP tools in data-limited environments to supplement

or replace human analysis by presenting a methodology to evaluate the reliability of human

annotations. The conclusion of this analysis was there was a lack of agreement and consistency

on expert evaluation of document TRL.

A summary of the key findings of this thesis are:
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• Ontologies were identified as a popular knowledge-representation technique widely imple-

mented in many other scientific domains.

• Barriers for ontology construction in the energetic-materials domain include an absence

of domain-specific resources, extracting valuable information from diagrams, figures and

equations, and preprocessing of text.

• Extractive-summarisation algorithms cannot generate summaries akin to an expert. The

NLP generated summaries in this thesis lifted sentences directly from the text and could

not capture complex concepts described over several sentences. They often lacked cohesion

and flow.

• In a data-limited environment, extractive-summarisation algorithms cannot effectively

identify important points in a domain-specific document in the same way an expert can.

There was no statistically significant difference in how important the participants as a

group found sentences the NLP identified and did not identify as important. However,

every participant identified at least one of the same sentences as the NLP. This was due to

the NLP returning conclusion-style sentences, which tended to be identified as important

by the participants.

• The participants found conceptual points that the expert/NLP found to be important

as more important than those they did not. Further analysis found that the majority of

these points were either very general statements on the topic of the text or summary-style

sentences that state the conclusions of the text.

• On average, the readers exhibited higher conceptual agreement with the expert than with

the NLP/other readers.

• Transfer-learning techniques will not enhance the performance of an algorithm in all in-

stances. In small-data environments for niche domains, traditional feature-representation

methods such as TF-IDF can sometimes outperform state-of-the-art pretrained language

models.

• Experts do not tend to agree on what is important in a domain-specific document, there

was considerable variation in the specific points that experts found important in the text.
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• As a group, the participants agreed with the expert on how important and the reason

why statements about the text are important. The participants tended to agree with

each other less on the reasons why a particular statement is important than they do on

how important a statement is. Analysis determined there is a link between background

factors and agreement between participants.

• Results indicate novices have varied approaches to evaluating the importance of technical

information. One observed approach was to conduct analysis on the basis of surface

features, this yielded poor agreement with the expert. Another observed approach was to

use semantic clues in the text to identify which specific sentences in the text are important.

The novice that used this approach, free from their own biases on the topic, obtained the

highest agreement with the expert over all other participants on identification and rating

of important points. However, this novice could not identify why a specific point is

important akin to an expert, as this requires a complex content schema that a novice will

not possess. These results imply there are specific tasks where it may be more productive

to consult a group of bias-free novices than a group of experts.

• Results indicate there is a link between background factors such as: the number of years of

experience in academic, commercial and government research; total number of years expe-

rience and highest education qualification obtained, with the level of agreement between

participants on analysis of text by importance.

• Core reasons why the expert found specific aspects of the text were elicited. These

reasons are: theoretical importance, domain overview, demonstrated use in an application,

practicality of methodology, results show clear quantification of effects, advancement of

the field and novelty.

• Future studies wishing to replicate the methodology in Chapter 6 should make the fol-

lowing amendments to the presented methodology as to avoid the limitations of the work

presented here: ask specific questions about the reader’s knowledge of and experience in

energetic materials as a discipline in addition to their general experience. In addition it

is recommended for a future study to recruit:

– A larger group of participants.
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– Participants with experience in government policy as to get a full picture of how

individuals in defence and security-related fields interpret importance.

– A larger group of novices.

• The presence of chemical names, equations and diagrams in text in the energetic-materials

domain creates extra complications for preprocessing steps such as text extraction, tokeni-

sation and normalisation. Pre-existing tools such as GROBID and Chemdataextractor

are proven to be useful for developing a preprocessing pipeline in the aforementioned

domain.

• Nested cross-validation is a useful technique for model-validation in small-data environ-

ments. This method generates an estimate of unbiased generalization performance of a

classification methodology. Processes such as PCA and TF-IDF fitting should be included

as part of the cross-validation.

• Supervised and unsupervised ML techniques can outperform standard statistical ap-

proaches even in data-limited environments.

• Techniques such as synthetic labelling and adjusting class weightings can be useful for

small datasets with a class imbalance.

• The reliability of human annotations should be checked before training an algorithm using

inter-participant agreement and test-retest agreement.

• When calculating agreement, checks for prevalence and bias should be performed to as-

certain if the correct metric is used. Steps should be taken to avoid the limitations of

the data-generation method used in this study - low sample size and inconsistency in

recruitment methods (some participants were paid).

10.2 Research impact

In the era of big data, harnessing the power of NLP to obtain actionable insights from text

is a growing area of research that is already transforming other scientific domains. There

has been limited work on the use of NLP in the energetic-materials domain. In addition,
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there has been limited exploration of the performance of state-of-the-art techniques in data-

limited environments. The work done in this thesis can facilitate the use of NLP techniques

in the energetic-materials domain and other data-limited domains. For instance, the novel

preprocessing pipeline developed in Chapter 7 can be adapted by other NLP practitioners to

conduct NLP analysis on related domains. Techniques for downstream NLP analysis tasks in

data-limited environments have been detailed in Chapters 4, 8 and 9. Deployment of these

techniques in the field of Energetic Materials will enable analysts to identify and summarise

relevant information efficiently, facilitating more effective analysis. These techniques can be

adapted for other data-limited environments.

This thesis identified loss-of-knowledge due to the retirement of key personnel as a critical

problem in defence and security-related fields such as energetic materials. Expert systems and

other knowledge-representation methods may be a solution to this problem. Chapters 2 and 3

conducted a comprehensive overview of ontology learning from text, focusing on tools that are

of use to small datasets and a first-of-its-kind review into ontology construction in the domain

of energetic materials. Identifying the challenges that ontology construction in the energetic-

materials domain pose through this work will help to facilitate the development of such a

system. Developing an ontology for the energetic materials domain will facilitate knowledge

sharing by encouraging interoperability and the standardisation of domain-specific terms.

It was identified that in defence and security-related fields, NLP tools have been used to sup-

plement human analysis instead of replacing human analysis. The methodologies for comparing

NLP tools and expert analysis of text presented in Chapters 4 and 6 can be adapted for other

similar studies. The work in these studies identified the importance of evaluating the reliability

of the data used to train algorithms and proposed a methodology. This is useful for ML prac-

titioners that use human-annotated datasets. The results indicated NLP algorithms could not

replicate expert interpretation of the text in data-limited environments. A lack of agreement

among the experts was also observed even for simple concepts such as importance.

The lack of agreement observed in the aforementioned studies leads to two fundamental points.

Firstly, as pointed out in Ref. [375] policymakers should rethink how they view expert opinions

and apply the same critical analysis that must be applied to data. Secondly, if NLP tools are to

be used to replace expert analysis eventually, then the following questions need to be considered:

whose analysis are we trying to replace? Moreover, what data should we be using to train our
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algorithms? Currently, using group consensus among experts is a common way of generating

labels for training algorithms but, as demonstrated in this study, experts tend to agree only

on very basic statements. Moreover, since algorithms learn from the examples we give, using

group consensus to replicate expert opinion severely limits the algorithm’s usefulness.

10.3 Future work

Throughout this thesis suggestions for further work have been made. These suggestions are

summarised here

• Explore alternative methods of modifying the TextRank algorithm. For instance, using

the S-BERT architecture [301] and other methods of generating sentence embeddings

from Word2Vec models, such as using TF-ISF weightings in the averaging process.

• Expansion of the capabilities of the preprocessing pipeline described in Chapter 7, e.g.

using more advanced chemical entity detection methods; extraction of text from other

text formats; developing hand-curated dictionaries to improve the pipeline’s handling of

abbreviations; and implementation of chemistry-aware spell checkers.

• Exploration of finetuning approaches such as using ULMFit and long-former for long-text

classification by TRL.

• Understanding why experts disagree on TRL assignment. Ask a group of experts to

assign a 1-5 confidence score in their assignment of TRL. This would allow documents

that are difficult to classify to be identified and enable the uncertainty in the participant’s

assignment of a label to be measured. The reasons why specific documents are hard to

classify should also be elicited using a similar format to the interview conducted in Chapter

5. Test-retest studies should also be conducted for a limited subset of participants.

This thesis examined the performance of using NLP tools in data-limited environments. In

recent years the use of generative techniques to develop synthetic data sets has emerged as

a potential solution for a lack of training data in data-limited fields [508, 509]. The use of

generative techniques in this context was not considered in this thesis, however, there has

been a recent surge in the use and performance of generative techniques for NLP [510, 511].
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As a result, it is recommended that future studies should investigate the possibility of using

generative techniques to develop synthetic data sets for downstream NLP tasks.

In this thesis, the question of what data should be used to train our algorithms if experts

do not agree was raised. As pointed out previously, if only data points which experts agree

on are used, then the usefulness of the algorithm is severely limited. In the literature, when

disagreements between labels are observed, ground-truth labels can be generated using methods

such as majority voting [512], or adjudicating by an ‘expert’ [513, 514]. However, sometimes,

particularly when labels are being assigned for subjective concepts, there is not a single correct

answer. In addition, using a ground-truth label will neglect the different interpretations of

concepts and lead to inconsistent labels [514]. Recently, a limited number of studies have used

annotator disagreement in model training to obtain better estimates in the uncertainty of model

predictions [515, 514, 516, 517]. These approaches have again been developed for large-labelled

datasets. A recommendation for future work is to explore the limitations of such techniques in

a data-limited environment such as the energetic-materials domain.
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