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Abstract 

Morbid obesity can result in life-altering health issues, such as type 2 diabetes. Roux-en-Y gastric 

bypass (RYGB) surgery has been demonstrated to be one of the most effective treatments for morbid 

obesity and its co-morbidities in long-term. This aim of this thesis is to investigate the metabolic 

impact of weight loss intervention (RYGB, caloric restriction, and gut hormone treatment) on urine, 

plasma, and faecal profiles from morbidly obese patients, and to answer two hypotheses: 1) RYGB-

induced metabolic changes are partially attributed to caloric restriction and increased gut hormones; 

2) RYGB alters metabolic profile of faecal bacterial pellets separated using a newly developed method. 

Samples at pre-intervention time point were compared with post-intervention time point, and 

multivariate and univariate analysis were applied based on different types of datasets using different 

software to avoid missing potential biomarkers. Samples at post-intervention time point were 

compared across the intervention groups using the same strategy as above. At 1-month-post-

intervention, RYGB-induced metabolic changes could be attributed by caloric restriction via increased 

metabolisms of ketone bodies, lactic acid, and tricarboxylic acid, and decreased concentrations of total 

apolipoprotein A1, high-density lipoprotein (HDL) subfraction 3&4, and very-low-density-lipoprotein 

(VLDL) subfraction 5. RYGB-induced distinct metabolic changes included metabolisms of amino acids, 

short chain fatty acids, creatine, increased concentration of low-density lipoprotein fraction of 

triglycerides, and decreased concentration of HDL subfraction 2 of phospholipids. Gut hormone 

treatment exerted limited metabolic effects on urine and plasma samples. A separation method was 

developed for faecal bacterial pellets profiling and applied on RYGB and caloric restriction cohorts. 

Propionate and butyrate productions via dicarboxylic acid pathway were increased significantly 2-5 

years after RYGB and 3 months after caloric restriction, respectively. My study showed RYGB-induced 

metabolic changes could not be fully explained by caloric restriction nor increased gut hormone levels; 

Gut hormone treatment induced limited metabolic changes and could be an alternate therapy for 

morbid obesity followed by clinical trial with increased sample size and follow-up study in long term.   
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RSPA Recursive segment-wise peak alignment 

RYGB Roux-en-Y gastric bypass 

SCFA Short-chain fatty acid 

SE Standard error 

SEM Scanning electron microscope 

SF Short-term follow-up 

SG Sleeve gastrectomy 

Sl Saline 

SOP Standard operating procedure 

T2D Type 2 diabetes 

TCA Tricarboxylic acid cycle 

TMA Trimethylamine 

TMAO Trimethylamine-N-oxide 

TOCSY 1H-1H total correlated spectroscopy  

TSP 3-trimethyl-silyl-[2,2,3,3-2H4] propionic acid 

VIP Variable importance for the projection 

VLCD Very low-calorie diet 

VLDL Very low-density lipoprotein 

W Water 

WHO World Health Organization 
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1. Chapter 1 Introduction 

1.1 Obesity and metabolic syndromes  

Obesity occurs when abnormal or excessive fat accumulates, and increase the risk of health (Purnell, 

2000). Currently, the most common criteria to classify obesity is the body mass index (BMI, kg/m2). 

Obesity is diagnosed when BMI reaches or exceeds 30 (Class I: 30.0 – 34.9, Class II: 35.0 – 39.9, and 

Class III: ≥ 40). Obesity increases risks of metabolic syndrome (e.g. insulin resistance, hyperlipidaemia 

and hypertension), risks of chronic diseases (e.g. type 2 diabetes (T2D), cardiovascular disease and 

gastrointestinal cancer) and thus mortality (Hruby and Hu, 2015). In addition, abdominal adiposity 

measured in waist circumference has been associated with increased risk for metabolic syndromes 

(Janssen, 2004, Balkau, 2007). Waist circumference is a measure of abdominal fat and its threshold 

(female: ≥ 80 cm, male: ≥ 94 cm) is one of the criteria to diagnose metabolic syndromes in the UK (Hu, 

2007, Alberti, 2006). According to World Health Organization (WHO), obesity has nearly tripled since 

1975 worldwide; In 2016, over 650 million of more than 1.9 billion adults (aged ≥ 18) were overweight, 

and approximately 13% of the adult population were obese worldwide (Haththotuwa, 2020). It was 

estimated that more than 1 billion adults will be obese by 2030 (Finucane et al., 2011). Among all the 

classes of obesity, morbid obesity (BMI ≥ 40) causes the greatest health problem and financial burden 

(Organisation, 2000). A pooled analysis of 57 prospective cohort studies in 2009 showed that adults 

aged between 35 and 59 years with a BMI of 40 – 50 were five times more likely to die from coronary 

disease than those with a BMI of 22.5 – 25 (healthy BMI); Their risk of dying from diabetes was 22.5 

times higher (Prospective Studies, 2009). It was predicted that the prevalence of morbid obesity would 

increase to 5%, 8% and 11% in Scotland, England and Wales, respectively, by 2035 (Keaver et al., 2020).  
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1.2 Weight loss interventions  

Treatments for obesity includes lifestyle strategies (e.g., diet and physical activity), behavioural and 

psychological intervention, pharmaceutical interventions, and bariatric surgery. Among them, 

bariatric surgery is the most effective treatment for morbid obesity (Kissler and Settmacher, 2013).  

 

1.2.1 Bariatric surgery  

Bariatric surgery, also known as metabolic surgery, has not only been successful at long-term 

substantial weight loss, but also has shown significant improvements in obesity-related diseases (e.g., 

T2D). In a long-term study, the weight loss was 20% - 32% of the original body weights within 1-2 years 

after bariatric surgery, and the weight loss was 14% - 25% of the original body weight 10 years after 

bariatric surgery (Sjostrom et al., 2007). Besides, improvement or resolution of T2D have been found 

in 50% - 80% among those who underwent bariatric surgery with T2D (Ribaric et al., 2014, Dixon et 

al., 2008). In addition, the striking improvements of insulin secretion and glucose homeostasis could 

occur within several days after the performance of bariatric surgery and before any significant post-

surgical weight loss, and these improvements could last 3 years at least (Kashyap et al., 2013, Schauer 

et al., 2014). Some other obesity related diseases such as cardiovascular disease and metabolic 

syndrome have also shown to be improved or disappeared (Sjoholm et al., 2013, Kwok et al., 2014, 

Dixon and O'Brien, 2002). Moreover, food preference and satiety after bariatric surgery have been 

reported, as patients preferred low dense energy food and prolonged satiety after bariatric surgery 

(Ochner et al., 2011, Thirlby et al., 2006). Hence, bariatric surgery has been recommended to be 

included into obese and diabetic therapies (Rubino et al., 2016). In the UK, bariatric surgery is 

recommended to consider for people with a BMI of 40 or more and for people with a BMI of 35 – 40 

along with obesity-related co-morbidities such as T2D; For people with a BMI of 50 or more, bariatric 

surgery is considered as first line therapy (Excellence, 2014a). As a gold-standard treatment option for 

severe obesity and obesity-related co-morbidities, more than 800,000 bariatric surgery have been 
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recorded from 17 national registries and 61 countries in 2019 (Ramos, 2019). There were more than 

19,000 bariatric surgeries recorded in the UK in 2020 (Small, 2020). 

 

The most performed types of bariatric surgery are Roux-en-Y gastric bypass (RYGB) surgery and sleeve 

gastrectomy (SG) (Sarker et al., 2016). RYGB involves creating a small gastric pouch (15-30ml) from 

the fundus of the stomach and creating a Roux limb (0.74-1.5m) by attaching the distal end of the mid-

jejunum (alimentary limb) to this proximal gastric pouch. The bile and pancreatic juice drain into the 

duodenum and the jejunum as normal (biliopancreatic limb) but mix with food after the anastomosis 

of the alimentary and biliopancreatic limbs at the common limb (~3m) (Dimitriadis et al., 2017, Zhang 

et al., 2009). Comparing to the invasive and complex RYGB, SG keeps the intact gastrointestinal tract 

with pylorus and duodenum. In SG, approximately 80% of the stomach along the great curvature is 

removed, and a long and thin longitudinal gastric pouch or sleeve is created (Dimitriadis et al., 2017, 

Evers et al., 2017). RYGB is a restrictive and malabsorptive procedure, which reduces caloric intake 

and absorption, whereas SG is a restrictive procedure. Due to its significant effect of weight loss in the 

long term and its improvements on glycaemic and lipidemic profiles, RYGB remains the most effective 

treatment for morbid obesity and T2D (Finucane et al., 2011, Kashyap et al., 2013, Liaskos et al., 2018, 

Aly and Mori, 2020).  

 

The mechanism of RYGB includes early post-surgical calorie restriction, modulation of enteric 

hormones, such as elevated secretion of satiety hormones glucagon-like peptide 1 (GLP-1), 

oxyntomodulin (OXY) and peptide YY (PYY), changes of gut microbial composition, anatomical gut 

rearrangement and altered nutrient flow, altered bile acids metabolism and vagal manipulation (Miras 

and le Roux, 2013). However, the exact contribution of each mechanism is not clear. 
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1.2.2 Caloric restriction therapy  

Caloric restriction (CR) is a dietary intervention which is low in calories but maintains necessary 

nutrition (Redman and Ravussin, 2011). The principal of CR is to create a negative energy balance. An 

individualized calorie deficit diet with a reduction of 500 kcal from current intake can bring half 

kilograms reduction of weight per week (Chopra et al., 2020). For dietary intervention, a moderate 

calorie deficit diet of 1000 – 1200 kcal for women and of 1500 – 1800 kcal for men is recommended 

(Chopra et al., 2020). CR is the only strategy so far to slow down aging and extend lifespan. Such 

observations have been reported on a wide range of species, including rodents, yeast, flies, mice, and 

rat, etc (Heilbronn and Ravussin, 2003). Despite of lacking direct human clinical data from long-term 

perspective, epidemiological and cross-sectional observations show that CR can improve insulin 

sensitivity and reduce fasting glucose and insulin concentrations, and hence reduce the risk of 

development of diabetes mellitus and extend lifespan (Walford et al., 2002, Redman and Ravussin, 

2011). However, 80% - 90% of the CR population fail to maintain the result of weight loss in the long 

term due to robust and evolutionary pre-programmed compensatory processes (Maclean et al., 2011).  

 

Very low-calorie diet (VLCD) is defined as hypocaloric diet which provide calories of 450 – 800 kcal per 

day and are enriched in protein relatively (Excellence, 2014b). A typical VLCD protocol include full 

replacement of solid food with liquid diet formula for 12-16 weeks followed by reintroduction of 

tailored solid food. Most VLCD liquid diet formulas comprise approximately 50% - 60% of kcal from 

carbohydrate, sufficient fatty acids, protein content at 1.2-1.5g/kg body weight and very little fibre 

(Seagle et al., 2001). VLCD is the most effective approach to cause 20%-30% of body weight loss within 

12 – 16 weeks sometimes (Juray et al., 2021). Besides, VLCD approach can also cause clinically defined 

and sustained (6-24 months) T2D remission (Lim et al., 2011, Steven et al., 2018, Lean et al., 2018, 

Lean et al., 2019, Umphonsathien et al., 2019, Taheri et al., 2020). However, approximately 30% of 

individuals who had relatively long duration of T2D (3.8 years since diagnosis) did not remit from T2D 

despite of significant weight loss (Al-Mrabeh et al., 2020). Besides, approximately 25% of individuals 
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who remitted from T2D regained their weights at a significant level and had T2D relapse at 24 months 

(Lean et al., 2019, Al-Mrabeh et al., 2020). 

 

1.2.3 Gut hormone therapy  

The idea of gut hormone therapy for morbid obesity and T2D is originated from the alteration of 

enteric hormone profile post-RYGB. After RYGB, the satiety-related gut hormones are secreted 

increasingly, such as GLP-1, OXY and PYY, and these increased gut hormones have been associated 

with decreased appetite and food intake, increased energy expenditure, and sustained weight loss 

post-RYGB (Figure 1.1) (Beckman et al., 2011, le Roux et al., 2006, Pournaras et al., 2010, le Roux et 

al., 2007, Shankar et al., 2018). Besides, the dramatically increased levels of gut hormones, especially 

GLP-1, play an important role in the improvement of postprandial glucose tolerance post-RYGB 

(Kjems, 2003, Jorgensen et al., 2013). Therefore, gut hormone therapy is promising pharmaceutical 

intervention for morbid obesity and T2D.  

 

 

Figure 1.1 Important gut hormones changes for the weight loss and the improved glycaemic control post-RYGB. PP: pancreatic 

polypeptide; CCK: cholecystokinin; GIP: glucose-dependent insulinotropic peptide. 
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1.2.3.1 GLP-1  

GLP-1 is a peptide hormone produced from post-translational processing of proglucagon in the 

intestinal epithelial endocrine L cells and some brainstem neurons, which is mediated by prohormone 

convertase 1 (Alexiadou et al., 2019, Dhanvantari et al., 2001). After secretion, GLP-1 is rapidly 

degraded by endopeptidase dipeptidyl peptidase-4 (DPP-IV), forming inactivated metabolite GLP-19-37 

or GLP-19-36 amide. GLP-1 receptor (GLP1R) is expressed in pancreas, gut, central nervous system, 

heart, lung, vasculature and peripheral nervous system (Mayo et al., 2003). Therefore, GLP-1 can exert 

various effects at different locations in human body. GLP-1 and glucose-dependent insulinotropic 

peptide (GIP) are responsible for incretin effect, which is a stimulation on insulin secretion in response 

to oral glucose intake but not in response to intravenous glucose intake (Nauck et al., 1986b). The 

incretin effect is reduced in T2D; however, GLP-1 is dramatically increased in patients post-RYGB 

whereas the level of GIP post-RYGB is controversial in different studies (Nauck et al., 1986a, Jorgensen 

et al., 2013, Kjems, 2003, Korner, 2007, Salinari et al., 2009, Dimitriadis et al., 2017). In addition, GLP-

1 can inhibit the secretion of glucagon, inhibit the gastrointestinal motility and reduce appetite and 

food intake (Holst, 2007). Besides, GLP-1 also has cardio- and neuroprotective effects, eliminate 

inflammation and apoptosis, and benefit for learning, memory, and reward behaviour (Muller et al., 

2019). 

 

GLP-1 is the forerunner of the gut hormone therapy for T2D and obesity. The first commercial GLP-1-

based medicine for T2D is exenatide, a GLP1R agonist. Other marketed GLP1R agonists for T2D include 

Albiglutide, Dulaglutide, Lixisenatide, Liraglutide and Semaglutide (Alexiadou et al., 2019). A special 

property of GLP1R agonists is its effect of weight loss apart from being T2D treatment only (Potts et 

al., 2015). Liraglutide was first approved for obesity treatment in 2014 and it has been reported to 

decrease about 8% weight with 3mg dose daily (Pi-Sunyer et al., 2015). According to American 

Diabetes Association, GLP-1 analogue should be considered for patients who have contraindication or 

intolerance to metformin, who had haemoglobin A1c level greater than 1.5% over target, or who do 
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not reach their target A1c in 3 months, especially who had atherosclerosis, heart failure or chronic 

kidney disease (Hunt et al., 2019, Burcelin and Gourdy, 2017, Gourgari et al., 2017, American Diabetes, 

2019).  

 

1.2.3.2 Oxyntomodulin 

OXY, like GLP-1, is a peptide hormone produced from post-translational processing of proglucagon in 

the intestinal epithelial endocrine L cells (Ghatei et al., 1983). It has the entire 29 amino acid sequence 

of glucagon with a C-terminal octapeptide extension (Bataille et al., 1982, Bell et al., 1983b, Bell et al., 

1983a). OXY is an agonist for both GLP1R and G-protein coupled glucagon receptor (GCGR), but it has 

less affinity than GLP-1 and glucagon for each receptor (Pocai et al., 2009). The anorectic effect of OXY 

is mediated by GLP1R, whereas the increased energy expenditure is mediated by GCGR (Baggio et al., 

2004, Kosinski et al., 2012, Cohen et al., 2003). A preclinical trial showed that the GLP1R/GCGR dual 

agonist based on OXY reduce body weight, food intake and fat mass more than GLP1R agonist 

significantly (Baggio et al., 2004). An intravenous infusion of GLP-1 and OXY has shown to exert 

synergistic effect on overweight subjects by reducing 42% of their energy intake (Field et al., 2010b). 

OXY itself has also been shown to inhibit both secretions of gastric acid and pancreatic enzyme, as 

well as to delay gastric emptying after intravenous administration (Schjoldager et al., 1989). OXY can 

also increase energy expenditure which is mediated through increasing daily activity during the “free-

living” period in a human trial (Wynne et al., 2006). 

 

1.2.3.3 Peptide YY 

PYY is a peptide hormone which is produced in the intestinal epithelial endocrine L cells of distal small 

intestine and colon primarily (Ekblad and Sundler, 2002, McGowan and Bloom, 2004, Cox, 2007b, Cox, 

2007a, Ueno et al., 2008). There is minor source of PYY produced from enteric neurons of stomach 

and endocrine cells of pancreas (Bottcher et al., 1993, Cox, 2007b). PYY (3-36) is the major circulating 
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form, resulted from the cleavage of N-terminal Tyrosine-Proline residues from PYY (1-36) by DPP-IV 

(Eberlein et al., 1989), and is a preferential agonist at Y2 receptor (Small and Bloom, 2005, Cox, 2007b). 

PYY is released in response to a meal, in proportion to energy intake and particularly by fat and 

protein, and PYY can achieve the maximal level approximately 1-2hs after meal consumption (Adrian 

et al., 1985, Field et al., 2010a). PYY and PYY (3-36) can inhibit food intake, gastric acid secretion, and 

gastrointestinal transit in human and rodent (Batterham et al., 2002, Nonaka et al., 2003, Koda et al., 

2005, Field et al., 2010a). PYY (3-36) reduce food intake via the activation of Y2 receptor in the arcuate 

nucleus which control appetite and energy homeostasis (Chee and Colmers, 2008). The inhibition of 

gastric acid of PYY is neurally mediated, especially involving the vagus nerve (Lloyd et al., 1997). GLP-

1 and PYY are effective inhibitors on sham feeding-induced secretion of gastric acid in human 

(Wettergren et al., 1994). PYY can slow down the gastrointestinal transit time in response to fat intake 

reaching the lower gut, especially ileum and colon (Pironi et al., 1993, Lin et al., 1996, Van Citters and 

Lin, 2006, Cox, 2007b).  

 

There were some translational human studies involving PYY (3-36) as a single agent for obese 

treatment, and the reduction of ad libitum food intake after intravenous infusion of PYY (3-36) ranged 

from 19% to 36%  (Batterham et al., 2002, Batterham et al., 2003a, Sloth et al., 2007, Batterham et al., 

2007). Besides, there were also some translational human studies investigating the combinational 

effects of gut hormones on obesity. Neary et al (2005) showed a 27% reduction of ad libitum energy 

intake of lean men after co-administration of PYY (3-36) and GLP-1 (7-36) amide (Neary et al., 2005). 

Schmidt et al. (2014) found synergistic effect on ad libitum energy intake of overweight men after co-

administration of GLP-1 (7-36) amide and PYY (3-36) (Schmidt et al., 2014). Field et al (2010) showed 

that a 42.7% reduction of ad libitum energy intake of overweight or obese human after co-

administration of PYY (3-36) and OXY (Field et al., 2010b). Recently, Behary et al (2019) demonstrated 

that the infusion of GLP (7-36 amide), OXY and PYY (3-36) could improve glycemia and reduce body 

weight of obese patients with prediabetes/diabetes (Behary et al., 2019).  
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1.2.3.4 Other hormones  

Other hormones which have been reported to have weight loss effects include pancreatic polypeptide 

(PP), ghrelin, and cholecystokinin (CCK). PP is a 36-amino-acid peptide and is secreted by the PP cells 

of the islets of Langerhans in the pancreas (Adrian et al., 1976, Larsson et al., 1975). PP has the effects 

of reducing food intake on rodents (Asakawa et al., 2003b), normal weight humans (Asakawa et al., 

2006, Batterham et al., 2003b, Jesudason et al., 2007), and Prader-Willi syndrome (Berntson et al., 

1993). PP can also reduce gastric emptying speed and is potentially mediated via vagus nerve 

(Asakawa et al., 2003b, Schmidt et al., 2005). The potential therapeutic effect of PP has been studied, 

but there is only one clinical trial of PP-based therapy so far (Tan et al., 2012, Bellmann-Sickert et al., 

2011, Banerjee and Onyuksel, 2012).  

 

Ghrelin, a 28-amino-acid peptide secreted from X/A-like cells in the stomach fundus, is the only known 

orexigenic gut hormone, and can increase food intake on both lean and obese subjects when 

administered (Druce et al., 2005, Druce et al., 2006). Ghrelin level rises in people with dietary weight 

loss or anorectic disorders, but its level is low in people who are obese or received gastric bypass 

surgery (Cummings et al., 2002, Shiiya et al., 2002). The effect of ghrelin on appetite is mediated by 

various mechanisms including vagal nerve (Williams et al., 2003). Molecules acts as ghrelin antagonists 

and receptor blockers have been tested on animal models with potent effect of reducing food intake, 

but have not been tested on human subjects (Schellekens et al., 2010, Asakawa et al., 2003a, 

Shearman et al., 2006, Gualillo et al., 2008, Zorrilla et al., 2006).  

 

CCK exists in many biological active forms (e.g., CCK-8, CCK3 and CCK 39) and is mainly secreted and 

released from I cells in duodenum and jejunum after a meal (Johnsen, 1998, Buffa et al., 1976, Huda 

et al., 2006). Though circulating level of CCK after RYGB have been shown to remain unchanged 
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(Rubino et al., 2004), CCK has been reported to control appetite and to reduce food intake through 

vagal afferent neuron (Miller et al., 2021, Cawthon and de La Serre, 2021, Perry and Wang, 2012). CCK 

agonist showed effects of reducing food intake and weight loss in mouse model (Irwin et al., 2012). 

CCK analogue NN9056 could reduce food intake and body weight in obese Gottingen minipigs 

(Christoffersen et al., 2020).  

 

1.2.3.5 Hormone cocktail  

Combining the above gut hormones as hormone cocktail has been proposed to result in a more potent 

effect on weight loss, comparing to monotherapy. Table 1.1 shows the hormone cocktail development 

of dual agonists and triple agonists. The combined effects of PYY and GLP-1 have exerted food intake 

reduction effect on mice and human through intravenous infusion (Neary et al., 2005). The 

combination of PYY and OXY have shown additive effect on food intake reduction of overweight and 

obese human (Field et al., 2010b). Alexiadou et al. (2019) summarised the existed gut hormone 

cocktails and their tests on human, including dual agonists of GLP1R and GCGR, of GLP1R and GIP 

receptor (GIPR), and of GLP1R and neuropeptide Y2 (Y2R), as well as triple agonism of GLP1R, GIPR 

and GCGR, and of GLP-1, OXY and PYY (Alexiadou et al., 2019). So far, there are many dual agonists 

study carried on at clinical trials phase 1 or phase 2, such as GLP1R/GCGR dual agonists MEDI0382, 

SAR425899, and LY3305677 (Ambery et al., 2018, Eriksson et al., 2020, Ji et al., 2021), and GLP1R/GIPR 

dual agonists NNC0090-2746 and LY3298176 (Frias et al., 2017, Thomas et al., 2021). Studies on triple 

agonists are still at a stage of infancy. Nevertheless, a recent study showed that GLP1/GIP/Glucagon 

SAR441255 could reduce weight and improve glycaemic control in diabetic monkeys, and improved 

glycaemic control in healthy human subjects during a mixed-meal tolerance test (Bossart et al., 2022). 

Besides, intravenous infusion of GLP-1, OXY, and PYY (“GOP”) has also showed superior effects of 

improving glycaemic parameters and comparable effects on weight loss of obese human subjects, 

comparing to RYGB (Behary et al., 2019). 
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Table 1.1 Hormone cocktail development of dual agonists and triple agonists 

Hormone involved Gut hormone 
treatment 

Study Stage Reference 

PYY & GLP-1 N/A Pre-clinical study (Neary et al., 2005) 

PYY & OXY N/A Pre-clinical study (Field et al., 2010b) 

GLP1R & GCCR MEDI0382 Phase 2 (Ambery et al., 2018) 

SAR425899 Phase 2 (Eriksson et al., 2020) 

LY3305677 Phase 1 (Ji et al., 2021) 

GLP1R & GIPR NNC0090-2746 Phase 2 (Frias et al., 2017) 

LY3298176 Phase 3 (Thomas et al., 2021) 

GLP1R & Y2R N/A Pre-clinical study (Boland et al., 2018, Boland et al., 2019) 

GLP1R, GIPR & GCGR N/A Pre-clinical study (Knerr et al., 2022) 

GLP1R, GIPR & GCGR 

 

HM15211 Phase 2 (Kim et al., 2020) 

LY3437943 Phase 1 (Urva et al., 2022) 

SAR441255 Phase 1 (Bossart et al., 2022) 

MAR432 Phase 1/2 (Finan et al., 2015, Jall et al., 2017) 

GLP-1, OXY & PYY GOP Pre-clinical study (Behary et al., 2019) 

 

1.3 Metabolomics 

1.3.1 Definition, principles, and functions 

The definition of metabolomics is “the quantitative measurement of the multiparametric metabolic 

response of living systems to pathophysiological stimuli or genetic modification.” (Lindon J.C., 2000). 

It is an approach used to identify and quantify all the endogenous and exogenous metabolites (< 1000 

Da) in a biological system, including cells, tissues, organs, systems, or whole organisms in a high-

throughput manner in response to a genetic variation, pathological or physiological state (Clish, 2015, 

Gibney et al., 2005, Nalbantoğlu, 2019).  The composition of these metabolites (or “metabolome”) is 

influenced by the upstream factors - genome and proteome, as well as environment, lifestyle, 

medication, and underlying diseases. As the final downstream product, metabolome reflects gene 

expression, protein expression, and the environment directly. It is therefore more close to phenotype 

than other “omes” and can represent molecular phenotype of health and disease (Guijas et al., 2018). 

The relations of genotype-genomics and phenotype-metabolomics reflect specific gene variation and 

resultant metabolic changes, and these ultimately provide information of genetic, epigenetic, and 

phenotypic changes (Tsoukalas et al., 2017, Astarita and Langridge, 2013, Baraldi et al., 2009, Vander 



35 
 

Heiden, 2011, Gowda et al., 2008). Hence, metabolomics is ideal for biomarker discovery and clinical 

patient stratification at the molecular level.  

 

Metabolomics is considered as one of the most robust tools to study metabolites and identify 

metabolic phenotypes (Schoeman et al., 2016). Metabolomics use two distinct analytical approaches: 

1) non-targeted metabolite profiling to analyze samples comprehensively without any knowledge 

prior to the analysis; 2) targeted metabolite profiling to analyze the quantitative variations in 

metabolites involved in the known metabolic pathways of the samples (Park et al., 2015). The involved 

methods are different, such as sample preparation procedures, experiment precision, the range of the 

identified metabolites, and the quantification level (Rangel-Huerta and Gil, 2016). So far, 

metabolomics has been widely used in disease mechanism exploration, nutrition research, drug 

discovery, and biomarkers identification (Kumar et al., 2014, Gibbons. H., 2015, Brennan, 2014, Liu et 

al., 2014, Weckmann et al., 2014, Vazquez-Fresno et al., 2015, Floegel et al., 2014, Klein and Shearer, 

2016, Ren et al., 2016, Wurtz et al., 2016a, Mercier et al., 2018).  

 

1.3.2 Metabolomics study workflow 

The workflow of a metabolomic study includes proposing hypothesis, developing experiment design, 

sampling, analysing data, acquiring data, processing data, and analysing and interpretating results 

(Lamichhane et al., 2018). After proposing hypothesis based on research questions and designing 

experiment to meet specific aims, biological samples are analysed using high throughput analytical 

platforms such as proton nuclear magnetic resonance (NMR), and gas chromatography (GC) and/or 

liquid chromatography (LC) coupled with mass spectroscopy (MS) to acquire complex metabolomics 

data. Multivariate and univariate analysis are applied to understand the pattern underlying different 

study groups.  
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1.3.3 Measurement technique  

As mentioned above, the analytical platforms commonly used in metabolomics are NMR, LC-MS and 

GC-MS. However, each of these analytical platforms has its own advantages and disadvantages and 

Wishart et al. (2016) has done a thorough discussion (Wishart, 2016). Briefly, MS-based method is 

highly sensitive to measure metabolites from the concentration of picomolar to micromolar. However, 

it destructs the measured samples which require intensive labour work to prepare, and each sample 

takes long measurement time (20-30 mins/sample). In contrast, NMR-based method is non-

destructive which leads to reproducible samples, and sample preparation is less labour intensive and 

measurement time for each sample is short (~10min/sample). However, NMR-based method is less 

sensitive and can only measure metabolites at the concentration of micromolar range (Posti et al., 

2017). Due to the limited access to different measurement techniques and their datasets, only the 

NMR-based method and its datasets were used in my study. In human biological samples, most 

common metabolites concentrations are within micromolar range (Psychogios et al., 2011, Bouatra et 

al., 2013). NMR-based method is therefore able to measure the common metabolites concentrations 

and their changes in my study.   

 

NMR spectroscopy is an analytical chemistry technique used to determine the contents of samples 

and the molecular structures of the chemical compounds (Parlak and Güzeler, 2016). It is based on 

the interaction of magnetic momentum of different atom nuclei with an external magnetic field. The 

magnetic momentum of an atom nuclei is associated with nuclear spin, which is determined by the 

angular momentum of the atom nuclei and defined by a spin number. Atom nuclei with an odd number 

of either protons or neutrons and a spin number ½, such as 1H, 13C, 31P and 15N, are favoured in the 

application of magnetic resonance (Mlynárik, 2017). Depending on the targeted atom nuclei, there 

are different types of NMR spectroscopy, such as 1H NMR, 13C NMR, 31P NMR and 15N NMR. Hydrogen 

and carbon are both abundant in biological samples. However, comparing to highly abundant 1H in 
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nature, natural 13C is rare.  Therefore, 1H NMR is the most common type of NMR for metabolomic 

analysis.  

 

In a natural static magnetic field, the atom nuclei with non-zero spin and a magnetic moment is almost 

in random orientation with a slightly higher probability of directing towards the field with low energy 

(Hanson, 2008). When induced by an external magnetic field B0, the orientation of the nuclear 

magnetic moments produces macroscopic magnetization M as a vector sum of individual nuclear 

magnetic moment. An equilibrate magnetization M aligned with the direction of the static magnetic 

field is called M0 (Figure 1.2 A). After applying a radiofrequency (RF) magnetic field B1 with an axis 

perpendicular to B0 (also called RF pulse) for a short time t, the tilted M precesses about B0 towards 

M0, and induces a decaying electromotive force in the receiver coil which is also called free induction 

decay (FID) or NMR signal. After RF pulse, a non-zero component in M “Mxy” in the plane perpendicular 

to the direction of B0 decays in time. This process is called transverse relaxation or spin-spin relaxation. 

The decay time constant is called transverse relaxation time T2. After RF pulse, the reduced, fully 

removed, or inverted component in M “Mz” parallel with B0 begins to recover to its M0 state. This 

process is called longitudinal or spin-lattice relaxation. The recovering time constant is called 

longitudinal or spin-lattice relaxation time T1 (Figure 1.2 B). NMR spectrum is produced by Fourier 

transformation of the FID. In 1H NMR, different chemical environments influence the shielding effects 

of electrons who surround around the protons. This causes different resonance frequencies of these 

protons, and therefore shows the structure fragments of the chemical compounds (Mlynárik, 2017).  
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Figure 1.2 Basic principles of NMR. (A) Behaviour of nuclei with non-zero magnetic moment in an external static magnetic 

field B0. Macroscopic magnetization M0 aligns with the direction of B0. (B) Macroscopic magnetization M precesses around 

the direction of B0. Mxy is perpendicular to the direction of B0, and Mz is parallel to the direction of B0.  

 

One-dimensional-1H-nuclear overhauser effect spectroscopy (1D-NOESY) is the most commonly used 

pulse sequence for metabolic phenotyping of biofluid samples (McKay, 2011). The presence of 1H from 

solvent (e.g. H2O) often overwhelms the available dynamic range of the instrument. Therefore, it is 

necessary to suppress the solvent signal. The pulse sequence of 1D-NOESY is in the form of RD-90⁰-t1-

90⁰-tm-90⁰-acquire, where RD represents relaxation delay, t1 represents the first increment in a NOESY 

experiment, and tm represents the mixing time of long and low power saturation period. The long and 

low power saturation period allows for an accurate selection of the solvent resonance (Mao and Chen, 

1996, Sweeting, 1982). The pulse sequence of 1D-NOESY makes it easy to suppress water signal and 

only a few optimization factors are required by 1D-NOESY (i.e. shimming, lock compensation, pulse 

width, carrier position, and mixing time). Therefore, 1D-NOESY is the first choice for NMR-based 

metabolomic studies (Beckonert et al., 2007). 

 

Carr-Purcell-Meiboom-Gill (CPMG) presat is another commonly used pulse sequence in NMR-based 

metabolomics studies. For samples with large amounts of macromolecules (e.g., proteins or lipids), T2 

filters are useful to remove the broad unwanted resonances, and the pulse sequences majorly used 

for T2 filters is CPMG (Le Guennec et al., 2017, Carr and Purcell, 1954). CPMG sequence reduces peaks 
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from molecules with slow rotational correlation times which produce many broad and interfering 

resonances. The CPMG pulse sequence is in the form of -RD-90⁰-(-180⁰-)n-acquire, where  is the 

spin-echo delay and n represents the number of loops (Dona, 2017). CPMG presat is commonly used 

in plasma or serum metabolomics analysis with the acquisition parameters set up in the similar way 

as 1D NOESY presat.  

 

Two-dimensional-NMR (2D-NMR) is an extension of 1D time-domain spectroscopy. It can be used to 

identify the molecular structure, function, and dynamics (Frydman et al., 2003). 2D pulse sequences 

is composed of 1) a preparation period (frequently a 90⁰ pulse), 2) an evolution period t1, 3) a mixing 

period tm when modulations are allowed to be applied, and 4) a detection period t2 (Frydman et al., 

2003). Common 2D spectroscopy include 1) 1H-1H correlation Spectroscopy (COSY), which is used to 

determine signals from neighbouring protons; 2) 1H-1H total correlated spectroscopy (TOCSY), which 

shows an entire chain of protons and each is coupled to the next; 3) heteronuclear single quantum 

correlation (HSQC), which is used to determine the signal from one-bond interaction such as 1H-13C; 

4) heteronuclear multiple-bond correlation (HMBC), which shows the correlated 13C and 1H with 2-, 

3-, or 4-bonds. 

 

1.3.4 Data analysis 

1.3.4.1 Multivariate statistical analysis  

Multivariate analyses (MVA) investigate multiple variables simultaneously and can model data derived 

from complex systems (Vargason et al., 2017). Metabolomics dataset has much fewer samples (or 

“observations”) than sample features (or “variables”), and these features/variables are usually 

intercorrelated (Misra et al., 2018, Antonelli et al., 2019). MCA can take all the metabolomics features 

into account simultaneously and identify relationship patterns among them (Alonso et al., 2015). MVA 

can be classified into 2 groups: unsupervised method and supervised method.  



40 
 

 

a. Unsupervised analysis  

Unsupervised methods are used to find the underlying patterns in the unlabelled data using input 

variables without any corresponding output variable (Badillo et al., 2020). They can summarise the 

complex metabolomics datasets (Alonso et al., 2015). Unsupervised methods such as principal 

component analysis (PCA), hierarchical clustering analysis and self-organizing maps, have been used 

in metabolomics study (Wold, 1987, Bro, 2014, Gika et al., 2008, Winnike et al., 2009, Rasmussen, 

2011, Yin et al., 2013, Meinicke et al., 2008, Makinen et al., 2008, Goodwin et al., 2014, Brauer et al., 

2006, Sreekumar et al., 2009). Comparing to other methods, PCA can project NMR or MS spectra into 

lower dimensional space, remove the least correlated variables, and reveal a cleaner pattern of the 

data. These lead to an easier interpretation of the complex data. Therefore, PCA is the most used 

unsupervised method in metabolomics study. 

 

PCA is a dimensionality reduction method. It transforms the intercorrelated and high-dimensional 

metabolomic variables into a set of linearly uncorrelated variables which are known as principal 

components (PCs) (Alonso et al., 2015). Meanwhile, it preserves as much of the variance in the original 

data as possible in the low dimensional output data (Jolliffe, 2002). The first PC (PC1) explains the 

largest variance followed by the second PC (PC2) which explains the second largest variance and being 

perpendicular to PC1. A set of score vectors and loadings vectors are obtained after the application of 

PCA. Scores produced by PCA are the observation rows of data matric X projected onto a hyperplane 

within the data. It is good summaries of the observations (Worley and Powers, 2013). Loadings from 

PCA are the directions of the hyperplane in terms of the original data matrix X variables. It is good 

summaries of the influence of the variables on the model (Worley and Powers, 2013). PCA is often 

used to assess the variation in metabolic profile and to identify the extreme outliers, which can 

influence the rest pattern observation otherwise, to exclude from the following supervised modelling. 
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b. Supervised analysis  

Supervised methods are used for prediction by using a model trained by labelled training data (Jiang 

et al., 2020). They can identify metabolic patterns which are correlated with phenotypic variables of 

interests and reduce variances which are from other resources (Alonso et al., 2015). Supervised 

methods such as partial least squares (PLS) and support vector machines, have been used in 

metabolomics study (Fonville, 2010, Trygg J., 2002, Kemsley, 1996, Bylesjö M., 2006, Tapp H. S., 2009, 

Mahadevan S., 2008, Kim et al., 2010, Luts et al., 2010).  

 

Among them, PLS-based method has gained dominant popularity due to its visualisation and statistical 

interpretation abilities (Mendez et al., 2020). PLS-discriminant analysis (PLS-DA) is a variant of PLS-

based method, which is widely used for classification of metabolomics data. It optimises the 

separation between 2 groups of samples via linking data matrices X (e.g. raw metabolomics data) and 

Y (e.g. groups, class memberships) (Barker and Rayens, 2003). It aims to maximize the covariance 

between independent X and corresponding dependent variables Y of highly multidimensional data by 

fitting a linear subspace of the explanatory variables. Y variables can then be predicted from this new 

subspace based on latent variables (Gromski et al., 2015). The advantages of PLS-DA include 1) able 

to handle highly collinear and noisy data, 2) providing statistics such as loading weight, variable 

importance on project (VIP) and regression coefficient, 3) able to visualise the complex datasets via 

provided scores plot, and 4) assist to investigate the important variables via provided scores plot and 

loading plot (Worley et al., 2013, Hasegawa and Funatsu, 2012). However, PLS-DA model tends to be 

overly complex when there are variations in the measurements not correlated with the membership 

of the experiment groups (Bylesjö M., 2006, Trygg J., 2002). In metabolomics studies, it is inevitable 

to have highly varying spectral signals that are not related to the group memberships. Therefore, 

instead of PLS-DA, orthogonal-PLS-DA (OPLS-DA) is often used to replace in metabolomics studies. 
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Comparing to PLS-DA, OPLS-DA integrates an orthogonal signal correction filter to remove systematic 

spectral variation that is not related to the assigned group memberships (Worley and Powers, 2016). 

This step separates the predictive from the non-predictive/orthogonal variation in the data matrices 

X and improves the transparency of the generated models (Bylesjö M., 2006). K-fold cross-validation 

method is the main strategy to assess the quality of OPLS-DA model (Triba et al., 2015).  

 

Covariate-adjusted-PLS (CA-PLS) is newly developed data analysis framework and algorithm (Posma 

et al., 2018). It can correct not only orthogonal signals but also known confounders (e.g., age, gender, 

and BMI), and reduce false positive errors in group comparisons of metabolomics studies. In CA-PLS 

framework, Monte Carlo cross-validation (MCCV) is used to test the validity of the model. Besides, 

PLS-DA model with MCCV assessment was also designed to account for repeated measures (RM), it 

was referred as RM-PLS-DA (Garcia-Perez et al., 2017).  

 

1.3.4.2 Comparison of MVA and univariate analysis in metabolomics 

Although MVA is the most common analytical method in metabolomics (Keun et al., 2004, Xia et al., 

2012, Xu et al., 2013, Trygg et al., 2007), univariate analysis, which is predominantly used in gene-

expression analysis, starts to be used more often in metabolomics (Ellero-Simatos et al., 2012, Ernest 

et al., 2012). Univariate analysis aims to summarize the characteristics of a single variable, and its 

advantages over MVA are its eases of application, of interpretation, and of communication of the 

results (Vargason et al., 2017, Saccenti et al., 2014). Parametric analysis, such as t-test and ANOVA, 

can be used for comparisons between 2 and among more than 2 groups based on means, if all the 

measurements are normally distributed (Ruxton, 2006). Otherwise, non-parametric analysis, such as 

Mann-Whitney U test (also called Wilcoxon rank-sum test) and Kruskal-Wallis test, can be used for 

comparisons between 2 and among more than 2 groups based on medians (Mann and Whitney, 1947).  
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When using MVA and univariate analysis to analyse the same metabolomics dataset, inconsistently 

significant results can occur. Saccenti et al. (2014) explained these inconsistencies with the following 

reasons (Table 1.2) in details: All the variables (metabolite abundances) were assumed to be 

independent to each other when conducting univariate analysis. However, they can be in fact 

complementary to explain the separation of the dependent variables (e.g., different groups or classes). 

In this case, significant separation between/among groups will only be shown in MVA when all the 

variables (metabolite) are considered at the same time; High biological and measurement variation 

can cause insignificant group separation when only a single metabolite abundance is considered. In 

contrast, more than one variable (metabolite) can average out those variations by taking a linear 

combination of the variables and reveal the significant group separation; The multivariate model can 

cause false positive results (significant separation) when it is overfitting. However, this can be avoided 

by validating the model, such as PLS-DA, using cross-validation and permutation test. Besides, as a 

result of including large amounts of variables, the significant results can be covered by those 

uninformative variables in MVA, whereas univariate analysis does not have this issue; MVA makes use 

of the true covariance matrix of the population from which the samples are drawn. The accuracy and 

reliability are reduced when the covariance matrix is estimated on a few samples with a large number 

of variables; The confidence intervals of MVA and univariate analysis are different. For example, the 

95% confidence ellipse of bivariate normal distribution is not fully overlapped with the 95% confidence 

rectangle of univariate normal distribution.  

 

Table 1.2 Explanations of the inconsistent significances when using univariate and multivariate analysis (Saccenti et al., 2014) 

 Significance only shown multivariately  

but not univariately 

Significance only shown univariately  

but not multivariately 

1. Independent variables complement each other in fact Masking of information by uninformative variables 

2. The significance is an effect of consistency at large Covariances and correlations are difficult to estimate 

3. The multivariate model is overfitting Univariate and multivariate testing procedures do not overlap 

 



44 
 

In general, MVA focuses on the inter-related metabolites and their orchestrated effects on biological 

processes, whereas univariate analysis focuses on independent metabolite changes. It is common that 

the underlying relationships of the metabolites are unknown prior to analysing the metabolomics 

datasets, both MVA and univariate analysis are therefore recommended to use to show 

complementary biomarkers (Listgarten et al., 2010). Saccenti et al. (2014) therefore argued that the 

complementary MVA and univariate analysis should not be used to validate each other and that their 

results should be interpreted within their own statistical framework.  

 

1.3.5 Biological sample types  

Various biological sample types have been used in metabolomics study, including biofluid (e.g. blood, 

urine, faeces, cerebrospinal fluid, saliva, bile, and seminal fluid), tissue, and cell culture (Wishart, 

2005). Among them, metabolites of plasma, urine, cerebrospinal fluid, and saliva have been fully 

described and characterized (Psychogios et al., 2011, Bouatra et al., 2013, Wishart et al., 2008, Dame 

et al., 2015). The Human Metabolome Database (HMDB) was established in 2007 and has become the 

standard metabolomic resource to study human metabolites. To date, HMDB (http://www.hmdb.ca/) 

contains more than 250,000 compounds, > 40,000 of which are blood metabolites, while > 4000 and > 

6000 of which are urinary and faecal metabolites, respectively (Wishart et al., 2018). 

 

1.3.4 Application of metabolomics on obese and weight loss study  

Metabolomics has been applied in the research of obesity and weight loss. Payab et al. (2022) 

thoroughly summarised the metabolic changes in obesity and metabolic syndrome regarding 

metabolomics recently (Payab et al., 2022). This review summarised 74 studies from “PubMed”, 

“Scopus”, and “Web of science” including the total of observational studies on adult, child, and 

adolescents, and all the articles were assessed independently using Critical Appraisal Skills Programme 

checklist. Metabolites, which were discussed in this review, included amino acids (e.g. branched-chain 
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amino acids, tyrosine, phenylalanine, glycine, glutamic acid, lysine, alanine, creatinine, creatine, 

kynurenine, urea, citrulline, ornithine, hippurate, and serotonin), carbohydrates (e.g. glucose, 

glycerol, lactate, acetate, pyruvate, and citrate), nucleic acids (e.g. urate), and fatty acids (e.g. 

lysophosphatidylcholines, choline, phosphatidylcholine, sphingomyelins, acylcarnitine and non-

esterified fatty acids). The involved metabolic cycles/processes included tricarboxylic acid (TCA) cycle, 

urea cycle, glycogenesis, glycolysis, gluconeogenesis, lipogenesis, lipolysis, fatty acids synthesis, fatty 

acids oxidation, ketogenesis, and ketolysis (Payab et al., 2022). The most common sample types 

studied in obesity and metabolic syndrome include blood plasma and serum, urine, cord blood, 

adipose tissue, placenta tissue and exhaled breath condensate. However, fecal samples were not 

included in this review. 

 

Faecal samples have been included in the studies of obesity and weight loss, but most of them focus 

on the compositional changes of the gut microbiota (Ley, 2010, John and Mullin, 2016, Lv et al., 2019, 

Dao et al., 2016, Cotillard et al., 2013, Li et al., 2021). There are only a few studies focusing on faecal 

metabolomics in the field of obesity and weight loss (Table 1.3). Among them, the changes of amino 

acids were mentioned in different articles, and analysed by different analytical platforms and 

statistical methods, and they have similar comparison results. Except tyramine, all the listed amino 

acids showed higher concentrations in obesity or pre-RYGB comparing to lean controls or post-RYGB 

(Table 1.3). Other metabolites such as nucleic acids and their metabolites, purine and its metabolites, 

gut microbial metabolite dimethylamine, TCA intermediates, monosaccharides, glycosylamine, dietary 

advanced glycation end-product, indole derivatives, lysophospholipids, and most fatty acids and their 

metabolites, also showed higher concentrations in obesity state or pre-RYGB comparing to lean 

controls or post-RYGB. Another gut microbial metabolite phenylacetate, fatty ester, and oleic acid-

hydroxystearic acid showed higher concentrations in lean controls or post-RYGB comparing to obesity 

or pre-RYGB (Table 1.3). Notably, the protocols of faecal sample preparation in these publications are 

not consistent, even for the same analytical platform. For example, in the study of Cui et al. (2021), 
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filter bags were used for 1 minute homogenization before faecal slurry being stored at -80 ℃ (Cui et 

al., 2021). In contrast, in the study of Li et al. (2021), dried faecal aqueous metabolites were acquired 

using before being stored at -40 ℃ (Li et al., 2021). This inconsistency in the sample preparation and 

analysis protocols could result in differences in metabolic finding, implying that a standard protocol 

for faecal metabolomics study is to be developed. 

 

Table 1.3 Faecal metabolites comparison of obesity/overweight (O) and lean human (LH) or pre- and post-RYGB 

Category Metabolites Comparison Analytical 
platform 

Statistical 
Methods 

Ref 

Amino acids Isoleucine RYGB Pre > 1-2-yr-post NMR OPLS-DA (Li et al., 2021) 

BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Leucine RYGB Pre > 1-2-yr-post NMR OPLS-DA (Li et al., 2021) 

BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Tyrosine RYGB Pre > 1-2-yr-post NMR OPLS-DA (Li et al., 2021) 

BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Phenylalanine BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Tyramine RYGB Pre < 1-2yr-post NMR OPLS-DA (Li et al., 2021) 

Alanine RYGB Pre > 1-2-yr-post NMR OPLS-DA (Li et al., 2021) 

BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Glutamate RYGB Pre > 1-2-yr-post NMR OPLS-DA (Li et al., 2021) 

BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Glycine RYGB Pre > 1-2-yr-post NMR OPLS-DA (Li et al., 2021) 

BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Lysine BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

O > LH NMR, LC-MS OPLS-DA (Palomino-
Schatzlein et al., 

2020) 

RYGB Pre > 3mon-post LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Methionine BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Nucleic acids and 
their metabolites 

Uracil RYGB Pre > 1-2yr-post NMR OPLS-DA (Li et al., 2021) 

BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Thymine RYGB Pre > 2yr-post NMR OPLS-DA (Li et al., 2021) 

Adenosine RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Guanosine RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Thymidine RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

2-deoxyadenosine RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 
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8-hydroxyguanine RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Purine and its 
metabolites 

Xanthine BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Hypoxanthine RYGB Pre > 1-2yr-post NMR OPLS-DA (Li et al., 2021) 

Caffeine RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Paraxanthine RYGB Pre > 1-4week-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Theophylline RYGB Pre > 1-4week-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Gut microbial 
metabolites 

Dimethylamine RYGB Pre > 1-2yr-post NMR OPLS-DA (Li et al., 2021) 

Phenylacetate RYGB Pre < 1-2yr-post NMR OPLS-DA (Li et al., 2021) 

Fatty acids and 
their products 

Formate RYGB Pre > 1-2yr-post NMR OPLS-DA (Li et al., 2021) 

Propionate BMI (>27 vs 23.5), O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Butyrate/Isobutyrate RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Valerate RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Caproate RYGB Pre > 1mon-post LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Suberate O > LH NMR, LC-MS OPLS-DA (Palomino-
Schatzlein et al., 

2020) 

Fatty esters O < LH NMR, LC-MS OPLS-DA (Palomino-
Schatzlein et al., 

2020) 

Oleic acid-
hydroxystearic acid 

RYGB Pre < 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

TCA cycles 
intermediates 

Pyruvate BMI (>27 vs 23.5) O > 
LH 

NMR, GC-MS One-way ANOVA (Cui et al., 2021) 

Fumarate RYGB Pre > 1-2yr-post NMR OPLS-DA (Li et al., 2021) 

Monosaccharide N-acetylglucosamine RYGB Pre > 1-2yr-post NMR OPLS-DA (Li et al., 2021) 

Fructose RYGB Pre > 1-4week-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Glycosylamine Nicotinate 
ribonucleotide 

RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Dietary advanced 
glycation end-
product 

Pyrraline RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Indole derivatives 3-indoleglyocylic acid RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Indolepropionate RYGB Pre > 1-3mon-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Lysophospholipids Lysophosphatidyletha
nolamine 18:2 

RYGB Pre > 1-3week-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

Lysophosphatidylinosi
tol 16:0 

RYGB Pre > 1-3week-
post 

LC-MS Linear mixed 
model 

(Yu et al., 2020) 

 

1.4 Faecal samples for Functional microbiomics  

Faeces is an easy, safe and reputable surrogate to study gut microbiota and its functional products – 

metabolites (Morris and Marchesi, 2016). Faeces contacts with colon directly and therefore contains 

large amounts of metabolic information between gut microbiota and host, under various 
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environmental factors (Lamichhane et al., 2018). Besides, faecal collection is non-invasive and cost-

effective comparing to gut content collection, but is still able to describe both intra- and inter-personal 

differences in terms of both gut microbial composition and function.  

 

Functional microbiomics is studying the functional products of gut microbiota (Li, 2018). The estimated 

ratio of bacterial cells to human cells was 1.3 : 1, and with over 1000 bacterial species residing in 

human gastrointestinal tract, each of these species contain thousands of genes (Rajilic-Stojanovic and 

de Vos, 2014, Turnbaugh et al., 2007). Such high genetic diversity of human gut microbiota therefore 

lead to a wide range of metabolic activities, and further influence human health and disease status 

(Li, 2018). So far, advanced high throughput next generation sequencing technology has enabled to 

investigate individual gut microbial composition effectively (Gilbert et al., 2018). However, the 

metabolic activities and the synergistic nature of gut microbiota and the metabolic crosstalk between 

gut microbiota and host are not fully understood. There is still a long way to go before evaluating 

wellbeing and predicting disease risks or responses towards therapeutic treatments from the 

perspectives of both gut microbial composition and metabolic functions.  

 

Currently, the methods of measuring human faecal metabolomics have been well-investigated. Karu 

et al. (2018) listed 97 research papers and 9 reviews about human faecal metabolomics and 

summarized methods for collection, preparation, analysis of human faecal samples (Karu et al., 2018). 

Several studies used faecal bacterial extracts to associate with diseases and have found links (Rojo et 

al., 2015a, Rojo et al., 2015b, Perez-Cobas et al., 2013, Serrano-Villar et al., 2016). However, routinely 

profiling bacterial pellets as a high throughput method is missing. My work on method development 

of faecal component separation for 1H NMR spectroscopy-based global profiling (Chapter 4) would 

address this gap. 
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1.5 Aim, hypothesis and objectives 

1.5.1 Aim 

The overarching aim is to investigate the metabolic impact of weight loss interventions (RYGB, CR and 

gut hormone treatment) on urine, plasma and faeces profiles from morbidly obese patients.  

 

1.5.2 Hypothesis  

1) RYGB-induced metabolic changes are partially attributed to low-calorie intake and the increased 

gut hormones levels;  

2) RYGB or VLCD alters the metabolic profiles of faecal bacterial fractions. 

 

1.5.3 Objectives 

1) To study the impact of RYGB, VLCD or GOP on urine (Chapter 3) and plasma (Chapter 4) metabolome 

from morbidly obese patients at 1-month post-intervention;  

2) To develop a faecal separation and extraction standard operating procedure (SOP) for high 

throughput 1H NMR global metabolic profiling (Chapter 5);  

3) To apply the developed SOP to faecal samples from patients underwent either RYGB or VLCD 

collected at pre-op, short-, mid- and long-term follow-up to investigate RYGB-induced or VLCD-

induced metabolite changes in faecal aqueous and bacterial fraction (Chapter 6). 
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2. Chapter 2 Methodology  

Detailed below are general methods that are applied on the results from multiple chapters. All the 

chapter-specific methods are described in each corresponding chapter. 

 

2.1 Study design  

A total of 68 patients participated in a mechanistic study at the National Institute for Health Research 

(NIHR) Imperial Clinical Research Unit Facility at Hammersmith Hospital (London, UK) from April 2015 

to May 2021. They were recruited under the ethics approved by the U.K. National Health Service (NHS) 

Health Research Authority West London National Research Ethics Committee (reference 13/LO/1510) 

using the same criteria described previously (Behary et al., 2019). Briefly, the inclusion criteria were 

male or female subjects between 18 and 70 years old, who met the U.K. NHS criteria for bariatric 

surgery and was diagnosed with prediabetes (impaired fasting glucose, impaired glucose tolerance, or 

hemoglobin A1c (HbA1c) of 6%-6.4% [42-47 mmol/mol]), or T2D according to WHO criteria. T2D 

patients had a stable HbA1c ≤ 9.0% (75mmol/mol) either on diet or a single oral hypoglycaemic agent. 

Patients who had comorbidities or medicine that could compromise the validity and safety of the 

study, a current history of smoking and pregnancy, and a history of eating disorder or restrained eating 

habits were excluded. 

 

The patients were stratified into 4 groups: (1) VLCD; (2) subcutaneous infusion of a mixture of gut 

hormones GOP; (3) subcutaneous infusion of saline (Saline); and (4) RYGB. VLCD group was subject to 

daily caloric intake of ~800 kcal for 4 weeks mimicking that in RYGB patients. Patients for gut hormone 

study were single-blinded and randomised either into gut hormone infusion group (GOP) or into 

placebo group (Saline). The gut hormone mixture consisted of GLP-1 (7-36) amide, OXY and PYY (3-36) 

and infused at 4:4:0.4 pmol/kg/min for 12 h per day for 4 weeks, mimicking postprandial gut hormone 

levels post-RYGB. 
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2.2 Samples collection, preparation, and measurements 

The collection procedures and timepoints, preparation procedures, and sample sizes of urinary, 

plasma and faecal samples were described in the following chapter 3, 4 and 5. 1H NMR spectroscopy-

based metabolic profiling of urinary and plasma samples were analysed at Imperial National Phenome 

Center (NPC) as previously described (Dona et al., 2014). Metabolite quantifications were performed 

by Bruker IVDr platform. The relevant details were described in chapter 3 and 4. 1H NMR spectroscopy-

based metabolic profiling of faecal samples were analysed by me, and the details were described in 

chapter 6. 

 

2.3 Data analysis 

For full-resolution spectral data, PCA and PLS-DA-based methods including OPLS-DA and RM-PLS-DA 

were applied. The spectral pre-processing procedures were described in the corresponding chapters.   

The resulting spectral data were modelled using PCA in SIMCA 17, PLS-DA with MCCV model 

robustness assessment (1000 individual models) in MATLAB 2018b (Garcia-Perez et al., 2017, Posma 

et al., 2018), and OPLS-DA with 7-fold cross-validation model robustness assessment (1000 individual 

models) in MATLAB 2018b, based on auto-scaled data (mean-centred, divided by standard deviation). 

PLS-DA model with MCCV assessment partitions the data into model and validation set and used 1/7th 

of the data for validation. PLS-DA model with MCCV assessment was also designed to account for RM, 

and are referred as RM-PLS-DA.  

 

For quantified data, PCA and PLS-DA-based methods including OPLS-DA and RM-PLS-DA were applied. 

Quantified data were auto-scaled and modelled using PCA, RM-PLS-DA and OPLS-DA in the same way 

and the same software as full-resolution spectral data. OPLS-DA model of quantified data was also 

constructed in SIMCA 17 besides in MATLAB 2018b to show the differences between the same models 

constructed in 2 different software. In addition, non-parametric analyses (Wilcoxon signed-rank test 
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or Kruskal-Wallis H test) were used on the unmatched or RM data in RStudio 4.2.1 to show the 

differences between MVA and univariate analysis. 

 

Benjamini-Hochberg (BH) multiple test correction was applied to both full-resolution spectral data and 

quantified data analyses.  

 

The predictivity and robustness of RM-PLS-DA models were determined by hard thresholds as 

previously described (Posma et al., 2018): 1) Robustness of cross-validation (RCV), which is the ratio 

of goodness-of-fit (R2) and error-of-prediction (Q2), is required to be > 0.25; 2) The value of Q2 is 

required to be > 0.1. In each MCCV repeat, variable significance is defined as “Si” (S = -
βi

|βi|
log10(qi), βi is 

regression coefficient, qi is corrected P-value using BH procedure; To find the variable contributions 

across all models, each regression coefficient β of the response was re-calculated 25 times using 

bootstrapping. Only variables whose βs of each MCCV model (n = 1000) and bootstrap models (n = 

25,000) are the same sign and q < 0.05 are considered to be significant in the MCCV.  

 

Like RM-PLS-DA, OPLS-DA also has two quality parameters R2 and Q2. They are shown as R2X in 

MATLAB or R2X(cum) in SIMCA and Q2Yhat in MATLAB or Q2(cum) in SIMCA. R2 represents the 

goodness of fit whereas Q2 represents the predictive ability of the model. However, there is not hard 

threshold to determine the predictability and robustness of OPLS-DA in MATLAB. R2 can approach to 

1 if the increased component number approaches the rank of the X matrix. Q2 will reach a plateau and 

decrease before approaching to 1 with the addition of the component number. This indicates that the 

predictive ability of an OPLS-DA model decreases at certain level of complexity (Eriksson et al., 2006). 

A large discrepancy between R2 and Q2 suggests the overfitting of the model due to too many 

components that are used. Practically, it is difficult to find a general limit for good predictability 

because it strongly depends on the properties of the data (Westerhuis et al., 2008, Eriksson et al., 
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2006). In SIMCA P12 users’ guide, Q2 > 0.5 is admitted as a good predictability (Umetrics, 2008). 

However, many SIMCA PLS-DA/OPLS-DA models have been published with Q2 < 0.5 (Cai et al., 2012, 

Dong et al., 2013). Frequently, these models with poor predictability are further validated by a test 

based on analysis of variance (ANOVA) of the cross-validated predictive residuals (CV-ANOVA) is 

calculated to estimate the significance of OPLS-DA model, shown as PCV-ANOVA in SIMCA (Eriksson et al., 

2008). In MATLAB, permutation test is used for further validation by evaluating whether the specifical 

classification of the individuals from the 2 designed groups is significantly better than other random 

classification from 2 arbitrary group (Golland and Fischl, 2003). It compares Q2 value obtained from 

the original dataset and the distribution of Q2 when the respondent values are randomly assigned to 

the individuals (Westerhuis et al., 2008). In the publications of metabolomics studies, the number of 

components, quality parameters R2 and Q2, as well as Permutation test P values (shown as Pperm) or 

PCV-ANOVA are recommended presented (Triba et al., 2015).  

 

Criteria were set to select the significant variables from OPLS-DA models in MATLAB and SIMCA. In 

MATLAB, variables whose q < 0.05 (BH-adjusted p value) and correlation coefficient r > 0.5 were 

regarded as significant. Due to the increased risk of false negative result from BH procedure, variables 

whose p < 0.5 but q > 0.5 and r > 0.5 were regarded as possible significant variables. In SIMCA, variables 

whose variable influence on the projection (VIP) > 1 and r > 0.5 were regarded as significant. According 

to SIMCA 17, VIP is “the sum over all model dimensions of the contributions variable influence”, and 

VIP values reflect the correlation of the variables to all the responses and the projection. Variable with 

VIP values > 1 are the most relevant for explaining the responses.  
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3. Chapter 3 Impacts of RYGB, GOP and VLCD on the urinary 

metabolic profiles 

3.1 Introduction 

Urine is a transparent and amber-coloured fluid generated by kidneys of mammals. The kidneys 

extract soluble wastes from bloodstream, excess water, sugar, and other compounds such as urea, 

inorganic salts, creatinine, ammonia, organic acid, various water-soluble toxins, and pigmented 

products of haemoglobin breakdown. Urinary excretion is the major route by which the body removes 

water-soluble waste (Elliott et al., 2015). Despite of being regarded as a waste product, urine is a 

valuable diagnostic biofluid. Urine is the first biofluid to be used to diagnose human genetic disease 

clinically (Garrod, 1996). Nowadays, urinary glucose, bilirubin, ketone bodies, nitrates, leukocyte 

esterase, haemoglobin, urobilinogen, and protein can be readily measured in routine analysis. 

Following providing metabolic information related to bladder cancer (Issaq et al., 2008, Pasikanti et 

al., 2010) and kidney cancer (Kim et al., 2009, Kind et al., 2007), urinary samples has been used to 

study obesity (Strawn et al., 2020), diabetes (Marsden and Pickering, 2015), liver disease (Moolla et 

al., 2020, Babu et al., 2022). Besides, urine sample has been frequently included in RYGB studies, and 

the concentrations of the metabolites such as phenylacetylglutamine (PAGn) and p-cresyl sulfate (4CS) 

increased significantly post-RYGB (Li et al., 2011, West et al., 2020, Jones et al., 2021, Li et al., 2021). 

Urine sample has also been included in CR study, and metabolites such as oxidative stress markers F2-

isoprostaines has showed reduced concentration in nonobese healthy human (Il'yasova et al., 2018). 

Besides, urine is sterile, easy to obtain in large volumes, and largely free from the interference of 

protein or protein and chemically complex. Therefore, urinary sample is an important biofluid to 

systematically study the mechanisms of weight loss. 
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The 1H NMR spectral data used in this chapter was from a recent publication from Jones et al. (2021), 

which reported both shared and distinct metabolic changes associated with RYGB-, VLCD- and GOP-

induced weight loss in morbidly obese patients (Jones et al., 2021).  While the biological implication 

of the metabolic changes has been published, in this chapter, I particularly focused on the comparisons 

of the metabolic changes that could be extracted from 1) matched and unmatched sample pairs, 2) 

different datasets (i.e., 600 MHz full-resolution 1H NMR spectra vs. B.I.QUANT-UR b data), 3) different 

statistical analysis methods (univariate vs. MVA), and 4) different software (MATLAB vs. SIMCA). By 

doing these comparisons, I intended to show consistent/inconsistent results from the same study 

cohort using different analytical ways. 

 

Full-resolution 1H NMR spectra referred to the originally acquired NMR spectra with a resolution of 

0.0002 ppm when performing multivariate statistical analyses, where variables are chemical shift. The 

full-resolution spectral data contain detailed information such as chemical shifts, J coupling constant, 

and multiplicity patterns (Lin et al., 2019). B.I.QUANT data is generated using In Vitro Diagnostics 

research (IVDr) method (Bruker, Germany) based on 1D-NOESY pre-sat spectra and two-dimensional 

J-resolved spectra. The B.I.QUANT data includes concentrations of 50 mostly common seen 

compounds in human urine (Appendix, Table 8.1). Bruker’s IVDr platform performs automatic 

quantification based on their own algorithms involving fitting pre-defined 1H signals after the 

measurement on urine samples.  

 

In this chapter, I aimed to 1) explore impacts of RYGB, VLCD and GOP on urine metabolome from 

morbidly obese patients at 1-month post-intervention; 2) compare the urinary metabolome results 

obtained from different statistical analysis methods and different datasets. 
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3.2 Study design & Methodology 

3.2.1 Study design 

Table 3.1 showed the urinary sample size of each intervention group at pre-intervention, and at 1-

month/4-week post-intervention. This includes unmatched sample sizes and the number of patients 

with matched pre- and post-intervention samples.  

 

Table 3.1 Urinary sample size collected from each weight loss intervention 

Interventions 

(n number of 

patients) 

Pre-intervention 

(n number of patients with 

sample available) 

1-month/4-week post-

intervention 

(n number of patients 

with sample available) 

Number of patients with 

matched pre- and 1-

month/4-week post-

intervention samples 

RYGB n = 21 n = 20 20 

VLCD n = 19 n = 21 18 

GOP n = 11 n = 13 10 

Saline n = 11 n = 10 10 

 

3.2.2 Sample collection and preparation 

Urinary samples were collected and aliquoted into 2-mL cryo-vials (≥ 700 μL) at pre-intervention and 

4 weeks post-intervention at the fasting state and then stored at -80℃. For blinded GOP and Saline 

group, the post-intervention urinary samples were collected on the last day of the study, at least 2 hrs 

after the initiation of the infusion. Each vial of urinary sample was defrosted and centrifuged at 12,000 

g at 4℃ for 5 mins, and 540 μL of supernatant was introduced into 5mm outer diameter NMR tubes 

and mixed with 60 μL of deuterium oxide (D2O) containing 1.5 M of KH2PO4, 5.8 mM of 3-trimethyl-

silyl-[2,2,3,3-2H4] propionic acid (TSP) and 2 mM of NaN3 at pH 7.4 for standard 1D 1H NOESY analysis.  

 

3.2.3 1H NMR spectroscopic data acquisition 

Urinary samples were analysed at Imperial National Phenome Centre (NPC). 1H NMR spectroscopy-

based metabolic profiling were performed on urinary samples as previously described (Dona et al., 
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2014). Standard 1D profile experiment with water pre-saturation using the 1D-NOESY pre-sat pulse 

sequence and a two-dimensional J-resolved experiment at 300 K. Metabolite quantification were 

performed by Bruker IVDr platform basic version: B.I.QUANT-UR b, and 50 compounds with 

concentration ranges were provided.  

 

3.2.3 Statistical analysis of urinary profiles 

Water (4.7 - 4.9 ppm), TSP (-0.2 - 0.2 ppm) and urea (5.648 - 5.977 ppm) peaks were removed from 

the full-resolution NMR spectral data of urine, followed by alignment using alignment algorithm 

recursive segment-wise peak alignment (RSPA), and median-fold normalisation (Veselkov et al., 2009, 

Dieterle et al., 2006). Table 3.2 showed the statistical methods used on full-resolution spectral data 

and B.I.QUANT data. 

 

Table 3.2 Statistical methods used in full-resolution data and B.I.QUANT data analysis 

Statistical methods Full-resolution spectral data B.I.QUANT data 

PCA 
 

All samples (Section 3.3.1) All samples (Section 3.3.1) 

O-PLS-DA using SIMCA  N/A Pre vs. Post intervention 

O-PLS-DA using MATLAB 
 

Pre vs. Post intervention (Section 3.3.2 
A, 3.3.3 A, 3.3.4 A, 2.3.5 A); 
Comparison between intervention 
groups (Section 3.3.7 B b-d) 

Pre vs. Post intervention (Section 3.3.2 
A, 3.3.3 A, 3.3.4 A, 3.3.5 A); 
Comparison between intervention 
groups (Section 3.3.7 B b-d) 

RM-PLS-DA using MATLAB  Pre vs. Post intervention using paired 
samples (Section 3.3.2 B, 3.3.3 B, 3.3.4 
B, 3.3.5 B); 

Pre vs. Post intervention using paired 
samples (Section 3.3.2 B, 3.3.3 B, 3.3.4 
B, 3.3.5 B); 

Paired Wilcoxon signed-rank test  N/A Pre vs. Post intervention using paired 
samples (Section 3.3.2 B, 3.3.3 B, 3.3.4 
B, 3.3.5 B); 

Unpaired Wilcoxon signed-rank test 
and Kruskal-Wallis H test 
 

N/A Pre vs. Post intervention (Section 3.3.2 
B, 3.3.3 B, 3.3.4 B, 3.3.5 B); 
Comparison between intervention 
groups (Section 3.3.7 A, B a) 

 



58 
 

3.3 Results 

3.3.1 Overview of 1H NMR spectral data  

The PCA scores plot of all the full-resolution spectral data is shown in Figure 3.1 (A). The 1st PC 

explained 8.81% of the variance (R2X), and the 2nd PC explained 4.95% of the variance. There was no 

clear separation between pre- and post-intervention in general. However, the majority of post-RYGB 

urinary samples was separated from the other groups. Several samples were shown as strong outliers 

in the PCA scores plot of B.I.QUANT data (Appendix Figure 8.1). These samples included G008-ur3 

from post-GOP group and R022-ur3 from post-RYGB group. Comparing to other samples, G008-ur3 

contained higher levels of arginine, guanidinoacetic acid, caffeine, and D-glucose, whereas R022-ur3 

contained higher levels of succinic acid, 3-hydroxybutyric acid, and acetone. Therefore, they were 

excluded from the subsequent PCA models. Unlike the PCA scores plot based on the full-resolution 

NMR data, after excluding the strong outliers, post-intervention samples tended to be separated from 

pre-intervention timepoint along the 2nd PC, which explained 10.8% of the variance (Figure 3.1 (B)).  

 

 

Figure 3.1 PCA scores plots of (A) full-resolution spectral and (B) B.I.QUANT data. 

 

Furthermore, PCA were carried out for each intervention group using both full-resolution (Figure 3.2 

(A-D)) and B.I.QUANT data (Figure 3.2 (E-H)) at pre- and post-intervention timepoints to explore the 

differences between time points within the same intervention group. For full-resolution spectral data, 
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post-RYGB samples separated from pre-RYGB samples along the 1st PC, which explained 11.2% of the 

variance (Figure 3.2(A)). The majority of post-VLCD samples were separated from pre-VLCD samples 

along the 2nd PC, which explained 6.97% of the variance (Figure 3.2 (B)). No separation was observed 

between the two time points in GOP (Figure 3.2 (C)) and Saline (Figure 3.2 (D)) groups. For B.I.QUANT 

data, the majority of post-RYGB samples were separated from pre-RYGB samples along the 2nd PC, 

which explained 17.5% of the variance (Figure 3.2 (E)). The majority of post-VLCD samples were 

separated from pre-VLCD samples along the 2nd PC, which explained 19.3% of the variance (Figure 3.2 

(F)). No separation between pre- and post-intervention in GOP (Figure 3.2 (G)), and Saline (Figure 3.2 

(H)) groups.  

 

 

Figure 3.2 PCA scores plots of (A-D) full-resolution spectral data and (E-H) B.I.QUANT data from RYGB, VLCD, GOP, and Saline 

intervention groups.  

 

As expected, no clear grouping of full-resolution spectral or B.I.QUANT data at the pre-intervention 

time point (Figure 3.3 (A, C)). In contrast, the majority of post-VLCD and post-RYGB full-resolution 
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spectral data were separated from the other groups (Figure 3.3 (B)). Besides, post-GOP and post-Saline 

B.I.QUANT data clustered together, whereas post-VLCD and post-RYGB B.I.QUANT data clustered 

together (Figure 3.3 (D)).  

 

 

Figure 3.3 PCA scores plots of (A, B) full-resolution spectral and of (C, D) B.I.QUANT data at pre-and post-intervention time 

point.  

 

3.3.2 Impact of RYGB on full-resolution spectral data and B.I.QUANT metabolic profiles of 

urine 

A. Unpaired analysis of full-resolution spectral data and B.I.QUANT data 

A valid OPLS-DA model for the full-resolution spectral data of RYGB samples was constructed using 1 

predictive in MATLAB 2018b Table 3.3. The OPLS-DA scores plot showed a separation between pre-

RYGB and post-RYGB samples (Figure 3.4 (A)). The OPLS-DA loading plot after BH correction procedure 
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showed the metabolites distinguishing pre-RYGB and post-RYGB groups (Figure 3.4 (B)). After RYGB 

intervention, α-ketoisovalerate concentration decreased significantly, whereas PAG and 4CS 

concentrations increased significantly.  

 

 

Figure 3.4 OPLS-DA modelling on full-resolution spectral plasma data of RYGB patients. (A) 7-fold internal cross-validated 

score plot of pre-RYGB and post-RYGB samples with 1 predictive and 0 orthogonal components; (B) Loading plot of the pre-

RYGB and post-RYGB data with BH-adjusted covering mask in black. In loading plot, x axis is chemical shift (ppm) of variables, 

y axis is covariance of variables and the separation classification, and colour indicates the squared value of correlation 

coefficient (r2). Metabolites labelled downwards represent their increased intensities with pre-RYGB group, whereas 

metabolites labelled upwards represent their increased intensities with post-RYGB group.  

 

Table 3.3 showed results analysed using different analytical methods. The OPLS-DA model with the 

same scaling method constructed on B.I.QUANT RYGB data in MATLAB was not valid (Pperm > 0.05), 

whereas the OPLS-DA model of B.I.QUANT RYGB data in SIMCA was valid and betaine, acetic acid and 

oxaloacetic acid concentrations showed significant changes after RYGB intervention (PCVANOVA < 0.05, 

Table 3.3). Besides, when analysing B.I.QUANT RYGB data using Wilcoxon sing-rank test, betaine 

concentration showed significantly reduced after RYGB intervention (P < 0.05).  
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Table 3.3 Univariate and multivariate analysis on B.I.QUANT data and full-resolution spectral data of RYGB samples 

 

All the red-marked areas were the parameters of the significantly changed metabolites with BH correction procedure. R2X 

and R2X(cum): the percentage of variance in X explained by X model. Q2(cum) value and Q2Yhat value: the percentage of 

variance in Y predicted by X model. VIP: Variable influence on the projection. VIP[1]cvSE: Jack-knife standard error of the VIP 

computed from all rounds of cross-validation. p[1]: The importance of the variables in approximating X in the first 

component. p: unadjusted p-value; q: BH-adjusted p-value. p(corr)[1] and r: correlation coefficient of the metabolite with 

respect to model component scores. All the tables listed below are all in the same format. 

 

B. Paired analysis of full-resolution spectral data and B.I.QUANT data 

RM-PLS-DA model was used to analyse full-resolution spectral data from 20 patients whose pre- and 

post-RYGB samples were both collected. RM-PLS-DA of the full-resolution spectral data of RYGB group 

at pre- and post-intervention was not valid (RCV = -0.21, Q2 = -0.15). However, with the B.I.QUANT 

data, RM-PLS-DA produced a model with a good Q2Y value (RCV = 0.82; Q2 =0.47, Figure 3.5 (A)), 

Quantified 

data (non-

paired 

Wilcoxon 

test)

Models

Metabolites VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison

3-Hydroxybutyric acid -- 1.2088 2.4096 -0.0826 -0.1434 -- -- --

4-Aminobutyric acid -- 0.8769 1.2373 -0.1933 -0.3353 -- -- --

Acetic acid -- 1.3349 1.2956 -0.2964 -0.5143 post > pre -- -- --

Acetoacetic acid -- 1.2604 1.7603 -0.2861 -0.4964 -- -- --

Acetone -- 1.2901 1.6963 -0.1715 -0.2977 -- -- --

Alanine -- 0.2459 1.8135 0.0560 0.0973 -- -- --

Allopurinol -- 0.6182 1.8077 -0.1334 -0.2314 -- -- --

Betaine
pre > post       

(P = 0.0274)
1.6150 0.8275 0.3663 0.6356 pre > post

-- -- --

Caffeine -- 0.9696 1.8781 0.2021 0.3506 -- -- --

Citric acid -- 1.3066 0.9239 -0.2565 -0.4451 -- -- --

Creatine -- 0.5491 1.1394 0.1230 0.2135 -- -- --

Creatinine -- 1.3349 0.4336 -0.2661 -0.4618 -- -- --

D-Glucose -- 0.8342 1.5423 0.1745 0.3028 -- -- --

Dimethylamine -- 0.9925 1.6760 -0.0523 -0.0908 -- -- --

D-Mannose -- 1.0173 1.7540 0.2315 0.4017 -- -- --

Formic acid -- 1.0410 0.7721 0.2388 0.4143 -- -- --

Fumaric acid -- 0.8639 0.4624 -0.0329 -0.0571 -- -- --

Glycine -- 0.8863 0.5985 -0.1277 -0.2215 -- -- --

Guanidinoacetic acid -- 1.1061 1.4071 0.2502 0.4341 -- -- --

Hippuric acid -- 0.8050 1.3121 -0.1778 -0.3086 -- -- --

N,N-Dimethylglycine -- 0.0908 1.7418 -0.0103 -0.0179 -- -- --

Oxaloacetic acid -- 1.6654 1.2149 -0.3768 -0.6538 post > pre -- -- --

Proline betaine -- 0.5239 1.4901 -0.1208 -0.2096 -- -- --

Pyruvic acid -- 0.9092 1.8493 0.1991 0.3454 -- -- --

Succinic acid -- 1.2369 2.3567 -0.0881 -0.1529 -- -- --

Tartaric acid -- 0.0754 1.0178 -0.0089 -0.0154 -- -- --

Trigonelline -- 0.4793 0.8312 0.1079 0.1873 -- -- --

Valine -- 0.3191 1.9304 0.0218 0.0378 -- -- --

α-ketoisovalerate -- -- -- -- -- -0.4923 0.0011 0.0228 pre > post

PAGn -- -- -- -- -- 0.4597 0.0025 0.0395 post > pre

4CS -- -- -- -- -- 0.5243 0.0004 0.0129 post > pre

   Quantified data                                                                                             

OPLS-DA model in SIMCA

R2X(cum) = 0.269, Q2(cum) = 0.409, P(CVANOVA) = 0.0006, [1+1+0]

Full-resolution data                                                               

OPLS-DA model in MATLAB 

R2X = 0.0829, Q2Y = 0.4128, Pperm = 0.001, [1+0+0]

   Quantified 

data                                                                                             

OPLS-DA model 

in MATLAB                                                     

Pperm > 0.05
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indicating significant differences between pre- and post-RYGB. A higher concentration of creatinine 

was observed after RYGB intervention (Figure 3.5 (B)).  

 

 

Figure 3.5 RM-PLS-DA modelling on B.I.QUANT urinary data of RYGB patients. (A) Kernel density estimate (KDE, top) and 

mean (bottom) of the predicted scores (Tpred) for pre-RYGB (blue) and post-RYGB (red) urinary data, R2 and Q2 shown for the 

predictive axis. The local sharp peaks of the KDE indicate large inter-personal variability. (B) Manhattan plot showing -

log10(pFDR) x sign of regression coefficient (β) of the RM-PLS-DA model for the 50 B.I.QUANT variables. The red peak 

represents the higher concentration of the metabolite in post-RYGB patients. The 2 horizontal lines indicate the cutoffs for 

the false discovery rate (FDR) on the log10 scale. 

 

Following RM-PLS-DA, B.I.QUANT data was analysed using paired Wilcoxon signed-rank test. The 

concentrations of 7 metabolites including acetic acid, acetoacetic acid, acetone, citric acid, creatinine, 

and oxaloacetic acid increased significantly after RYGB intervention, whereas betaine concentration 

decreased significantly (Figure 3.6).  
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Figure 3.6 Metabolites with significantly changed concentrations after RYGB using paired Wilcoxon signed-rank test. The box 

plots demonstrate the median and inter-quartiles ranges. The p value shown on each box plot was adjusted by BH procedure. 

 

3.3.3 Impact of VLCD on full-resolution spectral data and B.I.QUANT metabolic profile of 

urine  

A. Unpaired analysis of full-resolution spectral data and B.I.QUANT data 

A valid OPLS-DA model for the full-resolution spectral data of VLCD samples was constructed using 1 

predictive in MATLAB 2018b (Table 3.4). The OPLS-DA score plot demonstrated separation between 

pre-VLCD and post-VLCD samples (Figure 3.7 (A)). The OPLS-DA loading plot after BH correction 

procedure showed the metabolites distinguishing pre-VLCD and post-VLCD groups (Figure 3.7 (B - D)). 

After VLCD intervention, alanine concentration decreased significantly after VLCD intervention, 

whereas 4CS, succinic acid, citric acid, 3-hydroxybutyric acid, and fumarate concentrations increased 

significantly after VLCD intervention. Among these changes, the decreased alanine concentration and 

increased acetoacetic acid, acetone and citric acid concentrations were also observed in the OPLS-DA 

models of B.I.QUANT VLCD data with 1 predictive component in SIMCA and MATLAB. The increased 

3-hydroxybutyric acid concentration was also observed in the OPLS-DA model in SIMCA (Table 3.4).  
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Figure 3.7 OPLS-DA modelling on full-resolution spectral plasma data of VLCD patients. (A) 7-fold internal cross-validated 

score plot of pre-VLCD and post-VLCD samples with 1 predictive component; (B-D) Loading plot of the pre-LVCD and post-

VLCD data with BH-adjusted covering mask in black. Metabolites labelled downwards represent their increased intensities 

with pre-VLCD group, whereas metabolites labelled upwards represent their increased intensities with post-VLCD group. 

 

VLCD-induced metabolic changes based on different datasets and statistical methods are summarised 

in Table 3.4 from the comparison between pre-VLCD and post-VLCD groups. Based on the full-

resolution spectral data, the concentration of alanine decreased significantly after VLCD intervention, 

whereas the concentrations of 3-hydroxybutyric acid, citric acid, succinic acid, fumaric acid, and 4CS 

increased significantly after VLCD.  
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Table 3.4 Univariate analysis and multivariate analysis on B.I.QUANT data and full-resolution data of VLCD samples 

 

 

B. Paired analysis of full-resolution spectral data and B.I.QUANT data 

RM-PLS-DA model was used to analyse full-resolution spectral data from 18 patients whose pre- and 

post-VLCD samples were both collected. The RM-PLS-DA model for the full-resolution spectral data 

from VLCD group was valid and robust (RCV = 0.72, Q2 = 0.60, Figure 3.8 (a)). The increased 

concentration of citric acid contributed to the metabolic change after VLCD intervention (Figure 3.8 

(b)). The overall quality of RM-PLS-DA model for B.I.QUANT data of VLCD repeated measures was valid 

and robust (RCV = 0.78; Q2 =0.52). However, there was no significant metabolite observed in the 

Manhattan plot.  

 

Quantified 

data (non-

paired 

Wilcoxon 

test)

Models

Metabolites VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison r p q Comparison

3-Hydroxybutyric acid -- 1.4288 0.8913 -0.3116 -0.6106 post > pre -- -- -- 0.4860 0.0015 0.0433 post > pre

Acetic acid -- 0.0277 0.5308 0.0060 0.0118 -- -- -- -- -- -- --

Acetoacetic acid
post > pre      

(P = 0.0041)
1.5808 1.1094 -0.3447 -0.6756 post > pre 0.4234 0.0065 0.0340 post > pre

-- -- --

Acetone
post > pre    

(P = 0.0200)
1.7310 0.6614 -0.3775 -0.7397 post > pre 0.4981 0.0011 0.0075 post > pre

-- -- --

Alanine
pre > post    

(P = 0.0020)
1.5722 1.0585 0.3428 0.6719 pre > post -0.5707 0.0001 0.0013 pre > post -0.6462 0.0000 0.0029 pre > post

Allopurinol -- 0.8478 1.4079 0.1849 0.3623 -- -- -- -- -- -- --

Betaine -- 0.6655 0.9707 0.1451 0.2844 -- -- -- -- -- -- --

Citric acid
post > pre       

(P = 0.0020)
1.5655 0.5927 -0.3414 -0.6690 post > pre 0.5922 0.0001 0.0012 post > pre 0.6536 0.0000 0.0028 post > pre

Creatine -- 0.9698 1.4168 0.2115 0.4145 -- -- -- -- -- -- --

Creatinine -- 1.0897 1.3667 -0.2376 -0.4657 -- -- -- -- -- -- --

D-Glucose -- 0.6491 1.5804 0.1416 0.2774 -- -- -- -- -- -- --

Dimethylamine -- 0.0594 0.4769 0.0129 0.0254 -- -- -- -- -- -- --

D-Mannose -- 1.0702 0.9655 0.2334 0.4574 -- -- -- -- -- -- --

Formic acid -- 1.0165 0.8521 0.2217 0.4344 -- -- -- -- -- -- --

Fumaric acid -- 0.8338 1.6150 -0.1818 -0.3563 -- -- -- -- 0.5525 0.0002 0.0162 post > pre

Glycine -- 0.2698 1.4442 0.0588 0.1153 -- -- -- -- -- -- --

Hippuric acid -- 0.9308 1.3761 0.2030 0.3978 -- -- -- -- -- -- --

N,N-Dimethylglycine -- 0.6220 1.0274 0.1356 0.2658 -- -- -- -- -- -- --

Oxaloacetic acid -- 0.2130 0.7272 -0.0465 -0.0910 -- -- -- -- -- -- --

Proline betaine -- 0.6507 0.9467 0.1419 0.2781 -- -- -- -- -- -- --

Succinic acid -- 0.9857 0.8529 -0.2150 -0.4213 -- -- -- -- 0.5882 0.0001 0.0094 post > pre

Valine -- 0.4309 1.0762 -0.0940 -0.1842 -- -- -- -- -- -- --

4CS -- -- -- -- -- -- -- -- -- 0.5312 0.0004 0.0220 post > pre

   Quantified data                                                                                             

OPLS-DA model in SIMCA

Full-resolution data                                                               

OPLS-DA model in MATLAB 

R2X(cum) = 0.183, Q2(cum) = 0.435, P(CVANOVA) < 0.0001, [1+0+0] R2X = 0.0612, Q2Y = 0.4253, Pperm = 0.0010, [1+0+0]

Quantified data                                                                             

OPLS-DA model in MATLAB

R2X = 0.1813, Q2Y = 0.2398, Pperm = 0.0040, [1+0+0] 
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Figure 3.8 RM-PLS-DA modelling on full-resolution spectral urinary data of VLCD patients. (a) KDE (top) and mean (bottom) 

of the predicted scores (Tpred) for pre-RYGB (blue) and post-RYGB (red) urinary data, R2 and Q2 shown for the predictive axis. 

(b) Average 1H NMR spectrum of pre-VLCD and post-VLCD samples (top), and Manhattan plot (bottom) showing -log10(pFDR) 

x sign of regression coefficient (β) of the RM-PLS-DA model for the 18312 spectral variables.  

 

When the B.I.QUANT urinary data of VLCD repeated measures analysed using Wilcoxon-Signed rank 

test, 4 metabolites including acetoacetic acid, acetone, citric acid, and succinic acid increased 

significantly after VLCD intervention (Figure 3.9), whereas 2 metabolites including alanine and N,N-

dimethylglycine decrease significantly (Figure 3.9).  

 

 

Figure 3.9 Metabolites with significantly changed concentrations after VLCD using paired Wilcoxon signed-rank test.  
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3.3.4 Impact of GOP on full-resolution spectral and B.I.QUANT data 

A. Unpaired analysis of full-resolution spectral data and B.I.QUANT data 

When analysing the metabolic impacts of GOP intervention, none of the OPLS-DA models constructed 

on full-resolution spectral data nor on B.I.QUANT data in MATLAB nor SIMCA was valid (Pperm > 0.05). 

Besides, none of the B.I.QUANT data analysed using Wilcoxon signed-rank test showed significance 

after GOP intervention (P > 0.05). 

 

B. Paired analysis of full-resolution spectral data and B.I.QUANT data 

The overall qualities of the RM-PLS-DA model for full-resolution spectral data (RCV = 0.05, Q2 = 0.05) 

and B.I.QUANT data (RCV = -2.48, Q2 = -0.77) of GOP repeated measures were not valid. There was 

not any metabolite changing significantly after GOP intervention when analysing the B.I.QUANT data 

using Wilcoxon signed-rank test.  

 

3.3.5. Impact of Saline (control) on full-resolution spectral and B.I.QUANT metabolic profiles 

of urine 

The overall quality of the RM-PLS-DA model for full-resolution spectral data of Saline repeated 

measures was valid and robust (RCV = 0.71, Q2 = 0.47), but no metabolite was found to be significant. 

The overall quality of the RM-PLS-DA model for B.I.QUANT data of Saline repeated measures was not 

valid (RCV = -0.67, Q2 = -0.31). There was not any metabolite changing significantly after Saline 

intervention when analysing the B.I.QUANT data using Wilcoxon signed-rank test.  
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When analysing the metabolic impacts of Saline intervention, none of the OPLS-DA models 

constructed on full-resolution spectral data nor on B.I.QUANT data in MATLAB nor SIMCA was valid 

(Pperm > 0.05). Besides, none of the B.I.QUANT data analysed using Wilcoxon signed-rank test showed 

significance after Saline intervention (P > 0.05). 

 

3.3.6. Summary of the changes induced by different weight loss strategies 

In the unpaired analysis, the results generated from different statistical methods were different, 

especially on RYGB group. In the analysis of OPLS-DA on full-resolution spectral data, PAGn and 4CS 

concentrations were found to be increased after RYGB, and α-ketoisovalerate concentration was 

found to be decreased after RYGB. None of these changes was observed when using other statistical 

methods. In contrast, other post-RYGB changes including increased concentrations of acetic acid and 

oxaloacetic acid, and decreased concentration of betaine analysed using OPLS-DA on B.I.QUANT data 

in SIMCA, as well as increased concentrations of creatine, acetoacetic acid, acetone, and citric acid 

analysed using paired Wilcoxon test, were not observed in OPLS-DA of full-resolution spectral data. 

Besides, decreased betaine concentration and increased creatinine concentration were also observed 

in unpaired Wilcoxon test and RM-PLS-DA of B.I.QUANT data in MATLAB. RM-PLS-DA model was not 

valid on RYGB full-resolution spectral data.  

 

In comparison, VLCD results generated from different statistical methods were more consistent. 

Increased acetoacetic acid and acetone concentrations, and decreased alanine concentration were 

observed when analysing B.I.QUANT data regardless the statistical methods. Decreased alanine 

concentration was also observed in OPLS-DA of full-resolution spectral. Apart from alanine, increased 

succinic acid, citric acid, fumarate, 3-hydroxybutyrate and 4CS concentrations were also observed in 

OPLS-DA of full-resolution spectral data. Among them, increased citric acid concentration was also 

observed in unpaired and paired Wilcoxon tests, OPLS-DA of B.I.QUANT data in SIMCA, and RM-PLS-
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DA of full-resolution spectral data; Increased 3-hydroxybutyrate concentration was also observed in 

OPLS-DA of B.I.QUANT data in SIMCA and in MATLAB. Besides, decreased N,N-dimethylglycine 

concentration was observed in paired Wilcoxon test.  

 

There was not any metabolite change in GOP nor Saline group in all the analyses.  

 

  

Figure 3.10 The impact of RYGB, VLCD and GOP on (A) unpaired and (B) paired full-resolution spectral data and B.I.QUANT 

data. (A) ‘a’ represents results from full-resolution data analysed using OPLS-DA in MATLAB, ‘b’ represents results from 

unpaired B.I.QUANT data analysed using Wilcoxon signed-rank test, ‘c’ represents results from unpaired B.I.QUANT data 

analysed using OPLS-DA in SIMCA, ‘d’ represents results from unpaired quantified data analysed using OPLS-DA in MATLAB. 

(B) ‘a’ represents results from pairwise full-resolution spectral data analysed using RM-PLS-DA model in MATLAB, ‘b’ 

represents results from pairwise B.I.QUANT data analysed using Wilcoxon signed-rank test, 'c’ represents results from 

pairwise B.I.QUANT data analysed using RM-PLS-DA model in MATLAB. ↑ or ↓ represent increased or decreased metabolite 

concentration at post-intervention compared to pre-intervention. Blue letters represent metabolic changes induced by RYGB, 

orange letters represent metabolic changes induced by VLCD, and green letters represent metabolic changes induced by GOP. 

‘X’ means no metabolic changes. 
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3.3.7 Comparisons between different intervention groups at each time point 

A. Comparisons of pre-intervention groups 

At the pre-intervention time point, no significant difference was observed across any of the groups 

regardless of types of data (i.e., full-resolution, B.I.QUANT) and the statistical methods. 

 

B. Comparisons of post-intervention groups 

a. Comparisons of 4 post-intervention groups univariate statistical analysis of BI-QUANT data  

Kruskal-Wallis H test was used to compare metabolite concentrations across 4 intervention groups, 

and 5 metabolites, including alanine, betaine, acetic acid, succinic acid, and acetone, showed 

significant differences (Figure 3.11). The concentration of alanine was significantly lower in post-VLCD 

group than the other 3 groups, which was consistent with the changes between pre- and post-VLCD 

(Figure 3.10). The concentration of acetic acid was significantly higher in post-RYGB than in the other 

3 groups, which was in agreement with the changes between pre- and post-RYGB (Figure 3.10). These 

observations suggested that increased concentration of acetic acid could be related to RYGB surgery 

rather than calorie intake. In addition, lower concentration of betaine was observed in post-RYGB in 

contrast to post-GOP and post-saline groups but not post-VLCD (Figure 3.11). This observation 

indicated that concentration changes in betaine could be related to reduced calorie intake. 

 

 

Figure 3.11 Urinary metabolites showing significantly different concentrations across the 4 post-intervention groups analysed 

using Kruskal-Wallis H test.  
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b. Comparisons of saline group with post-RYGB, post-GOP or post-VLCD group using OPLS-DA 

analysis of full-resolution data 

Firstly, post-RYGB was compared to post-saline group. Table 3.5 summarized the results using 

different analytical methods. Unpaired Wilcoxon test of B.I.QUANT data showed higher acetic acid 

and acetone concentrations and lower betaine concentration in post-RYGB group than post-Saline 

group; The differences of acetic acid and acetone were also observed with OPLS-DA of B.I.QUANT data 

in SIMCA with 1 predictive component, where the concentrations of citric acid, creatine, creatinine, 

fumaric acid, glycine, and oxaloacetic acid were also observed to contribute to the differences 

between the two groups; Apart from unpaired Wilcoxon test of B.I.QUANT data, the different betaine 

concentration was also observed in OPLS-DA of B.I.QUANT data in MATLAB with 1 predictive 

component, where changed citric acid concentration contributed to the differences between the 2 

groups too; For full-resolution spectral data, the OPLS-DA model constructed in MATLAB with 1 

predictive component and 1 orthogonal component was valid. The OPLS-DA score plot showed clear 

separation between post-RYGB and post-Saline samples (Figure 3.12 (A)). An unidentified metabolite 

(δ 8.652 (d)) showing significantly higher concentration in post-Saline than in post-RYGB group after 

BH correction (Appendix Table 8.2). Prior to BH correction, α-ketoisovalerate concentration were 

significantly higher in in post-Saline than post-RYGB (r > 0.5). PAGn concentration tended to be higher 

in post-RYGB than in post-Saline group (Figure 3.12 (B)). 
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Table 3.5 Univariate and multivariate analysis on B.I.QUANT data and full-resolution spectral data of post-RYGB and post-

Saline samples   

 

 

 

 

 

Quantified 

data (non-

paired 

Wilcoxon 

test)

Models

Metabolites VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison

1-Methyladenosine -- 0.0000 0.0000 0.0000 -- -- -- --

1-Methylhistidine -- 0.0000 0.0000 0.0000 -- -- -- --

1-Methylnicotinamide -- 0.0000 0.0000 0.0000 -- -- -- --

2-Furoylglycine -- 0.0000 0.0000 0.0000 -- -- -- --

2-Methylsuccinic acid -- 0.0000 0.0000 0.0000 -- -- -- --

2-Oxoglutaric acid -- 0.0000 0.0000 0.0000 -- -- -- --

3-Hydroxybutyric acid -- 1.4535 3.1346 -0.2356 -0.4496 -- -- --

4-Aminobutyric acid -- 0.0602 0.7071 0.0098 0.0186 -- -- --

Acetic acid
RYGB > Saline 

(P = 0.0028)
2.6799 1.4681 -0.4345 -0.8289 RYGB > Saline

-- -- --

Acetoacetic acid -- 0.9244 1.4789 -0.1499 -0.2859 -- -- --

Acetone
RYGB > Saline 

(P = 0.0373)
1.8135 2.6954 -0.2940 -0.5609 RYGB > Saline

-- -- --

Adenosine -- 0.0000 0.0000 0.0000 -- -- -- --

Alanine -- 1.4124 2.4475 -0.2290 -0.4368 -- -- --

Allantoin -- 0.4535 0.8875 0.0735 0.1403 -- -- --

Allopurinol -- 0.1570 0.7241 -0.0255 -0.0486 -- -- --

Arginine -- 0.0000 0.0000 0.0000 -- -- -- --

Benzoic acid -- 0.5395 1.3206 -0.0875 -0.1668 -- -- --

Betaine
Saline > RYGB 

(P = 0.0045)
1.1553 2.3955 0.1873 0.3573 0.5387 0.0021 0.0224 Saline > RYGB

Caffeine -- 0.1168 0.2702 0.0189 0.0361 -- -- --

Citric acid -- 2.5083 0.8632 -0.4066 -0.7758 RYGB > Saline -0.5513 0.0016 0.0224 RYGB > Saline

Creatine -- 1.0225 2.7089 0.1658 0.3163 -- -- --

Creatinine -- 2.2453 1.0616 -0.3640 -0.6944 RYGB > Saline -- -- --

D-Galactose -- 0.0000 0.0000 0.0000 -- -- -- --

D-Glucose -- 0.6009 0.6777 -0.0974 -0.1858 -- -- --

Dimethylamine -- 0.9522 2.3279 -0.1544 -0.2945 -- -- --

D-Lactose -- 0.0000 0.0000 0.0000 -- -- -- --

D-Mandelic acid -- 0.0000 0.0000 0.0000 -- -- -- --

D-Mannitol -- 1.1505 2.0550 0.1865 0.3558 -- -- --

D-Mannose -- 0.0000 0.0000 0.0000 -- -- -- --

Formic acid -- 0.2844 0.8510 0.0461 0.0880 -- -- --

Fumaric acid -- 1.6734 2.4842 -0.2713 -0.5176 RYGB > Saline -- -- --

Glycine -- 1.8914 1.6773 -0.3066 -0.5850 RYGB > Saline -- -- --

Guanidinoacetic acid -- 0.0000 0.0000 0.0000 -- -- -- --

Hippuric acid -- 0.3170 1.8873 -0.0514 -0.0980 -- -- --

Imidazole -- 0.0000 0.0000 0.0000 -- -- -- --

Inosine -- 0.0000 0.0000 0.0000 -- -- -- --

Lactic acid -- 0.0000 0.0000 0.0000 -- -- -- --

Methionine -- 0.0000 0.0000 0.0000 -- -- -- --

Myo-Inositol -- 0.0000 0.0000 0.0000 -- -- -- --

N,N-Dimethylglycine -- 0.5041 0.9494 -0.0817 -0.1559 -- -- --

Oxaloacetic acid -- 1.9767 2.1252 -0.3205 -0.6114 RYGB > Saline -- -- --

Proline betaine -- 1.2533 2.2308 -0.2032 -0.3876 -- -- --

Pyruvic acid -- 0.2461 0.7972 0.0399 0.0761 -- -- --

Sarcosine -- 0.0000 0.0000 0.0000 -- -- -- --

Succinic acid -- 1.5424 3.0285 -0.2500 -0.4770 -- -- --

Tartaric acid -- 1.0552 2.1708 -0.1711 -0.3264 -- -- --

Taurine -- 0.0000 0.0000 0.0000 -- -- -- --

Trigonelline -- 0.4561 0.9907 0.0739 0.1411 -- -- --

Trimethylamine -- 0.0000 0.0000 0.0000 -- -- -- --

Valine -- 1.2931 1.3156 -0.2096 -0.4000 -- -- --

   Quantified data                                                                                             

OPLS-DA model in SIMCA

R2X(cum) = 0.165, Q2(cum) = 0.313, P(CVANOVA) = 0.0063, [1+0+0]

Quantified data                                                                             

OPLS-DA model in MATLAB

R2X = 0.3325, Q2Y = 0.2853, Pperm = 0.0100, [1+0+0] 

Full-resolution data                                                               

OPLS-DA model in 

MATLAB                                                 

R2X = 0.1775, Q2Y = 

0.4958, Pperm = 

0.0010, [1+1+0]           

No significant 

metabolite was seen                                                                         
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Figure 3.12 OPLS-DA modelling on full-resolution spectral urinary data of post-RYGB and post-Saline patients. (A) 7-fold 

internal cross-validated score plot of post-RYGB and post-Saline samples with 1 predictive and 1 orthogonal component. (B) 

Loading plot of the post-RYGB and post-Saline data without BH-adjusted covering mask in black. Metabolites labelled 

downwards represent their increased intensities with post-RYGB group. 

 

Secondly, post-VLCD was compared to post-saline group. Unpaired Wilcoxon test of B.I.QUANT data 

showed higher concentration of acetone and lower concentration of alanine in post-VLCD group 

compared to post-Saline group (Table 3.6). These differences were also observed with OPLS-DA of 

B.I.QUANT data in SIMCA with 1 predictive component (Table 3.6). In addition, the concentrations of 

3-hydroxybutyric acid, acetoacetic acid, citric acid, and hippuric acid, were found to contribute to the 

differences between post-VLCD and post-Saline based on this OPLS-DA model constructed in SIMCA 

(Table 3.6). The OPLS-DA model constructed in MATLAB for B.I.QUANT data of post-VLCD and post-

Saline groups was valid (Pperm < 0.05), but no metabolite showed significance. For full-resolution 

spectral data, OPLS-DA model was constructed with 1 predictive component and 1 orthogonal 

component in MATLAB and the model was valid (Table 3.6). The concentrations of citric acid and 

succinic acid were significantly higher in post-VLCD group than in post-Saline group prior to BH 

correction, and had good correlation coefficients (r > 0.5, Figure 3.13). These results also corresponded 

to the significantly increased concentrations of citric acid and succinic acid after VLCD intervention 

(Figure 3.10). However, after BH correction, these metabolic differences between post-VLCD and post-

Saline no longer reached the significance level.  
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Table 3.6 Univariate and multivariate analysis on B.I.QUANT data and full-resolution spectral data of post-VLCD and post-

Saline samples  

 

 

 

Quantified 

data (non-

paired 

Wilcoxon 

test)

Models

Metabolites VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison

1-Methyladenosine 0.0000 0.0000 0.0000 -- -- -- --

1-Methylhistidine 0.0000 0.0000 0.0000 -- -- -- --

1-Methylnicotinamide 0.0000 0.0000 0.0000 -- -- -- --

2-Furoylglycine 0.0000 0.0000 0.0000 -- -- -- --

2-Methylsuccinic acid 0.0000 0.0000 0.0000 -- -- -- --

2-Oxoglutaric acid 0.0000 0.0000 0.0000 -- -- -- --

3-Hydroxybutyric acid 2.1405 2.6026 0.3263 0.6143 VLCD > Saline -- -- --

4-Aminobutyric acid 1.2560 2.7242 -0.1915 -0.3604 -- -- --

Acetic acid 0.1119 1.1987 -0.0171 -0.0321 -- -- --

Acetoacetic acid 2.3192 2.2055 0.3536 0.6655 VLCD > Saline -- -- --

Acetone
VLCD > Saline 

(P = 0.0052)
2.5552 1.5883 0.3895 0.7332 VLCD > Saline -- -- --

Adenosine 0.0000 0.0000 0.0000 -- -- -- --

Alanine
Saline > VLCD 

(P = 0.0210)
2.2237 1.3279 -0.3390 -0.6381 Saline > VLCD -- -- --

Allantoin 0.0000 0.0000 0.0000 -- -- -- --

Allopurinol 0.8142 2.2191 -0.1241 -0.2336 -- -- --

Arginine 0.0000 0.0000 0.0000 -- -- -- --

Benzoic acid 0.0000 0.0000 0.0000 -- -- -- --

Betaine 0.2625 1.9987 -0.0400 -0.0753 -- -- --

Caffeine 0.8764 2.4918 0.1336 0.2515 -- -- --

Citric acid 2.0326 1.1063 0.3099 0.5833 VLCD > Saline -0.6371 0.0001 0.0677 VLCD > Saline

Creatine 1.2177 3.0020 -0.1856 -0.3494 -- -- --

Creatinine 0.7412 1.4447 0.1130 0.2127 -- -- --

D-Galactose 0.0000 0.0000 0.0000 -- -- -- --

D-Glucose 0.3035 1.6113 -0.0463 -0.0871 -- -- --

Dimethylamine 1.3792 3.0785 -0.2103 -0.3958 -- -- --

D-Lactose 0.0000 0.0000 0.0000 -- -- -- --

D-Mandelic acid 0.0000 0.0000 0.0000 -- -- -- --

D-Mannitol 1.2276 2.9900 -0.1872 -0.3523 -- -- --

D-Mannose 0.8764 2.4918 0.1336 0.2515 -- -- --

Formic acid 0.4753 0.9951 -0.0725 -0.1364 -- -- --

Fumaric acid 1.7113 2.2406 0.2609 0.4911 -- -- --

Glycine 0.0127 0.4570 -0.0019 -0.0036 -- -- --

Guanidinoacetic acid 0.0000 0.0000 0.0000 -- -- -- --

Hippuric acid 1.8623 1.6637 -0.2839 -0.5344 Saline > VLCD -- -- --

Imidazole 0.0000 0.0000 0.0000 -- -- -- --

Inosine 0.0000 0.0000 0.0000 -- -- -- --

Lactic acid 0.0000 0.0000 0.0000 -- -- -- --

Methionine 0.0000 0.0000 0.0000 -- -- -- --

Myo-Inositol 0.0000 0.0000 0.0000 -- -- -- --

N,N-Dimethylglycine 0.0190 0.7434 0.0029 0.0054 -- -- --

Oxaloacetic acid 0.7286 2.1716 -0.1111 -0.2091 -- -- --

Proline betaine 0.7975 2.2005 -0.1216 -0.2289 -- -- --

Pyruvic acid 1.4025 2.2142 0.2138 0.4025 -- -- --

Sarcosine 0.0000 0.0000 0.0000 -- -- -- --

Succinic acid 1.4377 2.2436 0.2192 0.4126 -0.6130 0.0002 0.0741 VLCD > Saline

Tartaric acid 1.3258 2.8870 0.2021 0.3805 -- -- --

Taurine 0.0000 0.0000 0.0000 -- -- -- --

Trigonelline 0.7661 1.6913 -0.1168 -0.2199 -- -- --

Trimethylamine 0.0000 0.0000 0.0000 -- -- -- --

Valine 0.9350 2.1111 0.1425 0.2683 -- -- --

Quantified data                                                                             

OPLS-DA model in 

MATLAB                                                 

R2X = 0.1629, Q2Y = 

0.2681, Pperm = 

0.0030, [1+0+0]                           

No significant 

metabolite was seen                            

   Quantified data                                                                                             

OPLS-DA model in SIMCA

Full-resolution data                                                               

OPLS-DA model in MATLAB 

R2X(cum) = 0.147, Q2(cum) = 0.326, P(CVANOVA) = 0.0040, [1+0+0] R2X = 0.1258, Q2Y = 0.5053, Pperm = 0.0010, [1+1+0]
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Figure 3.13 OPLS-DA modelling on B.I.QUANT data of post-VLCD and post-Saline patients. (A) 7-fold internal cross-validated 

score plot of post-VLCD and post-Saline samples with 1 predictive and 1 orthogonal component; (B) Loading plot of the post-

RYGB and post-VLCD data without BH-adjusted covering mask in black. Metabolites labelled downwards represent their 

increased intensities with post-VLCD group. 

 

Finally, post-GOP group was compared to post-Saline group, but no significant change was observed 

from any of the analysis. 

 

c. Post-RYGB vs post-VLCD 

Since patients who underwent RYGB surgery had lower calorie intake compared to the saline group, 

the differences between post-RYGB and post-Saline could be due to low calorie intake rather than 

surgery intervention. Therefore, I further compared post-RYGB and post-VLCD groups to extract 

metabolic changes that are specific to the surgery itself. B.I.QUANT data analysis using unpaired 

Wilcoxon test, OPLS-DA in SIMICA and MATLAB showed similar results, which included significantly 

higher concentrations of acetate and alanine in post-RYGB group compared to post-VLCD (Table 3.7). 

These were consistent with the increased concentration of acetate post-RYGB and decreased 

concentration of alanine post-VLCD showed in Figure 3.10. Higher concentration of oxaloacetic acid 

was higher in post-RYGB group compared to post-VLCD based on OPLS-DA analysis in MATLAB and 

SIMCA (Table 3.7). This was consistent with the increased concentration of oxaloacetic acid post-RYGB 

(Figure 3.10), and indicated that oxaloacetic acid increased after RYGB independent of caloric 
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restriction. Higher concentration of hippuric acid in post-RYGB than in post-VLCD was demonstrated 

by OPLS-DA in SIMCA only (Table 3.7).  

 

Table 3.7 Univariate and multivariate analysis on B.I.QUANT data and full-resolution spectral data of post-RYGB and post-

VLCD samples 

 

 

In contrast, the full-resolution spectral data analysis using OPLS-DA provided very different findings. 

The OPLS-DA scores plot showed clear separation between the two groups, and the OPLS-DA loadings 

Quantified 

data (non-

paired 

Wilcoxon 

test)

Models

Metabolites VIP[1+1+0] VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison r p q Comparison

1-Methyladenosine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

1-Methylhistidine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

1-Methylnicotinamide -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

2-Furoylglycine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

2-Methylsuccinic acid -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

2-Oxoglutaric acid -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

3-Hydroxybutyric acid -- 1.2265 2.5274 0.0145 0.0239 -- -- -- -- -- --

4-Aminobutyric acid -- 0.8077 2.2662 -0.1322 -0.2177 -- -- -- -- -- --

Acetic acid
RYGB > VLCD 

(P = 0.0007)
2.6271 0.8319 -0.4503 -0.7414 RYGB > VLCD -0.6098 < 0.0001 < 0.0001 RYGB > VLCD

-- -- --

Acetoacetic acid -- 0.8623 2.0868 0.1490 0.2454 -- -- -- -- -- --

Acetone -- 1.2449 2.2919 0.0344 0.0567 -- -- -- -- -- --

Adenosine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Alanine
RYGB > VLCD 

(P = 0.0210)
2.0151 1.7077 -0.3472 -0.5716 RYGB > VLCD -0.4422 0.0038 0.0278 RYGB > VLCD

-- -- --

Allantoin -- 1.0784 2.5165 -0.1340 -0.2207 -- -- -- -- -- --

Allopurinol -- 1.0080 1.3094 -0.1718 -0.2828 -- -- -- -- -- --

Arginine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Benzoic acid -- 1.0753 2.5153 -0.1894 -0.3118 -- -- -- -- -- --

Betaine -- 1.2381 2.4170 0.2032 0.3345 -- -- -- -- -- --

Caffeine -- 0.4143 1.2788 -0.0135 -0.0223 -- -- -- -- -- --

Citric acid -- 1.5064 0.1702 -0.0647 -0.1066 -- -- -- 0.5691 0.0001 0.0039 VLCD > RYGB

Creatine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Creatinine -- 1.5154 0.7781 -0.1452 -0.2391 -- -- -- -- -- --

D-Galactose -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

D-Glucose -- 1.4684 2.0206 -0.2579 -0.4246 -- -- -- -- -- --

Dimethylamine -- 1.3204 1.5579 -0.1572 -0.2589 -- -- -- -- -- --

D-Lactose -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

D-Mandelic acid -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

D-Mannitol -- 1.0784 2.5165 -0.1340 -0.2207 -- -- -- -- -- --

D-Mannose -- 0.8022 1.9847 0.1306 0.2150 -- -- -- -- -- --

Formic acid -- 0.2853 0.6604 -0.0110 -0.0181 -- -- -- -- -- --

Fumaric acid -- 1.2056 1.2789 -0.0239 -0.0393 -- -- -- -- -- --

Glycine -- 1.6319 1.8989 -0.2273 -0.3743 -- -- -- -- -- --

Guanidinoacetic acid -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Hippuric acid -- 1.7534 2.5615 -0.3088 -0.5084 RYGB > VLCD -- -- -- -- -- --

Imidazole -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Inosine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Lactic acid -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Methionine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Myo-Inositol -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

N,N-Dimethylglycine -- 0.7737 2.0759 -0.1236 -0.2035 -- -- -- -- -- --

Oxaloacetic acid -- 2.1814 1.6936 -0.3692 -0.6079 RYGB > VLCD -0.4793 0.0015 0.0167 RYGB > VLCD -- -- --

Proline betaine -- 1.4174 2.5323 -0.2431 -0.4002 -- -- -- -- -- --

Pyruvic acid -- 0.9959 1.7831 0.1676 0.2759 -- -- -- -- -- --

Sarcosine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Succinic acid -- 1.2357 2.5184 -0.0305 -0.0503 -- -- -- -- -- --

Tartaric acid -- 0.8665 1.8387 -0.1521 -0.2505 -- -- -- -- -- --

Taurine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Trigonelline -- 0.6501 1.4148 -0.0986 -0.1623 -- -- -- -- -- --

Trimethylamine -- 0.0000 0.0000 0.0000 -- -- -- -- -- -- --

Valine -- 0.9727 0.7358 -0.0338 -0.0557 -- -- -- -- -- --

α-ketoisovalerate -- -- -- -- -- -- -- -- 0.5460 0.0002 0.0065 VLCD > RYGB

TMAO -- -- -- -- -- -- -- -- -0.5597 0.0001 0.0048 RYGB > VLCD

PAGn -- -- -- -- -- -- -- -- -0.4498 0.0032 0.0364 RYGB > VLCD

   Quantified data                                                                                             

OPLS-DA model in SIMCA

Full-resolution data                                                               

OPLS-DA model in MATLAB 

R2X(cum) = 0.270, Q2(cum) = 0.391, P(CVANOVA) = 0.0011, [1+1+0] R2X = 0.2424, Q2Y = 0.6744, Pperm = 0.0010, [1+2+0]

Quantified data                                                                             

OPLS-DA model in MATLAB

R2X = 0.1534, Q2Y = 0.3003, Pperm = 0.0010, [1+0+0] 
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plot after BH correction showed significant differences in the concentrations of α-ketoisovalerate, 

PAGn, citric acid, and trimethylamine-N-oxide (TMAO) (Figure 3.14). Among them, α-ketoisovalerate 

and citric concentrations were higher in post-VLCD samples, whereas PAGn and TMAO concentrations 

were higher in post-RYGB samples. PAGn concentration increased significantly after RYGB (Figure 

3.10) and tended to be higher in post-RYGB group than in post-Saline group (Figure 3.12). High PAGn 

concentration after RYGB was therefore unlikely to be related to caloric restriction.  

 

 

Figure 3.14 OPLS-DA modelling on full-resolution spectral urinary data of post-RYGB and post-VLCD patients. (A) 7-fold 

internal cross-validated score plot of post-RYGB and post-VLCD samples with 1 predictive and 1 orthogonal component; (B) 

Loading plot of the post-RYGB and post-VLCD data with BH-adjusted covering mask in black. Metabolites labelled downwards 

represent their increased intensities with post-RYGB group, whereas metabolites labelled upwards represent their increased 

intensities with post-VLCD group. 
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d. Post-RYGB vs post-GOP 

GOP treatment mimics partial changes induced by RYGB surgery. Therefore, I compared post-GOP and 

post-RYGB groups to investigate changes that are unique to RYGB surgery and independent to 

hormone changes. Table 3.8 summarized the results using different analytical methods. Unpaired 

Wilcoxon test of B.I.QUANT data showed lower concentration of betaine in post-RYGB group 

compared to post-GOP group (Table 3.8). The changed concentration of betaine was also observed 

with OPLS-DA of B.I.QUANT data in SIMCA with 1 predictive component and 1 orthogonal component, 

where changed acetic acid concentration was also seen to contribute to the difference between the 2 

group (Table 3.8). However, OPLS-DA in MATLAB based on B.I.QUANT data was not significant. For 

full-resolution spectral data, the OPLS-DA model constructed in MATLAB with 1 predictive component 

was valid (Table 3.8). The OPLS-DA score plot showed a separation tendency between post-RYGB and 

post-GOP samples. PAGn concentration was significantly higher in post-RYGB group than in post-GOP 

group with BH procedure, whereas α-ketoisovalerate concentration was significantly higher in post-

GOP group than in post-RYGB group prior to BH procedure (r > 0.5) (Figure 3.15). These results were 

consistent with the increased PAGn concentration post-RYGB and decreased α-ketoisovalerate 

concentration post-GOP. This indicated that these 2 metabolites changes are unique and independent 

of GOP. Besides, betaine concentration was significantly lower in post-RYGB than in post-GOP group. 

This suggested that the decreased betaine concentration was independent of GOP.  
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Table 3.8 Univariate and multivariate analysis on B.I.QUANT data and full-resolution spectral data of post-RYGB and post-

GOP samples 

 

 

 

Quantified 

data (non-

paired 

Wilcoxon 

test)

Quantified data                                                                                             

OPLS-DA model 

in MATLAB                     

Pperm > 0.5

Models

Metabolites VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison

1-Methyladenosine -- 0.0000 0.0000 0.0000 -- -- -- --

1-Methylhistidine -- 1.2845 2.0194 0.2262 0.3739 -- -- --

1-Methylnicotinamide -- 0.0000 0.0000 0.0000 -- -- -- --

2-Furoylglycine -- 0.0000 0.0000 0.0000 -- -- -- --

2-Methylsuccinic acid -- 0.0000 0.0000 0.0000 -- -- -- --

2-Oxoglutaric acid -- 0.0000 0.0000 0.0000 -- -- -- --

3-Hydroxybutyric acid -- 1.1904 2.2700 -0.0880 -0.1454 -- -- --

4-Aminobutyric acid -- 1.0599 1.6407 -0.1951 -0.3225 -- -- --

Acetic acid -- 1.8146 1.3228 -0.3170 -0.5240 RYGB > GOP -- -- --

Acetoacetic acid -- 1.2111 1.6753 -0.2236 -0.3697 -- -- --

Acetone -- 1.4273 1.4872 -0.1769 -0.2925 -- -- --

Adenosine -- 0.0000 0.0000 0.0000 -- -- -- --

Alanine -- 1.0118 0.9415 0.1335 0.2207 -- -- --

Allantoin -- 0.6892 1.7546 -0.1168 -0.1931 -- -- --

Allopurinol -- 0.7808 1.2583 -0.1400 -0.2315 -- -- --

Arginine -- 1.5120 3.2446 0.1632 0.2698 -- -- --

Benzoic acid -- 0.3346 0.5700 -0.0389 -0.0643 -- -- --

Betaine
GOP > RYGB 

(P = 0.0012)
1.9749 1.8994 0.3488 0.5766 GOP > RYGB -- -- --

Caffeine -- 1.6088 3.0166 0.1878 0.3105 -- -- --

Citric acid -- 1.1790 1.5944 -0.1227 -0.2028 -- -- --

Creatine -- 1.5033 3.1174 0.2730 0.4514 -- -- --

Creatinine -- 1.1412 1.3039 -0.1370 -0.2265 -- -- --

D-Galactose -- 0.0000 0.0000 0.0000 -- -- -- --

D-Glucose -- 1.5864 3.0822 0.1810 0.2992 -- -- --

Dimethylamine -- 1.0144 2.2023 -0.0570 -0.0943 -- -- --

D-Lactose -- 0.0000 0.0000 0.0000 -- -- -- --

D-Mandelic acid -- 0.0000 0.0000 0.0000 -- -- -- --

D-Mannitol -- 0.6892 1.7546 -0.1168 -0.1931 -- -- --

D-Mannose -- 1.7519 2.2835 0.2511 0.4151 -- -- --

Formic acid -- 1.0272 0.9901 0.1150 0.1901 -- -- --

Fumaric acid -- 0.8999 1.6879 0.0039 0.0065 -- -- --

Glycine -- 0.9949 0.6309 -0.0190 -0.0314 -- -- --

Guanidinoacetic acid -- 1.5685 2.9642 0.1882 0.3112 -- -- --

Hippuric acid -- 0.3365 1.3393 0.0074 0.0123 -- -- --

Imidazole -- 0.0000 0.0000 0.0000 -- -- -- --

Inosine -- 0.0000 0.0000 0.0000 -- -- -- --

Lactic acid -- 1.0262 2.4513 0.1786 0.2953 -- -- --

Methionine -- 0.0000 0.0000 0.0000 -- -- -- --

Myo-Inositol -- 0.0000 0.0000 0.0000 -- -- -- --

N,N-Dimethylglycine -- 0.7465 1.3466 0.1295 0.2142 -- -- --

Oxaloacetic acid -- 1.6807 1.0177 -0.3001 -0.4962 -- -- --

Proline betaine -- 0.3341 1.2022 0.0279 0.0462 -- -- --

Pyruvic acid -- 0.5962 1.5250 -0.0887 -0.1466 -- -- --

Sarcosine -- 0.0000 0.0000 0.0000 -- -- -- --

Succinic acid -- 1.2361 2.1396 -0.1077 -0.1781 -- -- --

Tartaric acid -- 1.2403 1.5549 0.1476 0.2440 -- -- --

Taurine -- 0.9960 2.4182 0.1810 0.2992 -- -- --

Trigonelline -- 0.6105 1.8891 -0.0859 -0.1420 -- -- --

Trimethylamine -- 0.0000 0.0000 0.0000 -- -- -- --

Valine -- 1.1024 1.5878 0.1703 0.2815 -- -- --

PAGn -- -- -- -- -- 0.6368 0.0001 0.0334 RYGB > GOP

α-ketoisovalerate -0.5091 0.0025 0.1162 RYGB > GOP

   Quantified data                                                                                             

OPLS-DA model in SIMCA

Full-resolution data                                                               

OPLS-DA model in MATLAB 

R2X(cum) = 0.388, Q2(cum) = 0.413, P(CVANOVA) = 0.0215, [1+1+0] R2X = 0.0780, Q2Y = 0.2750, Pperm = 0.0020, [1+0+0]
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Figure 3.15 OPLS-DA modelling on full-resolution spectral urinary data of post-RYGB and post-GOP patients. (A) 7-fold internal 

cross-validated score plot of post-RYGB and post-GOP samples with 1 predictive and 0 orthogonal component; (B) Loading 

plot of the post-RYGB and post-GOP data prior BH procedure. Metabolites labelled upwards represent their increased 

intensities with post-RYGB group.  

 

3.4 Discussion 

In this discussion, I will firstly discuss the differences that were observed amongst 1) different datasets 

(full-resolution spectral data vs. BI.QUANT data), 2) different software (SIMCA vs. MATLAB), and 

statistical methods (univariate analysis vs. multivariate analysis). 

 

Both full-resolution and BI.QUANT urinary NMR data were included and analysed in this chapter, and 

they generated different results when being analysed using PLS-DA-based method. Full-resolution 

spectral data include all the signals from the measured metabolites in samples, whereas B.I.QUANT 

data only include a set of specific metabolites. For example, B.I. QUANT method developed by Bruker 

in the recent years can provide a number of metabolite concentrations (i.e., 50 metabolites in the 

urinary dataset in the current study). PLS-DA-based methods on full-resolution spectral data have 

been widely used in the past two decades; however, the findings from this traditional method have 

not been compared to the analysis of the B.I.QUANT data. According to my results, the correlation 

between the B.I.QUANT data and the peak height or integral of the same metabolites from full-

resolution spectra should not be high enough. This suggested a disagreement between the 
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concentrations of metabolites from the B.I.QUANT data and the raw full-resolution spectral data. 

Further investigations are needed and a report to Bruker should be made if necessary. Besides, as 

important urinary metabolites, 4CS, PAGn and α-ketoisovalerate were not listed in B.I.QUANT dataset, 

which also partly explained the inconsistent results from different statistical methods. This should be 

reported to Bruker too. In my case, due to the highly unaligned raw urinary spectra, it is practically 

difficult to calculate the correlation. Hence, I presented all the results from both datasets.  

 

Results obtained from OPLS-DA of B.I.QUANT data in SIMCA and MATLAB showed similar findings with 

some exceptions on metabolites, such as acetic acid, oxaloacetic acid, betaine and citric acid were 

only significant in SIMCA. This could be due to different testing methods and selection criteria used in 

the analysis. In SIMCA, the validity of OPLS-DA models is tested using CV-ANOVA. VIP (>1) and 

correlation coefficient (r > 0.5) of the metabolites were both used for the selection of significant 

metabolites. VIP summarises the importance of the variables and metabolites with a VIP greater than 

1 are the most relevant to explain the discrimination. In MATLAB, the validity of OPLS-DA is tested 

using 7-fold cross-validation. Correlation coefficient (r > 0.5) and P value (< 0.5) were both used for 

the selection of significant metabolites. SIMCA is a commercial software for metabolomics analysis, 

and VIP is reported to outperform t test (after BH procedure) for selecting a larger number of true 

positives (Saccenti et al., 2014). On the other hand, the process of OPLS-DA analysis on B.I.QUANT 

data in MATLAB is the same as the well-established method on full-resolution spectral data in 

MATLAB.  Therefore, I presented all the results in SIMCA and MATLAB. 

 

MVA and univariate analysis and of B.I.QUANT data also generated different results. MVA and 

univariate analysis are both suggested to be used for a complementary biomarker investigation in 

metabolomics studies (Grove et al., 2008, Saccenti et al., 2014). Univariate analysis treats the 

metabolite as independent variables, whereas multivariate analysis considers the relations between 
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the metabolites (Saccenti et al., 2014). While MVA has an advantage to analyse metabolome data 

since metabolites and signals are correlated, I also used the univariate analysis, which has been widely 

used in molecular biology research, to explore the differences in findings obtained from these two 

types of analyses.  

 

Similar to univariate and multivariate analysis, the paired and unpaired analyses, including B.I.QUANT 

data using Wilcoxon test and full-resolution spectral data and B.I.QUANT data using PLS-DA-based 

methods (i.e., RM-PLS-DA vs. OPLS-DA), showed some overlapping observations. Paired Wilcoxon test 

is designed to compare the same group under 2 separate scenarios, whereas unpaired Wilcoxon test 

is to test two independent or unrelated groups. RM-PLS-DA is a PLS-DA analysis in a MCCV framework 

accounting for repeated-measures by mean-centred the spectra within-person and subtracting the 

mean of the spectra from each individual spectral. The unit-variance scaling process is then applied 

(Garcia-Perez et al., 2017). OPLS-DA is a PLS-DA analysis designed based on non-linear iterative partial 

least square method with orthogonal signal correction (Wold, 1966, Trygg J., 2002). Mean-centred 

data were scaled using unit-variance prior to OPLS-DA. In my study, all the available samples were 

included to increase the statistical power for unpaired analysis, whereas only a part of all the samples 

from participants whose samples got collected at both pre- and post- time points were included for 

paired analysis. On the other hand, paired analysis focuses more on metabolites changes from 

individuals than from the whole groups. Therefore, I presented both results in my study.  

 

I recommend including both full-resolution spectral and B.I.QUANT datasets, both univariate and 

multivariate analysis, both commonly used software MATLAB and SIMCA, as well as unpaired and 

paired analysis in metabolomics study when exploring new biological phenomena, in order to discover 

possible mechanisms and significant biomarkers. Future work should include cell culture, organoid-
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based experiments, and animal models-based experiments to reveal the biological implications of 

these biomarkers.  

 

In the following section, I would discuss the biological meanings of the results from OPLS-DA analysis 

of full-resolution spectral data in MATLAB followed by the results from other datasets or statistical 

methods. 

 

The concentration of 4CS increased after RYGB or VLCD intervention, and no significantly different 

concentration of 4CS was found between post-RYGB and post-VLCD group nor between pre-RYGB and 

pre-VLCD group. 4CS originates from the fermentation of aromatic amino acids (e.g., tyrosine and 

phenylalanine) by distal gut microbiota (Gryp et al., 2017). Previous studies have showed that urinary 

host-bacterial co-metabolite 4CS increased after RYGB in human (West et al., 2020, Li et al., 2021) and 

a rat model (Li et al., 2011). Therefore, the increased urinary 4CS induced by RYGB or by VLCD may 

both be attributed by gut microbial fermentation. In distal colon, with bacterial fermentation, tyrosine 

coming from diet and endogenous proteins can be converted into phenol and 4-

hydroxyphenylpyruvate, and 4-hydroxyphenylpyruvate can be catalysed into 4-hydroxyphenylacetate 

and subsequently form 4-cresol (Blakley, 1977, Selmer and Andrei, 2001, Yokoyama and Carlson, 

1981). Most of 4-cresol is conjugated with sulphate into 4CS and a small fraction of 4-cresol is 

conjugated with glucuronide into 4-cresyl glucuronide in the liver before excreted in the urine (Poesen 

et al., 2016, de Loor et al., 2005). Batch cultures with human faecal slurries have showed that phenol 

and 4-cresol are the predominant end-product of tyrosine fermentation (Smith and Macfarlane, 1996, 

Smith and Macfarlane, 1997). Besides, phenylalanine fermentation in distal colon can also produce 

4CS via converting to tyrosine by phenylalanine hydroxylase either in bacteria or liver cells (Matthews, 

2007, Fitzpatrick, 2003). Most of the studied proteolytic bacteria to generate phenolic compounds in 

the distal gut are from Firmicutes (e.g., Clostridiaceae, Enterococcaceae, Eubacteriaceae, 
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Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, Staphylococcaceae, Veillonellaceae), others 

come from Bacteroidetes (e.g., Bacteroidaceae and Porphyromonadaceae), Actinobacteria (e.g., 

Bifidobacteriaceae), Proteobacteria (e.g., Enterobacteriaceae), and Fusobacteria (e.g. 

Fusobacteriaceae) (Gryp et al., 2017).  

 

Batch culturing representative RYGB bacteria species from Enterobacteriaceae have showed the 

preferential conversion of tyrosine to tyramine, which can be further metabolized into 4-

hydroxyphenylacetate and 4-cresol. In contrast, the pathway from tyrosine to phenol was not 

favoured in the batch culture (Li et al., 2021). Li et al. (2021) speculated that the altered anatomical 

gastrointestinal tract post-RYGB cause incomplete protein digestion to reach foregut and increase the 

bioavailability of peptides, and therefore cause high protein putrefaction and production of 4-

hydroxyphenylacetate and 4-cresol in distal colon. The concentration of urinary 4CS has been reported 

to be inversely associated with BMI (Elliott et al., 2015). As the VLCD patients included in my 

metabolomics study reduced their BMI significantly (Behary et al., 2019), their increased urinary 4CS 

post-VLCD here showed the consistent inverse association between urinary 4CS and BMI. Regardless 

fat restriction or carbohydrate restriction, low-calorie diet has shown to influence the ratio between 

Bacteroidetes and Firmicutes and both Bacteroidetes and Firmicutes can generate phenolic 

compounds (Ley et al., 2006, Gryp et al., 2017). Besides, gut microbiota has been reported to be 

sensitive to the type of proteins of the diet. In a very-low-calorie ketogenic diets study, the relative 

abundance of Firmicutes significantly decreased, whereas Bacteroidetes significantly increased in 

whey and animal protein groups. The abundance of Bacteroidetes did not increase in vegetable 

protein group (Basciani et al., 2020). I do not have access to the nutrition component of the complete 

meal replacement from Cambridge Weight Plan Ltd, but high protein proportion is common in liquid 

meal replacement (~70 g/day) to preserve lean body mass during rapid weight loss (Poku et al., 2020). 

I speculate that high protein in VLCD caused the changes of gut microbiota, increased 4-cresol and 
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phenol content in the gut, and eventually lead to significantly increased urinary 4CS. As 4CS is a uremic 

toxin, it is suggested to investigate the changes of gut microbiota in this VLCD intervention group 

combined with the nutrition component of the complete meal replacement. Comparing to the 

representative microbial changes of increased Enterobacteriaceae post-RYGB, VLCD usually increases 

Bacteroidetes spp., Akkermansia muciniphila and Christensenella, and decreases Firmicutes spp., 

Bifidobacteria, and Lactobacillus (Goodrich et al., 2014, Dao et al., 2016, Davenport et al., 2017, 

Simões et al., 2014, Duncan et al., 2008). Therefore, the increased urinary 4CS induced by RYGB 

intervention or by VLCD intervention may be resulted from different gut microbial fermentation.  

 

Notably, the 4CS concentrations in post-RYGB and post-VLCD were not different from post-Saline 

group, respectively. It can be due to the lack of the statistical power. However, 4CS was only measured 

in full-resolution spectral data and analysed using PLS-DA-based model. It is recommended to included 

4CS into the B.I.QUANT data list from Bruker as it is an important host-microbial metabolite in urine. 

 

RYGB showed distinct metabolic impacts on urine samples. After RYGB, the concentration of PAGn 

increased significantly. PAGn also showed higher concentration in post-RYGB group than in the other 

post-intervention groups. PAGn is a uremic toxin, produced from essential aromatic amino acid 

phenylalanine by distal gut microbiota. After phenylalanine being metabolised to phenylacetic acid by 

distal gut microbiota, phenylacetic acid is conjugated with glutamine to form PAGn in the liver and 

excreted by the kidney (Aronov et al., 2011, Seakins, 1971). My result was consistent as previous 

metabolomics studies both in human and a rat model (Li et al., 2021, West et al., 2020, Li et al., 2011), 

as well as an inverse correlation between increased urinary PAGn and reduced BMI in an epidemiology 

study (Elliott et al., 2015). Li et al (2021) showed that representative bacteria in post-RYGB patients 

Enterococcus, Streptococcus, Escherichia_Shigella and Klebsiella were positively correlated with 

urinary PAGn, and proposed bacterial phenylalanine metabolism may have shifted to phenylacetate 
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production following RYGB (Li et al., 2021). Apart from PAGn, the concentration of α-ketoisovalerate 

decreased significantly. α-ketoisovalerate also showed lower concentration in post-RYGB than the rest 

3 post-intervention groups prior to BH procedure. α-ketoisovalerate is the breakdown products of 

valine, and it has been reported to be reduced significantly in urinary samples post-RYGB (West et al., 

2020). Valine, as one of the branched chain amino acids (BCAAs), has reported to show significantly 

decreased plasma concentration after RYGB (Li et al., 2021, Jones et al., 2021, West et al., 2020). The 

increased concentration of α-ketoisovalerate in urine suggested an increased metabolism of valine 

post-RYGB.Similar as 4CS, PAGn and α-ketoisovalerate should be included in the B.I.QUANT data list 

of Bruker as they are important urinary metabolites. 

 

The concentration of TMAO was significantly higher in post-RYGB than in post-VLCD group. Increased 

urinary concentration of TMAO post-RYGB has been reported before (West et al., 2020, Li et al., 2011, 

Li et al., 2021, Jones et al., 2021). However, its concentration change was not significant between pre-

RYGB and post-RYGB nor between pre-VLCD and post-VLCD in my study. TMAO is an oxidative product 

of trimethylamine (TMA) catalysed by hepatic flavin-containing monooxygenase isoform 3 in the liver 

and excreted to urine (Janeiro et al., 2018). Dietary choline and carnitine can be converted to TMA by 

distal colon bacteria enzymes, choline TMA lyase and carnitine oxidoreductase, respectively (Janeiro 

et al., 2018). Li et al found that TMAO was positively correlated with representative bacteria in post-

RYGB patients Enterobacteria, Escherichia_Shigella and Klebsiella, and in vitro culture showed that 

Klebsiella. oxyotca and Enterobacter. cloacae could produce TMA from choline (Li et al., 2021). The 

significantly high concentration of TMAO post-RYGB comparing to post-VLCD group might suggest an 

enhanced bacterial degradation on choline and carnitine after RYGB comparing to after VLCD. 

 

Another choline product betaine showed a significant reduced concentration after RYGB when being 

analysed using unpaired or paired Wilcoxon test. Its concentration in post-RYGB group was also lower 
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than in post-Saline and post-GOP group, but not post-VLCD group. This indicated that caloric 

restriction might play a role in the reduced urinary betaine concentration after RYGB. Betaine is known 

as N,N,N-dimethylglycine. It can be obtained from the diet or through the oxidation of choline in the 

cells (Chiuve et al., 2008). Increased betaine excretion in urine is often observed in diabetes and renal 

failure (Lever et al., 1994). A distinct non-linear association has been found between urinary betaine 

excretion and HbA1b which was regarded as the strongest determinant of betaine excretion in 

patients with diabetes mellitus (Schartum-Hansen et al., 2013). N,N-dimethylglycine concentration 

showed a significant reduction after VLCD when being analysed using paired Wilcoxon test. However, 

its concentration in post-VLCD group did not show significant difference from post-Saline groups nor 

post-RYGB group. Despite of the possibility of lacking statistical power, the decreased concentration 

of N,N-dimethylglycine, which is one of the products of the interaction between betaine and 

homocysteine in the mitochondria (Allen et al., 1993, Zhao et al., 2018), might suggest a reduced 

betaine production pathway post-RYGB via caloric restriction partly.  

 

Besides, acetic acid concentration was observed to increase after RYGB in OPLS-DA analysis of 

B.I.QUANT data in SIMCA and paired Wilcoxon test on B.I.QUANT data. It also shows higher 

concentration in post-RYGB group than the other 3 post-intervention group. It is therefore regarded 

as one of the distinctive metabolic effects of RYGB. Acetic acid is a bacterial metabolite. It can be 

produced by widely distributed bacterial groups, including Clostridium, Akkermansia, Bacteroidetes, 

Bifidobacterium, Prevotella, Ruminococcus, Escherichia, Klebsiella, Enterobacter, Enterococcus, and 

Streptococcus) in the gut from saccharolytic fermentation (e.g. starch, pectin, and xylan) (Morrison 

and Preston, 2016, Englyst et al., 1987, Gupta et al., 2012, Rey et al., 2010). Its increased amount (> 

30μm/mM creatinine) in urine is regarded as a biomarker of patients with urinary tract infection (Sison 

et al., 2015, Lam et al., 2014). However, this is not the case in my study as all the samples in my study 

did not reach the threshold. As the representative bacterial species post-RYGB (e.g. Escherichia and 
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Klebsiella) and post-VLCD (e.g. Akkermansia and Bacteroidetes) can produce acetic acid, the exclusive 

increase of acetic acid concentration in urine post-RYGB require further studies for explanation. 

 

After VLCD, the urinary concentrations of TCA intermediates citric acid, succinic acid and fumarate 

increased significantly. The increased TCA intermediates in excretion indicates a small calorie loss to 

the body after the significantly reduction of BMI post-VLCD. This result was consistent with the inverse 

correlation between urinary TCA intermediates and BMI (Elliott et al., 2015). Elliott et al. (2015) 

proposed that the main driver of the TCA cycle intermediate excretion is related to a balanced renal 

physiological function after BMI reduction (Elliott et al., 2015). Besides, all the 3 major ketone bodies 

(i.e. 3-hydroxybutyric acid, acetoacetic acid, acetone), which are important energy source when 

glucose is not readily available, showed significantly increased concentrations after VLCD. In 

comparison, the concentrations of TCA intermediates citric acid and oxaloacetic acid, as well as ketone 

bodies acetoacetic acid and acetone increased significantly after RYGB when analysing B.I.QUANT data 

(Figure 3.10). These suggested that the calorie loss resulted from RYGB could be partly explained by 

VLCD, reflected by the increased concentrations of citric acid, acetoacetic acid and acetone in urine.  
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3.5 Conclusion 

The metabolic impacts of RYGB on urinary samples could not be explained by VLCD nor GOP 

interventions. RYGB-induced urinary changes were mainly involved with distinct post-RYGB gut 

microbial activities on aromatic amino acids (e.g. tyrosine and phenylalanine), dietary choline and 

carnitine, and sugar, which reflected as the increased 4CS and PAGn concentrations, increased TMAO 

and betaine concentrations, and increased acetic acid concentration. RYGB also exerted metabolic 

effect on TCA cycle and ketone bodies, which might be explained by VLCD partly, reflected by the 

increased concentrations of citric acid, acetoacetic acid and acetone. Both RYGB and VLCD increased 

4CS concentration via gut microbiota, however this might be accomplished by fermentation of 

different bacteria species resulted from different physiological reasons. More investigation should be 

carried out on the gut microbial changes of this VLCD cohort. GOP intervention did not induce 

metabolic changes in urinary samples, indicating the mild effect of GOP on urinary metabolites as an 

effective weigh loss intervention.  
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4. Chapter 4 Impacts of RYGB, GOP and VLCD on the plasma 

metabolic profiles 

4.1 Introduction 

Blood consists of a cellular component including red and white blood cells and platelets, and a liquid 

carrier called plasma. Plasma is straw-coloured and accounts for approximately 50-55% of blood 

volume when being separated from the blood cells (Fox, 2015). As aqueous solution with 

approximately 95% of water, plasma containing proteins and peptides (such as albumins, globulins, 

and lipoproteins), nutrients (such as carbohydrates, lipids, and amino acids), electrolytes, organic 

molecules (Psychogios et al., 2011). Plasma is involved in all the tissues and organs of the body, and 

essentially serves as a liquid pathway for all the secreted, excreted, or discarded molecules from 

different tissues and organs in response to different physiological changes. It can not only transport 

dissolved gases, nutrients, hormones, and metabolic wastes, but also regulate pH and ion composition 

of intestinal fluids, restrict fluid losses of injury, defend against toxins and pathogens, and stabilize 

body temperature (Martini et al., 1998). Due to its crucial clinical importance, most of clinical tests 

nowadays are based on blood samples (Grant and Butt, 1970, Lentner, 1984). Plasma or serum 

(remaining liquid after the blood has clotted) are also included in most studies involving 

metabolomics. When searching “metabolomics” and “plasma” on PubMed, 8188 relevant results 

showed up; When searching “metabolomics”, “plasma”, and “obesity”, 841 relevant results showed 

up. Besides, blood sample is sterile and relatively easy to access. It is therefore an important sample 

type to systematically study the mechanism of weight loss interventions. 

 

Similar to Chapter 3, this chapter was based on the same cohort of patients (Jones et al., 2021) with a 

focus on the metabolic changes in plasma profiles. The metabolomic datasets analysed here included 

1H NMR full-resolution spectral data and quantified datasets, which contained B.I.QUANT data 
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(Appendix Table 8.3, small molecular weight metabolites) and lipoprotein data (Appendix Table 8.4, 

lipoprotein subclass analysis (B.I.LISA)). Both univariate and multivariate statistical analysis methods 

were applied to evaluate the output of the analyses from different datasets and statistical methods.  

 

Unlike urine samples, full resolution 1H NMR spectra of plasma samples were measured using both 

NOESY and CPMG experiments. Both measurements presented detailed information such as chemical 

shifts, J coupling constant, and multiple patterns (Lin et al., 2019). Comparing to NOESY, CPMG spectra 

show signals from the small molecules without too much interference from lipid signals. Quantified 

data were acquired from Bruker IVDr standardized platform, which provides automated quantification 

of small molecule metabolites (B.I.QUANT-PS) and lipoprotein (B.I.LISA) using a 600 MHz NMR 

spectrometer.  

 

The aims of this chapter were to 1) explore the impacts of RYGB, caloric restriction or gut hormone 

treatment on plasma metabolome from morbidly obese patients at 1-month/4-week post-

intervention; 2) compare the plasma metabolome results extracted by different statistical analysis 

methods and different datasets. 

  

4.2 Study design & Methodology 

4.2.1 Study design sample collection 

Study design for plasma samples analysis was the same as the study design for urinary samples analysis 

(Chapter 3, 3.2.1). Table 4.1 shows the group size of each weight loss intervention.  
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Table 4.1 Group size with available plasma samples collected from each weight loss intervention 

Interventions 

(n number of patients) 

Pre-intervention 

(n number of patients with 

sample available) 

1-month/4-week post-

intervention 

(n number of patients with 

sample available) 

Number of patients with 

matched pre- and 1-

month/4-week post-

intervention samples 

RYGB n=21 n=19 19 

VLCD n=21 n=17 17 

GOP n=14 n=13 13 

Saline n=10 n=10 9 

 

4.2.2 Sample collection and preparation, and 1H NMR spectroscopic data acquisition 

Blood samples for metabolomics analysis were collected into lithium heparin tubes with no protease 

inhibitors at fasting state at pre-intervention and at 4 weeks post intervention. For blinded GOP and 

Saline groups, the post-intervention blood samples were collected at the same day as the urinary 

samples. Plasma was obtained after centrifuging the blood samples at 2,500 g for 10 mins at 4℃, and 

kept at -80℃ before metabolomic analysis.  

 

Each vial of plasma sample was defrosted, and 300 μL of plasma sample were mixed with 300 μL of 

H2O:D2O buffer containing 75 mM of Na2HPO4, 4.6 mM of TSP and 6.2 mM of NaNO3 at pH 7.4. Samples 

were then transferred into 5mm outer diameter NMR tubes for standard 1D 1H NOESY analysis and 

CPMG analysis.  

 

Plasma samples were analysed at NPC. 1H NMR spectroscopy-based metabolic profiling was 

performed on plasma samples as previously described (Dona et al., 2014). Standard 1D profile 

experiment was carried out with water pre-saturation using 1D-NOESY pre-sat pulse sequence and 

CPMG pulse sequence, respectively, at 310 K. Small molecule metabolites and lipoprotein were 

quantified using Bruker IDVr platform B.I. QUANT-PS 1.0 and B.I. LISA, respectively. 
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4.2.3 Statistical analysis of plasma profiles  

Water (4.499 - 4.851 ppm) and TSP (-0.2003 – 0.2002 ppm) peaks were removed from the full-

resolution NMR spectral data of plasma, followed by alignment using RSPA (Veselkov et al., 2009). The 

resulting spectral data were modelled in the same way as urine samples (Chapter 3, 3.2.3). Table 4.2 

shows the statistical methods used on different datasets and their sections.  

 

Table 4.2 Statistical methods used to analyse full-resolution data and B.I.QUANT data analysis 

Statistical 
methods 

Full-resolution data B.I.QUANT/B.I.LISA data 

CPMG NOESY B.I. QUANT-PS B.I. LISA 

PCA All samples (Section 
4.3.2.1)  

All samples (Section 
4.3.2.1) 

All samples (Section 
4.3.2.1) 

All samples (Section 
4.3.2.1) 

O-PLS-DA using 
SIMCA 

N/A N/A Pre vs. Post 
intervention (Section 
4.3.2.2 A, 4.3.2.3 A, 
4.3.2.4 A, 4.3.2.5 A);  
Comparison between 
intervention groups 
(4.3.2.7) 

Pre vs. Post 
intervention (Section 
4.3.3.2 A, 4.3.3.3 A, 
4.3.3.4 A, 4.3.3.5 A);  
Comparison between 
intervention groups 
(4.3.3.7) 

O-PLS-DA using 
MATLAB 

Pre vs. Post 
intervention (Section 
4.3.2.2 A, 4.3.2.3 A, 
4.3.2.4 A, 4.3.2.5 A);  
Comparison between 
intervention groups 
(Section 4.3.2.7 B b-d) 

Pre vs. Post intervention 
(Section 4.3.3.2 A, 
4.3.3.3 A, 4.3.3.4 A, 
4.3.3.5 A);  
Comparison between 
intervention groups 
(Section 4.3.3.7 B b-d) 

Pre vs. Post 
intervention (Section 
4.3.2.2 A, 4.3.2.3 A, 
4.3.2.4 A, 4.3.2.5 A);  
Comparison between 
intervention groups 
(Section 4.3.2.7 B b-d) 

Pre vs. Post 
intervention (Section 
4.3.3.2 A, 4.3.3.3 A, 
4.3.3.4 A, 4.3.3.5 A);  
Comparison between 
intervention groups 
(Section 4.3.3.7 B b-d) 

RM-PLAS-DA 
using MATLAB 

Pre vs. Post 

intervention  

(Section 4.3.2.2 B, 

4.3.2.3 B, 4.3.2.4 B, 

4.3.2.5 B); 

Pre vs. Post intervention 

(Section 4.3.3.2 B, 

4.3.3.3 B, 4.3.3.4 B, 

4.3.3.5 B); 

Pre vs. Post 

intervention  

(Section 4.3.2.2 B, 

4.3.2.3 B, 4.3.2.4 B, 

4.3.2.5 B); 

Pre vs. Post 

intervention 

(Section 4.3.3.2 B, 

4.3.3.3 B, 4.3.3.4 B, 

4.3.3.5 B); 

Paired Wilcoxon 
signed-rank test 

N/A N/A Pre vs. Post 
intervention  
(Section 4.3.2.2 B, 
4.3.2.3 B, 4.3.2.4 B, 
4.3.2.5 B); 

Pre vs. Post 

intervention 

(Section 4.3.3.2 B, 
4.3.3.3 B, 4.3.3.4 B, 
4.3.3.5 B); 

Unpaired 
Wilcoxon signed-
rank test and 
Kruskal-Wallis H 
test 

N/A N/A Comparison between 
intervention groups 
(Section 4.3.2.7 A, B 
a) 

Comparison between 
intervention groups 
(Section 4.3.3.7 A, B 
a) 
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4.3 Results 

In this section, I would firstly present impact of spectral normalisation on the relative quantification 

(simple peak integration of the selected signals from a given metabolite) of metabolites in plasma 

(Section 4.3.1). Secondly, I would present plasma small metabolite changes induced by RYGB, VLCD 

and GOP (Section 4.3.2). Thirdly, I would show lipoprotein changes resulted from RYGB, VLCD and GOP 

intervention (Section 4.3.3). In both Sections 4.3.2 and 4.3.3, I would present the results from the 

comparison between pre- and post-intervention within each group (pair and unpair analysis), followed 

by cross-group comparisons to demonstrate the changes induced by RYGB, VLCD or GOP intervention. 

 

4.3.1 Impact of spectral normalisation on the relative quantification of metabolites in plasma 

Since the quantified data was derived from the full-resolution spectral data, it is expected to observe 

a high correlation between the quantified metabolite concentrations and the peak height or integral 

from the same metabolite. However, pre-processing of full-resolution spectral data, such as 

normalisation, may influence the relative quantification of metabolites. Therefore, I compared the B.I. 

QUANT data with relative quantification derived from either median fold normalised (Dieterle et al., 

2006) or non-normalised spectra. Correlation coefficients r and corresponding P values were 

calculated between B.I.QUANT data and the relative integrals or the peak heights of the non-

normalised and normalised full-resolution CPMG spectra (Table 4.3). The B.I.QUANT data showed 

higher correlation coefficient values with non-normalised data compared to the normalised data. 

Correlation of B.I.QUANT data with peak heights was similar to that with peak integrals, except for 

alanine and valine showing better correlation with peak integrals. Based on this observation, non-

normalised full-resolution data was used in the subsequent statistical analyses. 
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Table 4.3 Correlations (Spearman) between B.I.QUANT metabolite concentrations and peak height or peak integrals 

calculated from either non-normalised or median fold normalised full-resolution CPMG spectral data. 

Metabolites Non-normalised spectra Normalised spectra 

 r1 P1 r2 P2 r1 P1 r2 P2 

Glucose 
(ppm 5.2302) 

0.98 < 0.0001 0.98 < 0.0001 0.9 < 0.0001 0.91 < 0.0001 

Alanine 
(ppm 1.4801) 

0.85 < 0.0001 0.96 < 0.0001 0.67 < 0.0001 0.86 < 0.0001 

Isoleucine 
(ppm 0.9971) 

0.73 < 0.0001 0.72 <0.0001 0.6 < 0.0001 0.68 < 0.0001 

Valine 
(ppm 1.0401) 

0.76 < 0.0001 0.92 <0.0001 0.6 < 0.0001 0.79 < 0.0001 

Histidine 
(ppm 7.7581) 

0.65 < 0.0001 0.58 <0.0001 0.48 < 0.0001 0.39 < 0.0001 

Tyrosine 
(ppm 6.9) 

0.88 < 0.0001 0.85 <0.0001 0.69 < 0.0001 0.64 < 0.0001 

Lactate 
(ppm 4.101) 

0.96 < 0.0001 0.95 <0.0001 0.83 < 0.0001 0.84 < 0.0001 

Pyruvate 
(ppm 2.3662) 

0.95 < 0.0001 0.96 <0.0001 0.74 < 0.0001 0.71 < 0.0001 

Notes: r1 indicates the correlation coefficients between the B.I.QUANT concentrations and peak heights from the 

corresponding metabolite, and r2 indicates the correlation coefficients between the B.I.QUANT concentrations and the 

relative integrals. P1 and P2 indicate significance of the correlation r1 and r2, respectively. 

 

4.3.2 Small metabolite changes in plasma induced by RYGB, VLCD, and GOP intervention  

4.3.2.1 Overview of 1H NMR CPMG & B.I.QUANT  data  

PCA was used to overview all intervention groups at pre- and post-intervention using full-resolution 

non-normalised CPMG spectra. Separation between pre-and post-interventions was observed in the 

PCA scores plot of PC1 vs. PC3 (Figure 4.1 (A)). In contrast, PCA scores plot derived from B.I.QUANT 

data containing 26 quantified metabolites showed clearer separation between pre- and post-

intervention along PC1 (Figure 4.1 (B)). It is noted that some samples from saline group at post-

intervention (red dots in Figure 4.1 (B)) were grouped with pre-intervention samples.   
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Figure 4.1 PCA scores plots of 1H NMR (A) full-resolution CPMG spectral data (CPMG) and (B) B.I.QUANT data. 

 

PCA was carried out for each intervention groups using both full-resolution (Figure 4.2 (A-D)) and 

B.I.QUANT data (Figure 4.2 (E-H)). For full-resolution spectral data, the majority of post-RYGB samples 

were separated from the pre-op samples along the PC2 and PC3 (Figure 4.2 (A)). The grouping 

between pre- and post-VLCD was observed along PC1 (Figure 4.2 (B)). Clustering of pre- and post-GOP 

was not as clear as RYGB and VLCD groups but a trend of grouping could be observed in PCA scores 

plot of PC1 vs. PC2 (Figure 4.2 (C)). No clear grouping was seen in saline group between the two time 

points (Figure 4.2 (D)). For B.I. QUANT data, the separations between the two time points were clearer 

in both RYGB (Figure 4.2 (E)) and VLCD (Figure 4.2 (F)) groups along PC1. No clear separation was seen 

between pre- and post-intervention in GOP (Figure 4.2 (G)) and saline (Figure 4.2 (H)) groups, which 

are consistent with the PCA of full-resolution data. 
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Figure 4.2 PCA scores plots of (A-D) full-resoluion spectral data (CPMG) and (E-H) B.I.QUANT data from GOP, RYGB, VLCD and 

Saline groups. 

 

As expected, no clear groupings of CPMG or B.I.QUANT data at the pre-intervention time point (Figure 

4.3 (A, C)). In contrast, the majority of post-VLCD CPMG data were separated from post-Saline CPMG 

samples along PC1 (Figure 4.3 (B)), whereas the majority of post-VLCD and post-RYGB B.I.QUANT data 

were separated from other groups (Figure 4.3 (D)). 
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Figure 4.3 PCA scores plots of 1H NMR (A, B) CPMG spectral data and of (C, D) B.I.QUANT data at pre- and post-intervention 

time point. 

 

In order to explore the metabolic impact of each intervention, OPLS-DA was used to compare pre- and 

post-intervention within each group. Furthermore, since a fraction of patients provided samples at 

both pre- and post-intervention, RM-PLS-DA and Wilcoxon signed-rank test were used for those 

repeated measures data.  

 

4.3.2.2 Impact of RYGB on CPMG and B.I.QUANT metabolic profiles of plasma 

A. Unpaired analysis of full-resolution of CPMG profiles and B.I.QUANT data 

The OPLS-DA model for the full-resolution CPMG spectral data of RYGB samples was constructed using 

1 predictive and 2 orthogonal components in MATALB and was valid (Table 4.4). The OPLS-DA loading 

plot after BH correction procedure showed the metabolites distinguishing pre-RYGB and post-RYGB 

groups (Table 4.4). After RYGB intervention, relative concentrations of leucine, valine, alanine, pyruvic 

acid, creatine, glucose, tyrosine, and phenylalanine decreased significantly, whereas relative 
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concentrations of 3-hydroxybutyric acid, acetoacetic acid and citric acid significantly increased 

compared to pre-RYGB. Among them, the changes of 3-hydroxybutyric acid, acetoacetic acid, citric 

acid, alanine, leucine, valine, tyrosine, glucose and pyruvic acid were also observed in OPLS-DA of 

B.I.QUANT data in SIMCA and in MATLAB with 1 predictive component, where both showed significant 

changes of glycine and isoleucine as well (Table 4.4). The changes of these 11 metabolites were also 

observed with non-paired Wilcoxon test of B.I.QUANT data (Table 4.4). The increase of acetic acid 

concentration and decreased levels of glutamic acid and lactic acid were only observed with OPLS-DA 

of B.I.QUANT data in SIMCA, whereas the increase of acetone and the decrease of creatine and 

phenylalanine were only observed with OPLS-DA of full-resolution CPMG data in MATLAB (Table 4.4). 

 

 

Figure 4.4 OPLS-DA modelling on full-resolution spectral plasma data of RYGB patients. (A) 7-fold internal cross-validated 

score plot of pre-RYGB and post-RYGB samples with 1 predictive and 2 orthogonal components; (B - D) Loading plot of the 

pre-RYGB and post-RYGB data with BH-adjusted covering mask in black. Metabolites labelled downwards represent their 

increased intensities with pre-RYGB group, whereas metabolites labelled upwards represent their increased intensities with 

post-RYGB group. Metabolites: 1. Leucine; 2. Valine; 3. 3-hydroxybutyric acid; 4. Alanine; 5. Acetoacetic acid; 6. Pyruvic acid; 

7. Citric acid; 8. Creatine; 9. Glucose; 10. Tyrosine; 11. Phenylalanine. 
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Table 4.4 Univariate and multivariate analysis on B.I.QUANT data and CPMG spectral data of RYGB samples 

 

 

B. Paired analysis of full-resolution of CPMG profiles and B.I.QUANT data 

Since both pre- and post-RYGB samples were collected from 19 patients, RM-PLS-DA with repeated 

measures was used to analyse full-resolution CPMG spectral and B.I.QUANT data. Both datasets 

showed significant differences between pre- and post-RYGB (for full-resolution data, RCV = 0.90, Q2 = 

0.69, Figure 4.5 (A); B.I. QUANT data, RCV = 0.95, Q2 = 0.77, Figure 4.5 (C)). Decreased concentration 

of glucose was observed from both models. (Figure 4.5 (B, D)). 

B.I. QUANT 

data (non-

paired 

Wilcoxon 

test)

Models

Metabolites Comparison VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q comparison r p q Comparison

3-Hydroxybutyric 

acid

post > pre 

(P=0.0037)
1.3163 1.1898 -0.2657 -0.6544 post > pre -0.5128 0.0007 0.0027 post > pre -0.4658 0.0025 0.0365 post > pre

Acetic acid 1.0288 0.5432 -0.2077 -0.5115 post > pre -0.3456 0.0290 0.0519 -0.3073 0.0537 0.3180

Acetoacetic acid
post > pre 

(P=0.0007)
1.0877 1.2497 -0.2196 -0.5408 post > pre -0.3874 0.0135 0.0283 post > pre -0.4527 0.0034 0.0462 post > pre

Acetone 0.6547 0.7132 -0.1322 -0.3255 -0.2580 0.1080 0.1461 -0.4672 0.0024 0.0355 post > pre

Alanine
pre > post 

(P=0.0300)
1.3262 0.7114 0.2677 0.6593 pre > post 0.3967 0.0113 0.0259 pre > post 0.4674 0.0024 0.0353 pre > post

Ca-EDTA 0.2736 0.8103 -0.0552 -0.1360 -0.0938 0.5647 0.5647

Citric acid
post > pre 

(P=0.0031)
1.2693 0.6688 -0.2562 -0.6311 post > pre -0.5265 0.0005 0.0022 post > pre -0.5771 0.0001 0.0031 post > pre

Creatine 0.7392 1.3269 0.1492 0.3675 0.2101 0.1931 0.2468 0.4973 0.0011 0.0195 pre > post

Creatinine 0.0732 0.5295 0.0148 0.0364 0.1078 0.5081 0.5611 0.0870 0.5933 0.9004

Ethanol 0.1774 0.6438 0.0358 0.0882 0.0991 0.5428 0.5647

Formic acid 0.6105 1.0838 -0.1232 -0.3035 -0.3143 0.0482 0.0793 -0.2550 0.1123 0.4829

Glucose
pre > post 

(P=0.0004)
1.6277 0.5016 0.3286 0.8093 pre > post 0.6171 0.0000 0.0001 pre > post 0.6731 0.0000 0.0008 pre > post

Glutamic acid 1.0465 0.6399 0.2112 0.5203 pre > post 0.2608 0.1041 0.1461 0.2779 0.0826 0.4067

Glutamine 0.4049 1.3296 -0.0817 -0.2013 -0.1067 0.5124 0.5611 -0.1234 0.4479 0.8472

Glycerol 0.0404 0.5788 0.0082 0.0201 0.1906 0.2387 0.2890 0.0104 0.9493 0.9915

Glycine
post > pre 

(P=0.0323)
1.0775 0.8408 -0.2175 -0.5357 post > pre -0.4174 0.0074 0.0188 post > pre -0.1876 0.2465 0.6931

Histidine 0.5031 1.0041 0.1016 0.2502 0.3448 0.0294 0.0519 0.3028 0.0576 0.3302

Isoleucine
pre > post 

(P=0.0110)
1.0693 0.9442 0.2159 0.5317 pre > post 0.4532 0.0033 0.0095 pre > post 0.3078 0.0534 0.3171

K-EDTA 0.0000 0.0000 0.0000 --

Lactic acid 1.2376 0.4570 0.2498 0.6153 pre > post 0.2826 0.0772 0.1184 0.3662 0.0201 0.1726

Leucine
pre > post 

(P=0.0003)
1.4219 0.5081 0.2870 0.7069 pre > post 0.6545 0.0000 0.0000 pre > post 0.7109 0.0000 0.0008 pre > post

Phenylalanine 0.0000 0.0000 0.0000 -- 0.5492 0.0002 0.0061 pre > post

Pyruvic acid
pre > post 

(P=0.0155)
1.4968 0.2562 0.3021 0.7442 pre > post 0.4898 0.0013 0.0044 pre > post 0.5063 0.0009 0.0161 pre > post

Trimethylamine-

N-oxide
0.0000 0.0000 0.0000 --

Tyrosine
pre > post 

(P=0.0001)
1.5639 0.6027 0.3157 0.7775 pre > post 0.6755 0.0000 0.0000 pre > post 0.6593 0.0000 0.0008 pre > post

Valine
pre > post 

(P=0.0003)
1.5777 0.4774 0.3185 0.7844 pre > post 0.6599 0.0000 0.0000 pre > post 0.7509 0.0000 0.0001 pre > post

B.I. QUANT data                                                                                             

OPLS-DA model in MATLAB

R2X = 0.2638, Q2Yhat = 0.5430, Pperm = 0.0010, [1+0+0]

Full-resolution data                                                               

OPLS-DA model in MATLAB 

R2X = 0.2898, Q2Yhat = 0.4990, Pperm = 0.0010, [1+2+0]

B.I. QUANT data                                                                                                   

OPLS-DA model in SIMCA

R2X(cum) = 0.2790, Q2(cum) = 0.5720, P(CVANOVA) < 0.0001, [1+0+0]
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Figure 4.5 RM-PLS-DA modelling on (A,B) full-resolution CPMG spectral data and (C,D) B.I.QUANT data of RYGB samples. (A,C) 

KDE (top) and mean (bottom) of the predicted scores (Tpred) for pre-RYGB (blue) and post-RYGB (red) plasma data. (B) Average 

1H-NMR spectrum of pre-RYGB and post-RYGB plasma samples (top), and Manhattan plot (bottom) showing -log10(pFDR) x 

sign of regression coefficient (β) of the RM-PLS-DA model for the 18637 spectral variables. (D) Manhattan plot showing -

log10(pFDR) x sign of regression coefficient (β) of the RM-PLS-DA model for the 32 B.I.QUANT metabolites. The blue 

peak/arrow represents the higher concentration of the metabolite in pre-RYGB patients. The 2 horizontal lines indicate the 

cutoffs for the FDR on the log10 scale. 

 

Following RM-PLS-DA, B.I.QUANT data was also analysed using Wilcoxon test for repeated measures. 

Eight metabolites including glucose, pyruvic acid, histidine, alanine, isoleucine, leucine, tyrosine and 

valine, decreased significantly after RYGB intervention (Figure 4.6 (A)), whereas 7 metabolites 

including 3-hydroxybutyric acid, acetoacetic acid, acetone, citric acid, formic acid, acetic acid and 

glycine, increased significantly after RYGB intervention (Figure 4.6 (B)).  
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Figure 4.6 Metabolites with significantly changed concentration after RYGB intervention analysed using paired Wilcoxon 

signed-rank test. (A) Metabolites decreased significantly after RYGB intervention; (B) Metabolites increased significantly after 

RYGB intervention. 

 

C. Summary of metabolic changes induced by RYGB surgery 

The above analyses included (1) OPLS-DA of full-resolution CPMG spectra; (2) OPLS-DA of B.I. QUANT 

data in MATLAB and SIMCA; (3) Wilcoxon test of B.I. QUANT data; (4) paired analyses using RM-PLS-

DA of full-resolution CPMG spectra; (5) paired analyses using RM-PLS-DA and Wilcoxon signed-rank 

test of B.I.QUANT data. The summary of metabolic changes observed in these analyses are shown 

below.  

1) The decreased concentration of glucose was consistently observed in all analysis. 

2) The increased concentrations of 3-hydroxybutyric acid, acetoacetic acid, and citric acid, and 

the decreased concentrations of alanine, leucine, valine, tyrosine, and pyruvic acid were 
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consistently observed in all analyses but not paired analysis using RM-PLS-DA of full-resolution 

spectra and B.I QUANT data. 

3) The increased concentration of glycine and the decreased concentration of isoleucine were 

consistently observed in all analyses but not paired analysis using RM-PLS-DA of full-resolution 

spectra and B.I QUANT data nor OPLS-DA of full-resolution spectra in MATLAB. 

4) The increased concentration of acetic acid was consistently observed in OPLS-DA of B.I.QUANT 

data in SIMCA and paired analysis using Wilcoxon test of B.I.QUANT data; The increased 

concentration of acetone was consistently observed in OPLS-DA of full-resolution CPMG 

spectra and paired analysis using Wilcoxon test of B.I.QUANT data. 

5) The decreased concentrations of creatine and phenylalanine were only observed in OPLS-DA 

of full-resolution CPMG spectra; The decreased concentrations of glutamic acid and lactic acid 

were only observed in OPLS-DA of B.I.QUANT data in SIMCA; The increased concentration of 

formic acid and the decreased concentration of histidine was only observed in paired analysis 

using Wilcoxon test. 

 

4.3.2.3 Impact of VLCD on CPMG and B.I.QUANT metabolic profile of plasma 

A. Non-paired analysis of full-resolution of CPMG profiles and B.I.QUANT data 

The OPLS-DA model for the full-resolution CPMG spectral data of VLCD samples was constructed using 

1 predictive and 1 orthogonal component in MATALB and was valid (Table 4.5). The OPLS-DA loading 

plot after BH correction procedure showed the metabolites distinguishing pre-VLCD and post-VLCD 

groups (Figure 4.7). After VLCD intervention, concentrations of lactic acid, alanine, pyruvic acid, 

creatine, glucose, and tyrosine decreased significantly, whereas concentrations of 3-hydroxybutyric 

acid, acetoacetic acid, acetone and citric acid significantly increased compared to pre-VLCD. Among 

them, the changes of 3-hydroxybutyric acid, acetoacetic acid, acetone, citric acid, alanine, tyrosine, 

lactic acid and pyruvic acid were also observed with OPLS-DA of B.I.QUANT data in SIMCA (1 predictive 
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component and 1 orthogonal component) and in MATLAB (1 predictive component). All these 

metabolites except acetone were also observed in non-paired Wilcoxon test of B.I.QUANT data (Table 

4.5). The decreased concentration of glucose was only observed in all the 4 analyses but not in OPLS-

DA of B.I.QUANT data in SIMCA (Table 4.5). Besides, decreased concentrations of creatine, glutamic 

acid and phenylalanine was only observed in OPLS-DA of full-resolution CPMG spectra (Table 4.5). 

 

 

Figure 4.7 OPLS-DA modelling on full-resolution spectral plasma data of VLCD patients. (A) 7-fold internal cross-validated 

score plot of pre-VLCD and post-VLCD samples with 1 predictive and 2 orthogonal components; (B - D) Loading plot of the 

pre-LVCD and post-VLCD data with BH-adjusted covering mask in black. Metabolites labelled downwards represent their 

increased intensities with pre-VLCD group, whereas metabolites labelled upwards represent their increased intensities with 

post-VLCD group. Metabolites: 1. 3-hydroxybutyric acid; 2. Lactic acid; 3. Alanine; 4. Acetone; 5. Acetoacetic acid; 6. Glutamic 

acid; 7. Pyruvic acid; 8. Citric acid; 9. Creatine; 10. Glucose; 11. Tyrosine. 
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Table 4.5 Univariate analysis and multivariate analysis on quantitative data and full-resolution spectral data of VLCD samples 

 

 

B. Paired analysis of full-resolution of CPMG profiles and B.I.QUANT data 

Since both pre- and post-VLCD samples were collected from 17 patients, RM-PLS-DA with repeated 

measures was used to analyse full-resolution CPMG spectral and B.I. QUANT data. RM-PLS-DA model 

of the full-resolution CPMG spectra was valid (RCV = 0.975, Q2 = 0.78), but there was no significant 

change after VLCD intervention. RM-PLS-DA model of the B.I.QUANT data was valid (RCV = 0.9625, Q2 

= 0.77, Figure 4.8 (A)). Increased concentration of 3-hydroxybutyric acid was observed from this RM-

PLS-DA model. (Figure 4.8 (B)).  

 

B.I. QUANT 

data (non-

paired 

Wilcoxon 

test)

Models

Metabolites Comparison VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison r p q Comparison

3-Hydroxybutyric 

acid

post > pre   

(P < 0.0001)
1.7943 0.7469 -0.4053 -0.8385 post > pre -0.6640 0.0000 0.0001 post > pre -0.6786 0.0000 0.0007 post > pre

Acetic acid 0.5789 0.7626 -0.1277 -0.2642 0.1721 0.3015 0.4423 -0.1845 0.2675 0.5488

Acetoacetic acid
post > pre    

(P < 0.0001)
1.7431 0.8754 -0.3872 -0.8011 post > pre -0.6785 0.0000 0.0001 post > pre -0.6565 0.0000 0.0011 post > pre

Acetone 1.2727 1.9514 -0.2867 -0.5933 post > pre -0.4799 0.0023 0.0072 post > pre -0.5471 0.0004 0.0141 post > pre

Alanine
pre > post    

(P = 0.0038)
1.4941 0.5126 0.2785 0.5763 pre > post 0.5222 0.0008 0.0028 pre > post 0.5130 0.0010 0.0241 pre > post

Ca-EDTA 0.0000 0.0000 0.0000 --

Citric acid
post > pre    

(P = 0.0002)
1.4608 1.0434 -0.3155 -0.6529 post > pre -0.6321 0.0000 0.0002 post > pre -0.6180 0.0000 0.0032 post > pre

Creatine 0.6825 0.7800 0.1541 0.3189 0.3011 0.0662 0.1211 0.5285 0.0006 0.0196 pre > post

Creatinine 0.6076 0.7073 -0.0438 -0.0907 -0.0356 0.8318 0.8318 -0.0643 0.7015 0.8821

Ethanol 0.6880 0.7786 -0.0688 -0.1423 -0.1578 0.3440 0.4452

Formic acid 0.2931 0.5911 0.0118 0.0243 0.1162 0.4874 0.5644 0.0514 0.7594 0.9073

Glucose
pre > post    

(P = 0.0081)
1.1850 0.5540 0.2369 0.4903 0.4280 0.0074 0.0180 pre > post 0.4716 0.0028 0.0380 pre > post

Glutamic acid 1.0750 0.6288 0.1797 0.3719 0.3442 0.0344 0.0756 0.4625 0.0035 0.0406 pre > post

Glutamine 0.4228 1.1062 -0.0351 -0.0727 -0.0471 0.7787 0.8158 -0.1441 0.3882 0.6776

Glycerol 0.4244 0.4010 -0.0157 -0.0325 -0.1637 0.3260 0.4452 -0.2291 0.1666 0.4094

Glycine 0.5373 0.8437 -0.1156 -0.2391 -0.2108 0.2039 0.3204 -0.0691 0.6804 0.8723

Histidine 0.7232 1.1767 -0.0031 -0.0064 -0.0891 0.5949 0.6544 -0.1952 0.2401 0.5171

Isoleucine 0.5140 1.2800 -0.0021 -0.0044 -0.1194 0.4753 0.5644 -0.2857 0.0821 0.2510

K-EDTA 0.0000 0.0000 0.0000 --

Lactic acid
pre > post    

(P = 0.0304)
1.3398 0.8569 0.2564 0.5305 pre > post 0.4548 0.0041 0.0113 pre > post 0.4641 0.0033 0.0402 pre > post

Leucine 0.7768 1.1034 0.1082 0.2238 0.2956 0.0715 0.1211 0.2785 0.0905 0.2693

Phenylalanine 0.4144 1.0099 0.0740 0.1532 -0.3901 0.0155 0.0764

Pyruvic acid
pre > post    

(P = 0.0014)
1.6369 0.5078 0.3451 0.7141 pre > post 0.5893 0.0001 0.0005 pre > post 0.5846 0.0001 0.0067 pre > post

Trimethylamine-

N-oxide
0.0000 0.0000 0.0000 --

Tyrosine
pre > post    

(P = 0.0007)
1.3428 0.5862 0.2810 0.5813 pre > post 0.5813 0.0001 0.0006 pre > post 0.5536 0.0003 0.0124 pre > post

Valine 0.9895 0.8495 0.1338 0.2767 0.3166 0.0528 0.1056 0.3323 0.0415 0.1519

B.I. QUANT data                                                                                             

OPLS-DA model in MATLAB

R2X = 0.2359, Q2Yhat = 0.5511, Pperm=0.0010, [1+0+0]

Full-resolution data                                                               

OPLS-DA model in MATLAB 

R2X=0.2473, Q2Yhat=0.6077, Pperm=0.0010, [1+1+0]

B.I. QUANT data                                                                                                

OPLS-DA model in SIMCA

R2X(cum)=0.3530, Q2(cum)=0.5850, P(CVANOVA) < 0.0001, [1+1+0]
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Figure 4.8 RM-PLS-DA modelling on B.I.QUANT data of VLCD patients. (A) KDE (top) and mean (bottom) of the predicted 

scores (Tpred) for pre-RYGB (blue) and post-RYGB (red) plasma data, R2 and Q2 shown for the predictive axis. The local sharp 

peaks of the KDE indicate large inter-personal variability. (B) Manhattan plot showing -log10(pFDR) x sign of regression 

coefficient (β) of the RM-PLS-DA model for the 32 B.I.QUANT metabolites. The red arrow represents the higher concentration 

of the metabolite in post-VLCD patients.  

 

Following RM-PLS-DA, B.I. QUANT data was also analysed using Wilcoxon test for repeated measures. 

Eight metabolites including glucose, glutamic acid, alanine, valine, leucine, tyrosine, pyruvic acid and 

lactic acid, decreased significantly after VLCD intervention (Figure 4.9 (A)), whereas 5 metabolites 

including 3-hydroxybutyric acid, acetoacetic acid, acetone, citric acid and glycerol, increased 

significantly after VLCD intervention (Figure 4.9 (B)).  

 



108 
 

 

Figure 4.9 Metabolites with significantly changed concentrations after VLCD intervention analysed using paired Wilcoxon 

signed-rank test. (A) Metabolites decreased significantly after VLCD intervention; (B) Metabolites increased significantly after 

VLCD intervention.  

 

C. Summary of metabolic changes induced by VLCD 

A summary of metabolic changes observed in these analyses are shown below: 

1) The increased concentration of 3-hydroxybutyric acid was observed in all the analyses except 

RM-PLS-DA of full-resolution CPMG spectra. 

2) The increased concentrations of acetoacetic acid and citric acid, and the decreased 

concentrations of alanine, tyrosine, lactic acid and pyruvic acid were observed in all the 

analyses except RM-PLS-DA of full-resolution CPMG spectra nor B.I.QUANT data. 

3) The increased concentration of acetone was observed in paired Wilcoxon test of B.I.QUANT 

data, OPLS-DA of B.I.QUANT data in SIMCA and MATLAB, and OPLS-DA of full-resolution CPMG 

spectra. 
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4) The decreased concentration of glucose was observed in both paired and non-paired 

Wilcoxon test of B.I.QUANT data, OPLS-DA of B.I.QUANT data in MATLAB, and OPLS-DA of full-

resolution CPMG spectra. 

5) The decreased concentrations of creatine and phenylalanine were only observed in OPLS-DA 

of full-resolution CPMG spectra; The decreased concentrations of glutamic acid, leucine and 

valine, and the increased concentration of glycerol was only observed in paired Wilcoxon test 

of B.I.QUANT data. 

 

4.3.2.4 Impact of GOP on CPMG and B.I.QUANT metabolic profiles of plasma 

A. Non-paired analysis of full-resolution of CPMG profiles and B.I.QUANT data  

The OPLS-DA model for the full-resolution CPMG spectral data of GOP samples was constructed using 

1 predictive and 1 orthogonal component in MATALB and was valid (R2X = 0.2418, Q2Y = 0.3702, PPerm 

= 0.0010). The OPLS-DA score plot showed separation of pre-GOP and post-GOP samples (Figure 4.10 

(A)). The OPLS-DA loading plot after BH correction procedure did not show any metabolite 

distinguishing pre-GOP and post-GOP groups (Figure 4.10 (B)). Nevertheless, 3 significantly decreased 

metabolites were showed in Figure 4.10 (B) without BH adjustment, including leucine (r > 0.5), valine 

(r > 0.5), and glucose (r > 0.5). The OPLS-DA model on B.I.QUANT data of GOP samples constructed 

using 1 predictive in MATLAB and SIMCA was not valid (Pperm > 0.05). None of the B.I.QUANT data 

analysed using non-paired Wilcoxon test showed significance after GOP intervention (P > 0.05). 
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Figure 4.10 OPLS-DA modelling on full-resolution spectral plasma data of GOP patients. (A) 7-fold internal cross-validated 

score plot of pre-GOP and post-GOP samples with 1 predictive and 2 orthogonal components; (B) Loading plot of the pre-GOP 

and post-GOP data prior to BH-adjusted covering masks. Metabolites labelled downwards represent their increased 

intensities with pre-GOP group. Metabolites: 1. Leucine; 2. Valine; 3. Glucose. 

 

B. Paired analysis of full-resolution of CPMG profiles and B.I.QUANT data 

Since both pre- and post-GOP samples were collected from 13 patients, RM-PLS-DA with repeated 

measures was used to analyse full-resolution CPMG spectral and B.I. QUANT data. Both datasets did 

not show significant differences between pre- and post-GOP, despite of valid models (for full-

resolution CPMG data, RCV = 0.921, Q2 = 0.70,); for B.I. QUANT data, RCV = 0.828, Q2 = 0.53). Decreased 

concentration of glucose was showed in the paired Wilcoxon test of B.I.QUANT data (Figure 4.11). 

 

 

Figure 4.11 Metabolite significantly changed after GOP intervention analysed using paired Wilcoxon signed-rank test.  
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C. Summary 

The decrease of glucose was observed in paired Wilcoxon test of B.I.QUANT data. It was also observed 

in OPLS-DA of full-resolution CPMG spectra prior to BH procedure, where decreased leucine, valine 

and glucose were also observed with higher correlation coefficient (r > 0.5). 

 

4.3.2.5 Impact of Saline (control) on CPMG and B.I.QUANT metabolic profile of plasma 

When analysing the metabolic impacts of Saline intervention, neither the OPLS-DA models 

constructed on full-resolution CPMG spectra nor on B.I.QUANT data in MATLAB and SIMCA was valid 

(Pperm > 0.05). RM-PLS-DA models constructed on full-resolution CPMG spectra or on B.I.QUANT data 

did not show any significant signals but had good Q2 values (for full resolution CPMG spectra, RCV = 

0.494, Q2 = 0.39; B.I.QUANT, RCV = 0.574, Q2 = 0.35). Besides, none of the metabolites showed 

significance in paired nor non-paired Wilcoxon test of B.I.QUANT data. 

 

4.2.2.6 Summary of the changes induced by different weight loss strategies 

Comparing to urine, plasma results from different datasets using different statistical methods was 

more consistent (Figure 4.12). Firstly, the increased concentrations of 3-hydroxybutyric acid, 

acetoacetic acid, and citric acid and the decreased concentrations of alanine, tyrosine, and pyruvic 

acid after RYGB or VLCD, the decreased concentrations of valine and leucine after RYGB, and the 

decreased concentration of lactic acid after VLCD, were consistent across different datasets using 

different unpaired statistical methods in MATLAB and SIMCA. All these changes were also observed in 

paired Wilcoxon test on B.I.QUANT dataset. In comparison, when being analysed using RM-PLS-DA, 

only glucose after RYGB and 3-hydroxybutyric after VLCD showed changes. Secondly, the increased 

concentration of acetone and the decreased concentration of creatine after RYGB or VLCD were 

observed in OPLS-DA of full-resolution CPMG spectra. Among them, the increased acetone after RYGB 

or VLCD was also observed in paired Wilcoxon test of B.I.QUANT data. Thirdly, the increased 
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concentration of glycine, acetic acid, formic acid, and the decreased concentrations of phenylalanine, 

isoleucine, and histidine were only observed after RYGB. The changes of glycine and isoleucine were 

observed in OPLS-DA analysis regardless the dataset types, as well as in Wilcoxon test regardless 

paired or unpaired analysis, the changes of formic acid and histidine were only observed in paired 

Wilcoxon test, the change of acetic acid was observed in unpaired and paired Wilcoxon test, and the 

change of phenylalanine was only observed in OPLS-DA analysis on full-resolution spectral data. 

Fourthly, The increased concentration of glycerol and the decreased concentration of glutamic acid 

were only observed after VLCD in paired Wilcoxon test on B.I.QUANT data.  

 

 

Figure 4.12 The impact of RYGB, VLCD and GOP on (A) non-paired and (B) paired full-resolution CPMG and B.I.QUANT data. 

(A) ‘a’ represents results from OPLS-DA analysis of full-resolution CPMG spectra in MATLAB 2018b, ‘b’ represents results from 

Wilcoxon test of B.I.QUANT data, ‘c’ represents results from OPLS-DA analysis of B.I.QUANT data in MATLAB 2018b. and ‘d’ 

represents results from OPLS-DA analysis of B.I.QUANT data in SIMCA 15. (B) ‘a’ represents results from RM-PLS-DA analysis 

of full-resolution CPMG spectra in MATLAB 2018b, ‘b’ represents results from Wilcoxon test of B.I.QUANT data, ‘c’ represents 

results from RM-PLS-DA analysis of B.I.QUANT data in MATLAB 2018b.  
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4.3.2.7 Comparison between different intervention groups at each time point 

A. Comparisons of pre-intervention groups 

At the pre-intervention time point, no significant difference was observed across any of the groups 

regardless of types of data (i.e., full-resolution, B.I. QUANT) and the statistical methods. 

 

B. Comparison of post-intervention groups 

a. Comparison of 4 post-intervention groups univariate statistical analysis of B.I.QUANT data 

Kruskal-Wallis H test was used to compare metabolite concentration across 4 intervention groups, and 

8 metabolites including BCAA and AAA (i.e., isoleucine, leucine valine, and tyrosine), ketone bodies 

(i.e., 3-hydroxybutyric acid and acetoacetic acid), citric acid, and pyruvic acid, showed significant 

differences across the 4 post-intervention groups (Figure 4.13). The concentrations of isoleucine, 

leucine valine and tyrosine were significantly lower in post-RYGB group than in post-Saline group 

(Figure 4.13), which was consistent with the observation that significantly lower concentrations of 

these 4 metabolites post-RYGB compared to pre-intervention (Figure 4.12). The concentrations of 

leucine, tyrosine, and valine were significantly lower in post-RYGB than in post-VLCD group (Figure 

4.13). This suggests that RYGB could induce more reductions of these 3 metabolites than what VLCD 

could induce. Notably, the concentration of isoleucine was significantly lower in post-GOP group than 

in post-Saline group (Figure 4.13), despite that isoleucine was not lower post-GOP compared to pre-

GOP (Figure 4.10).  

 

The concentrations of 3-hydroxybutyric acid, acetoacetic acid and citric acid were significantly higher 

in post-RYGB and post-VLCD group than the post-Saline groups, respectively. These differences were 

consistent with the increased 3-hydroxybutyric acid, acetoacetic acid and citric acid after RYGB or 

VLCD intervention (Figure 4.12). The concentration of pyruvic acid was significantly lower than in post-
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VLCD group than in post-RYGB (Figure 4.13), though pyruvic acid concentration was lower in both 

post-RYGB and post-VLCD compared to pre-RYGB and post-VLCD, respectively. This indicates greater 

reduction of pyruvic acid induced by VLCD than RYGB. 

 

 

Figure 4.13 Metabolites significantly different across the 4 intervention groups analysed using Kruskal-Wallis H test. The P 

value shown on each box plot was calculated using Wilcoxon pairwise analysis and adjusted by BH procedure.  

 

b. Comparisons of saline group with post-RYGB, post-GOP or post-VLCD group using OPLS-DA 

analysis of full-resolution data 

Firstly, post-RYGB was compared to post-Saline group. Kruskal-Wallis test of B.I.QUANT data showed 

higher concentrations of 3-hydroxybutyric acid, acetoacetic acid, and citric acid in post-RYGB group as 

well as lower concentrations of leucine, isoleucine, valine and tyrosine in post-RYGB group compared 

to post-Saline group (Table 4.6). All these changes except acetoacetic acid and 3-hydroxybutyric acid 

were also observed in OPLS-DA of B.I.QUANT data in SIMCA with 1 predictive and 1 orthogonal 

component (Table 4.6). In contrast, OPLS-DA in MATLAB based on B.I.QUANT data constructed with 1 

predictive and 1 orthogonal component only showed significantly lower concentrations of leucine, 

isoleucine, valine and tyrosine in post-RYGB group than in post-Saline group. For full-resolution CPMG 
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spectra, a valid OPLS-DA model was also constructed in MATLAB with 1 predictive and 1 orthogonal 

component (Table 4.6). The OPLS-DA score plot demonstrated the separation of post-RYGB and post-

Saline samples (Figure 4.14 (A)). The OPLS-DA loading plot after BH correction procedure showed that 

not only the concentrations of leucine, valine, and tyrosine, but also the concentrations of lysine, 1-

methylhistidine, and unknown 22, were significantly lower in post-RYGB than in post-Saline group 

(Figure 4.14 (B – D)).  

 

 

Figure 4.14 OPLS-DA modelling on full-resolution spectral plasma data of post-RYGB and post-Saline patients. (A) 7-fold 

internal cross-validated score plot of post-RYGB and post-Saline samples with 1 predictive and 1 orthogonal component; (B - 

D) Loading plot of the post-RYGB and post-Saline data with BH-adjusted covering mask in black. Metabolites labelled upwards 

represent their increased intensities with post-Saline group. Metabolites: 1. Leucine; 2. Valine; 3. Lysine; 4. Unknown 22 (δ 

2.64 (s)); 5. Tyrosine; 6. 1-methylhistidine. 
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Table 4.6 Univariate and multivariate analysis on B.I.QUANT data and full-resolution spectral data of post-RYGB and post-

Saline samples. 

 

 

Secondly, post-VLCD was compared to post-Saline group. Non-paired Wilcoxon test of B.I.QUANT data 

showed higher concentrations of 3-hydroxybutyric acid, acetoacetic acid and citric acid, as well as 

lower concentration of tyrosine in post-VLCD group than in post-Saline group (Table 4.7). These 

changes were also observed in OPLS-DA of B.I.QUANT in SIMCA and MATLAB with 1 predictive and 1 

orthogonal component, where lower concentrations of acetic acid, glucose and pyruvic acid 

concentration were also observed in post-VLCD group compared to post-Saline group (Table 4.7). A 

valid OPLS-DA model of full-resolution CPMG spectra was constructed with 1 predictive and 1 

orthogonal component in MATLAB. The OPLS-DA score plot demonstrated the separation of post-

VLCD and post-Saline samples (Figure 4.15 (A)). The OPLS-DA loading plot after BH correction 

procedure showed the metabolites distinguishing post-VLCD and post-Saline groups (Figure 4.15 (B - 

B.I. QUANT 

data (non-

paired 

Wilcoxon 

test)

Models

Metabolites VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison r p q Comparison

3-Hydroxybutyric 

acid

RYGB > Saline                  

(P  = 0.0154)
1.1317 0.8595 -0.1909 -0.3655 -0.4346 0.0185 0.0849 -0.4017 0.0308 0.3146

Acetic acid 0.8527 0.9615 0.1910 0.3656 0.3181 0.0926 0.2130 0.3544 0.0593 0.3995

Acetoacetic acid
RYGB > Saline                  

(P  = 0.0107)
0.8101 1.2545 -0.0994 -0.1903 -0.2701 0.1564 0.2768 -0.3563 0.0578 0.3947

Acetone 0.4963 0.7351 0.0045 0.0086 -0.0417 0.8299 0.8299 -0.2710 0.1550 0.5960

Alanine 0.7985 1.0949 0.1064 0.2037 0.2153 0.2619 0.3550 0.2079 0.2791 0.7176

Ca-EDTA 0.7790 1.6700 -0.0945 -0.1809 -0.1933 0.3150 0.3622

Citric acid
RYGB > Saline                  

(P  = 0.0226)
1.3175 0.8141 -0.2668 -0.5107 RYGB > Saline -0.4115 0.0266 0.1019 -0.2835 0.1362 0.5684

Creatine 0.9155 1.8165 0.1520 0.2910 0.2948 0.1206 0.2521 0.3333 0.0772 0.4483

Creatinine 0.9714 1.1548 0.1452 0.2778 0.2805 0.1405 0.2693 0.3346 0.0761 0.4459

Ethanol 0.6188 0.9284 -0.1398 -0.2677 -0.2024 0.2923 0.3550

Formic acid 0.8723 0.6415 0.0934 0.1788 0.1398 0.4696 0.5144 0.3839 0.0398 0.3414

Glucose 0.8271 1.9115 0.1848 0.3538 0.3859 0.0387 0.1272 0.5315 0.0030 0.1245

Glutamic acid 0.9500 0.7480 0.1430 0.2738 0.2465 0.1974 0.3059 0.1875 0.3300 0.7491

Glutamine 1.1468 0.3882 0.1054 0.2017 0.2068 0.2818 0.3550 0.1651 0.3920 0.7809

Glycerol 0.9430 1.1142 -0.2002 -0.3833 -0.3531 0.0602 0.1732 -0.1968 0.3063 0.7358

Glycine 0.5415 0.4461 -0.1188 -0.2275 -0.2020 0.2933 0.3550 -0.1357 0.4827 0.8133

Histidine 0.8911 0.9502 0.2000 0.3828 0.3184 0.0923 0.2130 0.5989 0.0006 0.0543

Isoleucine
Saline > RYGB                    

(P  = 0.0120)
1.3354 1.0632 0.3011 0.5763 Saline > RYGB 0.5227 0.0036 0.0209 Saline > RYGB 0.4933 0.0065 0.1749

K-EDTA 0.0000 0.0000 0.0000 -- NaN

Lactic acid 0.7540 1.2937 -0.1646 -0.3150 -0.2454 0.1995 0.3059 -0.1610 0.4042 0.7869

Leucine
Saline > RYGB                     

(P = 0.0064)
1.6073 0.6731 0.3633 0.6953 Saline > RYGB 0.5993 0.0006 0.0045 Saline > RYGB 0.6647 0.0001 0.0197 Saline > RYGB

Phenylalanine 0.6880 1.7578 0.1534 0.2937 NaN 0.5192 0.0039 0.1370

Pyruvic acid 0.4230 1.7681 0.0140 0.0269 0.0977 0.6142 0.6421 0.0258 0.8943 0.9739

Trimethylamine-

N-oxide
0.0000 0.0000 0.0000 -- NaN

Tyrosine
Saline > RYGB                     

(P = 0.0005)
1.7554 1.3685 0.3897 0.7459 Saline > RYGB 0.6426 0.0002 0.0020 Saline > RYGB 0.7607 0.0000 0.0037 Saline > RYGB

Valine
Saline > RYGB                     

(P = 0.0017)
1.9070 0.5635 0.4282 0.8195 Saline > RYGB 0.7209 0.0000 0.0002 Saline > RYGB 0.6887 0.0000 0.0135 Saline > RYGB

Lysine 0.7145 0.0000 0.0059 Saline > RYGB

1-methylhistine 0.7302 0.0000 0.0045 Saline > RYGB

Unknown 22 0.67298 6.33E-05 0.01639 Saline > RYGB

  B.I. QUANT data                                                                                                    

OPLS-DA model in SIMCA

B.I. QUANT data                                                                                             

OPLS-DA model in MATLAB

Full-resolution data                                                               

OPLS-DA model in MATLAB 

R2X(cum) = 0.2940, Q2(cum) = 0.6520, P(CVANOVA) < 0.0001, [1+1+0] R2X = 0.2982, Q2Yhat = 0.6712, Pperm = 0.0010, [1+1+0] R2X = 0.2126, Q2Yhat = 0.5175, Pperm = 0.0010, [1+1+0]
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D)). Same as other methods, the concentrations of 3-hydroxybutyric acid, acetoacetic acid and 

tyrosine were significantly higher in post-VLCD group than in post-Saline group. Same as OPLS-DA of 

B.I. QUANT data in SIMCA and MATLAB, the concentrations of glucose and acetic acid were 

significantly lower in post-VLCD group than in post-Saline group; The concentration of formic acid was 

significantly lower in post-VLCD group than in post-Saline group.  

 

 

Figure 4.15 OPLS-DA modelling on full-resolution spectral plasma data of post-VLCD and post-Saline patients. (A) 7-fold 

internal cross-validated score plot of post-VLCD and post-Saline samples with 1 predictive and 1 orthogonal component; (B - 

D) Loading plot of the post-VLCD and post-Saline data with BH-adjusted covering mask in black. Metabolites labelled 

downwards represent their increased intensities with post-VLCD group, whereas metabolites labelled upwards represent their 

increased intensities with post-Saline group. Metabolites: 1. 3-hydroxybutyric acid; 2. Acetic acid; 3. Acetoacetic acid; 4. 

Glucose; 5. Tyrosine; 6. Formic acid. 
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Table 4.7 Univariate and multivariate analysis on quantified data and full-resolution spectral data of post-VLCD and post-

Saline samples. 

 

 

Finally, post-GOP group was compared to post-Saline group, but all the OPLS-DA models constructed 

on B.I.QUANT and full-resolution CPMG spectra in SIMCA and MATLAB were invalid. Only the lower 

concentration of isoleucine in post-GOP compared to post-Saline was observed in non-paired 

Wilcoxon test on B.I.QUANT data. 

 

c. Post-RYGB vs post-VLCD  

Since patients who underwent RYGB surgery had lower calorie intake compared to the saline group, 

the differences between post-RYGB and post-Saline could be due to low calorie intake rather than 

surgery intervention. Therefore, I further compared post-RYGB and post-VLCD groups to extract 

metabolic changes that are specific to the surgery itself. Non-paired Wilcoxon test showed that lower 

concentrations of leucine, valine and tyrosine as well as higher concentration of pyruvic acid in in post-

B.I. QUANT 

data (non-

paired 

Wilcoxon test)

Models

Metabolites VIP[1+1+0] VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison r p q Comparison

3-Hydroxybutyric 

acid

VLCD > Saline                      

(P  = 0.0002)
1.5874 0.8236 0.3393 0.6379 VLCD > Saline 0.5872 0.0013 0.0149 VLCD > Saline 0.5958 0.0010 0.0277 VLCD > Saline

Acetic acid 1.3943 1.1885 -0.3168 -0.5955 Saline > VLCD -0.5340 0.0041 0.0302 Saline > VLCD -0.5939 0.0011 0.0282 Saline > VLCD

Acetoacetic acid
VLCD > Saline                      

(P  = 0.0013)
1.5607 0.8475 0.3088 0.5804 VLCD > Saline 0.5184 0.0056 0.0308 VLCD > Saline 0.5612 0.0023 0.0403 VLCD > Saline

Acetone 0.7704 1.0009 0.1672 0.3143 0.2985 0.1305 0.2209 0.4651 0.0145 0.0953

Alanine 1.4224 0.6091 -0.2344 -0.4406 -0.4320 0.0244 0.0671 -0.4026 0.0373 0.1627

Ca-EDTA 0.0000 0.0000 0.0000 --

Citric acid
VLCD > Saline                      

(P  = 0.0019)
1.5241 1.1873 0.3500 0.6580 VLCD > Saline 0.5850 0.0014 0.0149 VLCD > Saline 0.4639 0.0148 0.0964

Creatine 0.6298 1.4275 -0.1425 -0.2678 -0.2764 0.1629 0.2559 -0.3858 0.0469 0.1883

Creatinine 0.5408 1.1239 -0.0851 -0.1600 -0.1807 0.3670 0.5047 -0.4295 0.0254 0.1294

Ethanol 1.1992 1.2030 0.2211 0.4157 0.3576 0.0670 0.1341

Formic acid 1.0038 1.2922 -0.2309 -0.4340 -0.4241 0.0275 0.0671 -0.6246 0.0005 0.0206 Saline > VLCD

Glucose 1.4254 0.9634 -0.2754 -0.5177 Saline > VLCD -0.4665 0.0142 0.0446 Saline > VLCD -0.5792 0.0015 0.0335 Saline > VLCD

Glutamic acid 1.0540 0.9423 -0.1988 -0.3738 -0.3601 0.0650 0.1341 -0.3612 0.0641 0.2278

Glutamine 1.0347 1.3194 -0.2152 -0.4046 -0.3276 0.0953 0.1747 -0.3479 0.0754 0.2526

Glycerol 0.5164 0.8080 -0.0260 -0.0488 -0.0461 0.8193 0.8832 -0.2181 0.2745 0.5517

Glycine 0.3730 0.6754 -0.0576 -0.1084 -0.0773 0.7017 0.8125 -0.2024 0.3115 0.5924

Histidine 0.4244 1.1050 -0.0370 -0.0696 -0.0400 0.8430 0.8832 -0.4440 0.0203 0.1148

Isoleucine 0.5635 1.1350 -0.0614 -0.1154 -0.1866 0.3515 0.5047 -0.1488 0.4588 0.7273

K-EDTA 0.0000 0.0000 0.0000 --

Lactic acid 0.9713 0.5669 -0.0316 -0.0593 -0.1440 0.4737 0.6130 -0.2648 0.1820 0.4366

Leucine 0.3368 0.7090 0.0638 0.1199 0.1305 0.5165 0.6313 0.0948 0.6381 0.8455

Phenylalanine 0.6848 1.4664 -0.1497 -0.2814 -0.2557 -0.3497 0.0738 0.2496

Pyruvic acid 1.4727 0.8644 -0.2624 -0.4932 -0.4751 0.0123 0.0446 Saline > VLCD -0.5198 0.0055 0.0581

Trimethylamine-

N-oxide
0.0000 0.0000 0.0000 --

Tyrosine
Saline > VLCD                   

(P  = 0.0049)
1.4821 1.0828 -0.3079 -0.5788 Saline > VLCD -0.4900 0.0095 0.0417 Saline > VLCD -0.5941 0.0011 0.0282 Saline > VLCD

Valine 0.1325 1.3927 -0.0302 -0.0567 -0.0244 0.9037 0.9037 -0.0933 0.6434 0.8479

  B.I. QUANT data                                                                                                    

OPLS-DA model in SIMCA

B.I. QUANT data                                                                                             

OPLS-DA model in MATLAB

Full-resolution data                                                                

OPLS-DA model in MATLAB 

R2X(cum) = 0.3470, Q2(cum) = 0.7200, P(CVANOVA) < 0.0001, [1+1+0] R2X = 0.3575, Q2Yhat = 0.5616, Pperm = 0.0010, [1+1+0] R2X = 0.2606, Q2Yhat = 0.5093, Pperm = 0.0010, [1+1+0]
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RYGB group compared to post-VLCD group (Table 4.8). All these differences except tyrosine were also 

observed in OPLS-DA of B.I.QUANT data in SIMCA with 1 predictive component, where higher 

concentrations of 3-hydroxybutyric acid, acetoacetic acid, and isoleucine, as well as lower 

concentration of lactic acid, were observed in post-VLCD group compared to post-RYGB group (Table 

4.8). As decreased isoleucine concentration was only observed after RYGB (Figure 4.12), decreased 

isoleucine concentration was regarded as a metabolic change specific to the surgery. A valid OPLS-DA 

of B.I.QUANT data in MATLAB was also constructed with 1 predictive component, but only showed 

lower concentrations of leucine and valine in post-RYGB group compared to post-VLCD group (Table 

4.8). A valid OPLS-DA on full-resolution CPMG spectra in MATLAB was constructed with 1 predictive 

component and 2 orthogonal components (Table 4.8). The OPLS-DA score plot showed clear 

separation (Figure 4.16 (A)), but the loading plot after BH correction did not show any significant 

signals. Prior to BH correction, valine and unknown 23 concentrations were significantly higher in post-

VLCD group, whereas pyruvic acid concentration was significantly lower in post-VLCD group, 

compared to post-RYGB group (Figure 4.16 (B)).  

 

 

Figure 4.16 OPLS-DA modelling on full-resolution spectral plasma data of post-RYGB and post-VLCD patients. (A) 7-fold 

internal cross-validated score plot of post-RYGB and post-VLCD samples with 1 predictive and 1 orthogonal component; (B) 

Loading plot of post-RYGB and post-VLCD data without BH-adjusted covering masks. Metabolites labelled downwards 

represent their increased intensities with post-RYGB group, whereas metabolites labelled upwards represent their increased 

intensities with post-VLCD group. Metabolites: 1. Valine; 2. Unknown 23 (δ 1.061 (d)); 3. Pyruvic acid.  
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Table 4.8 Univariate and multivariate analysis on quantified data and full-resolution spectral data of post-RYGB and post-

VLCD samples 

 

 

d. Post-RYGB vs post-GOP 

GOP intervention mimics partial changes in the gut hormone shifts induced by RYGB surgery. 

Therefore, I compared post-GOP and post-RYGB groups to investigate changes that are unique to 

RYGB surgery but independent to hormone changes. Non-paired Wilcoxon test on B.I.QUANT data 

showed higher concentrations of 3-hydroxybutyric acid, acetoacetic acid, and citric acid, as well as 

lower concentrations of tyrosine and valine in post-RYGB group compared to post-GOP group (Table 

4.9). These differences were also observed in OPLS-DA of B.I.QUANT data in SIMCA with 1 predictive 

component, where lower concentration of glutamic acid was also observed in post-RYGB group 

compared to post-GOP group (Table 4.9). In contrast, the OPLSA-DA of B.I.QUANT in MATLAB was 

invalid (Table 4.9). A valid OPLS-DA model for the full-resolution CPMG spectra was constructed with 

B.I. QUANT data 

(non-paired 

Wilcoxon test)

Models

Metabolites Comparison VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison r p q Comparison

3-Hydroxybutyric 

acid
1.6954 0.8001 0.3540 0.7236 VLCD > RYGB 0.2872 0.0894 0.1870 0.2432 0.1529 0.5226

Acetic acid 0.1388 0.5437 -0.0290 -0.0593 -0.2226 0.1920 0.2944 -0.2177 0.2022 0.5916

Acetoacetic acid 1.3002 0.7051 0.2715 0.5549 VLCD > RYGB 0.1511 0.3791 0.4392 0.2420 0.1550 0.5252

Acetone 1.0988 2.1984 0.2294 0.4689 0.3027 0.0727 0.1858 0.2194 0.1985 0.5869

Alanine 0.8880 1.1191 -0.1854 -0.3790 -0.1634 0.3411 0.4392 -0.1799 0.2937 0.6830

Ca-EDTA 0.3584 1.0276 -0.0748 -0.1530 -0.2247 0.1876 0.2944

Citric acid 0.7952 0.8583 0.1660 0.3394 0.2915 0.0845 0.1870 0.2587 0.1277 0.4819

Creatine 0.1132 1.0416 0.0236 0.0483 0.0119 0.9450 0.9450 -0.1089 0.5271 0.8382

Creatinine 0.3216 1.5481 0.0672 0.1373 0.1609 0.3485 0.4392 -0.0022 0.9897 0.9978

Ethanol 0.0811 1.3372 0.0169 0.0346 0.1502 0.3819 0.4392

Formic acid 0.5247 1.9117 -0.1096 -0.2240 -0.2553 0.1328 0.2350 -0.3219 0.0555 0.3435

Glucose 0.7947 0.9325 -0.1659 -0.3392 -0.2138 0.2105 0.3026 -0.2152 0.2076 0.5973

Glutamic acid 0.7229 1.2597 -0.1510 -0.3085 -0.1402 0.4148 0.4543 -0.2205 0.1963 0.5833

Glutamine 0.2657 1.0403 -0.0555 -0.1134 -0.1064 0.5369 0.5613 -0.1592 0.3537 0.7348

Glycerol 1.0794 0.3660 -0.2254 -0.4607 -0.3902 0.0186 0.0950 -0.3554 0.0334 0.2853

Glycine 0.9135 0.6949 -0.1908 -0.3899 -0.2682 0.1138 0.2181 -0.2662 0.1165 0.4615

Histidine 0.6257 0.9907 0.1307 0.2670 0.3169 0.0597 0.1761 0.3117 0.0642 0.3604

Isoleucine 1.5774 1.2734 0.3294 0.6732 VLCD > RYGB 0.3151 0.0612 0.1761 0.2454 0.1491 0.5174

K-EDTA 0.0000 0.0000 0.0000 --

Lactic acid 1.3201 0.7271 -0.2757 -0.5634 RYGB > VLCD -0.3835 0.0210 0.0950 -0.4182 0.0111 0.1864

Leucine
VLCD > RYGB                        

(P  = 0.0064)
1.8770 1.3115 0.3920 0.8011 VLCD > RYGB 0.5404 0.0007 0.0077 VLCD > RYGB 0.4601 0.0048 0.1279

Phenylalanine 0.0000 0.0000 0.0000 -- 0.3149 0.0614 0.3552

Pyruvic acid
RYGB > VLCD                       

(P  = 0.0160)
1.7130 0.6569 -0.3577 -0.7311 RYGB > VLCD -0.4303 0.0088 0.0675 -0.5286 0.0009 0.0990 RYGB > VLCD

Trimethylamine-

N-oxide
0.0000 0.0000 0.0000 --

Tyrosine
VLCD > RYGB                        

(P  = 0.0049)
0.8315 1.3044 0.1736 0.3549 0.3737 0.0248 0.0950 0.4208 0.0106 0.1825

Valine
VLCD > RYGB                        

(P  = 0.0018)
1.8070 1.1437 0.3773 0.7712 VLCD > RYGB 0.6016 0.0001 0.0024 VLCD > RYGB 0.5461 0.0006 0.0958 VLCD > RYGB

Unknown 23 0.5726 0.0003 0.0958 VLCD > RYGB

  B.I. QUANT data                                                                                                    

OPLS-DA model in SIMCA

B.I. QUANT data                                                                                             

OPLS-DA model in MATLAB

Full-resolution data                                                                

OPLS-DA model in MATLAB 

R2X(cum) = 0.2060, Q2(cum) = 0.3460, P(CVANOVA) = 0.0009, [1+0+0] R2X = 0.1816, Q2Yhat = 0.3416, Pperm = 0.0010, [1+0+0] R2X = 0.2499, Q2Yhat = 0.3646, Pperm = 0.0010, [1+2+0]
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1 predictive and 1 orthogonal component in MATLAB (Table 4.9). The OPLS-DA score plot showed 

separation tendency between post-RYGB and post-GOP samples (Figure 4.17 (A)). Higher 

concentrations of valine and tyrosine were observed in post-GOP group compared to post-RYGB group 

prior to BH adjustment (r > 0.5) (Figure 4.17 (B)).  

 

Table 4.9 Univariate and multivariate analysis on quantified data and full-resolution spectral data of post-RYGB and post-

GOP samples 

 

 

 

BI_QUANT Univariate 

analysis (Kruskal Wallis 

H test)

Models

Metabolites VIP[1+0+0] VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison r p q Comparison

3-Hydroxybutyric 

acid

RYGB > GOP                         

(P = 0.0168)
1.8848 2.0095 -0.3852 -0.7101 RYGB > GOP 0.4279 0.0146 0.4956 RYGB > GOP

Acetic acid 0.3492 1.7512 0.0714 0.1315 -0.0556 0.7623 0.9844

Acetoacetic acid
RYGB > GOP                         

(P = 0.0019)
1.5873 2.4827 -0.3244 -0.5980 RYGB > GOP 0.4044 0.0217 0.5010 RYGB > GOP

Acetone 0.6544 1.8544 -0.1337 -0.2465 0.3446 0.0534 0.6117

Alanine 0.6266 2.1741 0.1281 0.2361 -0.0787 0.6684 0.9700

Ca-EDTA 0.0310 0.4338 0.0063 0.0117

Citric acid
RYGB > GOP                         

(P = 0.0138)
1.8363 1.3838 -0.3753 -0.6918 RYGB > GOP 0.3377 0.0587 0.6206

Creatine 0.5824 2.0434 0.1190 0.2194 -0.3147 0.0794 0.6694

Creatinine 0.3755 1.0994 0.0768 0.1415 0.1804 0.3231 0.8987

Ethanol 0.3167 1.1497 0.0647 0.1193

Formic acid 0.6675 1.3977 0.1364 0.2515 -0.1762 0.3348 0.9002

Glucose 0.3552 1.2700 -0.0726 -0.1338 0.1116 0.5430 0.9510

Glutamic acid 1.4920 0.9552 0.3050 0.5621 GOP > RYGB 0.0527 0.7747 0.9849

Glutamine 1.1657 1.5930 0.2383 0.4392 GOP > RYGB 0.0189 0.9181 0.9938

Glycerol 1.2753 1.4968 -0.2607 -0.4805 RYGB > GOP 0.3303 0.0648 0.6325

Glycine 0.9256 1.0663 -0.1892 -0.3487 0.1888 0.3007 0.8913

Histidine 0.4072 0.7870 -0.0832 -0.1534 -0.1613 0.3778 0.9103

Isoleucine 0.3113 1.3046 0.0636 0.1173 -0.0333 0.8566 0.9902

K-EDTA 0.0000 0.0000 0.0000 --

Lactic acid 0.3167 2.0988 -0.0647 -0.1193 0.1635 0.3714 0.9091

Leucine 0.9587 1.9351 0.1960 0.3612 -0.3281 0.0668 0.6374

Phenylalanine 0.0000 0.0000 0.0000 -- -0.3525 0.0479 0.6034 GOP > RYGB

Pyruvic acid 0.5183 1.4654 0.1059 0.1953 0.0018 0.9922 0.9986

Trimethylamine-

N-oxide
0.0000 0.0000 0.0000 --

Tyrosine
GOP > RYGB                         

(P = 0.0049)
1.5889 0.6978 0.3248 0.5986 GOP > RYGB -0.5505 0.0011 0.3853 GOP > RYGB

Valine
GOP > RYGB                         

(P = 0.0017)
2.0777 1.2341 0.4247 0.7827 GOP > RYGB -0.5583 0.0009 0.3800 GOP > RYGB

BI_QUANT                                                                                                       

Multivariate analysis (OPLS-DA model) SIMCA

BI_QUANT                                                                                                       

Multivariate analysis (OPLS-DA model) matlab

full-resolution spectra (CPMG)                                                                                                               

Multivariate analysis (OPLS-DA model)

R2X(cum) = 0.1600, Q2(cum) = 0.3280, Pperm = 0.0032 Pperm = 0.1010 R2X = 0.9768, Q2Yhat = 0.6429, Pperm = 0.0110
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Figure 4.17 OPLS-DA modelling on full-resolution spectral plasma data of post-RYGB and post-GOP patients. (A) 7-fold internal 

cross-validated score plot of post-RYGB and post-GOP samples with 1 predictive and 1 orthogonal component; (B) Loading 

plot of post-RYGB and post-GOP data prior to BH-adjusted covering masks. Metabolites labelled downwards represent their 

increased intensities with post-GOP group. Metabolites: 1. Valine; 2. Tyrosine. 



4.3.3 Lipoprotein changes induced by VLCD, RYGB, and GOP intervention on plasma 

metabolic profiles 

Since full-resolution spectral data acquired by CPMG have been used to analyse plasma small 

metabolites in Section 4.3.2, full-resolution spectral data acquired by NOESY was only used to analyse 

lipoprotein in plasma here.  

 

4.3.3.1 Overview of NOESY & B.I.LISA 1H NMR data 

PCA was used to overview all intervention groups at pre- and post-intervention using full-resolution 

non-normalised NOESY spectra and B.I.LISA data. After excluding a strong outlier V004_pl3, there was 

no clear separation from different intervention groups at pre-intervention timepoint nor at post-

intervention timepoint along the PC1 and PC2; There was also not clear separation from different 

intervention groups at pre-intervention time point nor at post-intervention time point (Figure 4.18). 

  



123 
 

 

Figure 4.18 PCA scores plots of 1H NMR (A) full-resolution NOESY spectral data and (B) B.I.LISA data.  

 

PCA was carried out for each intervention groups using both full-resolution (Figure 4.19 (A-D)) and B.I 

LISA data (Figure 4.19 (E-H)). For full-resolution NOESY spectral data, there was not clear clustering 

between pre- and post-intervention time points in RYGB, GOP and Saline groups (Figure 4.19 (A), (B) 

& (D)). The grouping between pre- and post-VLCD was observed along PC2 (Figure 4.19 (B)). For B.I. 

LISA data, there was a separation between time points in VLCD group along PC1 (Figure 4.19 (F)). No 

clear separation was seen between pre- and post-intervention in RYGB, GOP, and saline (Figure 4.19 

(E), (G) & (H)) groups, which were consistent with the PCA of full-resolution NOESY data.  
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Figure 4.19 PCA scores plots of 1H NMR (A-D) full-resolution NOESY spectral data and (E-H) B.I.LISA data from GOP, RYGB, 

VLCD and Saline groups. 

 

As expected, no clear groupings of NOESY or B.I.LISA data at the pre-intervention time point (Figure 

4.20 (A, C)). After excluding a strong outlier V004_pl3 from post-VLCD group, there was also not any 

clear separation among plasma samples from different intervention groups at pre-intervention 

timepoint nor at post-intervention timepoint (Figure 4.20 (B, D)). Comparing to the comparison 

between pre- and post-intervention (Figure 4.19), no clear separation across post-intervention groups 

indicates that interpersonal variation in lipoprotein was greater than intrapersonal variation. 
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Figure 4.20 PCA scores plots of 1H NMR (A, B) full-resolution NOESY spectral data and of (C, D) B.I.LISA data at pre- and post-

intervention time point. 

 

4.3.3.2 Impact of RYGB on NOESY and B.I.LISA 1H NMR data 

A. Unpaired analysis of full resolution of NOESY profile and B.I.LISA data 

The OPLS-DA model for the full-resolution spectral data of RYGB samples was constructed using 1 

predictive and 2 orthogonal components in MATLAB 2018b and was valid (Table 4.10). The OPLS-DA 

score plot showed a separation between pre-RYGB and post-RYGB samples (Figure 4.21 (A)), but no 

significant signals from lipid/lipoprotein areas were observed (Figure 4.21 (B)). A valid OPLS-DA of 

B.I.LISA data with 1 predictive component in SIMCA showed the following changes after RYGB: 1) 

increased LDL fractions of free cholesterol, triglycerides, and very low density lipoprotein (VLDL) 

fractions of cholesterol and triglycerides; 2) decreased high density lipoprotein (HDL) fractions of 

cholesterol, free cholesterol, phospholipids, apolipoprotein A1 and apolipoprotein A2 (Table 4.10). 

Valid OPLS-DA models of B.I.LISA and full-resolution NOESY spectra in MATLAB were both constructed 
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using 1 predictive component and 2 orthogonal components, but neither showed significant signals 

of lipoprotein nor lipid area (Table 4.10). Non-paired Wilcoxon test on B.I.LISA data also did not show 

any significant result (Table 4.10). 

 

 

Figure 4.21 OPLS-DA modelling of full-resolution NOESY spectra of RYGB patients. (A) 7-fold internal cross-validated score 

plot of pre-RYGB and post-RYGB samples; (B) Loading plot of the pre-RYGB and post-RYGB data with BH-adjusted covering 

mask in black.  

 

Table 4.10 Significantly changed lipoprotein concentration (mg/dL) after RYGB intervention using different methods on 

different datasets. 

 

 

Names Lipoprotein transporter Notes VIP VIP[1]cvSE p[1] p(corr)[1] Comaprison

H3CH Subfraction 3 1.7040 0.9679 0.2296 0.6801 pre > post

H4CH Subfraction 4 1.3500 1.2807 0.1924 0.5700 pre > post

LDTG Main fraction 1.4887 2.4834 -0.1880 -0.5571 post > pre

L4TG Subfraction 4 1.4567 2.3634 -0.1943 -0.5755 post > pre

L5TG Subfraction 5 1.5199 2.2843 -0.2048 -0.6067 post > pre

HDPL Main fraction 1.5167 1.3713 0.2035 0.6028 pre > post

H2PL Subfraction 2 1.3623 1.6090 0.1789 0.5300 pre > post

H3PL Subfraction 3 1.7542 0.8353 0.2413 0.7148 pre > post

H4PL Subfraction 4 1.7820 0.9967 0.2536 0.7512 pre > post

TPA1 Main parameter 1.5696 1.0887 0.2133 0.6320 pre > post

HDA1 Main fraction 1.5470 1.1055 0.2104 0.6235 pre > post

H2A1 Subfraction 2 1.5905 1.1153 0.2185 0.6474 pre > post

H3A1 Subfraction 3 1.8770 0.6557 0.2602 0.7708 pre > post

H4A1 Subfraction 4 1.5502 1.1165 0.2208 0.6541 pre > post

TPA2 Main parameter 1.6143 0.7555 0.2114 0.6262 pre > post

HDA2 Main fraction 1.5800 0.7444 0.2055 0.6088 pre > post

H3A2 Main fraction 3 1.4532 0.8696 0.1824 0.5404 pre > post

H4A2 Main fraction 4 1.3259 1.8146 0.1871 0.5544 pre > post

Apolipoprotein A2
HDL

Cholesterol HDL Full-resolution NOESY data                 

OPLS-DA model in MATLAB               

R2X = 0.7342, Q2Y = 0.3287, [1+2+0]                      

No significant lipid area was 

observed         

Triglycerides LDL

Phospholipids HDL
B.I.LISA data                                          

non-paired Wilcoxon test                                                                 

No significant lipoprotein was 

observed

Apolipoprotein A1
HDL

B.I.LISA data                                                                                                     

OPLS-DA model in SIMCA

B.I.LISA data                                         

OPLS-DA model in MATLAB                

R2X = 0.6759, Q2Y = 0.4175, [1+2+0]                                       

No significant lipoprotein was 

observed
R2X(cum) = 0.467 , Q2(cum) = 0.33, P(CVANOVA) = 0.0061, [1+1+0]
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B. Paired analysis of full-resolution of NOESY profiles and B.I.LISA data 

With 19 patients whose pre- and post-RYGB samples were both collected, RM-PLS-DA model was used 

to analyse full-resolution NOESY spectra and B.I.LISA data. RM-PLS-DA model for the full resolution 

NOESY spectra of was valid (RCV = 0.89, Q2 = 0.7, Figure 4.22 (A)), and no significant signal from 

lipid/lipoprotein areas was observed (Figure 4.22 (B)). RM-PLS-DA model for the B.I.LISA data was valid 

but just reached threshold (RCV = 0.25, Q2 = 0.14), but the KDE prediction scores did not show 

separation, and no significant signal was observed. 

 

 

Figure 4.22 RM-PLS-DA modelling on full-resolution NOESY spectra. (A) Kernel density estimate (KDE, top) and mean (bottom) 

of the predicted scores (Tpred) for pre-RYGB (blue) and post-RYGB (red) plasma data, R2 and Q2 shown for the predictive axis. 

(B) Average 1H-NMR spectrum of pre-RYGB and post-RYGB plasma samples (top), and Manhattan plot showing -log10(pFDR) 

x sign of regression coefficient (β) of the RM-PLS-DA model for the 18637 spectral variables.  

 

Paired Wilcoxon test on B.I.LISA data showed 23 lipoprotein parameters significantly changed after 

RYGB intervention (Table 4.11). HDL and its subfractions of cholesterol, phospholipids, apolipoprotein 

A1 and apolipoprotein A2 decreased significantly. VLDL subfraction 5 of cholesterol, triglycerides and 

phospholipids also decreased significantly. In contrast, LDL and its subfraction 4 of triglycerides 

increased significantly.  
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Table 4.11 Significantly changed lipoprotein concentration (mg/dL) after RYGB intervention using paired Wilcoxon test 

  

 

C. Summary of lipoprotein changes induced by RYGB surgery 

The above analyses included (1) OPLS-DA of full-resolution NOESY spectra; (2) OPLS-DA of B.I. LISA 

data in MATLAB and SIMCA; (3) Wilcoxon test of B.I. LISA data; (4) paired analyses using RM-PLS-DA 

of full-resolution NOESY spectra; (5) paired analyses using RM-PLS-DA and Wilcoxon signed-rank test 

of B.I.LISA data. The summary of lipoprotein changes observed in these analyses are shown below.  

1) The changes of HDL and its subfractions of apolipoprotein A1 and A2, phospholipids, free 

cholesterol and cholesterol were observed in OPLS-DA of B.I.LISA data in SIMCA and 

paired Wilcoxon test of B.I.LISA. 

2) The changes of VLDL subfraction 3 and 4 of cholesterol, LDL subfraction 5 and 6 of free 

cholesterol, HDL subfraction 2 of cholesterol and free cholesterol, VLCD subfraction 3 of 

triglycerides, LDL subfraction of 1, 2 and 5 of triglycerides, and the ratio of LDL and HDL 

cholesterol were only observed in OPLS-DA of B.I.LISA data in SIMCA. 

3) The changes of VLDL subfraction 5 of free cholesterol, triglycerides, and phospholipids 

were only observed in paired Wilcoxon test of B.I.LISA data. 

Names Lipoprotein transporter Notes Comparison

HDCH Main parameter pre > post (P  = 0.0250)

H3CH Subfraction 3 pre > post (P  = 0.0092)

H4CH Subfraction 4 pre > post (P  = 0.0262)

V5FC VLDL Subfraciton 5 pre > post (P  = 0.0262)

HDFC Main fraction pre > post (P  = 0.0132)

H3FC Subfaction 3 pre > post (P  = 0.0262)

V5TG VLDL Subfraction 5 pre > post (P  = 0.0262)

LDTG Main fraction post > pre (P  = 0.0250)

L4TG Subfraction 4 post > pre (P  = 0.0207)

V5PL VLDL Subfraciton 5 pre > post (P  = 0.0321)

HDPL Main fraction pre > post (P  = 0.0132)

H2PL Subfraction 2 pre > post (P  = 0.0262)

H3PL Subfraction 3 pre > post (P  = 0.0098)

H4PL Subfraction 4 pre > post (P  = 0.0132)

TPA1 Main parameter pre > post (P  = 0.0098)

HDA1 Main fraction pre > post (P = 0.0132)

H2A1 Subfraction 2 pre > post (P  = 0.0262)

H3A1 Subfraction 3 pre > post (P  = 0.0081)

H4A1 Subfraction 4 pre > post (P  = 0.0098)

TPA2 Main parameter pre > post (P  = 0.0098)

HDA2 Main fraction pre > post (P  = 0.0126)

H3A2 Subfraction 3 pre > post (P  = 0.0262)

H4A2 Subfraction 4 pre > post (P  = 0.0132)

Phospholipids
HDL

Apolipoprotein A1
HDL

Apolipoprotein A2
HDL

Cholesterol HDL

Free cholesterol
HDL

Triglycerides
LDL
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4.3.3.3 Impact of VLCD on NOESY and B.I.LISA 1H NMR data 

A. Unpaired analysis of full-resolution of NOESY profile and B.I.LISA data 

The OPLS-DA model for the full-resolution spectral data of VLCD samples was constructed using 1 

predictive and 1 orthogonal component in MATLAB 2018b was valid (Table 4.12). The OPLS-DA score 

plot showed the separation of pre-VLCD and post-VLCD samples (Figure 4.23 (A)), but there was not 

significant signal of lipoprotein nor lipid area (Figure 4.23 (B)).  

 

 

Figure 4.23 OPLS-DA modelling on full-resolution NOESY spectra of VLCD patients. (A) 7-fold internal cross-validated score 

plot of pre-VLCD and post-VLCD samples; (B) Loading plot of the pre-VLCD and post-VLCD data with BH-adjusted covering 

mask in black.  

 

Unpaired Wilcoxon test showed 38 lipoprotein changes, including 1) total concentrations of 

cholesterol and apolipoprotein A1, A2 and B, 2) concentrations of HDL fractions and subfractions 

(mainly subfraction 3 and 4) of cholesterol, triglycerides, phospholipids, and apolipoprotein A1, A2 

and B, 3) concentrations of low density lipoprotein (LDL) fractions and subfractions (mainly subfraction 

4) of cholesterol, phospholipids and apolipoprotein, as well as particle numbers of LDL fraction and 

subfraction 4, 4) concentration of intermediate density lipoprotein (IDL) fraction of triglycerides, 5) 

VLDL fractions and subfractions (mainly subfraction 1, 2 and 5) of cholesterol, triglycerides, and 
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phosphides, 6) particle number of apolipoprotein B. Apart from this, the concentrations of HDL-

cholesterol, IDL-cholesterol, VLDL-free cholesterol, triglycerides, VLDL-triglycerides, LDL-

apolipoprotein B, and the particle number of LDL also showed changes in OPLS-DA of B.I.LISA data 

with 1 predictive component and 1 orthogonal component in MATLAB. In contrast, OPLS-DA model 

on B.I.LISA data with using 1 predictive and 2 orthogonal components in SIMCA was not valid (Table 

4.12). 

 

Table 4.12 Significantly changed lipoprotein concentration (mg/dL) and particle numbers (nmol/L) after VLCD intervention 

using univariate analysis and OPLS-DA modelling. 

 

 

r q Comparison

TPCH Concentrations (mg/dL) Main parameter -0.4961 0.0157 pre > post

HDCH Concentrations (mg/dL) Main parameter -0.3688 0.0498 pre > post

H3CH Concentrations (mg/dL) Subfraction 3 -0.4672 0.0232 pre > post

H4CH Concentrations (mg/dL) Subfraction 4 -0.4289 0.0281 pre > post

L4CH Concentrations (mg/dL) Subfraction 4 -0.5011 0.0151 pre > post

L5CH Concentrations (mg/dL) Subfraction 5 -0.4122 0.0313 pre > post

IDCH Concentrations (mg/dL) IDL Main fraction -0.3227 0.0818 pre > post

VLCH Concentrations (mg/dL) Main fraction -0.4398 0.0279 pre > post

V1CH Concentrations (mg/dL) Subfraction 1 -0.4498 0.0246 pre > post

V2CH Concentrations (mg/dL) Subfraction 2 -0.4312 0.0281 pre > post

HDFC Concentrations (mg/dL) Main fraction -0.3737 0.0479 pre > post

H3FC Concentrations (mg/dL) Subfraction 3 -0.4009 0.0354 pre > post

L4FC Concentrations (mg/dL) LDL Subfraction 4 -0.3813 0.0442 pre > post

VLFC Concentrations (mg/dL) Main fraction -0.4305 0.0281 pre > post

V1FC Concentrations (mg/dL) Subfraction 1 -0.4539 0.0236 pre > post

V2FC Concentrations (mg/dL) Subfraction 2 -0.4091 0.0317 pre > post

V5FC Concentrations (mg/dL) Subfraction 5 -0.4165 0.0297 pre > post

TPTG Concentrations (mg/dL) Main parameter -0.4312 0.0281 pre > post

HDTG Concentrations (mg/dL) Main fraction -0.4420 0.0278 pre > post

H3TG Concentrations (mg/dL) Subfraction 3 -0.5306 0.0098 pre > post

H4TG Concentrations (mg/dL) Subfraction 4 -0.6437 0.0015 pre > post

IDTG Concentrations (mg/dL) IDL Main fraction -0.4538 0.0236 pre > post

VLTG Concentrations (mg/dL) Main fraction -0.3785 0.0456 pre > post

V1TG Concentrations (mg/dL) Subfraction 1 -0.3846 0.0426 pre > post

V2TG Concentrations (mg/dL) Subfraction 2 -0.3734 0.0479 pre > post

HDPL Concentrations (mg/dL) Main fraction -0.4229 0.0286 pre > post

H3PL Concentrations (mg/dL) Subfraction 3 -0.5113 0.0129 pre > post

H4PL Concentrations (mg/dL) Subfraction 4 -0.5566 0.0071 pre > post

LDPL Concentrations (mg/dL) Main fraction -0.3702 0.0496 pre > post

L4PL Concentrations (mg/dL) Subfraction 4 -0.4756 0.0219 pre > post

L5PL Concentrations (mg/dL) Subfraction 5 -0.4060 0.0328 pre > post

IDPL Concentrations (mg/dL) IDL Main fraction -0.4262 0.0281 pre > post

VLPL Concentrations (mg/dL) Main fraction -0.4280 0.0281 pre > post

V1PL Concentrations (mg/dL) Subfraction 1 -0.4252 0.0281 pre > post

V2PL Concentrations (mg/dL) Subfraction 2 -0.3863 0.0426 pre > post

V5PL Concentrations (mg/dL) Subfraction 5 -0.3885 0.0426 pre > post

TPA1 Concentrations (mg/dL) Main parameter -0.5408 0.0085 pre > post

HDA1 Concentrations (mg/dL) Main fraction -0.5138 0.0129 pre > post

H2A1 Concentrations (mg/dL) Subfraction 2 -0.5533 0.0071 pre > post

H3A1 Concentrations (mg/dL) Subfraction 3 -0.5938 0.0048 pre > post

H4A1 Concentrations (mg/dL) Subfraction 4 -0.5562 0.0071 pre > post

TPA2 Concentrations (mg/dL) Main parameter -0.4565 0.0236 pre > post

HDA2 Concentrations (mg/dL) Main fraction -0.4678 0.0232 pre > post

H2A2 Concentrations (mg/dL) Subfraction 2 -0.4111 0.0313 pre > post

H3A2 Concentrations (mg/dL) Subfraction 3 -0.4900 0.0167 pre > post

H4A2 Concentrations (mg/dL) Subfraction 4 -0.4355 0.0281 pre > post

TPAB Concentrations (mg/dL) Main parameter -0.4185 0.0294 pre > post

LDAB Concentrations (mg/dL) Main fraction -0.3857 0.0426 pre > post

L4AB Concentrations (mg/dL) Subfraction 4 -0.4583 0.0236 pre > post

TBPN Particle number (nmol/L) Main parameter -0.4185 0.0294 pre > post

LDPN Particle number (nmol/L) Main fraction -0.3856 0.0426 pre > post

L4PN Particle number (nmol/L) Subfraction 4 -0.4585 0.0236 pre > post

B.I.LISA                                                                                                             

OPLS-DA model in 

SIMCA                               

P(CVANOVA) > 0.05

pre > post (P = 0.0249)

pre > post (P = 0.0450)

pre > post (P = 0.0249)

pre > post (P = 0.0450)

pre > post (P = 0.0461)

pre > post (P = 0.0204)

pre > post (P = 0.0450)

pre > post (P = 0.0093)

pre > post (P = 0.0093)

pre > post (P = 0.0093)

pre > post (P = 0.0322)

pre > post (P = 0.0314)

pre > post (P = 0.0473)

pre > post (P = 0.0209)

pre > post (P = 0.0467)

pre > post (P = 0.0093)

pre > post (P = 0.0130)

pre > post (P = 0.0093)

pre > post (P = 0.0226)

pre > post (P = 0.0450)

pre > post (P = 0.0383)

pre > post (P = 0.0387)

pre > post (P = 0.0130)

pre > post (P = 0.0384)

pre > post (P = 0.0130)

pre > post (P = 0.0093)

pre > post (P = 0.0450)

pre > post (P = 0.0204)

pre > post (P = 0.0450)

B.I.LISA                                                                                                             

OPLS-DA model in MATLAB 

Comparison

pre > post (P = 0.0148)

pre > post (P = 0.0314)

pre > post (P = 0.0461)

R2X = 0.8163, Q2Y = 0.3703, Pperm = 0.0010, [1+1+0]

B.I.LISA data                           

non-paired Wilcoxon test

Free cholesterol

Triglycerides

Phospholipids

Apolipoprotein A2

Apolipoprotein A1

Cholesterol
pre > post (P = 0.0204)

pre > post (P = 0.0450)

pre > post (P = 0.0473)

pre > post (P = 0.0249)

pre > post (P = 0.0272)

pre > post (P = 0.0450)

LDL

Names Lipoprotein transporter

Apolipoprotein B

HDL

VLDL

HDL

VLDL

HDL

VLDL

HDL

Notes

VLDL

HDL

HDL

LDL

LDL

LDL
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B. Paired analysis of full-resolution of NOESY profiles and B.I.LISA data 

With 17 patients whose pre- and post-RYGB samples were both collected, RM-PLS-DA model was used 

to analyse full-resolution NOESY spectra and B.I.LISA data. RM-PLS-DA model of the full resolution 

NOESY spectra of was valid (RCV = 0.60, Q2 = 0.50, Figure 4.24 (A)), but no significant signals from 

lipid/lipoprotein areas was observed (Figure 4.24 (B)). Similarly, RM-PLS-DA model of B.I.LISA data was 

valid (RCV = 0.93, Q2 = 0.54, Figure 4.24 (A)) but also did not show significant signals from 

lipid/lipoprotein areas (Figure 4.24 (D)).  

 

In contrast, paired Wilcoxon test of B.I.LISA data showed 84 changes of lipoprotein parameters, and 

all of them showed higher concentration pre-VLCD than post-VLCD  (Table 4.13), this include (1) the 

concentrations of HDL fractions and subfractions (mainly subfraction 3 and 4) of cholesterol, IDL 

fractions of cholesterol, triglycerides, phospholipids, apolipoprotein B, LDL fractions and subfractions 

(mainly subfraction 1, 3, 4, 5 and 6) of cholesterol, triglycerides, phospholipids, and apolipoprotein B, 

and VLDL fractions and subfractions (mainly subfraction, 1, 2, 3, 4 and 5) of cholesterol, triglycerides, 

phospholipids, apolipoprotein B, (2) the particle numbers of apolipoprotein B100, apolipoprotein B, 

LDL and its subfraction 1, 4, 5 and 6, IDL, and VLDL, (3) the ratio of LDL-cholesterol and HDL-

cholesterol. 
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Figure 4.24 RM-PLS-DA modelling on (A-B) full-resolution NOESY spectra and (C-D) B.I.LISA data of VLCD patients. (A, C) KDE 

(top) and mean (bottom) of the predicted scores (Tpred) for pre-VLCD (blue) and post-VLCD (red) plasma data, R2 and Q2 shown 

for the predictive axis. (B) Average 1H-NMR spectrum of pre-VLCD and post-VLCD plasma samples (top), and Manhattan plot 

showing -log10(pFDR) x sign of regression coefficient (β) of the RM-PLS-DA model for the 18637 spectral variables. (D) 

Manhattan plot showing -log10(pFDR) x sign of regression coefficient (β) of the RM-PLS-DA model for the 112 spectral 

variables. 
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Table 4.13 Significantly changed Lipoprotein concentrations (mg/dL), particle number (nmol/L), and ratio after VLCD 

intervention using paired Wilcoxon signed-rank test. 

 

Names Lipoprotein transporter Notes Comparison

TPCH Concentration (mg/dL) Main parameter pre > post (P  = 0.0011)

HDCH Concentration (mg/dL) Main parameter pre > post (P  = 0.0050)

H3CH Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0069)

H4CH Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0026)

LDCH Concentration (mg/dL) Main parameter pre > post (P  = 0.0026)

L1CH Concentration (mg/dL) Subfraction 1 pre > post (P  = 0.0082)

L3CH Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0464)

L4CH Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0026)

L5CH Concentration (mg/dL) Subfraction 5 pre > post (P  = 0.0075)

L6CH Concentration (mg/dL) Subfraction 6 pre > post (P  = 0.0031)

IDCH Concentration (mg/dL) IDL Main fraction pre > post (P  = 0.0168)

VLCH Concentration (mg/dL) Main fraction pre > post (P = 0.0011)

V1CH Concentration (mg/dL) Subfraction 1 pre > post (P  = 0.0011)

V2CH Concentration (mg/dL) Subfraction 2 pre > post (P  = 0.0011)

V3CH Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0067)

V4CH Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0115)

HDFC Concentration (mg/dL) Main fraction pre > post (P  = 0.0041)

H3FC Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0073)

H4FC Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0317)

LDFC Concentration (mg/dL) Main fraction pre > post (P  = 0.0074)

L1FC Concentration (mg/dL) Subfraction 1 pre > post (P  = 0.0190)

L4FC Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0026)

L5FC Concentration (mg/dL) Subfraction 5 pre > post (P  = 0.0132)

IDFC Concentration (mg/dL) IDL Main fraction pre > post (P  = 0.0186)

VLFC Concentration (mg/dL) Main fraction pre > post (P  = 0.0011)

V1FC Concentration (mg/dL) Subfraction 1 pre > post (P  = 0.0025)

V2FC Concentration (mg/dL) Subfraction 2 pre > post (P  = 0.0034)

V3FC Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0082)

V4FC Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0171)

V5FC Concentration (mg/dL) Subfraction 5 pre > post (P  = 0.0152)

TPTG Concentration (mg/dL) Main parameter pre > post (P  = 0.0011)

HDTG Concentration (mg/dL) Main fraction pre > post (P  = 0.0022)

H3TG Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0038)

H4TG Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0023)

L6TG Concentration (mg/dL) LDL Subfraction 6 pre > post  (P  = 0.0247)

IDTG Concentration (mg/dL) IDL Main fraction pre > post (P  = 0.0041)

VLTG Concentration (mg/dL) Main fraction pre > post (P  = 0.0011)

V1TG Concentration (mg/dL) Subfraction 1 pre > post (P  = 0.0011)

V2TG Concentration (mg/dL) Subfraction 2 pre > post (P  = 0.0031)

V3TG Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0097)

V5TG Concentration (mg/dL) Subfraction 5 pre > post (P  = 0.0201)

HDPL Concentration (mg/dL) Main fraction pre > post (P  = 0.0074)

H3PL Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0024)

H4PL Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0022)

LDPL Concentration (mg/dL) Main fraction pre > post (P  = 0.0026)

L1PL Concentration (mg/dL) Subfraction 1 pre > post (P  = 0.0074)

L3PL Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0317)

L4PL Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0014)

L5PL Concentration (mg/dL) Subfraction 5 pre > post (P  = 0.0041)

L6PL Concentration (mg/dL) Subfraction 6 pre > post (P  = 0.0024)

IDPL Concentration (mg/dL) IDL Main fraction pre > post (P  = 0.0057)

VLPL Concentration (mg/dL) Main fraction pre > post (P  = 0.0011)

V1PL Concentration (mg/dL) Subfraction 1 pre > post (P  = 0.0011)

V2PL Concentration (mg/dL) Subfraction 2 pre > post (P  = 0.0018)

V3PL Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0057)

V4PL Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0464)

V5PL Concentration (mg/dL) Subfraction 5 pre > post  (P  = 0.0247)

TPA1 Concentration (mg/dL) Main parameter pre > post (P  = 0.0011)

HDA1 Concentration (mg/dL) Main fraction pre > post (P  = 0.0011)

H2A1 Concentration (mg/dL) Subfraction 2 pre > post (P  = 0.0011)

H3A1 Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0011)

H4A1 Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0011)

TPA2 Concentration (mg/dL) Main parameter pre > post (P  = 0.0011)

HDA2 Concentration (mg/dL) Main fraction pre > post (P  = 0.0011)

H2A2 Concentration (mg/dL) Subfraction 2 pre > post (P  = 0.0171)

H3A2 Concentration (mg/dL) Subfraction 3 pre > post (P  = 0.0057)

H4A2 Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0011)

TPAB Concentration (mg/dL) Main parameter pre > post (P = 0.0011)

LDAB Concentration (mg/dL) Main fraction pre > post (P  = 0.0011)

L1AB Concentration (mg/dL) Subfraction 1 pre > post (P  = 0.0190)

L4AB Concentration (mg/dL) Subfraction 4 pre > post (P  = 0.0038)

L5AB Concentration (mg/dL) Subfraction 5 pre > post (P  = 0.0075)

L6AB Concentration (mg/dL) Subfraction 6 pre > post (P  = 0.0024)

IDAB Concentration (mg/dL) IDL Main fraction pre > post (P  = 0.0160)

VLAB Concentration (mg/dL) VLDL Main fraction pre > post (P  = 0.0057)

TBPN Particle number (nmol/L) Main parameter pre > post (P  = 0.0011)

LDPN Particle number (nmol/L) Main fraction pre > post (P  = 0.0011)

L1PN Particle number (nmol/L) Subfraction 1 pre > post (P  = 0.0190)

L4PN Particle number (nmol/L) Subfraction 4 pre > post (P  = 0.0038)

L5PN Particle number (nmol/L) Subfraction 5 pre > post (P  = 0.0075)

L6PN Particle number (nmol/L) Subfraction 6 pre > post (P  = 0.0024)

IDPN Particle number (nmol/L) IDL Main fraction pre > post (P  = 0.0132)

VLPN Particle number (nmol/L) VLDL Main fraction pre > post (P  = 0.0057)
LDHD Ratio LDL cholesterol / HDL cholesterol pre > post (P  = 0.0282)

LDL

Apolipoprotein A1
HDL

Apolipoprotein A2
HDL

Apolipoprotein B

LDL

Triglycerides

HDL

VLDL

Phospholipids

HDL

LDL

VLDL

Parameters

Cholesterol

HDL

LDL

VLDL

Free Cholesterol

HDL

LDL

VLDL
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C. Summary of lipoprotein changes induced by VLCD 

All the lipoprotein parameter changes showed in unpaired comparisons in Table 4.12, were also 

showed in the paired comparisons in Table 4.13. In addition, the following lipoprotein parameters 

were also showed significant changes in the paired Wilcoxon test in Table 4.13:  

1) The concentration of HDL subfraction 4 of free cholesterol (H4FC); 

2) The particle numbers of LDL subfraction 1, 5 and 6 (L1PN, L5PN, and L6PN), and the 

concentrations of LDL subfractions (mainly subfraction 1, 5 and 6) of apolipoprotein B (L1AB, 

L5AB, and L6AB), cholesterol and free cholesterol, (LDCH, L6CH, L1FC, and L5FC), triglycerides 

(L6TG), and phospholipids (L1PL and L6PL), of LDL main fraction of cholesterol and free 

cholesterol (LDCH and LDFC), as well as of LDL subfraction 3 of cholesterol and phospholipids 

(L3CH and L3PL); 

3) The ratio of LDL-cholesterol and HDL-cholesterol (LDHD); 

4) The particle number of IDL main fraction (IDPN) and the concentrations of IDL main fraction 

of free cholesterol (IDFC), and of apolipoprotein B (IDAB); 

5) The particle number of VLDL main fraction (VLPN), and the concentrations of VLDL 

subfractions (mainly subfraction 3 and 4) of cholesterol and free cholesterol (V3CH, V4CH, 

V3FC, and V4FC), triglycerides (V3TG), phospholipids (V3PL and V4PL), of VLDL main fraction 

of apolipoprotein (VLAB), and VLDL subfraction 5 of triglycerides (V5TG). 

 

4.3.3.4 Impact of GOP on NOESY and B.I.LISA 1H NMR data 

A. Non-paired analysis of full-resolution NOESY lipoprotein profile of plasma 

OPLS-DA of full-resolution NOESY spectra constructed with 1 predictive and 1 orthogonal component 

was valid (Pperm = 0.0210) and there was a separation trend between pre-GOP and post-GOP in the 
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scores plot (Figure 4.25 (A)). However, no significant signal was observed from loading plot prior to 

BH procedure (Figure 4.25 (B)). In contrast, OPLS-DA of full-resolution NOESY spectra constructed with 

1 predictive component in SIMCA was not valid (PCVANOVA > 0.05). There was also no significant 

lipoprotein parameters from non-paired Wilcoxon test on B.I.LISA data. 

 

 

Figure 4.25 OPLS-DA modelling on full-resolution NOESY spectra of GOP patients. (A) 7-fold internal cross-validated score plot 

of pre-GOP and post-GOP samples; (B) Loading plot of the pre-GOP and post-GOP data prior to BH procedure. 

 

B. Paired analysis of full-resolution NOESY profiles and B.I.LISA data 

RM-PLS-DA models of full-resolution NOESY spectra and B.I.LISA were valid (for full-resolution NOESY 

data, RCV = 0.89, Q2 = 0.66; B.I.LISA data, RCV = 0.72, Q2 = 0.55), but no significant signal was observed 

in lipid areas. In contrast, paired Wilcoxon test on B.I.LISA data showed 14 significant changes of 

lipoprotein parameters (Table 4.14), including 1) decreased concentrations of LDL subfractions of 

cholesterol, triglycerides, phospholipids, and apolipoprotein B, 2) decreased concentrations of IDL free 

cholesterol and IDL phospholipids, 3) decreased particle numbers of LDL subfraction 5 and 6 decreased 

significantly, 4) decreased concentrations of total cholesterol and apolipoprotein A1.  
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Table 4.14 Significantly changed lipoprotein concentration (mg/dL) and particle number (nmol/L) after GOP intervention using 

paired Wilcoxon test. 

 

 

4.3.3.5 Impact of Saline (control) on NOESY and B.I.LISA 1H NMR data  

OPLS-DA models of full-resolution NOESY spectra in MATLAB and SIMCA were not valid (Pperm > 0.05). 

Non-paired and paired Wilcoxon test of B.I.LISA data did not show any significant lipoprotein 

parameters. RM-PLS-DA models of full-resolution NOESY spectra and B.I.LISA were both valid (for full-

resolution spectral data, RCV = 0.45, Q2 = 0.38; B.I.LISA data, RCV = 0.33, Q2 = 0.24). Only the latter 

showed significant signals of lipoprotein parameters, including the reduced particle number of LDL 

subfraction 3 (L3PN), and the reduced concentrations of cholesterol, phospholipids, and 

apolipoprotein, respectively, carried by LDL subfraction 3 (L3CH, L3PL, and L3AB) (Figure 4.26). 

 

 

Names Lipoprotein transporter Notes Comparison

TPCH Concentration (mg/dL) Main parameter pre > post (P  = 0.0433)

L5CH Concentration (mg/dL) Subfraction 5 pre > post (P  = 0.0171)

L6CH Concentration (mg/dL) Subfraction 6 pre > post (P  = 0.0171)

L5FC Concentration (mg/dL) LDL Subfraction 5 pre > post (P  = 0.0348)

IDFC Concentration (mg/dL) IDL Main fraction pre > post (P  = 0.0488)

L6TG Concentration (mg/dL) LDL Subfraction 6 pre > post (P  = 0.0206)

L5PL Concentration (mg/dL) LDL Subfraction 5 pre > post (P  = 0.0171)

L6PL Concentration (mg/dL) Subfraction 6 pre > post (P  = 0.0171)

IDPL Phospholipids Concentration (mg/dL) IDL Main fraction pre > post (P  = 0.0488)

L5AB Concentration (mg/dL) Subfraction 5 pre > post (P  = 0.0137)

L6AB Concentration (mg/dL) Subfraction 6 pre > post (P  = 0.0171)

TPA1 Apolipoprotein A1 Concentration (mg/dL) Main parameter pre > post (P  = 0.0348)

L5PN Particle number (nmol/L) Subfraction 5 pre > post (P  = 0.0137)

L6PN Particle number (nmol/L) Subfraction 6 pre > post (P  = 0.0171)
LDL

LDLApolipoprotein B

Triglycerides

Cholesterol

Free cholesterol

LDL
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Figure 4.26 RM-PLS-DA modelling on B.I.LISA of Saline patients. (A) KDE (top) and mean (bottom) of the predicted scores 

(Tpred) for pre-Saline (blue) and post-Saline (red) plasma data, R2 and Q2 shown for the predictive axis. (B) Manhattan plot 

showing -log10(pFDR) x sign of regression coefficient (β) of the RM-PLS-DA model for the 112 quantified variables. The blue 

arrows represent the higher concentrations of the lipoprotein parameters in pre-Saline patients.  

 

4.3.3.6 Summary of the lipoprotein changes induced by different weight loss strategies 

The reductions of HDL, IDL, LDL and VLDL subfractions of apolipoprotein, phospholipids, cholesterol, 

free cholesterol, and triglycerides were similar in RYGB and VLCD group in unpaired analysis and paired 

analysis (Figure 4.27). All the changed lipoprotein parameters of VLCD in unpaired analysis were also 

showed changes in the paired analysis. The following lipoprotein parameters were only changed in 

paired Wilcoxon test: 1) VLDL subfraction 3, 4 and 5 of cholesterol (V3CH, V4CH, and V5CH), and LDL 

main fraction and subfraction 1, 3, 6 of cholesterol (LDCH, L1CH, L3CH, and L6CH); 2) VLDL subfraction 

3 and 4 subfraction of free cholesterol (V3FC and V4FC), LDL main fraction and subfraction 1, 4, and 5 

of free cholesterol (LDFC, L4FC, and L5FC), IDL main fraction of free cholesterol (IDFC), and HDL 

subfraction 4 of free cholesterol (H4FC); 3) VLDL subfraction 3 and 5 of triglycerides (V3TG and V5TG), 

and LDL subfraction 6 of triglyceride (L6TG); 4) VLDL and IDL main fraction of apolipoprotein B (VLAB 

and IDAB), and LDL subfraction 1, 5, and 6 of apolipoprotein B (L1AB, L5AB, and L6AB); 5) VLDL 

subfraction 3 and 4 of phospholipids (V3PL and V4PL), LDL subfraction 1, 3, 5, and 6 of phospholipids 

(L1PL, L3PL, L5PL, and L6PL), and IDL main fraction of phospholipids (IDPL); 6) the ratio of LDL-

cholesterol and HDL-cholesterol (LDHD), VLDL and IDL particle numbers (VLPN and IDPN), and LDL 
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subfraction 1, 5, and 6 particle numbers (L1PN, L5PN and L6PN). In RYGB group, LDL subfraction 5 of 

triglycerides concentration was showed to be increased only in unpaired analysis (Figure 4.27 (A)). All 

the rest changes in unpaired analysis were also showed in paired analysis, where HDL main fraction of 

cholesterol and free cholesterol, VLDL subfraction 5 of free cholesterol, HDL subfraction 3 of free 

cholesterol, and VLDL subfraction 5 of phospholipids also showed significant changes (Figure 4.27 (B)). 

In GOP group, no lipoprotein parameters were showed significant changes in unpaired analysis (Figure 

4.27 (A)), whereas 14 lipoprotein parameters, including total concentration of cholesterol, LDL 

subfraction 5 and 6 of cholesterol, apolipoprotein, phospholipids and particle numbers, LDL 

subfraction 5 of free cholesterol, LDL subfraction 6 of triglycerides, IDL main fraction of phospholipids, 

and total concentration of apolipoprotein A1, decreased in paired analysis (Figure 4.27 (B)).  

 

Figure 4.27 The impact of RYGB, VLCD and GOP on (A) non-paired and (B) paired and B.I.LISA data. (A) ‘a’ represents results 

from OPLS-DA of B.I. LISA data in SIMCA, ‘b’ represents results from non-paired Wilcoxon test of B.I.LISA data, and ‘c’ 

represents results from OPLS-DA of B.I.LISA data in MATLAB. (B) Paired Wilcoxon rank-signed test on B.I.LISA data. Labels: 

Cholesterol VLDL subfractions: VLCH, V1CH, V2CH, V3CH and V4CH; Cholesterol IDL subfractions: IDCH; Cholesterol LDL subfractions: LDCH, L1CH, L3CH, L4CH, 

L5CH and L6CH; Cholesterol HDL subfractions: HDCH, H3CH and H4CH; Free cholesterol VLDL subfractions: VLFC, V1FC, V2FC, V3FC, V4FC, V5FC; Free cholesterol 

IDL subfractions: IDFC; Free cholesterol LDL subfractions: LDFC, L1FC, L4FC and L5FC; Free cholesterol HDL subfractions: HDFC, H3FC and H4FC. Triglycerides: TPTG; 

Triglycerides VLDL subfractions: VLTG, V1TG, V2TG, V3TG and V5TG; Triglycerides IDL subfractions: IDTG; Triglycerides LDL subfractions: LDTG, L4TG, L5TG and 

L6TG; Triglycerides HDL subfractions: HDTG, H3TG and H4TG; Apolipoprotein Apo-B100: TPAB; Apolipoprotein Apo-B VLDL subfractions: VLAB; Apolipoprotein Apo-B 

IDL subfractions: IDAB; Apolipoprotein Apo-B LDL subfractions: LDAB, L1AB, L4AB, L5AB and L6AB; Apolipoprotein Apo-A1: TPA1; Apolipoprotein Apo-A1 HDL 

subfractions: HDA1, H2A1, H3A1 and H4A1; Apolipoprotein Apo-A2: TPA2; Apolipoprotein Apo-A2 HDL subfractions: HDA2, H2A2, H3A2 and H4A2; Phospholipids VLDL 

subfractions: VLPL, V1PL, V2PL, V3PL, V4PL and V5PL; Phospholipids IDL subfractions: IDPL; Phospholipids LDL subfractions: LDPL, L1PL, L3PL, L4PL, L5PL and L6PL; 

Phospholipids HDL subfractions: HDPL, H2PL, H3PL and H4PL; Ratio of cholesterol in LDL and HDL: LDHD; Total Apo-B particle number: TBPN; VLDL particle number: 

VLPN; IDL particle number: IDPN; LDL subfraction particle number: LDPN, L1PN, L4PN, L5PN and L6PN. 
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4.3.3.7 Comparison between different intervention groups at each time point 

A. Comparisons of pre-intervention groups 

At the pre-intervention time point, no significant difference was observed in OPLS-DA model of 

B.I.LISA data in SIMCA nor MATLAB and in Kruskal Wallis test. Among OPLS-DA models of full-

resolution NOESY spectra, 2 models constructed on 1) pre-RYGB and pre-Saline (Figure 4.28 (A - B)) 

and 2) pre-GOP and pre-RYGB (Figure 4.28 (C - D)) with 1 predictive component were valid (Pperm < 

0.05), but no separation was observed in score plots (Figure 4.28 (A, C)), and no significant signal was 

observed from lipid/lipoprotein areas (Figure 4.28 (B, D)).  

 

 

Figure 4.28 OPLS-DA modelling on full-resolution NOESY spectra of (A-B) pre-RYGB and pre-Saline and (C-D) pre-RYGB and 

pre-GOP samples. (A, C) 7-fold internal cross-validated score plots. (B, D) Loading plots prior to BH procedure. 
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B. Comparisons of post-intervention groups 

a. Comparison of 4 post-intervention groups univariate statistical analysis of B.I.LISA data 

Kruskal-Wallis test of B.I.LISA data showed 17 significant differences of lipoprotein parameters across 

4 post-intervention group comparisons (Table 4.15). The significant different lipoprotein parameters 

between post-RYGB and post-Saline and between post-VLCD and post-Saline were consistent with the 

changes of the lipoprotein parameters after RYGB and VLCD, respectively (Table 4.15, Figure 4.27). All 

the significantly different lipoprotein parameters were lower in post-VLCD than in post-RYGB. LDTG 

and L4TG concentrations increased after RYGB only (Figure 4.27), and were higher in post-RYGB than 

in post-VLCD and in post-GOP, respectively (Table 4.15). This indicated that the increased 

concentrations of LDTG and L4TG were distinct metabolic effects of RYGB. HDPL, H3PL, H2A1, H3A1, 

and H4A1 concentrations decreased after RYGB or VLCD (Figure 4.27), and were higher in post-RYGB 

than in post-VLCD (Table 4.15). This indicated that the concentrations of these 5 lipoprotein 

parameters were reduced more after VLCD than after RYGB. In addition, H4PL, TPA1, and HDA1 

concentrations also decreased after RYGB or VLCD, but did not show difference between post-RYGB 

and post-VLCD. They were therefore shared metabolic effects.  

 

Table 4.15 Lipoprotein concentration (mg/dL) significantly different across the 4 intervention groups analysed using Kruskal-

Wallis H test at post-intervention time point.  

 

P values RYGB vs Saline VLCD vs Saline GOP vs Saline RYGB vs VLCD RYGB vs GOP

V2CH Cholesterol VLDL Subfraction 2 0.0397 Saline > VLCD RYGB > VLCD

HDTG Main fraction 0.0152 Saline > VLCD RYGB > VLCD

H1TG Subfraction 1 0.0464 RYGB > VLCD RYGB > GOP

H3TG Subfraction 3 0.0152 Saline > VLCD RYGB > VLCD

H4TG Subfraction 4 0.0152 Saline > VLCD RYGB > VLCD

LDTG Main fraction 0.0192 RYGB > Saline RYGB > VLCD RYGB > GOP

L1TG Subfraction 1 0.0397 RYGB > VLCD

L4TG Subfraction 4 0.0152 RYGB > Saline RYGB > VLCD RYGB > GOP

L5TG Subfraction 5 0.0216 RYGB > Saline RYGB > VLCD

HDPL Main fraction 0.0299 Saline > VLCD RYGB > VLCD

H3PL Subfraction 3 0.0216 Saline > VLCD RYGB > VLCD

H4PL Subfraction 4 0.0216 Saline > VLCD

TPA1 Main parameter 0.0152 Saline > RYGB Saline > VLCD

HDA1 Main fraction 0.0152 Saline > RYGB Saline > VLCD

H2A1 Subfraction 2 0.0228 Saline > VLCD Saline > GOP RYGB > VLCD

H3A1 Subfraction 3 0.0152 Saline > VLCD Saline > GOP RYGB > VLCD

H4A1 Subfraction 4 0.0226 Saline > VLCD Saline > GOP RYGB > VLCD

NotesNames Lipoprotein transporter
Comparison

Apolipoprotein A1
HDL

LDL

HDL

HDL

Triglycerides

Phospholipids
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b. Comparisons of saline group with post-RYGB, post-GOP or post-VLCD group using OPLS-DA 

analysis of full-resolution data 

Firstly, post-RYGB was compared to post-Saline group. OPLS-DA of B.I.LISA in SIMCA (PCVANOVA > 0.05) 

and MATLAB (Pperm > 0.05) were invalid. OPLS-DA of NOESY in MATLAB with 1 predictive component 

and 2 orthogonal components were valid (Pperm > 0.05). Despite of the separation trend on the scores 

plot (Figure 4.29 (A)), no significant signal from lipid/lipoprotein areas was observed (Figure 4.29 (B)). 

 

 

Figure 4.29 OPLS-DA modelling on full-resolution NOESY spectra of post-RYGB and post-Saline samples. (A) 7-fold internal 

cross-validated score plots of post-RYGB and post-Saline samples with 1 predictive and 2 orthogonal components. (B) Loading 

plots prior to BH procedure. 

 

Secondly, post-VLCD was compared to post-Saline group. All the results from Kruskal-Wallis test were 

also showed in the OPLS-DA models of B.I.LISA data with 1 predictive component and 2 orthogonal 

components in SIMCA and with 1 predictive component and 1 orthogonal component in MATLAB 

(Table 4.16). These lipoprotein parameters also showed decreased concentrations after VLCD (Figure 

4.27). Besides, HDCH, H2CH, H3CH, VLCH, V1CH, HDFC, H3FC, VLFC, V2FC, TPTG, H2TG, IDTG, V2TG, 

H2PL, IDPL, V2PL, TPA2, HDA2, H2A2, and H3A2 concentrations were also significantly lower in post-

VLCD than in post-Saline in both SIMCA and MATLAB (Table 4.16). Among these lipoprotein 
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parameters, H2CH, H2TG, and H2PL concentrations were not showed decreased after VLCD (Figure 

4.27). This can be due to limited sample size or inter-personal variation. Besides, TPCH, V3CH, V4CH, 

V3FC, and H2A2 concentration were significantly lower in post-VLCD than post-Saline only in SIMCA, 

whereas H4CH, V3TG and VLPL concentrations were significantly lower in post-VLCD than in post-

Saline group only in MATLAB (Table 4.16).  

 

Table 4.16 Significant lipoprotein concentration (mg/dL) between post-VLCD and post-Saline group using different methods. 

 

 

The OPLS-DA model for the full-resolution NOESY spectral data of post-VLCD and post-Saline samples 

was constructed using 1 predictive and 2 orthogonal components in MATLAB 2018b, and was valid 

and robust (R2X = 0.8835, Q2Yhat = 0.4304, Pperm = 0.0020). The OPLS-DA scores plot showed a 

Names Lipoprotein transporter Notes VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison

TPCH Main parameter 1.1231 0.5381 -0.1066 -0.5293 Saline > VLCD

HDCH Main fraction 1.3359 0.7232 -0.1524 -0.7566 Saline > VLCD 0.5612 0.0023 0.0178 Saline > VLCD

H2CH Subfraction 2 1.3139 0.7121 -0.1505 -0.7471 Saline > VLCD 0.5150 0.0060 0.0298 Saline > VLCD

H3CH Subfraction 3 1.4025 0.7420 -0.1627 -0.8077 Saline > VLCD 0.5950 0.0011 0.0097 Saline > VLCD

H4CH Subfraction 4 0.4657 0.0144 0.0488 Saline > VLCD

VLCH Main fraction 1.1916 0.5783 -0.1223 -0.6071 Saline > VLCD 0.5387 0.0037 0.0247 Saline > VLCD

V1CH Subfraction 1 1.0546 0.6884 -0.1040 -0.5163 Saline > VLCD 0.4671 0.0140 0.0488 Saline > VLCD

V2CH Subfraction 2 1.2697 0.5235 -0.1379 -0.6846 Saline > VLCD 0.6040 0.0008 0.0097 Saline > VLCD

V3CH Subfraction 3 1.1064 0.4106 -0.1079 -0.5359 Saline > VLCD

V4CH Subfraction 4 1.0862 0.4093 -0.1045 -0.5187 Saline > VLCD

HDFC Main fraction 1.2229 0.8456 -0.1373 -0.6819 Saline > VLCD 0.5174 0.0057 0.0298 Saline > VLCD

H3FC Subfraction 3 1.2100 0.7000 -0.1330 -0.6604 Saline > VLCD 0.5032 0.0075 0.0348 Saline > VLCD

VLFC Main fraction 1.1034 0.6730 -0.1098 -0.5449 Saline > VLCD 0.4889 0.0097 0.0392 Saline > VLCD

V2FC Subfraction 2 1.1400 0.6112 -0.1151 -0.5715 Saline > VLCD 0.5142 0.0061 0.0298 Saline > VLCD

V3FC Subfraction 3 1.0483 0.5311 -0.1136 -0.5639 Saline > VLCD

TPTG Main parameter 1.0829 0.5881 -0.1048 -0.5203 Saline > VLCD 0.4627 0.0151 0.0497 Saline > VLCD

HDTG Main fraction 1.2050 0.8158 -0.1412 -0.7010 Saline > VLCD 0.5988 0.0010 0.0097 Saline > VLCD

H2TG Subfraction 2 1.0230 1.0516 -0.1205 -0.5982 Saline > VLCD 0.4900 0.0095 0.0392 Saline > VLCD

H3TG Subfraction 3 1.1890 0.8004 -0.1381 -0.6855 Saline > VLCD 0.5925 0.0011 0.0097 Saline > VLCD

H4TG Subfraction 4 1.1697 0.5808 -0.1304 -0.6473 Saline > VLCD 0.6169 0.0006 0.0085 Saline > VLCD

IDTG IDL Main fraction 1.1531 0.6518 -0.1192 -0.5919 Saline > VLCD 0.5255 0.0049 0.0298 Saline > VLCD

V2TG Subfraction 2 1.1424 0.4929 -0.1138 -0.5651 Saline > VLCD 0.5185 0.0056 0.0298 Saline > VLCD

V3TG Subfraction 3 0.4856 0.0102 0.0395 Saline > VLCD

HDPL Main fraction 1.5088 0.5605 -0.1766 -0.8769 Saline > VLCD 0.6538 0.0002 0.0040 Saline > VLCD

H2PL Subfraction 2 1.3660 0.6825 -0.1591 -0.7900 Saline > VLCD 0.5600 0.0024 0.0178 Saline > VLCD

H3PL Subfraction 3 1.4796 0.7115 -0.1741 -0.8643 Saline > VLCD 0.6606 0.0002 0.0040 Saline > VLCD

H4PL Subfraction 4 1.2452 1.0503 -0.1455 -0.7225 Saline > VLCD 0.6190 0.0006 0.0085 Saline > VLCD

IDPL IDL Main fraction 1.1609 0.3554 -0.1180 -0.5857 Saline > VLCD 0.4954 0.0086 0.0385 Saline > VLCD

VLPL Main fraction 0.4734 0.0126 0.0456 Saline > VLCD

V2PL Subfraction 2 1.1305 0.5570 -0.1125 -0.5584 Saline > VLCD 0.5138 0.0061 0.0298 Saline > VLCD

TPA1 Main parameter 1.5317 0.4314 -0.1795 -0.8911 Saline > VLCD 0.7078 0.0000 0.0014 Saline > VLCD

HDA1 Main fraction 1.5466 0.4989 -0.1816 -0.9015 Saline > VLCD 0.7084 0.0000 0.0014 Saline > VLCD

H2A1 Subfraction 2 1.5430 0.6647 -0.1824 -0.9057 Saline > VLCD 0.6891 0.0001 0.0020 Saline > VLCD

H3A1 Subfraction 3 1.5556 0.6140 -0.1835 -0.9109 Saline > VLCD 0.7164 0.0000 0.0014 Saline > VLCD

H4A1 Subfraction 4 1.1572 0.9820 -0.1340 -0.6654 Saline > VLCD 0.5939 0.0011 0.0097 Saline > VLCD

TPA2 Main parameter 1.1746 0.8173 -0.1340 -0.6654 Saline > VLCD 0.4882 0.0098 0.0392 Saline > VLCD

HDA2 Main fraction 1.1580 0.8269 -0.1318 -0.6542 Saline > VLCD 0.4790 0.0115 0.0429 Saline > VLCD

H2A2 Subfraction 2 1.0855 1.2433 -0.1258 -0.6244 Saline > VLCD

H3A2 Subfraction 3 1.2742 0.9049 -0.1465 -0.7275 Saline > VLCD 0.5448 0.0033 0.0231 Saline > VLCD

Apolipoprotein A1
HDL

Apolipoprotein A2
HDL

Triglycerides

HDL

VLDL

Phospholipids

HDL

VLDL

Cholesterol

HDL

VLDL

Free cholesterol

HDL

VLDL

B.I.LISA data                                                                                                                        

OPLS-DA model in SIMCA

B.I.LISA data                                                                        

OPLS-DA model in MATLAB

R2X(cum) = 0.775, Q2(Cum) = 0.499, P(CVANOVA) = 0.0197, [1+2+0] R2X = 0.5975, Q2Y = 0.4800, Pperm = 0.0010, [1+1+0]
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separation trend between post-VLCD and post-Saline samples (Figure 4.30 (A)). There was not 

significant signal of lipoprotein nor lipid area after BH procedure, and there was not signal of 

lipoprotein nor lipid area with a high correlation (r > 0.5) prior BH procedure.  

 

 

Figure 4.30 OPLS-DA modelling of full-resolution spectral plasma data from post-VLCD and post-Saline group. (A) 7-fold 

internal cross-validated score plot of post-VLCD and post-Saline samples; (B) Loading plot of post-VLCD and post-Saline data 

prior to BH procedure.  

 

Finally, post-GOP was compared with post-Saline group, but no significant change was observed from 

any of the analyses. 

 

c. Post-RYGB vs Post-VLCD 

Since patients who underwent RYGB surgery had lower calorie intake compared to the saline group, 

the differences between post-RYGB and post-Saline could be due to low calorie intake rather than 

surgery intervention. Therefore, I further compared post-RYGB and post-VLCD groups to extract 

metabolic changes that are specific to the surgery itself. All the results except HDPL and H4A1 from 

Kruskal-Wallis test were showed in OPLS-DA models of B.I.LISA data with 1 predictive component and 

2 orthogonal components in SIMCA, and with 1 predictive component and 1 orthogonal component 

in MATLAB. Besides, V4CH, TPTG, H2TG, IDTG, L2TG, L3TG, V2TG, V3TG, V4TG, H2PL, VLPL, V2PL, V3PL, 
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V4PL, H2A2, H3A2, and VLAB concentrations and VLPN particle numbers were also significantly lower 

in post-VLCD than in post-RYGB in SIMCA, whereas H2TG, V3TG, and H3A2 concentration were 

significantly lower in post-VLCD than in post-RYGB in MATLAB (Table 4.17). Based on the post-

intervention lipoprotein parameter changes showed in Figure 4.27, the high H2PL concentration in 

post-RYGB was due to the increased H2PL concentration after RYGB, the high VLPL and H3A2 

concentrations in post-RYGB were due to the greater concentration reduction after VLCD than after 

RYGB, and the high V4CH, TPTG, IDTG, V2TG, V3TG, V2PL, V3PL, V4PL, H2A2, VLAB and VLPN 

concentrations in post-RYGB were due to the decreased concentration/particle number after VLCD. 

 

Table 4.17 Significant lipoprotein parameters between post-RYGB and post-VLCD group using different methods. 

 

 

After excluding a strong outlier V004_pl3, a valid and robust OPLS-DA model for the full-resolution 

NOESY spectral data of post-RYGB and post-VLCD samples was constructed using 1 predictive and 1 

orthogonal component in MATLAB 2018b (R2X = 0.7091, Q2Yhat = 0.3072, Pperm = 0.0010). The OPLS-

DA score plot showed a separation between post-RYGB and post-VLCD samples (Figure 4.31 (A)). 

However, there was not significant signal of lipoprotein nor lipid area after BH procedure, and there 

Names Lipoprotein transporter Notes VIP VIP[1]cvSE p[1] p(corr)[1] Comparison r p q Comparison

V2CH Concentration (mg/dL) Subfraction 2 1.1064 0.6879 -0.1159 -0.5047 RYGB > VLCD

V4CH Concentration (mg/dL) Subfraction 4 1.1428 0.6219 -0.1174 -0.5112 RYGB > VLCD

TPTG Concentration (mg/dL) Main parameter 1.1384 0.6218 -0.1269 -0.5525 RYGB > VLCD

HDTG Concentration (mg/dL) Main fraction 1.6985 0.9099 -0.2056 -0.8955 RYGB > VLCD -0.6072 0.0001 0.0032 RYGB > VLCD

H1TG Concentration (mg/dL) Subfraction 1 1.3609 1.3304 -0.1644 -0.7160 RYGB > VLCD -0.4668 0.0041 0.0405 RYGB > VLCD

H2TG Concentration (mg/dL) Subfraction 2 1.5322 0.8983 -0.1852 -0.8066 RYGB > VLCD -0.5101 0.0015 0.0207 RYGB > VLCD

H3TG Concentration (mg/dL) Subfraction 3 1.7118 0.7035 -0.2063 -0.8983 RYGB > VLCD -0.6191 0.0001 0.0032 RYGB > VLCD

H4TG Concentration (mg/dL) Subfraction 4 1.4986 0.4187 -0.1805 -0.7862 RYGB > VLCD -0.5910 0.0001 0.0041 RYGB > VLCD

IDTG Concentration (mg/dL) IDL Main fraction 1.1635 0.5747 -0.1324 -0.5768 RYGB > VLCD

LDTG Concentration (mg/dL) Main fraction 1.3986 0.1967 -0.1551 -0.6754 RYGB > VLCD -0.5846 0.0002 0.0041 RYGB > VLCD

L1TG Concentration (mg/dL) Subfraction 1 1.4529 0.2996 -0.1653 -0.7200 RYGB > VLCD -0.5507 0.0005 0.0094 RYGB > VLCD

L2TG Concentration (mg/dL) Subfraction 2 1.1352 0.3992 -0.1194 -0.5201 RYGB > VLCD

L3TG Concentration (mg/dL) Subfraction 3 1.1061 0.5014 -0.1168 -0.5088 RYGB > VLCD

L4TG Concentration (mg/dL) Subfraction 4 1.3938 0.4218 -0.1572 -0.6844 RYGB > VLCD -0.6124 0.0001 0.0032 RYGB > VLCD

L5TG Concentration (mg/dL) Subfraction 5 1.2109 0.6602 -0.1344 -0.5853 RYGB > VLCD -0.5447 0.0006 0.0095 RYGB > VLCD

V2TG Concentration (mg/dL) Subfraction 2 1.1675 0.5995 -0.1274 -0.5547 RYGB > VLCD

V3TG Concentration (mg/dL) Subfraction 3 1.2422 0.5800 -0.1381 -0.6015 RYGB > VLCD -0.4606 0.0047 0.0405 RYGB > VLCD

V4TG Concentration (mg/dL) Subfraction 4 1.2314 0.5269 -0.1382 -0.6020 RYGB > VLCD

H2PL Concentration (mg/dL) Subfraction 2 1.0953 0.9700 -0.1161 -0.5056 RYGB > VLCD

H3PL Concentration (mg/dL) Subfraction 3 1.1919 0.7766 -0.1287 -0.5606 RYGB > VLCD -0.4753 0.0034 0.0405 RYGB > VLCD

VLPL Concentration (mg/dL) Main fraction 1.0817 0.6974 -0.1193 -0.5194 RYGB > VLCD

V2PL Concentration (mg/dL) Subfraction 2 1.1466 0.6286 -0.1235 -0.5379 RYGB > VLCD

V3PL Concentration (mg/dL) Subfraction 3 1.1148 0.6539 -0.1188 -0.5174 RYGB > VLCD

V4PL Concentration (mg/dL) Subfraction 4 1.1546 0.6018 -0.1235 -0.5378 RYGB > VLCD

H2A1 Concentration (mg/dL) Subfraction 2 1.2051 0.9879 -0.1267 -0.5517 RYGB > VLCD -0.4685 0.0040 0.0405 RYGB > VLCD

H3A1 Concentration (mg/dL) Subfraction 3 1.1523 0.7791 -0.1224 -0.5332 RYGB > VLCD -0.4614 0.0046 0.0405 RYGB > VLCD

H2A2 Concentration (mg/dL) Subfraction 2 1.1548 0.6726 -0.1272 -0.5540 RYGB > VLCD

H3A2 Concentration (mg/dL) Subfraction 3 1.2260 0.7102 -0.1327 -0.5778 RYGB > VLCD -0.4512 0.0057 0.0460 RYGB > VLCD

VLAB Apolipoprotein B Concentration (mg/dL) Main fraction 1.1646 0.6441 -0.1296 -0.5643 RYGB > VLCD

VLPN Particle number (nmol/L) Main fraction 1.1643 0.6447 -0.1295 -0.5641 RYGB > VLCD

B.I.LISA data                                                                                                            

OPLS-DA model in SIMCA

R2X(cum) = 0.67, Q2(cum) = 0.414, P(CVANOVA) = 0.0114, [1+2+0]

B.I.LISA data                                                                      

OPLS-DA model in MATLAB

R2X = 0.8055, Q2Y = 0.2133, Pperm = 0.0040, [1+1+0]Parameters

Cholesterol

Triglycerides

Phospholipids

Apolipoprotein A2

Apolipoprotein A1

VLDL

HDL

LDL

VLDL

VLDL

HDL

VLDL
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was not signal of lipoprotein nor lipid area with a high correlation (r > 0.5) prior BH procedure (Figure 

4.31 (B)). 

 

 

Figure 4.31 OPLS-DA modelling of full-resolution spectral plasma data from post-RYGB and post-VLCD group. (A) 7-fold 

internal cross-validated score plot of post-RYGB and post-VLCD samples; (B) Loading plot of post-RYGB and post-VLCD data 

prior BH procedure.   

 

d. Post-RYGB vs post-GOP 

GOP treatment mimics partial changes induced by RYGB surgery. Therefore, I compared post-GOP and 

post-RYGB groups to investigate changes that are unique to RYGB surgery but independent to 

hormone changes. However, all the OPLS-DA models were invalid (Pperm > 0.05).  

 

4.4 Discussion 

Similar to chapter 2, different datasets (full-resolution spectral data vs. quantified data), different 

software (SIMCA vs. MATLAB), and statistical methods (univariate analysis vs. multivariate analysis) 

were used in chapter 3. However, for plasma samples, NOESY spectra was used to analyse lipoprotein 

area, whereas CPMG spectra was used to analyse small metabolites. B.I.LISA was also included as 

quantified lipoprotein dataset. The discussion of the different results amongst datasets, software, and 
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statistical methods are similar, but lipoprotein parameters as new measurements in this chapter will 

be discussed here.  

 

In NOESY spectra, lipoproteins induce a series of broad peaks that are overlaid on the broad envelope 

from proteins (e.g. albumin) and sharp peaks of small metabolites. These peaks are not related to 

different lipoprotein types directly but are resulted from different positions of the hydrogen-

containing molecules in the fatty acyls chains of the lipids (Jimenez et al., 2018). Studies have showed 

that the broad peaks can be contributed from various lipoprotein fractions (Otvos et al., 1991, Otvos 

et al., 1992, Freedman et al., 2004, Soininen et al., 2015, Wurtz et al., 2017, Wurtz et al., 2016b, 

Kaikkonen et al., 2012, Monsonis Centelles et al., 2017, Mihaleva et al., 2014). In my study, none of 

the lipoprotein areas are significant (p > 0.05 with BH correction, or p < 0.05, r > 0.5) in OPLS-DA of full 

resolution NOESY spectra. This can be caused by the different changes of lipoprotein fractions. 

Therefore, B.I.LISA quantified data which include 112 lipoprotein parameters became the only dataset 

for the exploration the lipoprotein changes. 

 

In the following section, I would discuss the biological meanings of the small metabolites results from 

OPLS-DA analysis of full-resolution CPMG spectral data in MATLAB as well as lipoprotein parameters 

resulted from OPLS-DA analysis of quantified data in MATLAB. I would also discuss the results from 

other datasets or statistical methods for small metabolites and lipoprotein parameters.  

 

My study showed that low-caloric intake was one of the mechanisms to the metabolic impacts of RYGB 

on plasma samples. It is mainly reflected by the following changes shared between RYGB and VLCD: 

1) increased concentrations of ketone bodies (3-hydroxybutyric acid, acetoacetic acid, and acetone) 

and citric acid, 2) decreased concentrations of alanine, glucose, pyruvic acid, creatine, and tyrosine, 3) 
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decreased concentrations of HDL main fraction and subfractions cholesterol (H3CH and H4CH), 

phospholipids (HDPL, H3PL, and H4PL), and apolipoprotein A1 (HDA1, H2A1, H3A1, and H4A1) and A2 

(HDA2, H3A2, and H4A2), and 4) decreased concentrations of total amount of apolipoprotein A1 

(TPA1) and A2 (TPA2).  

 

The plasma concentrations of ketone bodies (e.g., 3-hydroxybutyric acid, acetoacetic acid, and 

acetone) and citric acid increased after RYGB or VLCD in my study, and this is consistent with previous 

studies (Laferrere et al., 2011, Khoo et al., 2014, Gralka et al., 2015, Jones et al., 2021). Ketone bodies 

are important energy sources when glucose is not readily available. Ketone bodies are mainly 

produced in the liver using fatty acids and ketogenic amino acids (Sass, 2012). As succinyl CoA 

transferase is absent in liver cells, ketone bodies are then transported from liver to peripheral tissues 

(e.g. brain, muscles and heart) via blood, and contribute to TCA cycle in peripheral tissues (Laffel, 1999, 

Orii et al., 2008). Hence, the plasma concentrations of ketone bodies are expected to be increased 

under the condition of caloric restriction. Besides, higher plasma concentrations of 3-hydroxybutyric 

acid and acetoacetic acid were observed in post-VLCD than in post-RYGB when being analysed using 

OPLS-DA on B.I.QUANT in SIMCA. This indicated greater elevation of ketone bodies induced by VLCD 

than by RYGB. 

 

Ketone body catabolism generates acetyl-CoA which can be oxidized within TCA cycle, and as the 

production of acetyl-CoA in TCA cycle, citric acid concentration is likely to be increased. This 

explanation has been proposed before (Gralka et al., 2015, Jones et al., 2021). However, citric acid is 

usually retained in the mitochondria to enter TCA cycle in most cells or released into the cytosol to be 

utilised for lipid biosynthesis in highly proliferating cells. Only cells specialised in producing citric acid, 

such as osteoblast, release citric acid into its extracellular compartment (Costello and Franklin, 2016, 

Granchi et al., 2019). Other sources of plasma citric acid include diet, bone resorption, and decreased 
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removal in urinary excretion (Costello and Franklin, 2016). Dietary citrate is not necessary to maintain 

normal plasma citrate concentration (Costello and Franklin, 2016). As urinary concentration of citric 

acid increased after RYGB or VLCD (chapter 2), decreased removal in urinary excretion is unlikely in 

this case. Studies showed that increased bone resorption increased occurred as early as 10 days post-

RYGB and remained elevated for at least 5 years post-RYGB (Yu et al., 2016, Tangalakis et al., 2020, 

Corbeels et al., 2018, Lindeman et al., 2018, Shanbhogue et al., 2017, Muschitz et al., 2015). The 

increased concentration of citric acid in plasma 1mon-post-RYGB can be due to the increased bone 

resorption. There are also studies showing increased bone resorption after caloric restriction (Ricci et 

al., 2001, Hyldstrup et al., 1993, Shapses and Riedt, 2006). Hence, the increased plasma concentration 

of citric acid post-RYGB or post-VLCD could be due to the increased bone resorption.  

 

The concentrations of alanine, glucose, and pyruvic acid decreased after RYGB or VLCD in my study. 

Alanine is a glucogenic amino acid. It can be converted to glucose via pyruvic acid in the liver during 

fasting, starvation, low-carbohydrate diets or intense exercise. This process is called Cahill cycle. 

Decreased concentration of alanine in plasma after caloric restriction have been demonstrated by 

invasive arterial and venous sampling as high uptake by the liver for utilization (Felig et al., 1969). 

Metabolomics studies also showed decreased concentration of plasma alanine after RYGB or VLCD 

(Jones et al., 2021, Laferrere et al., 2011, Shah et al., 2012, Khoo et al., 2014). Together with the 

reduced pyruvic acid concentration, my results indicated the increased Cahill cycle after RYGB or VLCD. 

The decreased glucose concentration after RYGB, VLCD, or GOP in my study was expected as these 

has been published before (Behary et al., 2019). Besides, creatine also showed decreased 

concentration after RYGB or VLCD. Creatine is a natural nitrogenous organic acid. It can be converted 

to phosphocreatine in muscle and used to create intracellular adenosine triphosphate (ATP) 

production (Ostojic, 2018). In human, liver is the most important organ for biosynthesis of creatine, 

but up to 94% of creatine is found in muscular tissue (Sandberg et al., 1953, Wyss and Kaddurah-
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Daouk, 2000). The reduced creatine concentration indicates that muscular component was used to 

supply energy after RYGB or VLCD. Tyrosine is a glucogenic and ketogenic amino acid. Studies have 

showed decreased concentration of tyrosine after caloric restriction or bariatric surgery (Laferrere et 

al., 2011, Shah et al., 2012). Jones et al. (2021) showed that the reduced plasma tyrosine in RYGB 

group was associated with weight loss across the entire cohort (Jones et al., 2021).  

 

Furthermore, the concentration of HDL subfraction 3 and 4 (HDL3 and HDL4) of cholesterol, 

phospholipids, and apolipoprotein A1 and A2, HDL subfraction 2 (HDL2) of apolipoprotein A1, as well 

as HDL main fraction of phospholipids and apolipoprotein A1 and A2 (HDPL, HDA1, and HDA2) 

decreased after RYGB or VLCD. Usually, HDL is classified into HDL2 with a density 1.063 – 1.125 g/mL 

and HDL3 with a density 1.125-1.210 g/mL (Ito et al., 2014). This classification has been used in many 

publications (Wang et al., 2018, Williams, 2012, Kalofoutis et al., 1999, Salonen et al., 1991, Williams 

and Feldman, 2011, Arts et al., 2012). In my study, however, HDL are classified as HDL1 (density 1.063 

– 1.100 g/mL), HDL2 (density 1.100 – 1.112 g/mL), HDL3 (density 1.112 – 1.125 g/mL), and HDL4 

(density 1.125 – 1.210 g/mL) using Bruker platform. I would use Bruker’s classification to avoid 

confusion in the following discussion. Plasma concentration H4CH was found to be inversely 

associated with arterial stiffness (Wang et al., 2018). Low plasma HDL4 concentration was showed to 

reduce the odds of extended survival in men, independent of other lipoprotein and standard risk 

factors (Williams, 2012). Harbaum et al. (2019) found that plasma concentration of HDL4 was 

associated with a high mortality in the patients with pulmonary arterial hypertension, and H4A2 was 

the most significant lipoprotein subclass to contribute this association followed by H4A1 and H4PL 

(Harbaum et al., 2019). The combined HDL class of HDL1, HDL2, and HDL3 was also reported to exert 

anti-atherogenic effect (Kalofoutis et al., 1999, Salonen et al., 1991, Williams and Feldman, 2011). 

Besides, in my study, total amount of apolipoprotein A1 (TPA1) and A2 (TPA2) were decreased after 

RYGB or VLCD. ApoA1 and ApoA2 are the 2 major protein components in HDL, and account for 64% 
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and 20% of HDL-protein mass (Gillard et al., 2009). ApoA1 is antiatherogenic. It can promote reverse 

cholesterol transport, activate lecithin : cholesterol acyltransferase, and induce the regression of 

atherosclerotic lesion (Tangirala et al., 1999, Temel et al., 2002, Marcel and Kiss, 2003). Serum ApoA2 

concentration has also reported to be associated with a decreased risk of future coronary artery 

disease (CAD) in apparently healthy people (Birjmohun et al., 2007). The reduced concentrations of 

HDL main and subfractions as well as apolipoproteins after RYGB in my study contradict with the 

reduced cardiovascular risk after RYGB (Benotti et al., 2017). This may be due to the sampling time 

was at 1-month-post-RYGB, whereas the sampling time in the previous articles were at least 6-month-

post-RYGB. Genua et al. (2020) reported that plasma concentration of HDCH decreased significantly 

3-month after bariatric surgery, but then increased till the maximal level 2 years after bariatric surgery 

(Genua et al., 2020). Follow-up studies are recommended to carry out. Studies showed that 

hypocaloric diet cannot effectively increase cardioprotective HDL-cholesterol nor Apo A1 and can even 

diminish the increased concentrations of HDL subfractions, comparing to endurance training 

(Schwartz, 1987, Williams et al., 1990, Wood et al., 1991, Hayek et al., 1993). Therefore, caloric 

restriction may partly explain the plasma lipoprotein changes after RYGB in short term. 

  

Additionally, glutamic acid and lactic acid concentrations both showed decreased concentrations after 

RYGB in OPLS-DA analysis of quantified data in SIMCA, but both only showed decreased 

concentrations after VLCD in OPLS-DA analysis of full-resolution spectral data. Both glutamic acid and 

lactic acid are gluconeogenesis precursors. When muscle protein is being degraded such as starvation, 

glutamic acid can combine with pyruvic acid to form alanine and α-ketoglutarate, and contribute to 

TCA cycle (Sparkes et al., 1983, Gray et al., 2014). The plasma concentration of glutamic acid 

concentration was higher in obese individuals than lean controls (Newgard et al., 2009). Maltais-

Payette et al. (2018) suggested circulating glutamate concentration as a biomarker of visceral obesity 

(Maltais-Payette et al., 2018). Jones et al. also (2021) reported a reduction trend of glutamic acid after 
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RYGB or VLCD (Jones et al., 2021). Lactic acid can also be converted to glucose via pyruvic acid in the 

liver (also called Cori cycle). Comparing to Cahill cycle, Cori cycle does not release urea which requires 

assistance of extra ATP to be excreted. The plasma concentration of lactic acid was higher in the obese 

subjects with metabolic syndrome than in the lean controls (Jones et al., 2019). Previous studies have 

showed decreased plasma concentration of lactic acid after VLCD, RYGB or exercise (Crawford et al., 

2008, Jones et al., 2019). My result was consistent with them. Notably, lactic acid showed significantly 

lower concentration in post-VLCD than in post-RYGB group. Therefore, though VLCD could partially 

explain RYGB, it exerted greater impact on lactic acid concentration in plasma than RYGB did.  

 

RYGB also showed its distinctive effects on plasma profile, including 1) decreased concentrations of 

branched-chain amino acids (BCAAs) and phenylalanine, 2) increased concentration of glycine, 3) 

increased concentration of short chain fatty acids (SCFAs) acetic acid and formic acid, and 4) increased 

concentration of LDL main and subfraction 4 and 5 triglycerides. 

 

BCAAs leucine and valine and aromatic amino acid (AAA) phenylalanine concentrations decreased 

after RYGB. BCAA and AAA are both essential amino acids. BCAA constitute approximately 40% of the 

free essential amino acid in the blood (Shah et al., 2012). They are important for the maintenance and 

growth of skeletal muscle, being energy source during exercise, and being gluconeogenic precursors 

when needed (Shah et al., 2012). The decreased concentration of BCAA after RYGB can be due to the 

decreased protein intake, increased amino acid catabolism in adipose tissue, decreased degradation 

of protein, or a combination of these factors (Rinaldi Schinkel et al., 2006, Ernst et al., 2009, Laferrere 

et al., 2011, Dharuri et al., 2014). Decreased BCAAs concentrations were showed to be associated with 

the improved insulin sensitivity (Laferrere et al., 2011, Magkos et al., 2013, Lips et al., 2014). Increased 

phenylalanine concentration was showed to be related with decreased insulin secretion and elevated 

glucose level (Zhou et al., 2022). The reduced phenylalanine in plasma and the increased gut microbial 
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product of phenylalanine - PAGn showed the increased utilization of phenylalanine post-RYGB 

(Chapter 3). Notably, the decreased concentrations of valine and leucine were shared between RYGB 

and VLCD group when the quantified data were analysed using paired Wilcoxon test. Besides, both 

valine and leucine showed significantly lower concentrations in post-RYGB than post-VLCD group. This 

suggests that plasma concentration of valine and leucine decreased much more after RYGB than after 

VLCD when comparing over the same period, and this was consistent with previous studies (Laferrere 

et al., 2011, Lips et al., 2014). Furthermore, another BCAA isoleucine decreased exclusively after RYGB 

when B.I.QUANT being analysed. Hence, there were distinctive effects of RYGB on plasma via BCAA 

and phenylalanine.  

 

The plasma concentration of glycine increased only after RYGB when quantified data was analysed. 

Glycine is a non-essential proteogenic AA. Its conjugations with other metabolites such as benzoate, 

derivatives of BCAA, β-oxidation intermediates and metabolites of polyphenols, which can be 

potentially toxic if accumulate in the organism, imply its important detoxification effect (van der Sluis 

et al., 2015, Badenhorst et al., 2014). Low plasma glycine concentration has been consistently reported 

to be associated with obesity, T2D and non-alcoholic fatty liver disease (NAFLD) (Guasch-Ferre et al., 

2016, Gaggini et al., 2018, Gar et al., 2018, Gall et al., 2010, Thalacker-Mercer et al., 2014, Tulipani et 

al., 2016, Cheng et al., 2012, Takashina et al., 2016, Labonte et al., 2017). In patients with T2D not 

treated with metformin, gut microbiota was enriched in genes involved in glycine degradation 

(Forslund et al., 2015). The increased concentration of glucagon in obesity and T2D was showed to be 

able to stimulate glycine cleavage enzyme to degrade glycine (Alves et al., 2019, Jois et al., 1989). 

Besides, in obese animals, restricted BCAA dietary intake to reduce plasma BCAA concentrations could 

partially restore plasma and muscular glycine concentrations (White et al., 2016, She et al., 2007, Lian 

et al., 2015, Alves et al., 2019). This explanation is consistent with the increased glycine concentration 

and decreased BCAA concentrations after RYGB.  
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The plasma concentration of histidine only decreased significantly after RYGB when analysed using 

univariate analysis on matched quantified data. Histidine derivative 1-methylhistidine in post-RYGB 

plasma samples also showed lower concentration than in post-Saline plasma samples when full-

resolution spectral data were analysed using OPLS-DA in MATLAB. Histidine is a nutritionally essential 

AA that endogenous synthesis is not sufficient to meet physiological demand and therefore need to 

obtain from the diet (Thalacker-Mercer and Gheller, 2020). Histidine is abundant in red meat and fish 

(Moro et al., 2020). Besides, 1-methylhistidine is regarded as a potential marker of meat intake 

(Holeček, 2020). It is possible that the meat consumption reduced at 1-month post-RYGB comparing 

to the consumption pre-surgery. However, Khoo et al. (2014) reported consistent results as mine that 

a significant decrease of histidine concentration in plasma of RYGB patients but not CR patients (Khoo 

et al., 2014). Khoo et al. (2014) did not give detailed explanation. In addition, food component 

information of RYGB patients in my study is unavailable to me. Hence, it is difficult to explain the 

reduced concentration of histidine and 1-methylhistidine in plasma as meat consumption can be a 

confounding factor in this case.  

 

The concentration changes of SCFAs including acetic acid and formic acid were other examples 

implying distinctive metabolic impacts of RYGB and VLCD. Acetic acid and formic acid concentrations 

increased after RYGB when quantified data were analysed using OPLS-DA in SIMCA and Kruskal Wallis 

test. Despite of no difference between pre-VLCD and post-VLCD comparison, acetic acid and formic 

acid showed lower concentrations in post-VLCD than in post-Saline when being analysed using OPLS-

DA on full-resolution spectral data. This suggests the increased concentrations of acetic acid and 

formic acid after RYGB but the decreased concentrations of acetic acid and formic acid after VLCD.  
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As discussed in chapter 3, acetic acid can be produced by widely distributed bacterial. Comparing to 

other major SCFAs (e.g. propionate and butyrate), acetic acid is the main SCFA in the blood to monitor 

colonic events (Wong et al., 2006). Once absorbed by colon, 50% to 70% of acetic acid is taken up by 

the liver, and the residual acetic acid is oxidized to generate energy in muscular cells (Roberfroid, 

2007). Acetic acid can also combine with acetyl-CoA to participate lipogenesis in other peripheral 

tissues such as adipose and mammary glands (Wong et al., 2006). In the fasting state, acetate is 

delivered systematically to peripheral tissue for extensive metabolization (Pomare et al., 1985, 

Buckley and Williamson, 1977, Knowles et al., 1974, Skutches et al., 1979, Seufert et al., 1984, 

Cummings et al., 1987, Lundquist et al., 1973). Besides, acetate was showed to suppress adipocyte 

lipolysis, reduce free fatty acid in plasma flux towards the liver, and improve the fatty liver induced 

deterioration in glucose homeostasis (Crouse et al., 1968, Wolever et al., 1989). Moreover, increased 

concentration of acetic acid in plasma has been showed to be inversely associated with visceral 

adipose tissue and plasma insulin levels (Layden et al., 2012). Under the condition of caloric restriction, 

reduced plasma concentration of acetic acid suggests enhanced utilization of acetic acid as an energy 

source. Besides, plasma concentration of glycerol, which is a lipolysis product of triglycerides, 

increased after VLCD. This suggests that the utilisation of acetic acid was prioritised for energy supply 

rather than suppression on adipocyte lipolysis. Sowah et al. (2020) also showed that an initial decrease 

of plasma acetic acid concentration may be resulted from calorie restriction, and proposed the 

declined microbial energy harvest and the utilization of alternative fuel during prolonged calorie 

restriction (Sowah et al., 2020, Turnbaugh et al., 2006, Wong et al., 2006, Pell and Bergman, 1983). 

Despite of the comparable calorie intake of post-RYGB patients with post-VLCD patients, acetic acid 

concentration increased in both urine (Chapter 3) and plasma. This could be due to the altered gut 

microbial composition after RYGB, as discussed in Chapter 3, had an enhanced ability to produce acetic 

acid. Previous studies also showed a trend towards elevated acetic acid concentration in plasma after 

RYGB (Jones et al., 2021, Wijayatunga et al., 2018).  
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Formic acid can be produced by gut bacteria such as E.coli, Shigella flexneri, Salmonella enterica, 

Eubacterium rectale, Roseburia insulinivorans, Eubacterium hallii, Faecalibacterium prausnitzii, 

Bifidobacterium adolescentis from hexose (Pietzke et al., 2020, Flint et al., 2015, Vivijs et al., 2015). 

Formic acid can also come from dietary (e.g. sweetner aspartame), supplementation (e.g. creatine), 

and methylated molecules in drinks, food, and drug (e.g. caffeine) sources. The intestinal formic acid 

then enters the blood, and contributes to the circulating formic acid pool (Pietzke et al., 2020). Gralka 

et al. (2015) reported that serum formic acid concentration was higher in obese subjects than in 

normal weight subjects, and serum formic acid concentration increased after RYGB (Gralka et al., 

2015). Due to formate is linked with anaerobic methanol metabolism of enterobacteria, Gralka et al 

(2015) proposed that the unique gut microbial changes at obese status and post-RYGB were the 

reason. It is recommended to have information of dietary composition and gut bacterial composition 

of RYGB and VLCD group to further explain the changes of formic acid concentration in plasma.  

 

Besides, the concentration of LDL main and subfraction 4 and 5 (LDL4 and LDL5) of triglycerides 

increased 1-month-post-RYGB exclusively. LDL4 and LDL5 are small and dense LDL. Patients with 

severe coronary artery diseases (CAD) were reported to have significantly higher concentration of 

small and dense LDL than healthy controls (Chaudhary et al., 2017, Klevjer et al., 2020). In contrast, 

traditional clinical measurements do not show significance (Klevjer et al., 2020). Jones et al. (2021) 

also reported a paradoxical increase of triglycerides in RYGB comparing to control group prior to NMR 

lipoprotein analysis (Jones et al., 2021). This further emphasized the importance of NMR lipoprotein 

analysis. The increased concentrations of LDTG, L4TG, and L5TG suggested a distinctive and potential 

atherogenic effect of RYGB 1-month-post-surgery. Follow up assessments are recommended to carry 

out.  
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4.5 Conclusion 

The metabolic impacts of the 3 effective weight loss intervention RYGB, VLCD and GOP on plasma 

varied greatly. Among them, RYGB induced the widest range of small metabolite changes, whereas 

VLCD induced the widest range of lipoprotein parameter changes. In contrast, GOP only induced 

glucose reduction and limited lipoprotein parameter reductions which are irrelevant to RYGB. Low-

caloric intake was one of the mechanisms to the metabolic impacts of RYGB on plasma in short term, 

the shared metabolites include ketone bodies, alanine, glucose, pyruvic acid, creatine, tyrosine, and 

the small and dense subfractions of HDL of cholesterol, phospholipids and apolipoproteins. RYGB also 

exerted its distinctive metabolic impacts on BCAA, phenylalanine, glycine, SCFA, and small and dense 

LDL of triglycerides. In comparison, GOP shared very limited metabolic and lipoprotein changes with 

RYGB. Hence, the increased release of gut hormones (e.g., GLP-1, OXY and PYY) after RYGB is not 

regarded as an important mechanism to the metabolic impacts of RYGB in short term. 
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5. Chapter 5 Method development of faecal component separation 

for 1H NMR spectroscopy-based global profiling 

Before exploring the impacts of weight loss interventions RYGB and VLCD on faecal metabolites, a 

method was developed to separate faecal components for 1H NMR spectroscopy-based global 

profiling and was discussed in this chapter.  

 

5.1 Introduction 

Faeces contains large amounts of host-microbial metabolic information and is an easy, safe, and 

reputable surrogate to study gut microbiota. So far, faecal metabolic profiling has been used to 

investigate many diseases and interventions, such as irritable bowel syndrome (Mujagic et al., 2022, 

Ahluwalia et al., 2021), alcoholic hepatitis (Gao et al., 2020), inflammatory bowel disease (De Preter 

et al., 2015, Kolho et al., 2017), colorectal cancer (Ocvirk et al., 2020, Koller et al., 2021, O'Keefe et al., 

2015), bariatric surgery (Li et al., 2021, West et al., 2020). Although these valuable studies emphasize 

the importance of faecal samples in clinical studies, all of them focus on faecal aqueous metabolites. 

Studies showed that the changes of intracellular microbial metabolites from faecal bacterial pellets 

were associated with several perturbations such as obesity, systemic lupus erythematosus and 

diarrhoea caused by clostridium difficile (Rojo et al., 2015a, Perez-Cobas et al., 2013, Serrano-Villar et 

al., 2016, Rojo et al., 2015b). As 16S rDNA analysis cannot determine which species become activated 

after the perturbation, researchers have used metatranscriptome (Perez-Cobas et al., 2013) and 

metaproteome (Ferrer et al., 2013, Serrano-Villar et al., 2016) to help to reveal the active community 

members from the total (inactive and active) species. The metabolites absorbed and/or produced by 

the actions of microbiota are the products of gene and protein expression, and their quantification 

reliably showed the changes of metabolic activities of the microbiota under any condition (Moya and 

Ferrer, 2016). Therefore, Rojo et al. (2017) proposed that the intracellular microbial metabolites could 

link to complementary microbial data, such as 16S rRNA gene profiles of the active bacteria which is 
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difficult to achieve if included with non-microbial metabolites from the environment or the host in the 

whole faecal samples (Rojo et al., 2017). Besides, undigestible food residues has been found to affect 

NMR profiles of faecal samples and reproducibility (Lamichhane et al., 2015). Therefore, it is necessary 

to separate different fractions of faecal samples and characterise the metabolic profiles of fractions 

individually. 

 

Human faeces contain a complex ecosystem. Apart from approximately 75% of water, 3 major 

components constitute the solid faecal fraction: microbes (25% - 54%), water soluble compounds 

(~25%), and undigestible food residues (~25%) (Stephen and Cummings, 1980, Volk and Rummel, 

1987). An ideal protocol of faecal sample separation for 1H NMR spectroscopy-based high throughput 

analysis needs to be simple and robust enough for an effective extraction. It also needs to be 

reproducible and reliable (Deda et al., 2015, Theodoridis et al., 2012). Differential centrifugation (DC) 

has been reported to collect bacterial pellets from faecal samples, but faecal aqueous metabolites 

profiles were ignored in these studies (Rojo et al., 2015a, Rojo et al., 2015b, Perez-Cobas et al., 2013, 

Serrano-Villar et al., 2016). Common faecal metabolite extraction techniques including vortex (Gratton 

et al., 2016), filtering (Marchesi et al., 2007, Stephen and Cummings, 1980), sonication (Rojo et al., 

2015a) and beads beating (Vorkas et al., 2015) have been reported to be used on faecal samples and 

tissues. These techniques can either cause different metabolic profile across different study cohorts 

or can be further optimised. Intense extraction technique such as beads beading can break down the 

bacterial cells and food/plant cells remained in the faeces, and may contain health-irrelevant 

information from food/plant cells. Marchesi et al (2007) used high-speed centrifugation and filters to 

prepare faecal samples. However, the effect of filter when combined with high-speed centrifugation 

can be mild for NMR analysis and such step may not be necessary. Besides, sonication as another 

common extraction technique as vortex, have been applied in various studies, but no direct 

comparison had been conducted between these two methods. Besides, water and PBS are 2 
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commonly used solvents for faecal 1H NMR global profiling. Theoretically, water can break the 

bacterial cells whereas PBS exerts protective effects. These can cause different metabolic profiles 

when using these two extraction solvents. Saline (0.9% [w/v] NaCl) does not damage mammalian cells 

(Dietmair et al., 2010), and has been used in faecal transplant. It has the potential to be a protective 

extraction solvent for faecal 1H NMR global profiling (Nicco et al., 2020). So far, there was not a such 

comparison to test the effects of different neutral solutions on faecal extracts.  

 

Following previously described (Stephen and Cummings, 1980), microscopic counting, Gram staining, 

and scanning electron microscopy (SEM) would be included in this chapter to test the separation 

outcome of human faeces. Manual counting using counting chambers under microscopy is the golden 

standard method for cell count in biological fluids (Szamosi, 2006). Helber counting Chamber is 

commonly used in different studies for bacteria counting (Prosser et al., 2013, Auty et al., 2022, 

Stephen and Cummings, 1980, Gardiner et al., 2014). It is a one-piece construction including a Thoma 

ruling on a single round plateau for durable and accurate bacteria and sperm counting. Gram staining 

is one of the most important staining techniques in microbiology (Tripathi and Sapra, 2022). The 

principal of Gram staining is to use bacterial cell wall to retain crystal violet dye (Libenson and Mc, 

1955). Gram-positive bacteria have higher peptidoglycan content whereas gram-negative organisms 

have higher lipid content (Shugar and Baranowska, 1954). After the initial dye of crystal violet, iodine 

is usually the next to be used to prevent easy removal of dye followed by a decolourizer to remove 

the dye. Although all the bacteria are stained with crystal violet in the beginning, Gram-positive 

bacteria close the pores on its cell wall and keeps the staining whereas Gram-negative bacteria lose 

its lipid-rich cell wall and therefore the staining after decolourization (Haslett, 1947). Counterstain is 

used to stain the decolourized Gram-negative bacteria red/pink colour at the last step, and Fuchsine 

or safranin are the common counterstains (Tripathi and Sapra, 2022). Both examinations of Helber 

counting chamber and Gram staining can be completed using brightfield light microscopy with 
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magnification range from x40 to x100. Thorn (2016) provide a quick guid for light microscopy (Thorn, 

2016). In brightfield light microscopy, the samples are placed on the opposite sides of the light source 

and detection objective. The samples can absorb, scatter, or deflect the passing light and are therefore 

imaged. Most cells are thin and transparent, they do not absorb much light and are difficult to be 

observed in detail without other techniques. Besides samples staining (e.g. Gram stain), phase 

contrast technique is one of them. It separates the illuminating (background) light from the specimen-

scattered light and manipulates these lights differently (Murphy, 2002). Phase contrast would be used 

in Helber counting chamber for bacteria counting. SEM is a widely used tool to show images of a 

sample by scanning it with a focused beam of electrons (Shehadat et al., 2018). It can show the 

topography, composition, and properties of the samples surface with up to 130,000x magnification. 

Special treatments including aldehyde fixative agents (e.g. glutaraldehyde and formaldehyde) to 

stabilise biological samples’ structure, organic solvents (e.g. ethanol or ethanol) to dehydrate the fixed 

samples, a further supercritical drying step to remove liquid using Hexamethyldisilazane HMDS, and 

conductive material to be coated on the nonconductive biological specimen are necessary for an 

appropriate SEM sample (Russell and Daghlian, 1985, Suzuki, 2002, Shehadat et al., 2018).   

 

In this chapter, I aimed to develop a faecal preparation method, which separates faecal aqueous 

metabolite fraction, bacterial fraction, and the residual fraction for 1H NMR global profiling. The 

objectives of this chapter included: 1) to select the ideal extraction technique for faecal aqueous 

metabolite profile; 2) to select the ideal extraction solvent for faecal aqueous metabolite profile, 3) to 

optimise the protocol to separate the bacterial fraction from the residues and to extract bacterial 

fraction for 1H NMR global profiling. 
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5.2 Methodology 

5.2.1 Faecal sample collection 

To develop a method to separate different components of a faecal sample for subsequent metabolic 

phenotyping analysis, a total of 13 faecal samples (namely, S1, S2, S3, S4, S5, S6, S7, S9, S21, S23, S24, 

S25, S26) were collected between Mar 2019 and May 2021 from a healthy donor (Asian, female, non-

smoker with no antibiotic intake 6 weeks prior to the sample collection). Isotretinoin was regularly 

taken between Jun 2019 and Jan 2020. The entire stool samples were collected in a FECOTAINER (AT 

medical BV, The Netherlands), kept on ice and immediately processed in the laboratory.  

 

5.2.2 Faecal aqueous metabolite extraction techniques 

Six faecal aqueous metabolite extraction techniques, including vortex, vortex-filter, sonication, 

multiple centrifugations, filtration and beads beating were used to compare the faecal aqueous 

metabolite profiles. The detailed experimental steps are summarised in Table 5.1. 
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Table 5.1 Six faecal aqueous metabolite extraction techniques 

 Vortex Vortex_filter Sonication Multiple 
centrifugations 

Filtration Beads beating 

1 600 mg faeces 
+ 1.2 mL 
solvent 

600 mg faeces + 
1.2 mL solvent 

600mg faeces + 
1.2 mL solvent 

600mg faeces + 
1.2 mL solvent 

600mg faeces + 
400μL solvent 

350mg faeces + 0.7ml 
solvent as half (a and b) of a 
replicate 

2 Vortex faecal 
slurry at 
2500rpm for 
5mins 

Vortex faecal 
slurry at 
2500rpm for 
5mins 

Vortex faecal 
slurry for 10s at 
2500 rpm 
 

Vortex faecal 
slurry for 10s at 
2500rpm 
 

Vortex faecal 
slurry for 10s at 
2500rpm 

 

3   Sonicate the 
mixture in ice 
water bath for 
2mins at 15W 

Sonicate the 
mixture in ice 
water bath for 
2mins at 15W 

  

4     Filter through 40 
μm cellular 
strainer; collect 
the filtrate into a 
50 ml falcon tube 

 

5      Add 0.7mm beads into 2ml 
tubes for bead 

6      Use tissue homogeniser beat 
at 6500rpm for 40s, using 2 
plus 2 cycles separated by 
freezing of the samples on 
dry ice for 5mins 
 

7     Wash the 
residues with 
400ul solvent, 
filter through 
40um cellular 
strainer and 
collect the 
filtrates into the 
same falcon tube 

 

8     Repeat above 
step 

 

9    Spin the mixture 
at 2000g at 4℃ 
for 2min 

  

10 Spin the 
mixture at 
18000g for 
15mins at 4℃ 

Spin the mixture 
at 18000g for 
15mins at 4℃ 

Spin the mixture 
at 18000g for 
15mins at 4℃ 

  Spin the mixture at 18000g 
for 15mins at 4℃ 

11  Spin the 
supernatant at 
18000g at 4℃ 
for 15mins in 
0.22 μm spin 
filters 

 Spin the 
supernatant at 
18000g at 4℃ 
for 15mins in 
0.22 μm spin 
filters 

Spin combined 
filtrates at 18000g 
at 4℃ for 15mins 
in 0.22 μm spin 
filters 

 

12      Transfer the supernatant to 
new Eppendorf tubes and 
combine aliquot a and b 

13 Approximately 
550μl of the 
resulting 
supernatant 
was transferred 
into new 
Eppendorf 
tubes followed 
by stored at -
80 ℃ 

Approximately 
550μl of the 
resulting 
supernatant 
was transferred 
into new 
Eppendorf 
tubes followed 
by stored at -
80 ℃ 

Approximately 
550μl of the 
resulting 
supernatant 
was transferred 
into new 
Eppendorf 
tubes followed 
by stored at -
80 ℃ 

Approximately 
550μl of the 
resulting 
supernatant was 
transferred into 
new Eppendorf 
tubes followed 
by stored at -
80 ℃ 

Approximately 
550μl of the 
resulting 
supernatant was 
transferred into 
new Eppendorf 
tubes followed by 
stored at -80 ℃ 

Approximately 550μl of the 
resulting supernatant was 
transferred into new 
Eppendorf tubes followed by 
stored at -80 ℃ 
 

Note: comparative steps are summarised in the same row to allow an easy comparison of these extraction methods. 
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5.2.3 Faecal aqueous metabolite extraction solvents 

To select an extraction solvent that gives a robust extraction efficiency, water (Ultra-pure grade, 

BarnsteadTM Nanopure TM Thermo Scientific), PBS (phosphate-buffered saline, Fishier Reagents, 

7647-14-5, 7447-40-7, 7558-79-4, 7778-77-0) and saline (self-made, sodium chloride (g) from Fisher 

BioReagents : ultra-pure water (mL) = 9 : 1000) were used to extract aqueous metabolites from freeze-

thaw (FT) faecal samples (n=5, S3, S5, S6, S7, S21). Each faecal was immediately aliquoted after 

collection into 2-mL Eppendorf tubes with approximately 600 mg each; weights were recorded. 

Aliquots were randomized and stored at -80 ℃ for 1 – 3 days and thaw at room temperature for 30 

mins before metabolite extraction. For metabolite extraction, 4-18 aliquots were mixed with water, 

PBS or saline at a ratio of 1 mg of feces to 2 μL of the solvent. The aliquots were vortexed at 2500 rpm 

for 5 mins and centrifuged at 18,000 g for 15 mins at 4℃. The resulting supernatants were transferred 

into new Eppendorf tubes and stored at -80℃ pending 1H NMR spectroscopic analysis.  

 

5.2.4 Wash steps of faecal whole pellets 

To obtain a ‘clean’ metabolite profile of the bacterial fraction, the faecal pellets need to be washed to 

thoroughly remove faecal aqueous metabolites. Therefore, the impact of different wash procedures 

on the metabolite profiles of faecal whole pellets was evaluated prior to the subsequent development 

of the bacterial separation method. After faecal aqueous metabolite extraction where 600 µL of 

supernatant was removed for 1H NMR metabolic profiling, the pellets were subject to one of the 

following processes: (1) beads beating directly to obtain the metabolites from faecal pellets; (2) 

complete removal of remaining supernatant, washing with approximately 1.2 mL of water followed 

by 5-min vortexing and 15 min centrifugation at 18,000 g at 4℃, and repeated the wash procedure 

once more before beads beating; and (3) apply the same procedures as in (2) with an extra step of 

loosening the whole pellets before vortexing.  

 



164 
 

5.2.5 Metabolite extraction from faecal pellets 

After washing, 0.1 mL of 0.7 mm beads and water (μl : mg = 1 : 1) were added to the whole faecal 

pellet. The samples were placed in a bead beater (Bertin, Precellys® 24), vibrating at 6,500 rpm for 40 

s and 2 plus 2 cycles were performed separated by cooling the samples on dry ice for 5 mins. The 

resulting slurry was centrifuged at 18,000 g for 15 mins at 4 ℃, and the supernatants were transferred 

into new Eppendorf tubes and stored at -80 ℃ for subsequent 1H NMR analysis. 

 

5.2.6 Separation of bacterial and food residue fractions 

DC was used to separate the bacterial fraction from the residual fraction. To explore the optimal 

combination of an extraction solvent and centrifugation speed for separating faecal bacterial fraction 

from the residues, water, PBS or saline was used and samples were spun at 200, 500, 800, 1400, or 

2000 g.  

 

The criteria for selecting the optimal solvent and centrifugation speed included (1) high bacterial 

numbers in the bacterial fraction evaluated using a bacterial counting chamber; (2) low CV values of 

metabolite intensities measured by 1H NMR spectroscopy from technical replicates; and (3) high 

metabolite intensities measured by 1H NMR spectroscopy.  

 

While DC is effective in separating bacteria from the residual fraction, it cannot give a high yield with 

one centrifugation process. To retrieve more bacteria from the residual fraction, either 300 μL or 1 mL 

of the solvent was added to the residual fraction to repeat the DC process. This step was repeated 

once, twice or 3 times further to evaluate the effects of solvent volume and the number of washes on 

the fraction separation. To examine the effects of solvents, spin rates, and wash volume and times on 

fraction separation, microscopic bacteria counting was used to examine bacteria numbers, and 



165 
 

bacteria staining and scanning electron microscopy (SEM) were used to examine the purity of the 

fractions. Both residue and bacterial fractions were extracted using the aforementioned beads-

beating method before conducting 1H NMR spectroscopic analysis.  

 

5.2.7 Microscopic bacteria counting 

The separated bacteria fraction and food fraction were suspended in approximately 600 μL extraction 

solvent (1 μL per mg of original faecal weight). After being vortexed for 5 mins at 2500 rpm, 10 μL of 

the slurry was diluted with 990 μL of the extraction solution in a new Eppendorf tube. Five μL of the 

diluted slurry was added to the middle of the engraved circle on a Helber Bacteria Counting Chamber 

slide (Hawksley, England) based on the manufacturer’s instruction. Kohler illumination was adjusted 

before using the microscope (ZEISS, Oberkochen, Germany). 10x and 40x objectives were used with 

Ph1 condenser annulus in sequence to locate and visualise the counting chamber until clear boarder 

lines appeared. With 40x objective, 1 image was taken for each one of the 16 large squares in each 

counting chamber.  

 

I adjusted the procedure of Helber Bacteria Counting Chamber. After preparing the counting chamber 

with 5 μL diluted sample, cells lying within 48 small squares or crossing lower horizontal or left-hand 

vertical borders were counted from the 16 large squares showed in Figure 5.1. Due to the speciality 

of samples (i.e., mixture of bacterial cells and food residues), the procedure of microscopic counting 

was adapted. Bright small cells shown in the images were considered as bacterial cells. I was blinded 

from the sample IDs while performing the counting to avoid potential bias. The schematic of bacteria 

counting experiment for combined effect of extraction solvent and separation speed is showed in 

Appendix Figure 8.2. The schematic of bacteria counting experiment for the combined effect of DC 

cycles and solvent volumes are showed in Appendix Figure 8.3.  
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Figure 5.1 Helber Bacteria counting chamber. 

 

The bacterial cell numbers from 48 small squares were summed up. Bacteria recovery rate (BRR) was 

calculated as below: 

𝐵𝑅𝑅 =  
𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

(𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)
 

 

5.2.8 Bacteria staining test 

The separated faecal bacterial fraction and food fraction from FT faecal samples were diluted using 2x 

volumes (μL : mg = 2 : 1) of extraction solvent. After being vortexed for 5 mins at 2500 rpm, 10 μL of 

the slurry were immediately transferred on to a cover slide using an inoculation loop, spread to an 

even thin film over a circle with a diameter of 1.5 cm and fixed over a gentle flame avoiding localized 

overheating. The resulting slides were prepared following the protocol provided in the Gram Staining 

kit (Merck Life Science UK Limited, 77730-1KT-F). Kohler illumination was adjusted before using 

microscope every time. Magnification of 10x and 40x were used to locate the specimen before using 

oil immersion at 100x to visualize the staining results. 

 



167 
 

5.2.9 Scanning electron microscopy  

The separated bacterial or residual pellets were immersed in 1 mL of paraformaldehyde PBS solution, 

vortexed for 5 mins at 2,500 rpm, and incubated at room temperature for 2 hrs. The slurries were 

centrifuged at 18,000 g for 15 mins at 4 ⁰C, and the supernatants were removed and discarded. The 

resulting pellets were washed using 1 mL of 1 M PBS for 3 times with the same vortex and 

centrifugation settings. The washed pellets were immersed in 1 mL of formaldehyde PBS solution, 

vortexed for 5 mins at 2,500 rpm, and incubate at 4 ⁰C for 2 days before centrifugating under the same 

setting. The resulting pellets were washed again as described above for 3 times, prior to immersing in 

1 mL of 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of ethanol in water, one after another, each for 

10 mins, followed by 1 mL of 100% ethanol and 1 mL of Hexamethyldisilazane for 10mins. During all 

these 10min-immersions in ethanol and HMDS, pellets were loosened by inoculation loops, 

centrifuged at 20,817 g for 5mins, and the supernatants were discarded. The remained pellets were 

put in a desiccator for air-dry for at least 12 hrs. A thin layer of the dehydrated dry sample was 

mounted firmly on the SEM specimen stubs using conductive tape before SEM.  

 

5.2.10 1H NMR spectroscopic analysis 

Faecal aqueous fraction, and bacterial and residual extracts were thawed at room temperature for 

~30 mins. The samples were centrifuged at 18,000 g for 10 mins at 4℃. Approximately 450 μL of the 

clean supernatant was mixed with 90 μL of water and 60 μL of phosphate buffer (1.5 M of KH2PO4, 5.8 

mM TSP, and 2 mM NaN3 in 100 mL of D2O at pH 7.4) in a new Eppendorf tube by vortexing for 5 s, 

and 580 μL were transferred to an NMR tube with an outer diameter of 5 mm for 1H NMR 

spectroscopic analysis. Standard 1D-NOESY-presat (noesypr1d) and J-resolved (jresgpprqf) were used. 

NMR set-up is the same as published before (Dona et al., 2014). Briefly, temperature calibration at 

exactly 300 K and the centre frequency (O1) optimisation for water suppression were required 

followed by a setup of a representative faecal sample. The whole setup process includes a 5-minute 
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temperature stabilisation at 300 K, tuning and matching, sample being locked to 90% H2O + 10% D2O, 

shimming and O1 optimisation. The ideal shim quality is at the line width at half height of the TSP 

being less than 1.3 Hz.  

 

5.2.11 1H NMR Spectral Data Pre-processing 

Fourier transformation, phasing, baseline corrections and spectral calibration to TSP (0 ppm) were 

automatically executed on TOPSPIN 3.6 software (Brucker Biospin, Rheinstetten, Germany). The data 

were imported into MATLAB R2018b (Mathworks Inc, Natick, MA, USA) with a resolution of 0.0001 

ppm using an in-house developed script, resulting in a total 32,697 data points. The water peak region 

(around 4.7 to 4.9 ppm) and TSP peak were removed. The alignment algorithm RSPA was used to 

automatically and manually align the spectra (Veselkov et al., 2009).  

 

5.2.12 Statistical analysis 

PCA was carried out based on auto-scaled data in SIMCA 17.0 (Umetrics AB, Umea, Sweden). The 

relative concentrations of metabolites were presented using the peak area of the representative 

signals from the identified metabolites. The peak integrals were calculated in MATLAB R2018b 

(Mathworks Inc, Natick, MA, USA). The fold change (FC) of each metabolite from each sample was 

calculated relative to the median level of the metabolite across all samples. Coefficient of variation 

(CV) was used to show the variation induced by the faecal aliquots (unlike urine or plasma, faecal 

aliquots show higher levels of variation due to its heterogeneity nature) and analytical methods (e.g., 

different extraction solvents, centrifugation speed, etc.). 
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5.3 Results 

5.3.1 Faecal aqueous metabolite extraction techniques strongly impact biochemical profiles  

We first compared various commonly used extraction techniques for faecal aqueous fraction, 

including beads beating, vortexing, filtration with 2 filters, sonicating, and multiple centrifugations. 

Among different extraction techniques, metabolic profiles of beads beating-processed samples were 

the most distinctive compared to the other methods (PC1 = 75.5%, Figure 5.2 (A)), mainly driven by 

higher concentrations of amino acids, glucose, and nucleic acid components and derivatives (Figure 

5.2 (B) & (D)) but not SCFAs (Figure 5.2 (C)). These observations indicated that the bead beating broke 

the microbial cells, resulting in higher levels of intracellular components in faecal aqueous extracts. In 

contrast, vortexing, sonicating and vortexing plus filtration showed similar metabolic profiles, whereas 

filtration with multiple filters of different size and multiple centrifugation exhibited similar 

biochemical composition. Metabolites obtained from these two methods showed overall lower 

concentrations, likely due to the loss of metabolites during multiple filtering and centrifugation steps. 

Considering the practical aspect and metabolic composition, vortex was chosen to extract metabolites 

in faecal aqueous metabolite profile. 
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Figure 5.2 (A) PCA scores plot of 58 human faecal aqueous extracts from one human faecal sample prepared in double-distilled 

water (ddH2O) using different extraction techniques. (B-D) Radar plots of the FCs of (B) amino acids, (C) carboxylic acids and 

(D) other metabolites including oligosaccharides, alcohol, secondary alcohol, nuclei acids component and its derivative, and 

vitamin.  

 

5.3.2 Faecal aqueous metabolite extraction using water, PBS and saline provides similar 

biochemical profiles 

The PCA scores plot showed that the inter-biological sample variation was greater than storage 

condition induced variation, and storage condition induced variation was greater than extraction 

solvents-induced variation (Figure 5.3). To further compare faecal metabolite concentrations 

following either water, PBS or saline extraction, FCs of the commonly observed faecal metabolites 

were calculated (Figure 5.4). There was no clear difference in the concentrations of these metabolites 

among different extraction solvents. I further evaluated the analytical variation induced by extraction 

solvents using CV values of relative metabolite concentrations (Table 5.2). Metabolites extracted using 
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water showed consistently lower variations compared to PBS and saline. The influence of storage 

condition on several metabolites was briefly presented in the Appendix Section 8.1.  

 

 

Figure 5.3 PCA plots of 266 human faecal aqueous extracts coming from 6 different human faecal samples prepared using 

ddH2O water, PBS or Saline coloured coded based on (A) sample source, (B) storage condition, and (C) extraction solvent. 

 

Table 5.2 CV values of relative metabolite concentrations 

 

 

W P Sl W P W P W Sl W Sl
Valine 9.17% 7.34% 11.09% 24.67% 28.20% 7.93% 9.95% 13.67% 16.10% 17.84% 20.28%

Isoleucine 9.84% 7.49% 10.80% 23.84% 27.58% 7.75% 8.78% 13.94% 16.15% 18.87% 20.66%

Methionine 9.69% 7.75% 7.91% 21.98% 27.13% 6.11% 4.35% 11.49% 15.12% 16.75% 17.27%

Threonine 10.25% 7.44% 8.41% 21.20% 26.59% 7.23% 7.96% 10.61% 14.25% 15.66% 15.08%

Phenylalanine 8.61% 7.23% 9.48% 21.77% 26.16% 5.82% 5.76% 12.24% 14.67% 17.59% 19.70%

Tyrosine 9.86% 7.19% 7.67% 20.35% 25.49% 4.23% 3.15% 11.65% 14.33% 16.30% 18.04%

Alanine 8.59% 5.18% 7.10% 22.48% 25.89% 6.68% 7.52% 13.23% 15.62% 16.59% 18.70%

Glutamate 8.93% 8.28% 8.31% 19.51% 24.43% 8.74% 7.25% 12.65% 16.91% 13.59% 16.58%

Asparatate 10.20% 6.67% 7.26% 20.03% 25.44% 6.03% 5.19% 11.59% 15.59% 12.42% 12.59%

Valerate 9.82% 6.08% 5.70% 20.19% 25.17% 2.83% 2.36% N/A N/A N/A N/A

Isovalerate 9.95% 6.06% 6.07% 18.75% 23.73% 6.17% 3.90% 10.82% 14.59% 13.87% 14.70%

Butyrate 10.88% 4.40% 5.52% 17.84% 22.72% 3.25% 2.71% 11.25% 14.65% 12.26% 11.01%

Isobutyrate 10.50% 7.81% 6.96% 22.04% 26.65% N/A N/A 10.76% 14.56% N/A N/A

Propionate 10.44% 6.00% 6.08% 18.14% 22.76% 3.33% 2.41% 10.80% 15.16% 10.99% 10.17%

Acetate 11.67% 5.27% 5.99% 16.36% 21.24% 3.27% 3.05% 9.92% 13.75% 12.08% 10.94%

Formate 12.75% 11.85% 9.06% 22.75% 25.51% 9.60% 11.14% 14.87% 40.54% 18.67% 17.64%

Succinate 11.97% 11.24% 8.58% 27.08% 38.14% 13.05% 12.47% 31.49% 30.05% 35.06% 49.77%

Fumarate 8.63% 10.33% 8.93% 20.66% 26.26% 5.27% 4.61% 15.36% 14.68% 11.00% 10.66%

Malate 9.79% 8.50% 7.60% 21.22% 26.34% 4.96% 3.38% 11.79% 13.97% N/A N/A

2-methyl butyrate 10.52% 6.75% 6.80% 20.30% 25.57% 6.80% 3.53% 12.42% 15.62% 14.22% 14.65%

Phenylacetate 10.64% 6.96% 6.20% 19.36% 25.33% 5.81% 3.47% 11.15% 14.69% 17.15% 19.50%

3-hydroxylphenyl propionate 13.53% 5.78% 7.33% N/A N/A 4.37% 4.04% N/A N/A N/A N/A

β-glucose 12.87% 5.11% 10.05% 18.90% 26.88% 6.28% 13.43% 17.79% 22.57% 20.73% 18.78%

α-glucose 15.41% 10.37% 7.32% 18.72% 22.82% 7.28% 6.22% 15.29% 19.58% 21.17% 17.50%

Ethanol 14.73% 3.56% 4.97% 21.18% 26.26% 5.39% 4.79% 11.22% 12.66% 14.29% 13.07%

Methanol 22.03% 7.46% 6.58% 19.70% 21.20% N/A N/A 12.64% 14.90% 15.91% 13.82%

Uracil 8.91% 5.30% 5.82% 23.20% 23.66% 6.97% 7.24% 13.03% 14.97% 18.83% 22.41%

Xanthine 6.28% 7.66% 7.40% N/A N/A N/A N/A N/A N/A N/A N/A

Hypoxanthine 9.76% 5.28% 5.39% N/A N/A N/A N/A N/A N/A N/A N/A

Nicotinate 9.64% 9.73% 11.13% 20.37% 26.43% 8.06% 7.78% 14.65% 17.19% 14.58% 15.75%

S3 S5 S21 S6 S7

Amino acids

Carboxylic 

acids

Other 

common 

metabolites

Metabolites
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Figure 5.4 Radar plots of the FCs of common faecal metabolites (amino acids, carboxylic acids, oligosaccharide, alcohol, 

secondary alcohol, nuclei acids compound and its derivative, and vitamin) from 5 FT independent biological replicates S3, S5, 

S21, S6 and S7.  
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5.3.3 Thorough wash of the whole pellets is crucial for subsequent pellet separation and 

profiling 

To minimize the contamination from faecal aqueous metabolites to pellet profiles, I evaluated the 

pellet washing steps. Figure 5.5 showed that washing the whole pellets twice by loosening the pellets 

and adding approximately 1.2 mL of water was sufficient to reduce signals of butyrate that were 

present in faecal aqueous extracts. Despite of low concentration, the presence of butyrate in S5 

pellets’ extract was confirmed by JRes NMR spectra (Appendix Figure 8.4).  

 

Figure 5.5 Median spectra showing the concentrations of butyrate in faecal aqueous extracts and whole faecal pellets without 

removing all the faecal aqueous extract before pellets extraction (S2), removing all the faecal aqueous extract before pellets 

extraction but not loosening pellets when washing pellets (S4), and removing all the faecal aqueous extract before pellets 

extraction and loosening pellets when washing pellets (S5). S2, S4 and S5 are sample labels. 
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5.3.4 Separation of bacterial fraction from whole pellets 

In this part, 5 centrifugation speeds and 3 extraction solvents (water, PBS, and saline) were tested on 

8 biological samples (S5, S21, S7, S24, S25, S26, S9, S23) and the bacterial and residual fractions were 

measured using 1H NMR spectroscopy, microscopic bacteria counting, bacteria staining and SEM 

(Table 5.3).  

 

Table 5.3 Sample preparation parameters and measurement methods used in the 8 faecal pellets  

Samples S5 S21 S7 S24 S25 S26 S9 S23 

Sample 
preparation 
parameters 

Extraction 
solvent 

Water √ √  √ √ √  √ 

PBS √ √ √ √ √ √ √ √ 

Saline   √ √ √ √ √ √ 

Centrifuge 
Speeds 

200g    √ √ √  √ 

500g   √ √ √ √ √ √ 

800g √ √ √ √ √ √ √ √ 

1400g  √       

2000g √        

Measurement 
methods 

NMR profiling √ √ √ √ √ √   

Light microscopy Bacteria 
counting 

   √ √ √   

 Bacteria 
staining 

      √  

SEM        √ 

 

I firstly used a method adapted from a reported DC approach (Rojo et al., 2015a) to separate bacteria 

from the whole faecal pellets on sample S5 (Figure 5.6). Compared to the original one, the modified 

method had the following changes: 1) the supernatant was kept, 2) the whole pellet was completely 

washed, 3) 800 g was tested in addition to 2000 g as 1 of the 2 DC speeds (Chiumento et al., 2019), 4) 

DC times was reduced from 3 times to twice. The resulting supernatant was spun at 18000 g to obtain 

bacterial pellets.  
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Figure 5.6 Flow charts of the first version of faecal bacterial fraction separation protocol. 

 

Extraction solvent (Water or PBS) and separation speeds (800 g or 2,000 g) caused the major variation 

along PC1 for both bacterial and residual fractions, whereas storage conditions (fresh or FT) had much 

less impact (Figure 5.7 (A, B)).  

 

 

Figure 5.7 PCA scores plot of the separated faecal bacterial extract and residual extract from sample S5 under fresh or FT 

storage condition, separated at 800 g or 2000 g, and extracted using water or PBS. FT_2000_P: FT samples separated at 

2000g and extracted using PBS, FT_2000_W: FT samples separated at 2000g and extracted using water; FT_800_P: FT 

samples separated at 800g and extracted using PBS; FT_800_W: FT samples separated at 800g and extracted using water; 

fresh_2000_P: fresh samples separated at 2000g and extracted using PBS, fresh_2000_W: fresh samples separated at 2000g 

and extracted using water; fresh 800_P: fresh samples separated at 800g and extracted using PBS; fresh_800_W: fresh 

samples separated at 800g and extracted using water. 
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Butyrate was found to be present in the aqueous and residual fractions, regardless separation speed 

(i.e., 800 g and 2000 g) and extraction solvent (i.e. water and PBS) (Figure 5.8). No butyrate was 

observed in the bacterial fraction from FT samples. This was also confirmed in J-Res NMR spectra 

shown in Appendix Figure 8.4. Butyrate is often reported in faecal aqueous fraction (also called “faecal 

water”) and no publication has reported its presence in bacterial pellets. In combination with my 

observation, this suggested that butyrate is likely to be absent or present at a very low concentrations 

inside of faecal bacterial cells. In contrast, another common SCFA propionate was present in both 

bacterial and residual fractions (Appendix Figure 8.4). The data demonstrated that DC as a separation 

method could separate faecal bacterial fraction and residual fraction. However, it is unclear how well 

they can be separated, which would be evaluated in the following part. 

 

 

Figure 5.8 Median 1H NMR spectra of aqueous metabolites profile, residual extracts and bacterial extracts. (A) FT S5 sample 

separated at 800g by water, (B) FT S5 sample separated at 800g by PBS, (C) FT S5 sample separated at 2000g by water, (D) 

FT S5 sample separated at 2000g by PBS. 
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Amino acids (AAs) such as BCAA and AAA, which are considered as an important microbial intracellular 

content, showed highest concentrations in faecal bacterial fraction when being extracted using PBS at 

800 g in contrast to the other 3 conditions (Figure 5.9 (A)). Besides, carboxylic acids and other common 

metabolites such as glucose, uracil, and hypoxanthine all showed highest concentrations when being 

extracted using PBS at 800 g. However, CV values of the common faecal metabolites in the bacterial 

fraction showed that the combination of 800 g and water was most reproducible (Table 5.4). Taking 

both metabolite concentrations and CV values into the consideration, the combination of separation 

speed of 800 g and extraction solvent PBS was optimal for separating and extracting faecal bacterial 

fraction, comparing to the combination of PBS and 2000 g, water and 800 g, or water and 2000 g.  

 

 

Figure 5.9 Radar plots of the FCs of metabolites in (A, B, C) bacterial fraction and (D, E, F) residual fraction separated from FT 

faecal samples.  
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Table 5.4 CV values of relative metabolite concentrations in the separated bacterial fraction from sample S5. Numbers in bold 

are the least CV values among the 4 comparison groups for each metabolite 

Metabolites FT_W_800 FT_P_800 FT_W_2000 FT_P_2000 

Isoleucine 10.56% 14.26% 14.23% 12.93% 

Valine 10.70% 17.80% 12.04% 12.56% 

Alanine 10.36% 13.66% 13.31% 12.76% 

Acetate 15.68% 9.12% 24.90% 6.42% 

Propionate 13.59% 8.40% 22.45% 9.41% 

Glutamate 9.36% 13.46% 12.30% 14.22% 

Pyruvate 11.66% 17.58% 12.33% 14.48% 

Succinate 8.05% 13.99% 13.53% 10.23% 

Methionine 10.43% 12.81% 14.64% 14.10% 

Aspartate 11.05% 13.59% 14.77% 12.36% 

Dimethylamine 7.48% 15.97% 18.65% 16.88% 

Glycine 11.45% 17.29% 11.75% 12.72% 

Threonine 10.09% 12.91% 12.61% 15.30% 

β-glucose 12.99% 10.57% 34.48% 58.76% 

α-glucose 11.06% 7.75% 12.31% 18.37% 

Uracil 12.35% 18.50% 9.89% 7.57% 

Fumarate 4.66% 11.80% 10.67% 11.39% 

Tyrosine 10.39% 9.96% 13.65% 13.29% 

Phenylalanine 9.77% 12.21% 12.50% 12.31% 

Hypoxanthine 8.42% 17.45% 5.95% 11.64% 

Formate 7.52% 23.00% 13.60% 9.35% 

Nicotinate 11.87% 18.73% 24.68% 17.29% 

 

Regardless of using water or PBS, most of metabolites in the bacterial fraction obtained from 2000 g 

showed lower concentrations compared to those from 800 g speed (Figure 5.9 (A – C)). A lower 

separation speed would be optimal for the separation of faecal bacterial fraction and food fraction. 

Therefore, in the 2nd version of faecal bacterial fraction separation protocol (Figure 5.10), I further 

explored DC speed of 1400 g in combination with PBS or water as extraction solvents, in comparison 

to 800 g. Besides, in the method showed in Figure 5.6, centrifugation at 800g was applied to 

supernatant twice to remove large plant debris from the bacterial fraction; However, this could result 

in a large amount of bacterial loss. Therefore, a modified method, where I applied DC cycle(s) to 

recover the bacteria from the residual fraction, was used in the subsequent experiments (Figure 5.10).  
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Figure 5.10 Flow charts of second version of faecal bacterial fraction separation protocol 

 

Extraction solvent caused the significant variation along PC2 (16.6%) followed by the variation caused 

by storage condition (fresh or FT) along PC3 (4.89%) on bacterial fraction profiles. In contrast, 

separation speed showed minor impact on separated bacterial pellets profiles (Figure 5.11 (A)). Both 

extraction solvents and storage conditions-related variation in the residual fractions was along PC2 

(22.1%) but not along PC3 (4.67%) (Figure 5.11 (B)). As the separation speeds reduced from 2000g to 

1400g, extraction solvents exerted a greater influence on bacterial metabolic profile. 
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Figure 5.11 PCA scores plot of the separated faecal bacterial extract and residual extract from sample S21 under fresh or FT 

storage condition, separated at 800g or 1400g, and extracted using water or PBS.  FT_1400_P: FT samples separated at 1400g 

and extracted using PBS, FT_1400_W: FT samples separated at 1400g and extracted using water; FT_800_P: FT samples 

separated at 800g and extracted using PBS; FT_800_W: FT samples separated at 800g and extracted using water. 

fresh_1400_P: fresh samples separated at 1400g and extracted using PBS, fresh_1400_W: fresh samples separated at 1400g 

and extracted using water; fresh 800_P: fresh samples separated at 800g and extracted using PBS; fresh_800_W: fresh 

samples separated at 800g and extracted using water. 

 

Amino acids except methionine and threonine, showed higher concentrations when being extracted 

using PBS at 800 g than at 1400g, or being extracted using water and separated at 800 g or 1400 g 

(Figure 5.12 (A)), but in a lesser extent than sample S5. High baselines at threonine and methionine 

caused the higher concentrations when being extracted using water and spun at 800 g. Carboxylic 

acids showed higher concentrations when being extracted by water at 800 g than being extracted by 

water at 1400 g, or being extracted by PBS at 800 g or 1400 g (Figure 5.12 (B)). β-glucose and α-glucose 

concentrations were higher when extracted using water than using PBS, whereas uracil, hypoxanthine 

and nicotinate concentrations were higher when extracted using PBS than using water (Figure 5.12 

(C)). CV values showed that most of the common faecal metabolites at bacterial fraction extracted 

using water and spun at 800 g was more stable than the other combination (Table 5.5). 
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Figure 5.12 Radar plots of the FCs of common faecal metabolites in (A, B, C) bacterial fraction and (D, E, F) residual fraction 

separated from FT faecal samples.  

 

Table 5.5 CV values of relative metabolite concentrations in the separated bacterial fraction from sample S21 

Metabolites FT_800_W FT_800_P FT_1400_W FT_1400_P 

Isoleucine 15.03% 24.14% 22.08% 22.03% 

Valine 21.55% 23.30% 23.63% 20.25% 

Alanine 16.22% 24.61% 23.15% 23.86% 

Acetate 10.93% 31.40% 33.57% 34.11% 

Propionate 13.41% 30.10% 31.81% 39.55% 

Glutamate 8.65% 23.71% 26.41% 22.83% 

Pyruvate 11.93% 19.57% 22.44% 30.01% 

Methionine 7.68% 24.32% 23.91% 25.13% 

Aspartate 7.39% 27.47% 27.76% 25.84% 

Glycine 28.67% 23.12% 24.15% 19.31% 

Threonine 7.23% 24.27% 22.95% 18.97% 

β-glucose 13.59% 22.87% 16.88% 15.22% 

α-glucose 9.14% 19.33% 15.41% 13.00% 

Uracil 6.17% 19.29% 18.85% 14.97% 

Fumarate 8.90% 16.95% 15.07% 13.34% 

Tyrosine 16.01% 25.26% 22.07% 22.78% 

Phenylalanine 16.98% 23.29% 20.16% 20.43% 

Hypoxanthine 7.92% 14.70% 14.51% 14.27% 

Formate 10.62% 11.79% 12.12% 13.63% 

Nicotinate 12.46% 12.49% 23.41% 25.62% 
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In summary, centrifuge speed at 800 g was better than at 2,000 g and 1,400 g in terms of extraction 

efficiency and extraction consistency on common faecal bacterial metabolites, regardless extraction 

solvent. Besides, centrifuge speed at 200 g was reported to precipitate significant amounts of 

microbial matter (Stephen and Cummings, 1980). Hence, an analysis of a lower centrifuge speed was 

carried out. The impacts of water and PBS on bacterial extracts was comparable, but PBS seemed to 

exert consistently stronger extraction on microbial intracellular metabolites from S5 and S21. 

Therefore, PBS was kept for the next NMR experiment. 

 

The combined effects of centrifuge speed 800g and 500g and extraction solvent PBS and saline on 

faecal bacterial extracts was tested using the protocol as Figure 5.13. Storage condition (fresh or FT) 

caused the major variation along PC2 (10.8%), whereas extraction solvent (PBS or Saline) and 

separation speed (500g or 800g) were minimal impactful on separated faecal bacteria pellets profiles. 

 

Figure 5.13 PCA scores plot of the separated faecal bacterial extract and the residual extract from sample S21 under fresh or 

FT storage condition, separated at 800g or 500g, and extracted using PBS or saline. FT_500_P: FT samples separated at 500g 

and extracted using PBS, FT_500_W: FT samples separated at 500g and extracted using water; FT_800_P: FT samples 

separated at 800g and extracted using PBS; FT_800_W: FT samples separated at 800g and extracted using water. 

fresh_500_P: fresh samples separated at 500g and extracted using PBS, fresh_500_W: fresh samples separated at 500g and 

extracted using water; fresh 800_P: fresh samples separated at 800g and extracted using PBS; fresh_800_W: fresh samples 

separated at 800g and extracted using water. 
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Amino acids concentrations were the highest when being extracted using PBS at 500 g in contrast to 

the other conditions (Figure 5.14 (A)). Acetate and formate concentrations were highest when being 

extracted using PBS at 500 g, followed by being extracted using saline at 500 g. The high variation of 

acetate (CV > 50%, Table 5.6) being extracted using PBS at 500 g caused the high FC of acetate, 

whereas formate concentration was high when being extracted at 500g regardless the extraction 

solvent (CV < 30%, Table 5.6). Besides, the CV values of the major common faecal metabolites showed 

the lowest when being extracted using saline and spun at 500g (Table 5.6).  

 

 

Figure 5.14 Radar plots of the FCs of common faecal metabolites (amino acids, carboxylic acids, oligosaccharide, alcohol, 

secondary alcohol, nuclei acids compound and its derivative, and vitamin) from (A, B, C) the separated bacterial fraction and 

(D, E, F) the residual fraction. 
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Table 5.6 CV values of relative metabolite concentrations in the separated bacterial fraction from sample S7 

Metabolites FT_800_P FT_800_Sl FT_500_P FT_500_Sl 

Isoleucine 11.69% 24.13% 29.13% 9.80% 

Valine 10.40% 26.78% 28.44% 8.03% 

Ethanol 44.16% 37.29% 59.45% 30.08% 

Alanine 12.60% 24.27% 28.23% 12.99% 

Acetate 32.75% 27.42% 54.36% 28.35% 

Propionate 36.59% 36.03% 62.22% 33.17% 

Glutamate 23.65% 23.34% 35.55% 19.52% 

Pyruvate 14.62% 13.90% 18.69% 16.41% 

Succinate 36.22% 26.17% 18.33% 24.54% 

Methionine 19.98% 22.48% 35.18% 17.33% 

Aspartate 18.91% 23.04% 34.54% 15.61% 

Dimethylamine 22.23% 22.17% 34.90% 18.20% 

Glycine 10.04% 26.30% 21.25% 8.20% 

Threonine  20.27% 20.14% 31.54% 18.13% 

β-glucose 24.46% 21.84% 37.72% 21.08% 

α-glucose 24.12% 19.72% 28.70% 23.99% 

Uracil  15.34% 18.69% 21.97% 12.69% 

Fumarate 16.67% 12.75% 19.52% 11.95% 

Tyrosine 12.59% 24.90% 29.91% 11.24% 

Phenylalanine  11.31% 25.51% 29.39% 10.10% 

Hypoxanthine 16.26% 19.30% 23.30% 17.20% 

Formate 26.86% 24.14% 23.66% 13.25% 

Nicotinate  31.68% 20.56% 37.79% 27.86% 

 

In summary, the centrifuge speeds 1400g and 2000g were not ideal in terms of the extraction 

efficiency and extraction consistency on common faecal metabolite, comparing to 800g and 500g. The 

extraction efficiency of PBS was slightly better than water and saline, but the extraction consistency 

of water and saline on common metabolites were better than PBS. Since it is bacterial fraction that I 

was trying to separate, microscopy was used in the following study to assist further investigation on 

the optimal combination of different parameters of separation speed and extraction solvent.  

 

Before focusing on microscopic results, the median 1H NMR spectra of the separated faecal aqueous, 

bacterial, and residual fractions from D2S7 was showed in Figure 5.15 to demonstrate the different 
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metabolic profiles. Metabolites including 2-method butyrate, valerate, butyrate, malate, 3-

hydroxyphenyl propionate, phenylacetate, and nicotinate, were exclusively present in faecal aqueous 

extract (Figure 5.15 A – D); Metabolites in red rectangle in Figure 5.15 A were unique and exclusive in 

faecal bacterial fraction (Appendix Figure 8.6); Lactate was not present in faecal aqueous extract but 

in residual and bacterial extract (Appendix Figure 8.6); AAs such as leucine, isoleucine, valine, alanine, 

methionine, tyrosine, and phenylalanine showed higher concentrations in bacterial extract than in 

residual extract (Figure 5.15 A – D). Figure 5.15 proved that protocol in Figure 5.10 could be used to 

separate different faecal fractions and showed their distinct metabolic profile. 
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Figure 5.15 Median 1H NMR spectra of faecal aqueous extracts, bacterial extracts, and residual extracts from sample S7 using 

Saline. The bacterial pellets were separated at 800g. Common metabolites are annotated in black. Metabolites in blue are 

exclusive to faecal aqueous fraction. Metabolites in red rectangle are exclusive to faecal bacterial fraction.  
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Three centrifugation speeds (i.e., 200 g, 500 g and 800 g) and 3 solvents (water, PBS and saline) were 

used to test their combined effects by using bacterial number recovery rate (BRR). Centrifugation at 

200 g resulted in a lower BRR compared to that at 500 g and 800 g regardless of the solvent choice. 

Saline showed a higher BRR at both 500 g (56.39%) and 800 g (57.25%) centrifugation speeds 

compared to water and PBS (Figure 5.16 (A)). Gram staining and SEM images showed that the bacterial 

fraction was mainly bacteria with little contamination of plant fibre (Figure 5.16 (B)). 

 

 

Figure 5.16 (A) Bar chart of BRR when being extracted using water, PBS and saline at 200g, 500g, and 800g. All the rates are 

indicated in Mean ± SD. 3 repeats per technical replicate (n = 3) per condition per biological sample (N = 3). (B) Gram staining 

image of the separated faecal bacterial fraction using 800g in saline with x 100 magnification. Bluish purple stains: Gram-

positive bacteria. Pinkish red stains: Gram-negative bacteria. Yellowish green marks: plant residues or human cells; (C) SEM 

image of the separated bacterial fraction using 800g in saline with x 4.95K magnification. 

 

As there was > 40% of the bacteria remained in the separated residual fraction, to recover more 

bacteria into the bacteria fraction, I applied multiple DC cycles (2, 3 or 4 times) with either 1 mL or 300 

μL of extraction solvent further on the residual pellets. Due to the COVID which limited the access to 

the lab, I had to carry out the evaluation on the number of differential centrifugation cycles prior to 

completion of bacterial counting. Based on the partial results, PBS and 800 g were chosen as a 

representative combination before the ideal combination was selected. Four DC cycles with 1 mL of 

PBS each cycle resulted in the highest BRR (76.87%) (Figure 5.17).  
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Figure 5.17 Bar chart of BRR when the residual pellet being prepared at 2, 3, and 4 DC cycles using 1mL and 300 μL of PBS.  

BRR are indicated in Mean ± SD. 

 

Consistently, the 1H NMR spectroscopic profiles of bacterial fractions from 3 technical replicates of 

sample S26 showed steady increases in signal intensities of amino acids such as phenylalanine and 

tyrosine, which are known to be present in bacteria, following 1, 2 3, and 4 DC cycles on the residual 

pellets (Figure 5.18). In contrast, these signals in the residual fraction decreased. Other amino acids 

also showed similar trends (Appendix Figure 8.7 – 8.11). Therefore, applying 4 DC cycles with 1 mL of 

PBS could provide a higher recovery of bacteria.  
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Figure 5.18 1H NMR spectra of bacterial extracts and residual extracts obtained from S26 when using (A) 1, (B) 2, (C) 3 and 

(D) 4 DC cycles with 1 mL of PBS per cycle.  

 

As the combination of 800 g and saline showed 57.25% of BRR with 1 DC cycle, I predicted 83.29% of 

BRR from 4 DC cycles with 1 mL of saline using linear regression model (y = 0.868x + 0.4227, r2 = 0.9653, 

Figure 5.19) which was acquired based on 800 g and PBS. Despite of the similar effect of water, PBS 

and saline at 800g on BRR, saline group was showed the highest BRR. Therefore, 800 g and saline were 

chosen as separation speed and extraction solvent for faecal bacterial fraction separation.  
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Figure 5.19 Linear regression model of BRR when prepared at 1, 2, 3 and 4 cycles using 1mL of PBS. 

 

In practical aspect, due to the limited microcentrifugation tube size (2 mL), 4 DC cycles of complete 

washing residues using 1 mL of solvent per cycle would require 4 times centrifugations at 18,000 g, 

which would be time-consuming. The solution to overcome this would include 1) using a tube with > 

3mL size, 2) reducing the wash volume. There was no such a tube available in my lab; therefore, I 

tested 300 μL of solvent per DC cycle using 1H NMR. The extraction efficiency of 300 μL PBS with DC 

cycles of 2, 3, and 4 were evaluated on phenylalanine and tyrosine from sample S24 (n = 1), S25 (n = 

1), and S26 (n = 1), the effect of 2DC (600 μL of wash volume in total) was comparable to the effect of 

washing residues 3 times (900 μL of wash in total) (Figure 5.20), which was also comparable to the 

extraction efficiency of washing residue once with 1 mL of PBS (Figure 5.18). To balance between the 

optimal volume used in each DC cycle and the practical aspect, I chose to carry out 4 DC cycles with 1, 

1, 1, and 0.6 mL of saline per cycle for the subsequent clinical samples presented in Chapter 5. The 

flowchart is shown in Figure 5.21.  
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Figure 5.20 1H NMR spectra of bacterial extracts and residual extracts obtained from S24, S25, and 26 when using (A) 1, (B) 

2, (C) 3 and (D) 4 DC cycles with 300 μL of PBS per cycle.  
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Figure 5.21 Flow chart of the developed method of faecal component separation for 1H NMR spectroscopy.  
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5.4 Discussion  

To my best knowledge, this is the first study to develop faecal extraction method of faecal aqueous 

metabolite fraction, bacterial fraction and the residual fraction for 1H NMR global profiling. Different 

extraction techniques were firstly investigated. Comparing to other extraction techniques, vortex is 

substantial enough to effectively extract common aqueous faecal metabolites, but it is not as powerful 

as beads beating to break down bacterial cells and introduce bias. Despite that PBS (pH = 7.4) has the 

advantage of a unique pH, water and saline were both effective and consistent extraction solvent for 

faecal aqueous metabolites. Water was chosen due to the simplicity for method development. 

Regarding to faecal aqueous metabolite extraction, my results were consistent with the 

recommendations from Gratton et al (Gratton et al., 2016).  

 

My study showed that washing the whole pellets thoroughly including washing the whole pellets twice 

by loosening the pellets and adding approximately 1.2 mL of solvent is crucial for the subsequent pellet 

separation and profiling. Although filtration has been used in many researches before to remove large 

food particles food (Stephen and Cummings, 1980, Marchesi et al., 2007), the following problems were 

present in my study: 1) the cloggage of filters with various sizes (e.g. 65μm and 40 μm), 2) substantial 

bacteria were attached to the filters which is usually made of nylon material, 3) the available ceramic 

filters were not autoclave and needed to be connected with syringe which was time-consuming for 

the faecal preparation. In contrast, differential centrifugation is easy to use, excluded from external 

contamination and preservative on bacteria loss while preparing faecal samples. Differential 

centrifugation is therefore chosen to separate bacterial fraction from the residues. Studies using DC 

to explore the biological implication of bacterial extracts have been published (Rojo et al., 2015a, Rojo 

et al., 2015b, Perez-Cobas et al., 2013, Serrano-Villar et al., 2016), but none of them optimise the 

parameters such as the centrifuge speed, extraction solvent, DC cycle times and solution volumes used 

for DC cycle. 
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The extraction efficiency of each centrifuge speed and extraction solvent on the common faecal 

metabolites were tested using 1H NMR, and were compared using FC. The purity of each centrifuge 

speed and extraction were tested using bacteria staining test and SEM. BRR was used to quantify the 

separation effect of centrifuge speed and extraction solvent. The selection of these testing methods 

were consistent with the study of Stephen et al. (Stephen and Cummings, 1980). My results showed 

that the combination of a centrifuge speed 800g and saline with 1DC cycle can produce ideal 

extraction efficiency, pure content in bacterial fraction and 57.25% of BRR. With 3 more DC cycles, 

800g and saline were predicted to have 83.29% of BRR. A disadvantage of this study is that this BRR is 

not an experimental result but a mathematical prediction. Besides, although Gram staining and SEM 

images showed little plant fibre contamination in Figure 5.16 (B, C), 3 more DC cycles of the residual 

fraction might increase the contamination of plant residues in bacterial fraction. Further bacterial 

counting experiments, and Gram staining and SEM experiments need to be done using 800g and saline 

with 4 DC cycles in total to test the separation effect and the purity of the bacterial fraction. Comparing 

to the previously published method (Rojo et al., 2015a), my developed method focused on recovering 

more bacteria rather than reducing possible plant contamination for the bacterial fraction. The 

method can be further optimised by adding more DC cycles with lower speeds (e.g. < 200 g) to remove 

possible plant residues. Besides, I compromised the wash volumes from 3 mL to 2.6 mL to simplify the 

protocol by reducing a centrifuge time while conducting 4 DC cycles, but the impacts on extraction 

efficiency were supposed to be limited. With the advanced robotic system, bacterial DNA extraction 

can be automated in the lab nowadays. With further optimisation and testing, a robust protocol 

without any compromise can be conducted efficiently using robotic system. 

 

Besides, in my study, I found that impacts of samples collection time point on aqueous metabolite 

profile was greater than the impacts of storage condition (i.e. fresh and FT) or extraction solvent (i.e. 
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water, PBS and saline). In contrast, centrifuge speed and extraction solvent (i.e. water, PBS and saline) 

exerted greater impacts than storage condition (i.e. fresh and FT) on bacterial extracts. Besides, 

bacterial staining and SEM results on FT faecal bacteria fraction showed that there were still plenty of 

bacteria remained intact after FT cycle. This suggested that bacteria cells, despite some being burst 

during FT cycle, can be partially resilient to FT cycles when stored in an intact raw faecal sample.  

 

Butyrate concentration remained absent in bacterial extracts of all the 3 tested samples S5, S21, and 

S7, but was in large amount at aqueous metabolite fraction in my study. Besides, valerate, 

phenylacetate, 3-hydroxylphenyl propionate and nicotinate were only present in faecal aqueous. This 

suggested that these metabolites were either majorly extracellular metabolites or excreted from 

bacterial pellets during the FT process.  

 

5.5 Conclusion 

The developed method of faecal component separation for 1H NMR global profiling provided a new 

insight on faecal sample study. The protocol is substantial to extract metabolic information from 

different faecal fractions but keeps its simplicity. It is also reproducible and reliable.  
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6. Chapter 6 Application of the faecal separation and extraction 

method in weight loss management cohorts 

6.1 Introduction 

Current studies on faecal samples from patients who underwent RYGB and VLCD mainly focus on 

microbial composition and faecal aqueous metabolome (West et al., 2020, Li et al., 2021, Ilhan et al., 

2017, Aleman et al., 2018, Heinsen et al., 2016, Rondanelli et al., 2021), but not intracellular bacterial 

metabolites. Following the faecal separation and extraction method development in Chapter 4, this 

chapter aimed at the application of the developed method on 2 clinical cohorts – RYGB and VLCD 

cohorts. The objectives of this chapter were 1) to test whether the developed faecal extraction 

method can show different faecal metabolic profiles from different faecal fractions, 2) to reveal the 

potential biological meanings of the faecal metabolic profiles from different faecal fractions.  

 

6.2 Study design & Methodology 

6.2.1 Study design 

Among the 68 patients who participated in a mechanistic study at the NIHR Imperial Clinical Research 

Unit Facility at Hammersmith Hospital (London, UK) from April 2015 to May 2021, a total of 12 patients 

from RYGB (N = 7) and VLCD (N = 5) cohorts were included for faecal separation and extraction study. 

VLCD group was subject to daily caloric intake of ~800 kcal for 4 weeks mimicking that in RYGB 

patients. Faecal samples were both collected at pre-intervention, and short-term follow-up (SF, 1- and 

3-month post-intervention). Middle-term follow-up (MF, 1-year post-RYGB) and long-term follow-up 

(2-, 3-, and 5-year post-RYGB) were collected from patients undergone RYGB (Figure 6.1).  
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Figure 6.1 Study design of the clinical cohorts to test the developed faecal extraction method. n is the number of the samples. 

‘n’ represents sample number. 

 

6.2.2 Sample collection and preparation, and 1H NMR spectroscopic data acquisition 

Faecal samples were collected and aliquoted into 2-mL cryo-vials at each time point before being 

stored at -80℃. Each vial of faecal sample was defrosted at room temperature for half an hour. 

Approximately 600mg of defrosted faecal samples from each vial was transferred into a 2-mL 

reinforced homogenising tubes (Precellys, Cat. No.: P000943-LYSK0-A.0) and was prepared using the 

developed method in Chapter 5 into faecal aqueous extraction, faecal bacterial extraction, and faecal 

residue extraction. Briefly, 2 volumes of HPLC-grade water were added to each raw faecal samples, 

the slurry was vortexed and centrifuged and the resulted supernatant was faecal aqueous extract. The 

resulted residue was completely washed using saline and separated at 800g spin speed using saline 

into bacteria fraction and residue fraction, and each of these 2 fractions was extracted using beads 

beating and resulted in bacterial extraction and residual extraction. Faecal water, bacterial extraction, 

and residual extraction were stored at -80℃ until 1H NMR spectroscopic analysis. 

 

Faecal sample was defrosted at room temperature for ~ 30mins. The samples were centrifuged at 

18,000 g for 10 mins at 4℃. Four hundred and fifty microliters of the clean supernatant was mixed 

with 90 μL of HPLC-grade water and 60 μL of D2O containing 1.5 M of KH2PO4, 5.8 mM of TSP, and 2 

mM NaN3 at pH 7.4, in a new Eppendorf tube by vortexing for 5 s, and 580 μL were transferred to a 
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NMR tube with an outer diameter of 5mm for standard 1D 1H NOESY analysis. The samples were 

analysed in a randomised order using a Bruker 600 MHz spectrometer (Bruker, Rheinstetten, 

Germany) set to a constant temperature of 300 K. The operating frequency was 600.13 MHz, and the 

pulse sequence was delay-90⁰-t1-90⁰-tm-90⁰-acquisition with t1 corresponding to 3 ms, tm to 10 ms, and 

the 90⁰ pulses to 10 μs. The suppression of the water peak was completed during tm and the recycle 

delay (4 sec). A total of 64 scans were acquired per sample into 64K data points with a spectral width 

of 10 ppm.  

 

 

6.2.3 1H NMR spectral data pre-processing 

Fourier transformation, phasing, baseline corrections and spectral calibration to TSP (0 ppm) were 

automatically executed on TOPSPIN 3.6 software (Brucker Biospin, Rheinstetten, Germany). The data 

were imported into MATLAB R2018b (Mathworks Inc, Natick, MA, USA) with a resolution of 0.0001 

ppm using an in-house developed script, resulting in a total 32,697 data points. The water peak region 

(δ1H 4.7 to 4.85 ppm) and TSP peak were removed. Median-fold normalisation was used on each faecal 

sample type to account for differential water content of faecal samples prior to the 2:1 dilution phase.  

 

6.2.4 Statistical analysis of faecal profiles 

PCA was carried out based on auto-scaled data in SIMCA 17.0 (Umetrics AB, Umea, Sweden). O-PLS-

DA was used to seek the significant signals between groups in MATLAB R2018b (Mathworks Inc, 

Natick, MA, USA). The O-PLS-DA models were permuted 1000 times to test the significance (p <= 0.05) 

of the model. BH multiple test correction was used to control the FDR. RM-PLS-DA was used to 

investigate the metabolic differences between different time points from the same group of patients 

in MATLAB R2018b. 
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6.3 Results 

6.3.1 Faecal aqueous fraction, bacterial fraction and residual fraction showed distinctive 

metabolic profiles 

In this section, I will focus on the metabolic differences between different faecal fractions using the 

combined datasets from 2 study cohorts. The PCA scores plot of 1H NMR profiles (Figure 6.2 (A)) 

showed a clear separation between faecal aqueous extracts and bacterial and residual fractions along 

PC1, after excluding a strong outlier V006_V9_S. While the separation between the faecal aqueous 

metabolites and bacterial fractions were partially contributed by the dilution (2 μL : 1 mg faeces for 

aqueous metabolites; 1 μL : 1 mg for bacterial/residual metabolites), metabolites including 2-methyl 

butyrate, valerate, isobutyrate, malonate, dimethyl sulfone (DMSO2), phenylacetate and nicotinate, 

were only present in faecal aqueous extracts (Figure 6.2 (B-D)). Besides, butyrate was mostly present 

in faecal aqueous metabolite profile, but was absent or at very low concentration in bacterial fraction 

(Figure 6.2 (B)). There was no metabolite only observed in bacterial or residual fractions.  
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Figure 6.2 (A) PCA scores plot of 1H NMR data obtained from RYGB cohort and VLCD cohort without a strong outlier. (B-D) 

Median spectra of faecal aqueous metabolite profile (blue), median spectra of bacterial profile (red) and median spectra of 

residual profile (green). Metabolites highlighted in blue without an asterisk were only present in aqueous metabolite profile, 

whereas metabolites highlighted in blue with an asterisk were present in aqueous metabolite profile and present bacterial 

profile at certain time point or in certain samples. Metabolites in black were at different concentrations in faecal bacterial 

extracts and the residual extracts.  

 

The PCA scores plot of all the obtained 1H NMR profiles showed a clear clustering that along PC1 based 

on different sample types (Figure 6.3 (A)), rather than on intervention types (Figure 6.3 (B)). AAs 

(isoleucine, valine, methionine, glutamate, threonine, aspartate, tyrosine, and phenylalanine), uracil, 

hypoxanthine and 6 unknown metabolites showed higher concentrations in bacterial extracts than in 

residual extracts (Figure 6.3 (C)). These results were consistent with the findings in Chapter 5 (Figure 

5.18 (D), Figure 8.7 – 5.27 (D)). β-glucose, α-glucose and methanol/scyllo-inositol concentrations were 

higher in residual extracts than in bacteria extracts (Figure 6.3 (C-D)). These results are also consistent 

with the findings in Chapter 5 (Figure 8.10 (D) & 5.29 (D)). In summary, with the application of the 

developed faecal separation and extraction method, distinctive metabolic profiles were observed 
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from faecal water extracts, bacterial fractions and residual fractions from this clinical cohort. Residual 

fraction is a mixture of bacteria and food residues, its comparison is therefore less meaningful. In 

addition, the bacterial intracellular metabolites were the main interest of this chapter, I would focus 

on the changes of bacterial fraction profiles followed by aqueous fraction profiles after RYGB or VLCD. 

 

 

Figure 6.3 PCA scores plot of all the obtained1H NMR data colour coded in (A) sample types and (B) intervention types. (C) FC 

of common faecal metabolites and unknown metabolites showing higher concentrations in bacterial extracts than residual 

extracts. (D) FC of β-glucose, α-glucose and methanol/scyllo-inositol showing higher concentrations in residual extracts than 

bacterial extracts.  
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6.3.2 RYGB or VLCD-induced metabolic changes in bacterial fractions and faecal aqueous 

extracts  

PCA scores plots showed a separation trend between RYGB and VLCD bacterial profile groups, 

especially between VLCD samples and post-RYGB samples along PC1 (Figure 6.4 (A)). Great variations 

of SF and MF RYGB samples and a tight cluster LF RYGB samples were observed (Figure 6.4 (A)). A 

similar clustering was observed in PCA scores plots based on aqueous profile between VLCD and post-

RYGB samples along PC1 and PC2 (Figure 6.4 (B)). 

 

 

Figure 6.4 PCA plots of 1H NMR data obtained from RYGB cohort and VLCD cohort. (A) Bacterial metabolite profiles. (B) 

Aqueous metabolite profiles. 

 

6.3.2.1 RYGB or VLCD-induced metabolic changes in faecal bacterial extracts 

In the faecal bacterial extract profile, RYGB samples at Pre timepoint tended to separate LF, and had 

a more spread cluster at SF than other timepoints, particularly LF (Figure 6.5 (A)). This suggested 

greater changes at LF comparing to pre-RYGB, and greater inter-personal variations immediately 

following RYGB surgery but a more consistent response at LF in the bacterial fraction profiles. In terms 

of metabolic changes after VLCD, SF VLCD samples were split into 1mon-post-VLCD and 3mon-post-

VLCD samples. VLCD samples at Pre timepoint tended to separate from 3-mon-post-VLCD along PC4 

(Figure 6.5 (B)).  
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Figure 6.5 PCA scores plot of 1H NMR data obtained from bacterial extract of (A) RYGB and (B) VLCD cohort. 

 

Parameters of RM-PLS-DA models of different time points comparison of bacterial extract profile are 

shown in Figure 6.1. For RYGB samples, models of Pre and SF, Pre and MF, Pre and LF, and MF and LF 

were valid; For VLCD samples, models of Pre and 3-mon-post-VLCD, and 1-mon-post-VLCD and 3-mon-

post-VLCD were valid. None of the OPLS-DA models was valid except the comparison between Pre and 

LF time point and would be included in the following results. 

 

Table 6.1 Parameters of RM-PLS-DA-based models of different time point comparisons of bacterial extract profile 

Cohorts Timepoint 
comparison 

Parameters Metabolite changes 

RYGB Pre vs SF Q2 = 0.32, RCV = 0.35 No sig. diff. small metabolites  

Pre vs MF Q2 = 0.56, RCV = 0.61 No sig. diff. small metabolites 

Pre vs LF Q2 = 0.62, RCV = 0.65 Propionate, butyrate, succinate higher at LF; 
Tyrosine higher at Pre 

SF vs MF Q2 = - 0.21 N/A 

SF vs LF Q2 = - 0.56 N/A 

MF vs LF Q2 = 0.35, RCV = 0.36 Propionate higher at LF; α-glucose higher at MF 

VLCD Pre vs 1mon Q2 = -0.009 N/A 

Pre vs 3mon Q2 = 0.68, RCV = 0.69 Propionate higher at 3-mon-post-VLCD 

1mon vs 3mon Q2 = 0.74, RCV = 0.75 Lysine, methionine, and phenylalanine higher at 
1-mon-post-VLCD than at 3-mon-post-VLCD 
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RM-PLS-DA model based on the bacterial extracts of RYGB pre and LF time points showed that 

concentrations of butyrate, propionate, and succinate were higher at LF than Pre, whereas tyrosine 

concentration was lower (Figure 6.6 (A – B)). The differences were also confirmed by spectral 

comparison (Figure 6.6 (C – F)). Significant signals showed in other areas in Figure 6.6 (B) were due to 

noise at the baseline. 

 

  

Figure 6.6 RM-PLS-DA modelling on RYGB bacterial extracts between Pre and LF time points. (A) KDE (top) and mean (bottom) 

of the predicted scores (Tpred) for Pre and LF bacterial extracts data. (B) Average 1H NMR spectra of bacterial extracts at Pre 

and LF time points (top), and Manhattan plot (bottom) showing -log10(pFDR) x sign of regression coefficient (β) of the RM-

PLS-DA model for the 26010 spectral variables. The blue peak represents the higher concentration of the metabolite in pre-

RYGB samples, the red peaks represent the higher concentrations of the metabolites in the LF RYGB samples (C-F) Butyrate, 

propionate, succinate and tyrosine peaks showed in the normalised 1H NMR spectra. 

 

OPLS-DA model constructed based on the bacterial extracts of RYGB pre and LF time points using 1 

predictive and 1 orthogonal component was valid (R2X = 0.2580, Q2Y = 0.4588, Pperm = 0.0240). The 

OPLS-DA scores plot showed a separation between RYGB Pre and LF time points (Figure 6.7 (A)). 

Pyruvate concentration was significantly higher in pre-RYGB group, whereas propionate and succinate 
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concentrations were significantly higher in LF RYGB group prior to BH correction, and all these 3 

metabolites showed high correlation coefficients (r > 0.5) (Figure 6.7 (B)). 

 

 

Figure 6.7 OPLS-DA modelling of full-resolution spectral plasma data of RYGB at Pre and LF time points. (A) 7-fold internal 

cross-validated score plot of RYGB samples at Pre and LF time points with 1 predictive and 1 orthogonal component; (B) 

Loading plot of RYGB samples at Pre and LF time points prior to BH procedure. Metabolites labelled downwards represent 

their increased intensities with pre-RYGB group, whereas metabolites labelled upwards represent their increased intensities 

with LF RYGB group. 

 

RM-PLS-DA model based on bacterial extracts of RYGB at MF and at LF time points showed that 

concentrations of propionate was higher at LF, whereas α-glucose concentration was higher at MF 

(Figure 6.8 (A – B)). The differences were also confirmed by spectral comparisons (Figure 6.8 (C – D)). 

Similar as above, the noise caused significant signals in the areas other than propionate and α-glucose.  
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Figure 6.8 RM-PLS-DA modelling on RYGB bacterial extracts between MF and LF time points. (A) KDE (top) and mean (bottom) 

of the predicted scores (Tpred) for MF and LF bacterial extracts data. (B) Average 1H NMR spectra of bacterial extracts at MF 

and LF time points (top), and Manhattan plot (bottom) showing -log10(pFDR) x sign of regression coefficient (β) of the RM-

PLS-DA model for the 26010 spectral variables. The blue peak represents the higher concentration of the metabolite in MF 

RYGB samples, the red peak represents the higher concentration of the metabolite in the LF RYGB samples. (C-D) Propionate 

and α-glucose peaks showed in the normalised 1H NMR spectra. 

 

RM-PLS-DA model based on bacterial extracts of VLCD at Pre and 3-mon-post time point showed that 

concentrations of propionate concentration was higher at 3-mon-post than at Pre time point (Figure 

6.9 (A – B)). This was confirmed by spectral comparison in Figure 6.9 (C). The significant signals from 

the areas other than propionate were not only caused by noise but also by different peak width in 

different samples. As all the samples were randomised for NMR measurement, the possible reasons 

can be viscosity and clarity of different samples as well as certain compounds in different samples.  
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Figure 6.9 RM-PLS-DA modelling on VLCD bacterial extracts between Pre and 3mon-post time points.  (A) KDE (top) and mean 

(bottom) of the predicted scores (Tpred) for Pre and 3-month-post bacterial extracts data. (B) Average 1H NMR spectra of 

bacterial extracts at Pre and 3mon-post time points (top), and Manhattan plot (bottom) showing -log10(pFDR) x sign of 

regression coefficient (β) of the RM-PLS-DA model for the 26010 spectral variables. The red peak represents the higher 

concentration of the metabolite in the 3-month-post-VLCD samples. (C) Propionate peak showed in the normalised 1H NMR 

spectra.  

 

RM-PLS-DA model based on bacterial extracts of VLCD at 1-mon-post and at 3-mon-post showed that 

concentrations of lysine, methionine and phenylalanine were higher at 1mon-post than at 3mon-post 

time point (Figure 6.10 (A – B)).  They were also confirmed in the spectral comparison (Figure 6.10 (C 

– E)). Same as above, the significant signals from the areas other than propionate were not only caused 

by noise but also by different peak width in different samples. 
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Figure 6.10 RM-PLS-DA modelling on VLCD bacterial extracts between 1mon and 3mon-post time points. (A) KDE (top) and 

mean (bottom) of the predicted scores (Tpred) for 1-month-post- and 3-month-post-bacterial extracts data. (B) Average 1H 

NMR spectra of bacterial extracts at Pre and 1-month-post time points (top), and Manhattan plot (bottom) showing -

log10(pFDR) x sign of regression coefficient (β) of the RM-PLS-DA model for the 26010 spectral variables. The blue peaks 

represent the higher concentrations of the metabolites in the 3-mon-post-VLCD samples. (C – E) Lysine, methionine and 

phenylalanine peak showed in the normalised 1H NMR spectra.  

 

6.3.2.2 RYGB or VLCD-induced metabolic changes in faecal aqueous extracts 

In the faecal aqueous extract profiles, RYGB did not show clear separations across different time 

points, but with a tighter cluster of LF time point in the PCA scores plot (Figure 6.11 (A)). This suggested 

a consistent metabolic impact at LF after RYGB. In contrast, the PCA scores plot based on the VLCD 

samples showed that 1-month-post VLCD tended to separate from 3-month-post-VLCD (Figure 6.11 

(B - C)). This suggested a great change of faecal aqueous extract profile 2 months after the end of VLCD 

intervention.  

 



210 
 

 

Figure 6.11 PCA scores plots of 1H NMR data obtained from aqueous fraction of (A) RYGB, (B) VLCD cohort, and (C) VLCD 

cohort without the strong outlier V006_V9_S. 

 

Parameters of RM-PLS-DA models of different time points comparison of aqueous extract profile are 

showed in Figure 6.2. For RYGB samples, only the models of SF and MF and of SF and LF were valid (Q2 

> 0.25, RCV > 0.1), but did not show significant signals. For VLCD samples, only the model of pre-VLCD 

and 3-mon-post-VLCD was valid but also did not show significant signals. None of the OPLS-DA models 

was valid (Pperm > 0.5). 

 

Table 6.2 Parameters of RM-PLS-DA models of different time point comparisons of aqueous extract profile 

Cohorts Time point 

comparison 

Parameters Metabolite changes 

RYGB Pre vs SF Q2 = -0.068 N/A 

Pre vs MF Q2 = -1.4 N/A 

Pre vs LF Q2 = -0.71 N/A 

SF vs MF Q2 = 0.64, RCV = 0.75 No sig. diff. small metabolites 

SF vs LF Q2 = 0.26, RCV = 0.33 No sig. diff. small metabolites 

MF vs LF Q2 = -1.7 N/A 

VLCD Pre vs 1mon Q2 = -0.53 N/A 

Pre vs 3mon Q2 = 0.61, RCV = 0.64 No sig. diff. small metabolites 

1mon vs 3mon Q2 = -1.4 N/A 

 

6.3.3 RYGB and VLCD groups showed significant differences at the short-term follow-up 

To compare the metabolic impacts of RYGB and VLCD on different faecal fractions, the comparisons 

between SF RYGB and 1-month-post-VLCD samples and between SF RYGB and 3-month-post-VLCD 
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samples were made using OPLS-DA models on each fraction. None of the models was valid except the 

model of SF RYGB and 1-mon-post VLCD aqueous extracts (R2X = 0.3510, Q2Y = 0.7004, Pperm = 0.0010) 

constructed using 1 predictive and 1 orthogonal component. The OPLS-DA scores plot showed a clear 

separation between SF RYGB and 1-month-post-VLCD aqueous extracts (Figure 6.12 (A)). Leucine, 

valine, isoleucine and alanine concentrations were significantly higher in 1-month-post-VLCD than SF 

RYGB aqueous extracts prior to BH correction, but they all had high correlation coefficients (r > 0.5) 

(Figure 6.12 (B)). 

 

 

Figure 6.12 OPLS-DA modelling of full-resolution spectral plasma data of RYGB at SF and VLCD at 1-month time point. (A) 7-

fold internal cross-validated score plot of RYGB at SF and 1-month-post-VLCD samples with 1 predictive and 1 orthogonal 

component; (B) Loading plot of RYGB samples at SF and 1-month-post-VLCD samples prior to BH procedure. Metabolites 

labelled upwards represent their increased intensities with 1-month-post-VLCD samples. 1: Leucine, 2: Valine, 3: Isoleucine, 

and 4: Alanine. 

 

6.4 Discussion 

This chapter has showed that the developed faecal separation and extraction method could result in 

different metabolic profiles from faecal aqueous extracts, bacterial fractions, and residual fractions. 

To my best knowledge, it is the first time that the following metabolites 2-methyl butyrate, valerate, 

isobutyrate, malonate, DMSO2, phenylacetate, and nicotinate, were reported to be exclusively present 

in FT faecal aqueous metabolite profiles of clinical cohorts. All these metabolites also showed their 
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exclusive presence or high concentrations in aqueous fraction in Chapter 5. 2-methyl butyrate and 

isobutyrate are branched short-chain fatty acids (BCFA). They are mainly produced by gut bacteria 

during the fermentation of BCAAs (Macfarlane and Macfarlane, 2003, Rios-Covian et al., 2020). The 

genera Bacteroides and Clostridium usually carry out this fermentation (Smith and Macfarlane, 1998, 

Aguirre et al., 2016). Valerate is a straight short-chain fatty acid. It is produced by gut bacteria such as 

Clostridia species through the condensation of ethanol with propionate (Yuille et al., 2018, Stadtman 

et al., 1949). Malonate is an organic compound that exist in all living species, ranging from bacteria to 

human (Dimroth and Hilbi, 1997, Kim, 2002, Hajjawi and Hider, 1987). It has also been found in 

different food such as red beetroot, corns, and milk (Giampaoli et al., 2021, Lips et al., 1966, Buitenhuis 

et al., 2013). DMSO2 can be originate from diet (e.g. rye bran product, onions, and asparagus) and 

host-microbial metabolism of methionine (He and Slupsky, 2014). Phenylacetate is mostly derived 

from gut bacterial fermentation of AAAs, as well as from endogenous production (Russell et al., 2013, 

Munoz-Gonzalez et al., 2013). Nicotinate, also known as vitamin B3, whose derivatives such as 

nicotinamide adenine dinucleotide, are essential for energy metabolism in the living cells (Yang and 

Sauve, 2016). All these metabolites indicated that faecal aqueous extracts, despite of being healthy-

relevant, contained metabolites from various sources. 

 

Furthermore, uracil, xanthine, and hypoxanthine showed higher concentrations in bacterial extracts 

than in the residual extracts of clinical cohorts (Figure 6.2 (C)). These were also consistent with the 

results in chapter 5, suggesting them as important intracellular microbial metabolites.  

 

My results showed that butyrate and propionate concentrations in RYGB bacterial extracts increased 

at LF timepoint comparing to Pre-surgery. In contrast, these metabolites in the corresponding faecal 

aqueous extracts did not show significant changes. This observation suggested that it is intracellular 

rather than extracellular butyrate and propionate production that increased 2 years after RYGB. 
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Similarly, it is the propionate in faecal bacterial extracts rather than in faecal aqueous fraction that 

showed higher concentration at 3-month-post VLCD compared to pre-VLCD. Current link between 

diet, microbiome composition and SCFAs production has often relied on in vitro fermentation data 

and animal models (Ilhan et al., 2017, Li et al., 2021, Morrison and Preston, 2016). Clinical trials on 

weight loss intervention often showed inconsistent results in terms of faecal SCFAs concentrations 

(Schwiertz et al., 2010, Rahat-Rozenbloom et al., 2014, Benassi-Evans et al., 2010, Brinkworth et al., 

2009). This was due to limited sample standardization, small sample sizes and bias risks (e.g. lack of 

blinding of participants and study personnel in randomized controlled trials) (Sowah et al., 2019). My 

results directly showed that SCFAs products in faecal bacterial extracts changes after RYGB or VLCD. 

 

Propionate is mainly produced in 2 circuitous pathways: 1) fixation of CO2 to pyruvate and form 

succinate which is subsequently decarboxylated (“dicarboxylic acid pathway”); 2) from lactate and 

acrylate (“acrylate pathway”) (Cummings, 1981). As the increased concentrations of propionate and 

succinate and the decreased concentrations of α-glucose and pyruvate were observed at LF RYGB 

comparing to pre-RYGB, the production of propionate via dicarboxylic acid pathway within faecal 

bacteria might be enhanced 2 years after RYGB. This route is mainly found in Bacteroides spp. (such 

as Bacteroides uniformis, Bacteroides vulgatus, Prevotella copri, and Alistipes putredinis), Firmicutes 

spp. (such as Dialister invisus and Phascolarctobacterium succinatutens), and Akkermansia muciniphila 

(Louis and Flint, 2017, Reichardt et al., 2014, Qin et al., 2010, Zhernakova et al., 2016). Besides, there 

are also bacteria species produces succinate as end product, such as Ruminococcus flavefaciens 

(Macfarlane and Gibson, 1997). Apart from propionate, butyrate can also be produced by gut bacteria 

using pyruvate. The species include Eubacterium rectale, Roseburia inulinivorans, Roseburia 

intestinalis, Eubacterium hallii, Anaerostipes hadrus, Coprococcus catus, Faecalibacterium prausnitzii, 

Eubacterium biforme, Coprococcus eutactus, and Subdoligranulum variabile (Qin et al., 2010, 

Zhernakova et al., 2016). Li et al. (2021) reported a discrepancy between consistent faecal butyrate 
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production and the increased primary butyrate producer Clostridium XIVa 1-2 years after RYGB (Li et 

al., 2021). Despite of limited fibre intake post-RYGB, intracellular production of butyrate may also be 

an explanation for the discrepancy. Figure 6.13 showed the possible enhance microbial pathway – 

dicarboxylic acid pathway at LF RYGB and 3 month-post VLCD. 

 

 

Figure 6.13 Microbial pathways for propionate and butyrate from carbohydrates and amino acids that were involved in my 

study. Carbohydrate fermentations to propionate and butyrate are in green; Amino acids fermentation pathway to 

propionate is in purple.  

 

Tyrosine concentrations in faecal aqueous fraction has been reported to be negatively correlated with 

the significantly increased Enterobacteriaceae (e.g. Escherichia_Shigella) post-RYGB (Li et al., 2021). 

Enterobacteriaceae genera Enterococcus spp. contains enzymes which are necessary to metabolise 

phenylalanine and tyrosine; Enterobacteriaceae species E. coli is involved in tyrosine metabolism 

towards phenol (Gryp et al., 2017, Smith and Macfarlane, 1996, Bone et al., 1976). Li et al. showed 

that faecal culture batch from post-RYGB donor but not from healthy donor can produce tyramine in 

tyrosine-supplemented media (Li et al., 2021). In my study, faecal aqueous fraction comparison 

models were not valid between Pre and MF nor between Pre and LF timepoint, which might be due 
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to the limited sample size. However, tyrosine concentrations in bacterial extracts were reduced at LF 

compared to pre-operation. This might suggest an increased utilisation of tyrosine within gut bacteria 

at LF compared to pre-operation of RYGB patients. 

 

VLCD faecal bacterial lysine, methionine, and phenylalanine, 3 essential amino acids, showed higher 

concentration at 1-month-post than at 3 month-post timepoint. Lysine can be produced from 

aspartate through the diaminopimelate pathway in most bacteria (Scapin and Blanchard, 1998, Born 

and Blanchard, 1999). Methionine can also be synthesized from almost all bacteria species (Ferla and 

Patrick, 2014). High abundance of bacterial L-methionine biosynthesis measured at metagenomic-

level has shown to be associated with the presence of plaque and increased risk of cardiovascular 

disease (Kurilshikov et al., 2019). In my study, faecal bacterial methionine concentration decreased 2 

months after the 1-month VLCD intervention. This finding suggested that some of the beneficial 

effects of VLCD might show up after finishing the 1-month VLCD. Besides, methionine is actually one 

of the 4 major AAs (the other 3 are aspartate, alanine, and threonine) for microbial propionate 

production (Smith and Macfarlane, 1996). The decreased methionine might contribute to the 

microbial propionate production from 1-month-post-VLCD to 3-month-post-VLCD (Figure 6.13). High-

fat diet have been reported to increase faecal phenylalanine level in mice (Lin et al., 2016). 

Phenylalanine can be converted into 3-phenylpropionate by Clostridium spp. (Elsden et al., 1976). 

Phenylalanine can also be converted into tyrosine and further converted into 4-hydroxyphenylacetate 

and 4CS (Elsden et al., 1976). Decreased faecal bacterial phenylalanine suggested increased bacterial 

activity to metabolise phenylalanine. In Chapter 2, urine concentration of 4CS increased 1-mon-post-

VLCD comparing to pre-VLCD. Since RM-PLS-DA model between pre-VLCD and 1-mon-post-VLCD of 

bacterial extracts is invalid, it will be of interest to check again in the future with more sample size, 

and the urinary 4CS concentration change between 1-month-post- and 3-month-post-VLCD.  
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Corresponded to the separation between faecal aqueous metabolite profile at SF post-RYGB and SF 

post-VLCD on PCA scores plot, faecal aqueous metabolite profile from SF post-RYGB and 1-month-

post-VLCD were significantly different, reflected by higher concentrations of BCAAs (leucine, valine, 

isoleucine) and alanine in 1-month-post-VLCD than SF post-RYGB group. With more samples size and 

other omics information such as 16SrRNA and transcriptome data, more explanation can be given to 

this comparison.   

 

6.5 Conclusion 

The developed method mentioned in Chapter 4 resulted in different faecal metabolic profiles from 

different faecal fractions in clinical cohorts, demonstrating the value of metabolic profiles of faecal 

aqueous extracts and bacterial fractions. Metabolites including 2-methyl butyrate, valerate, 

isobutyrate, malonate, DMSO2, phenylacetate and nicotinate, were exclusively present in FT faecal 

aqueous metabolite profiles, regardless the intervention type. The increased faecal bacterial 

propionate concentration was a shared pattern between RYGB and VLCD cohorts, but at different time 

points (2 years after RYGB and 3-month after VLCD). Besides, RYGB could also induce microbial 

intracellular metabolites changes at long term (2-5 years), including the increased concentrations of 

butyrate and succinate, and the decreased concentrations of pyruvate, tyrosine and α-glucose. VLCD 

could also induce the decreased concentrations of lysine, methionine, and phenylalanine 2 months 

after the end of the 1-month VLCD intervention. As both RYGB and VLCD were reported to induce gut 

microbial changes (Bunyavanich et al., 2016, Dao et al., 2016, Davenport et al., 2017, Simões et al., 

2014, Duncan et al., 2008, Li et al., 2021, West et al., 2020), my results can be combined with gut 

microbial composition, assisted with transcriptome and proteome data, to explore the active 

community among all the active and inactive species in the interventions.  
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7. Chapter 7 General discussion and future work 

Morbid obesity causes great health problems with metabolic syndromes, chronic diseases and thus 

mortality. Bariatric surgery, such as RYGB, is one of the most effective treatments for morbid obesity. 

It can not only reduce substantial weight loss in long-term, but also improve obesity-related diseases 

(e.g., T2D) independent of the weight loss (Sjostrom et al., 2007, Ribaric et al., 2014, Dixon et al., 

2008). Early post-surgical calorie restriction and modulation of enteric hormones are among the 

proposed mechanisms (Ashrafian et al., 2011a, Ashrafian et al., 2011b). However, the exact 

contributions of these 2 mechanisms are unclear. The work of this thesis sought to uncover the 

contributions by investigating the metabolic impact of weight loss intervention (i.e., RYGB, VLCD, and 

GOP) on urine (Chapter 3), plasma (Chapter 4) and faecal profiles (Chapter 6) from morbidly obese 

patients. Besides, a faecal separation and extraction SOP for high throughput 1H NMR global metabolic 

profiling was developed (Chapter 5) and applied to faecal samples in this study. This method is much 

needed since the typically used faecal extraction methods do not count for the metabolome of faecal 

bacteria, which may contain insightful information on bacterial cellular metabolism.  

 

The 1H NMR spectral data of urine and plasma used in this thesis were from a recent publication from 

Jones et al. (2021). While the biological implications of the metabolic changes have been published, I 

particularly focused on the comparisons of different analytical ways which are common in 

metabolomics studies in order to show the consistent/inconsistent results. These include metabolic 

changes that could be extracted from different statistical methods (univariate and multivariate 

analysis) and datasets (full-resolution data and quantified dataset) in different software (SIMCA and 

MATLAB) showed in Table 3.2 and Table 4.2. Besides, paired and unpaired analysis in the scenarios of 

univariate and multivariate analysis, respectively, were included. For the full-resolution spectral data 

of faecal bacterial and aqueous samples in Chapter 6, RM-PLS-DA and OPLS-DA were both used to 

show the metabolic changes of individuals and groups. 



218 
 

 

The discussions on statistical methods, datasets, software, and paired and unpaired analysis were 

included in Chapter 3 Discussion. Here, I highlight a few more points based on the entire thesis. Apart 

from the well-established OPLS-DA analysis, RM-PLS-DA was also used as a multivariate analysis 

method specifically for RM. Comparing to other statistical methods, it showed fewer number of 

significantly changed metabolites in urinary (Chapter 3, Figure 3.10) and plasma (Chapter 4, Figures 

4.12 and 4.27) samples, but showed more numbers of significantly changed metabolites in faecal 

bacterial fractions (Chapter 6, Section 6.3.2). Quantified data (plasma B.I.QUANT and B.I.LISA datasets, 

and urinary B.I.QUANT dataset) were provided by the advanced IVDr platform from Bruker, but the 

metabolites with concentrations less than the detection limit could be missed. In contrast, full-

resolution spectral data included all the measured metabolites or signals, and these metabolites, 

which are not present in the quantified datasets, could be uncovered. For example, phenylalanine was 

missed in plasma B.I.QUANT dataset, but was shown to decrease significantly after RYGB in full-

resolution spectral data analysis (Chapter 4, Figure 4. 4). Hence, all the methods I used in this thesis 

are necessary, and analysing them all provided a thorough and comprehensive insights of the 

metabolic changes after the interventions. Despite of being expensive and time-consuming. it is 

worth, especially with a new commercial platform (e.g. Bruker IVDr) and limited sample size. I 

recommend including all these methods in the future metabolomics analysis to explore potential 

biomarkers to avoid missing potential biomarkers in metabolomics study.  

 

Both RYGB and VLCD exerted great metabolic impacts on morbid obesity. These include ketone body 

metabolism, AA metabolism, TCA metabolism, creatine metabolism, lactic acid metabolism, SCFAs 

metabolism, choline metabolism, and lipoprotein metabolism. In addition to the corresponding 

discussion in urine, plasma or faeces, cross-sample discussions are included below.  
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Ketone bodies were important energy-related response to RYGB and VLCD patients. All the 3 ketone 

bodies showed increased concentrations in plasma and urine after RYGB or VLCD, except urinary 3-

hydroxybutyric acid (Chapter 3, Figure 10; Chapter 4, Figure 12). Besides, only urinary acetone 

concentration post-RYGB was higher than in post-Saline (Chapter 3, Table 3.5). In human, acetyl-CoA 

can be metabolised into acetoacetic acid and further into 3-hydroxybutyric acid or acetone (Moller, 

2020). My results showed that the pathway from acetoacetic acid to 3-hydroxybutyric acid was 

preferably used than the pathway from acetoacetic acid to acetone in RYGB patients. As the most 

prominent ketone body, 3-hydroxybuytric acid has been reported to exert beneficial effects. Studies 

show that 3-hydroxybuytric acid and ketogenic diet could extend Caenorhabditis elegans worms and 

mice life span (Edwards et al., 2014, Roberts et al., 2017). Fit male subjects showed a 15% increase in 

power output in an endurance session 3 weeks after of 3-hydroxybutyric acid supplementation (Poffe 

et al., 2019). Besides, ketone bodies have showed defensive effect against hypoglycaemia by providing 

alternative oxidative fuels for central nervous system (Evans et al., 1998, Amiel et al., 1991, Voss et 

al., 2017). Considering the reduced weight and improved glycaemic profile of RYGB patients in my 

study (Behary et al., 2019), these improvements induced by RYGB were partially attributed to 

acetoacetic acid and hydroxybutyric acid induced by CR.  

  

AAs (alanine, glutamate, isoleucine, leucine, valine, tyrosine, phenylalanine, glycine, and histidine) 

showed various responses to RYGB and VLCD. They not only play the roles of glucogenic or ketogenic 

or both substitutes to produce energy, but also were involved in other functions such as glucose 

regulation independent of weight loss. Glucogenic alanine showed decreased concentration in plasma 

and urine samples of VLCD patients. This indicated the enhance utilization of alanine as energy source 

under CR. In contrast, alanine concentration only showed decreased concentration in plasma but not 

urine samples of RYGB patients, and urinary concentration of alanine concentration was higher in 

RYGB than in VLCD. The latter result excluded the possibility of lacking statistical power in the former 
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result. This suggested that either other underlying metabolism(s) was/were generating alanine or at 

least part of the reduced plasma alanine concentration was directly excreted into urine rather than 

being used as energy source in RYGB patients. In the publication of Jones et al (2022), plasma alanine 

showed reduction trend in RYGB or VLCD patients and was associated with glucose reduction but not 

weight loss. (Jones et al., 2021). α-ketoisovalerate is not only a breakdown product of valine, but also 

a precursor to valine and leucine synthesis. Valine and leucine both showed decreased concentrations 

in plasma after RYGB or VLCD, whereas α-ketoisovalerate only showed decreased concentration in 

urine after RYGB not VLCD (Chapter 3, Figure 3.10, Table 3.7). These results are consistent with 

previous published by Kiana et al. (2020). It suggested a unique increased metabolism of complete 

amino acid after RYGB. High α-ketoisovalerate concentration in urine has been reported in patients 

with metabolic syndrome (Haam et al., 2021). This is consistent with the improved glycaemic profile 

of the RYGB patients in my study (Behary et al., 2019).  

 

Increased citric acid concentration in plasma and urine were shared between RYGB and VLCD patients 

(Chapter 4, Figure 4.12; Chapter 3, Figure 3.10), and citric acid showed higher concentration in post-

VLCD than in post-RYGB in urine (Chapter 3, Table 3.7). Apart from the conventional explanation of 

increased ketone bodies catabolism, I also proposed that increased bone resorption after RYGB or 

VLCD can be the reason of increased plasma citric acid in Chapter 4. As far as I know, this is the first 

time in a metabolomics study bone resorption is included to explain the increased plasma citric acid 

concentration. Despite of lacking TCA intermediates concentrations changes in plasma, urinary 

fumarate concentration in post-RYGB patients was higher in post-Saline patients and oxaloacetic acid 

concentration increased after RYGB. This indicated energy loss of RYGB patients regardless the 

enhancement of TCA cycle in body. My results were half aligned with previously published. Wu et al. 

(2015) reported increased concentration of citric acid but no other TCA intermediates in plasma and 

decreased concentrations of citric acid and fumarate in urine in post-RYGB rats (Wu et al., 2015). This 
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can be caused by different species metabolisms in response to RYGB. While rats may also have bone 

resorption after RYGB surgery, the utilization of citric acid in TCA cycle was increased.  

 

Creatine is an important energy source and has been discussed in Chapter 4 as a plasma chapter. 

Briefly, reduced creatine concentration in plasma indicates that muscular component was used to 

supply energy after RYGB or VLCD. However, as showed in Chapter 3 Figure 3.10, creatinine, as a 

metabolism product of creatine, showed increased urinary concentration in RYGB patients but did not 

change in VLCD patients. This suggested that the decreased plasma creatine concentration in RYGB 

and VLCD patients should have different mechanisms. It is possible that the utilization of creatine was 

increased in post-RYGB patients whereas the endogenous production of creatine or the exogenous 

intake of creatine was reduced in post-VLCD patients. Approximately half of the creatine store in 

mammalian body is from meat sources in food, and the other half is produced in kidney and liver 

(Taegtmeyer and Ingwall, 2013). The assumption can be proved using food nutrients of RYGB and VLCD 

patients. This also indicates the importance of food nutrients in such metabolomics studies.  

 

Furthermore, my study showed microbial impacts of RYGB and VLCD on these morbid obese patients. 

Besides the shared increased concentration of CS in urine which has been discussed in detail in 

Chapter 3, SCFAs showed interesting changes in my study. After RYGB, acetic acid showed increased 

concentration in plasma and urine, and formic acid showed increased concentration in plasma. Acetic 

acid is dominant SCFA produced by a broad range of gut bacteria species. Acetic acid can not only be 

used as an energy source via acetyl-CoA, but also suppress adipocyte lipolysis (Crouse et al., 1968, 

Wolever et al., 1989). As proposed in Chapter 4, the increased concentration of acetic acid in plasma 

from RYGB patients could be due to the enhanced bacterial production of acetic acid. Besides, acetic 

acid might not be prioritized to be used as energy source after RYGB but some other functions (e.g. 

lipolysis suppression), as acetic acid showed low plasma concentration in post-VLCD than in control 
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group as well as unchanged urinary concentration after VLCD. In this way, extra acetic acid would be 

excreted in the urine and showed as its increased urinary concentration. Formic acid is a type of SCFA 

originated from gut bacteria and food/supplement. Gralka et al (2015) reported increased plasma 

concentration of formate post-RYGB and proposed the altered gut microbial composition post-RYGB 

to be the reason. Besides, Gralka et al (2015) also proposed further investigation to this neurotoxic 

metabolite formate. Future work should include gene sequencing to identify the altered gut microbial 

composition in these 2 cohorts.  

 

Despite of lack gut microbial composition, gut microbial metabolism was further studied via faecal 

aqueous extract and bacterial extracts. Propionate, butyrate, succinate, pyruvate, tyrosine, and 

glucose showed altered concentrations in faecal bacterial extracts 2 years after RYGB; Increased 

propionate concentration, and decreased lysine, methionine, and phenylalanine concentration were 

observed 2 months after the end of the VLCD intervention (Chapter 6 Table 6.1). Figure 6.13 showed 

potential increased dicarboxylic acid pathway of propionate and butyrate in faecal samples at LF RYGB 

and 3-month-post-VLCD comparing to pre-intervention. To my best knowledge, this is the first report 

about the changes of microbial intracellular metabolites after RYGB and VLCD over time. So far, all the 

studies showing the increased SCFAs production from post-RYGB bacteria were demonstrated via in 

vitro studies (Morrison and Preston, 2016, Ilhan et al., 2017, Li et al., 2021). Here, my cohort study 

directly showed the increased SCFAs production. Comparing to faecal aqueous extract, which directly 

contact with intestine and health-relevant, the value of faecal bacterial metabolites is to assist to 

identify the active gut microbial community after the perturbation. For example, bacteria showing 

increased abundance in 16s rRNA analysis and actively involving propionate or butyrate production 

can secure their identities as metabolic active bacteria in RYGB and VLCD perturbation. However, only 

metabolic information is not enough for all the identifications. Other omics dataset such 

metatranscriptome and metaproteome data can also obtain using my faecal separation method to 
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further assist the identifications. Besides, the concentrations of bacterial intracellular metabolites can 

range from picomolar to micromolar. Hence, highly sensitive MS can be a good choice for studying 

bacterial intracellular metabolites. 

 

The analysis and discussion of lipoprotein were included in Chapter 4 Section 4.3.3 and 4.4 Discussion. 

Surprising results were the increased LDL-triglycerides concentration 1-month-post-RYGB, and the 

decreased HDL-cholesterol, HDL-apolipoprotein, and HDL-phospholipids concentration 1-month-post-

RYGB or 1-month-post-VLCD. As discussed in Chapter 4, this could be due to the short period of sample 

collection, as other studies showed opposite trends at least 6 months after RYGB or VLCD. Besides, I 

noticed that most of the published studies still use traditional measurements, which sometimes 

covered paradoxical results as reported by Behary et al. (2019). Moreover, many studies still use 

tradition classification to classify lipoprotein as mentioned in Chapter 4, this can also cause missing 

significant lipoprotein subclasses. The advanced B.I.LISA platform providing 112 lipoprotein 

parameters is recommended to be used in other future lipoprotein studies.  

 

Another important part of my study is the method development of faecal component separation for 

1H NMR spectroscopy-based profiling (Chapter 5). With the aims of contributing to active gut microbial 

identification and keeping the health-relevant faecal aqueous extract, a separation method based on 

DC was developed based on a previous published one (Rojo et al., 2015b). There were many 

publications discussing the effects of different extraction parameters on faecal metabolic profile, such 

as the ratio of solvent and sample, FT cycles, and extraction solvents (Wu et al., 2010, Kostidis et al., 

2017, Lamichhane et al., 2015, Cui et al., 2020). However, none of them compared the effects of the 

common extraction techniques, including beads beading and vortex, nor of common neutral 

extraction solvents (water, PBS, and saline) directly on human faecal samples. My study showed great 

impact of beads beating as an extraction technique and consistent and robust effect of water on faecal 
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aqueous extracts. Though water solvent can break cells, water did not influence faecal aqueous extract 

greatly comparing to protective solvent PBS and saline.  

 

After a crucial step of thoroughly washing the whole pellets (Chapter 5 Section 5.3.3), the combined 

effects of different DC speeds and the 3 neutral extraction solvents were tested using NMR and 

microscopy on 8 biological faecal pellets (Chapter 5, Table 5.3). As discussed in Chapter 5, filtrating 

was the other option to separate bacterial pellets from the residues. This was also used by Stephen 

and Cummings (1981) in their study. However, not all the labs have vacuum or syringe available, and 

the steps of obtaining the filtrates using vacuum or syringe were time-consuming and laborious. In my 

test, filter pores were also easily blocked with substantial loss of bacteria, and could bring 

contamination into NMR study. In contrast, centrifuge device is available in almost all the research 

labs. Despite of time-consuming, it was not laborious, and the centrifugation procedure excluded the 

chance of contamination and bacteria loss. Besides, flow cytometry was considered as the other 

option to automate bacteria counting procedure. However, due to the extremely complex sample, 

flow cytometry was not able to distinguish similar sizes of food residues and bacteria remained in 

residual fraction. Hence, manual counting using Helber counting chamber which was used in the study 

of Stephen and Cummings (1981) was used. Manual counting results can be biased by being subjective 

and human error. However, the experiment was designed with 3 repeats from each 3 of technical 

triplicate which were from 3 biological triplicates, and I was blinded from the sample IDs during 

counting process. These increase the reliability of my counting results. 

 

Saline and 800g showed the highest BRR (57.25%) among all the combination (Chapter 5, Figure 5.15). 

Different from the published method, I aimed to achieve BRR as high as possible to avoid missing 

biomarkers. Therefore, I chose to carry out DC cycles on residual fraction, and found 4 DC cycles in 

total could generate the highest BRR (PBS: 76.87%) (Chapter 5, Figure 5.16). Saline was predicted to 
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generate 83.29% BRR (Chapter 5, Section 5.3.4). In order to balance between the optimal volume used 

in each DC cycle and the practical aspect, 4 DC cycles with a total of 3.6 mL of saline was concluded 

(Chapter 5, Section 5.3.4). As discussed in Chapter 5 5.4 Discussion, the limitations in this study 

include: 1) Extraction solvent and speed were selected based on the partial results so that the BRR of 

Saline with 4 DC cycles were not an experimental result; 2) 4DC cycles with a total 3.6 mL of saline was 

not experimentally proved to generate comparable BRR as 4DC cycles with a total of 4 mL of saline ; 

3) Extra DC cycles on residual fraction might introduce food residues into bacterial fraction. The first 

2 limitations were due to COVID and limited access to the lab. Further experiments need to be done 

to prove the highest BRR from the combination of saline and 800g, as well as a comparable BRR result 

of 3.6 mL for 4DC cycles with 4 mL for 4 DC cycles. The 3rd limitation could be solved by adding more 

DC cycles with lower speeds (e.g., < 200 g) with robotic system.  

 

In summary, by using different methods (paired vs unpaired analysis, MVA and univariate analysis), 

datasets (full-resolution spectra vs quantified data) and software (SIMCA vs MATLAB), I obtained the 

following results: RYGB-induced metabolic changes at 1-month-post-intervention include VLCD-

induced metabolic changes and its own distinct changes. Caloric restriction can contribute to RYGB-

induced metabolic changes via increased metabolisms of ketone bodies (3-hydroxybutyric acid, 

acetoacetic acid, and acetone), lactic acid, and tricarboxylic acid, and decreased concentrations of 

total apolipoprotein A1, HDL subfraction 3 and 4 of cholesterol, apolipoprotein, and phospholipids, 

and VLDL subfraction 5 of free cholesterol, triglycerides, and phospholipids. RYGB-induced distinct 

metabolic changes included metabolisms of amino acids (alanine, isoleucine, leucine, valine, tyrosine, 

phenylalanine, glycine, and histidine), short chain fatty acids (formate, acetate, propionate, and 

butyrate), creatine, increased concentration of LDL fraction (especially from subfraction 4 and 5) of 

triglycerides, and decreased concentration of HDL subfraction 2 of phospholipids. Gut hormone 

treatment exerted limited metabolic effects on urine and plasma samples. After optimising faecal 
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separation method for 1H NMR metabolic profiling, a newly developed method based on DC was 

applied on RYGB and VLCD patients. The increased faecal bacterial propionate concentration pattern 

was a shared pattern between RYGB and VLCD cohorts, but it was at different time points (2 years 

after RYGB and 3-month after VLCD). RYGB could also induce increased concentrations of butyrate, 

succinate and decreased concentrations of pyruvate, tyrosine, and α-glucose in bacteria in long term.  

 

My study suggested that GOP had the greatest potential to be an alternative for RYGB patients to 

improve their glycaemic profile and weight loss, as GOP infusion exerted little metabolic impacts on 

urine and plasma except reduced plasma concentrations of glucose and total apolipoprotein A1. 

However, carrying a GOP infusion device does not seem to be a comfortable choice in long term. 

Therefore, reducing the device size or innovating the hormone delivery device (e.g., nanoparticles, 

patch) can be the direction. Caloric restriction is also a non-invasive treatment for RYGB patients. 

However, it exerted great impacts on circulating metabolites and lipoprotein in short term, and the 

increased uremic toxin 4CS at 1-month post-intervention is concerning and warrant further 

investigation on food component analysis and gut microbial changes.  

 

In order to further prove the above advice, the following future work require to be done. 

1) Increasing the sample size of each intervention group, especially GOP group (approximately 

10 patients in this study for repeat-measure experiment design), to increase the statistical 

power of the study. For a new drug to be approved by FDA, approximately 300 ~ 500 patients 

are required in each stage clinical trial.  

2) Long-term follow-up study of GOP and VLCD is recommended. Current studies on RYGB long-

term follow-up can be up to 10 years. Other common selected time points for RYGB follow-up 

study include 3 months, 6 months, 1 year, 2 years and 5 years.  
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3) Gut microbial composition analysis of each intervention group is required to be carried out as 

obesity is closely linked with altered gut microbiota and RYGB intervention cause unique gut 

microbial metabolisms.  

4) MS can be used with NMR to assist to study faecal bacterial metabolism due to its highly 

sensitive low metabolites concentrations. 
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8. Appendix 

Table 8.1 Fifty urinary metabolites included in B.I.QUANT dataset 

No. Metabolites 
1 Creatinine 

2 Dimethylamine 

3 Trimethylamine 

4 1-Methylhistidine 

5 2-Furoylglycine 

6 4-Aminobutyric acid 

7 Alanine 

8 Arginine 

9 Betaine 

10 Creatine 

11 Glycine 

12 Guanidinoacetic acid 

13 Methionine 

14 N,N-Dimethylglycine 

15 Sarcosine 

16 Taurine 

17 Valine 

18 Benzoic acid 

19 D-Mandelic acid 

20 Hippuric acid 

21 Acetic acid 

22 Citric acid 

23 Formic acid 

24 Fumaric acid 

25 Imidazole 

26 Lactic acid 

27 Proline betaine 

28 Succinic acid 

29 Tartaric acid 

30 Trigonelline 

31 2-Methylsuccinic acid 

32 2-Oxoglutaric acid 

33 3-Hydroxybutyric acid 

34 Acetoacetic acid 

35 Acetone 

36 Oxaloacetic acid 

37 Pyruvic acid 

38 1-Methyladenosine 

39 1-Methylnicotinamide 

40 Adenosine 

41 Allantoin 

42 Allopurinol 

43 Caffeine 

44 Inosine 

45 D-Galactose 

46 D-Glucose 

47 D-Lactose 

48 D-Mannitol 

49 D-Mannose 

50 Myo-Inositol 
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Figure 8.1 PCA scores plot of B.I.QUANT data. 

 

Table 8.2 Unknown significant metabolites in OPLS-DA models 

Comparison 

Unknown 

metabolites Driver peak (ppm) Comparison 

correlated peaks 

(r>0.9) in STOCSY 

pre-RYGB vs post-RYGB 

Un1 0.9839 (t) post > pre 1.02(t); 1.32(s) 

Un2 1.02 (t) post > pre 

1.32(s); 1.67(m); 

5.551(m) 

Un3 4.984 (m) post > pre 

0.9839(t); 1.02(t); 

1.32(s); 1.67(m) 

Un4 6.763 (m) post > pre  

Un5 7.489 (m) post > pre  

Un6 7.965 (m) post > pre  

Un7 8.652 (m) pre > post  

pre-VLCD vs post-VLCD 

Un8 0.9355 (s) post > pre 0.8992(m) 

Un9 1.32 (s) post > pre 0.9839 (t) 

Un10 2.614(s) post > pre  

Un11 2.626(m) post > pre 

1.32(s); 1.02(t); 

2.069(m) 

Un12 6.898(m) pre > post  

post-RYGB vs post-VLCD 

Un13 1.043 (d) VLCD > RYGB 2.069(m) 

Un14 1.07 (d) VLCD > RYGB  

Un15 1.273 (s) VLCD > RYGB  

Un16 2.785 (t) RYGB > VLCD 2.069(m) 

Un17 7.475 (m) RYGB > VLCD  

Un18 7.505 (m) RYGB > VLCD  

post-RYGB vs post-Saline Un7 8.652 (m) Saline > RYGB  

post-VLCD vs post-GOP 

Un16 2.785 (t) GOP > VLCD 2.069(m) 

Un19 6.66 (m) VLCD > GOP  

Un20 7.176 GOP > VLCD 6.87 

Un21 8.332 (m) VLCD > GOP  
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Table 8.3 Twenty-six plasma metabolites included in B.I.QUANT dataset 

No. Metabolites 
1 Creatinine 

2 Ethanol 

3 Trimethylamine-N-oxide 

4 Alanine 

5 Creatine 

6 Glutamic acid 

7 Glutamine 

8 Glycine 

9 Histidine 

10 Isoleucine 

11 Leucine 

12 Phenylalanine 

13 Tyrosine 

14 Valine 

15 Acetic acid 

16 Citric acid 

17 Formic acid 

18 Lactic acid 

19 3-Hydroxybutyric acid 

20 Acetoacetic acid 

21 Acetone 

22 Pyruvic acid 

23 Glucose 

24 Glycerol 

25 Ca-EDTA 

26 K-EDTA 
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Table 8.4 One hundred and twelve lipoprotein parameters included in B.I.LISA dataset 

No. Names Comment Unit 
1 TPTG Main Parameters, Triglycerides, TG mg/dL 

2 TPCH Main Parameters, Cholesterol, Chol mg/dL 

3 LDCH Main Parameters, LDL Cholesterol, LDL-Chol mg/dL 

4 HDCH Main Parameters, HDL Cholesterol, HDL-Chol mg/dL 

5 TPA1 Main Parameters, Apo-A1, Apo-A1 mg/dL 

6 TPA2 Main Parameters, Apo-A2, Apo-A2 mg/dL 

7 TPAB Main Parameters, Apo-B100, Apo-B100 mg/dL 

8 LDHD LDLCholesterol / HDL Cholesterol, LDL-Chol/HDL-Chol -/- 

9 ABA1 Apo-A1 / Apo-B100, Apo-B100/Apo-A1 -/- 

10 TBPN Total ApoB Particle Number, Total Particle Number nmol/L 

11 VLPN VLDL Particle Number, VLDL Particle Number nmol/L 

12 IDPN IDL Particle Number, IDL Particle Number nmol/L 

13 LDPN LDL Particle Number, LDL Particle Number nmol/L 

14 L1PN LDL-1 Particle Number, LDL-1 Particle Number nmol/L 

15 L2PN LDL-2 Particle Number, LDL-2 Particle Number nmol/L 

16 L3PN LDL-3 Particle Number, LDL-3 Particle Number nmol/L 

17 L4PN LDL-4 Particle Number, LDL-4 Particle Number nmol/L 

18 L5PN LDL-5 Particle Number, LDL-5 Particle Number nmol/L 

19 L6PN LDL-6 Particle Number, LDL-6 Particle Number nmol/L 

20 VLTG Lipoprotein Main Fractions, Triglycerides, VLDL mg/dL 

21 IDTG Lipoprotein Main Fractions, Triglycerides, IDL mg/dL 

22 LDTG Lipoprotein Main Fractions, Triglycerides, LDL mg/dL 

23 HDTG Lipoprotein Main Fractions, Triglycerides, HDL mg/dL 

24 VLCH Lipoprotein Main Fractions, Cholesterol, VLDL mg/dL 

25 IDCH Lipoprotein Main Fractions, Cholesterol, IDL mg/dL 

26 VLFC Lipoprotein Main Fractions, Free Cholesterol, VLDL mg/dL 

27 IDFC Lipoprotein Main Fractions, Free Cholesterol, IDL mg/dL 

28 LDFC Lipoprotein Main Fractions, Free Cholesterol, LDL mg/dL 

29 HDFC Lipoprotein Main Fractions, Free Cholesterol, HDL mg/dL 

30 VLPL Lipoprotein Main Fractions, Phospholipids, VLDL mg/dL 

31 IDPL Lipoprotein Main Fractions, Phospholipids, IDL mg/dL 

32 LDPL Lipoprotein Main Fractions, Phospholipids, LDL mg/dL 

33 HDPL Lipoprotein Main Fractions, Phospholipids, HDL mg/dL 

34 HDA1 Lipoprotein Main Fractions, Apo-A1, HDL mg/dL 

35 HDA2 Lipoprotein Main Fractions, Apo-A2, HDL mg/dL 

36 VLAB Lipoprotein Main Fractions, Apo-B, VLDL mg/dL 

37 IDAB Lipoprotein Main Fractions, Apo-B, IDL mg/dL 

38 LDAB Lipoprotein Main Fractions, Apo-B, LDL mg/dL 

39 V1TG VLDL Subfractions, Triglycerides, VLDL-1 mg/dL 

40 V2TG VLDL Subfractions, Triglycerides, VLDL-2 mg/dL 

41 V3TG VLDL Subfractions, Triglycerides, VLDL-3 mg/dL 

42 V4TG VLDL Subfractions, Triglycerides, VLDL-4 mg/dL 

43 V5TG VLDL Subfractions, Triglycerides, VLDL-5 mg/dL 

44 V1CH VLDL Subfractions, Cholesterol, VLDL-1 mg/dL 

45 V2CH VLDL Subfractions, Cholesterol, VLDL-2 mg/dL 

46 V3CH VLDL Subfractions, Cholesterol, VLDL-3 mg/dL 

47 V4CH VLDL Subfractions, Cholesterol, VLDL-4 mg/dL 

48 V5CH VLDL Subfractions, Cholesterol, VLDL-5 mg/dL 

49 V1FC VLDL Subfractions, Free Cholesterol, VLDL-1 mg/dL 

50 V2FC VLDL Subfractions, Free Cholesterol, VLDL-2 mg/dL 

51 V3FC VLDL Subfractions, Free Cholesterol, VLDL-3 mg/dL 

52 V4FC VLDL Subfractions, Free Cholesterol, VLDL-4 mg/dL 

53 V5FC VLDL Subfractions, Free Cholesterol, VLDL-5 mg/dL 

54 V1PL VLDL Subfractions, Phospholipids, VLDL-1 mg/dL 

55 V2PL VLDL Subfractions, Phospholipids, VLDL-2 mg/dL 

56 V3PL VLDL Subfractions, Phospholipids, VLDL-3 mg/dL 

57 V4PL VLDL Subfractions, Phospholipids, VLDL-4 mg/dL 
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58 V5PL VLDL Subfractions, Phospholipids, VLDL-5 mg/dL 

59 L1TG LDL Subfractions, Triglycerides, LDL-1 mg/dL 

60 L2TG LDL Subfractions, Triglycerides, LDL-2 mg/dL 

61 L3TG LDL Subfractions, Triglycerides, LDL-3 mg/dL 

62 L4TG LDL Subfractions, Triglycerides, LDL-4 mg/dL 

63 L5TG LDL Subfractions, Triglycerides, LDL-5 mg/dL 

64 L6TG LDL Subfractions, Triglycerides, LDL-6 mg/dL 

65 L1CH LDL Subfractions, Cholesterol, LDL-1 mg/dL 

66 L2CH LDL Subfractions, Cholesterol, LDL-2 mg/dL 

67 L3CH LDL Subfractions, Cholesterol, LDL-3 mg/dL 

68 L4CH LDL Subfractions, Cholesterol, LDL-4 mg/dL 

69 L5CH LDL Subfractions, Cholesterol, LDL-5 mg/dL 

70 L6CH LDL Subfractions, Cholesterol, LDL-6 mg/dL 

71 L1FC LDL Subfractions, Free Cholesterol, LDL-1 mg/dL 

72 L2FC LDL Subfractions, Free Cholesterol, LDL-2 mg/dL 

73 L3FC LDL Subfractions, Free Cholesterol, LDL-3 mg/dL 

74 L4FC LDL Subfractions, Free Cholesterol, LDL-4 mg/dL 

75 L5FC LDL Subfractions, Free Cholesterol, LDL-5 mg/dL 

76 L6FC LDL Subfractions, Free Cholesterol, LDL-6 mg/dL 

77 L1PL LDL Subfractions, Phospholipids, LDL-1 mg/dL 

78 L2PL LDL Subfractions, Phospholipids, LDL-2 mg/dL 

79 L3PL LDL Subfractions, Phospholipids, LDL-3 mg/dL 

80 L4PL LDL Subfractions, Phospholipids, LDL-4 mg/dL 

81 L5PL LDL Subfractions, Phospholipids, LDL-5 mg/dL 

82 L6PL LDL Subfractions, Phospholipids, LDL-6 mg/dL 

83 L1AB LDL Subfractions, Apo-B, LDL-1 mg/dL 

84 L2AB LDL Subfractions, Apo-B, LDL-2 mg/dL 

85 L3AB LDL Subfractions, Apo-B, LDL-3 mg/dL 

86 L4AB LDL Subfractions, Apo-B, LDL-4 mg/dL 

87 L5AB LDL Subfractions, Apo-B, LDL-5 mg/dL 

88 L6AB LDL Subfractions, Apo-B, LDL-6 mg/dL 

89 H1TG HDL Subfractions, Triglycerides, HDL-1 mg/dL 

90 H2TG HDL Subfractions, Triglycerides, HDL-2 mg/dL 

91 H3TG HDL Subfractions, Triglycerides, HDL-3 mg/dL 

92 H4TG HDL Subfractions, Triglycerides, HDL-4 mg/dL 

93 H1CH HDL Subfractions, Cholesterol, HDL-1 mg/dL 

94 H2CH HDL Subfractions, Cholesterol, HDL-2 mg/dL 

95 H3CH HDL Subfractions, Cholesterol, HDL-3 mg/dL 

96 H4CH HDL Subfractions, Cholesterol, HDL-4 mg/dL 

97 H1FC HDL Subfractions, Free Cholesterol, HDL-1 mg/dL 

98 H2FC HDL Subfractions, Free Cholesterol, HDL-2 mg/dL 

99 H3FC HDL Subfractions, Free Cholesterol, HDL-3 mg/dL 

100 H4FC HDL Subfractions, Free Cholesterol, HDL-4 mg/dL 

101 H1PL HDL Subfractions, Phospholipids, HDL-1 mg/dL 

102 H2PL HDL Subfractions, Phospholipids, HDL-2 mg/dL 

103 H3PL HDL Subfractions, Phospholipids, HDL-3 mg/dL 

104 H4PL HDL Subfractions, Phospholipids, HDL-4 mg/dL 

105 H1A1 HDL Subfractions, Apo-A1, HDL-1 mg/dL 

106 H2A1 HDL Subfractions, Apo-A1, HDL-2 mg/dL 

107 H3A1 HDL Subfractions, Apo-A1, HDL-3 mg/dL 

108 H4A1 HDL Subfractions, Apo-A1, HDL-4 mg/dL 

109 H1A2 HDL Subfractions, Apo-A2, HDL-1 mg/dL 

110 H2A2 HDL Subfractions, Apo-A2, HDL-2 mg/dL 

111 H3A2 HDL Subfractions, Apo-A2, HDL-3 mg/dL 

112 H4A2 HDL Subfractions, Apo-A2, HDL-4 mg/dL 
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Figure 8.2 Schematic of bacteria counting experiment for combined effect of extraction solvent and separation speed. 

 

 

 

Figure 8.3 Schematic of bacteria counting experiment for combined effect of DC cycles and solvent volumes. 
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Figure 8.4 JRes NMR spectra of S5 faecal whole pellet’ extract of butyrate at 2.163 ppm and propionate at 2.182ppm 

 

 

Figure 8.5 JRes NMR spectra of S5 faecal bacterial extract of butyrate at 2.163 ppm (absent) and propionate at 2.182ppm. A. 

separated at 800g using water, B. separated at 800g using PBS, C. separated at 2000g using water, D. separated at 800g 

using PBS.  
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Figure 8.6 JRes NMR spectra of S7 showing different metabolites in different separated faecal fractions of sample S7. (A) 

Aqueous extract; (B) Bacterial extract; (C) Residual extract. 
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Figure 8.7 1H NMR spectra showing isoleucine, leucine, valine, threonine and alanine of bacterial extracts and residual 

extracts obtained from S26 when using (A) 1, (B) 2, (C) 3 and (D) 4 DC cycles with 1 mL of PBS per cycle. 

 

 

Figure 8.8 1H NMR spectra showing glutamate, methionine, aspartate, and asparagine of bacterial extracts and residual 

extracts obtained from S26 when using (A) 1, (B) 2, (C) 3 and (D) 4 DC cycles with 1 mL of PBS per cycle. 
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Figure 8.9 1H NMR spectra showing uracil and hypoxanthine of bacterial extracts and residual extracts obtained from S26 

when using (A) 1, (B) 2, (C) 3 and (D) 4 DC cycles with 1 mL of PBS per cycle. 

 

 

Figure 8.10 1H NMR spectra showing β-glucose and α-glucose of bacterial extracts and residual extracts obtained from S26 

when using (A) 1, (B) 2, (C) 3 and (D) 4 DC cycles with 1 mL of PBS per cycle. 
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Figure 8.11 1H NMR spectra showing Methanol/Scyllo-inositol of bacterial extracts and residual extracts obtained from S26 

when using (A) 1, (B) 2, (C) 3 and (D) 4 DC cycles with 1 mL of PBS per cycle. 

 

8.1 The impacts of a FT cycle on several faecal metabolites 

Aliquoted crude faecal samples S5, S7 and S21 were either prepared freshly or underwent 1 FT cycle 

prior to preparation. All the compared aqueous fraction were extracted using water, and the 

compared bacterial fraction were separated at 800g using PBS. S5 was prepared following Figure 5.6, 

and S7 and S21 were prepared following Figure 5.10. Valine, malonate, DMSO2, and phenylacetate 

were present in aqueous fraction regardless FT cycle in all these 3 biological samples (Figure 8.12– 

8.13). Hence, the influence of FT on these 3 metabolites were not qualitatively in the aqueous fraction.  
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Figure 8.12 Median spectra showing the concentration of valerate in faecal aqueous extracts and bacterial extracts.  

 

 

Figure 8.13 Median spectra showing the concentrations of malonate and DMSO2 in faecal aqueous extracts and bacterial 

extracts. 
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Figure 8.14 Median spectra showing the concentration of phenylacetate in faecal aqueous extracts and bacterial extracts. 

 

2-methyl butyrate, isobutyrate and nicotinate were present in both fresh aqueous and bacterial 

extracts (Figure 8.15 – 5.35). They were also present in FT aqueous extracts and absent or at very low 

concentrations in FT bacterial extracts. For example, 2-methyl butyrate was present in S5 FT bacterial 

extract at very low concentration, but not in S7 and S21 bacterial extracts. This suggested that these 

3 metabolites were both extracellular and intracellular microbial metabolites in faecal samples, and 

they can be significantly influenced by FT cycles qualitatively.  
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Figure 8.15 Median spectra showing the concentration of 2-methyl butyrate in faecal aqueous extracts and bacterial extracts. 

 

 

Figure 8.16 Median spectra showing the concentrations of isobutyrate in faecal aqueous extracts and bacterial extracts. 
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Figure 8.17 Median spectra showing the concentrations of nicotinate in faecal aqueous extracts and bacterial extracts. 

 

Uracil, xanthine, and hypoxanthine concentrations were mainly present in bacterial extracts rather 

than in aqueous extracts regardless the FT cycle (Figure 8.18 – 5.38). This indicated their importance 

as intracellular microbial metabolites. Uracil is one of the 4 nucleotide bases in RNA in all living species. 

Xanthine and hypoxanthine are a purine base and a purine derivative. Uracil has been found to be 

released by bacteria such as Escherichia coli in response to entering stationary phase or being 

perturbed during balanced growth condition (Rinas, 1995). While FT is the golden standard for faecal 

sample storage worldwide, whether it introduces extra metabolites by stimulating bacterial response 

towards unfavourable growth condition needs to be further explored.  
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Figure 8.18 Median spectra showing the concentrations of uracil in faecal aqueous extracts and bacterial extracts. 

 

 

Figure 8.19 Median spectra showing the concentration of xanthine in faecal aqueous extracts and bacterial extracts. 
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Figure 8.20 Median spectra showing the concentration of hypoxanthine in faecal aqueous extracts and bacterial extracts. 

 


