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Finite-dimensional characterisation
of optimal control laws over an infinite horizon

for nonlinear systems
M. Sassano, Senior Member, IEEE and T. Mylvaganam, Senior Member, IEEE

Abstract— Infinite-horizon optimal control problems for
nonlinear systems are considered. Due to the nonlinear
and intrinsically infinite-dimensional nature of the task,
solving such optimal control problems is challenging. In
this paper an exact finite-dimensional characterisation of
the optimal solution over the entire horizon is proposed.
This is obtained via the (static) minimisation of a suit-
ably defined function of (projected) trajectories of the un-
derlying Hamiltonian dynamics on a hypersphere of fixed
radius. The result is achieved in the spirit of the so-
called shooting methods by introducing, via simultaneous
forward/backward propagation, an intermediate shooting
point much closer to the origin, regardless of the actual
initial state. A modified strategy allows one to determine an
arbitrarily accurate approximate solution by means of stan-
dard gradient-descent algorithms over compact domains.
Finally, to further increase robustness of the control law,
a receding-horizon architecture is envisioned by designing
a sequence of shrinking hyperspheres. These aspects are
illustrated by means of a benchmark numerical simulation.

Index Terms— Optimal Control; Nonlinear Systems;
Hamiltonian systems; Stability of NL systems.

I. INTRODUCTION

Infinite-horizon optimal control problems for nonlinear sys-
tems are considered herein. The class of problems involves
determining feedback stabilising control policies with the
property that a certain cost functional is minimised along
the trajectories of the resulting closed-loop system (see for
instance [1]). Such problems are, in general, challenging
nonconvex, infinite-dimensional optimisation problems. The
optimal policy can be determined by relying either on Pon-
tryagin’s Minimum Principle (PMP) [2] or on the Dynamic
Programming (DP) method [3], [4]. A combination of the
two methods may also be viable [5], [6], [7], [8]. In prac-
tice both approaches possess specific drawbacks. The former
implies that the optimal trajectory satisfies a certain ordinary
differential equation, defined on an extended state-space with
the initial condition partially unknown. The latter, on the
other hand, relies on the solution of a partial differential
equation (PDE), namely the Hamilton-Jacobi-Bellman (HJB)
equation, for which closed-form solutions are rarely feasible
to obtain and for which numerical solutions also pose a

M. Sassano is with Dipartimento di Ingegneria Civile ed Ingegneria
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significant challenge due to the computational complexity
associated with solving nonlinear PDEs numerically. Various
approaches have been explored to overcome the computational
hurdles associated with solving both finite and infinite-horizon
optimal control problems, encompassing numerical methods
[9], approaches based on the notion of viscosity solution [10],
[11] or regional methods [12], to mention just a few. For the
special case in which the dynamics are linear and the running
cost is quadratic in the input and state, namely the well-known
Linear Quadratic Regulator (LQR), solutions are readily found
via the Algebraic Riccati Equation (ARE). Consequently,
methods based on state-dependent Riccati equations (SDREs)
have emerged for nonlinear problems, where essentially an
ARE is solved pointwise along the trajectory of the system.
While the approach is relatively simple from a computational
point of view, the resulting control strategies are, in general,
suboptimal and characterised by a quality of approximation
that is not easily quantifiable a priori (see, e.g., [13] and
references therein). In [14], [15] the solution of a single
algebraic matrix equation is used to construct a dynamic con-
trol law which satisfies, by construction, a partial differential
inequality in some non-empty neighbourhood including an
equilibrium of the system. Consequently, the approach solves
(exactly) a modified optimal control problem and yields an
approximate (local) solution of the original optimal control
problem, where the level of approximation can be explicitly
quantified. Alternative approaches to obtain approximate solu-
tions analytically can be found, for instance, in [16]. Therein,
the HJB PDE is considered and, recognising the relevance of
a certain associated Hamiltonian system (which possesses a
stable invariant manifold characterising the solution of the HJB
PDE), two approaches for obtaining approximate solutions are
proposed. One approach relies on viewing the control input
as a Hamiltonian perturbation and uses geometric tools to
approximate the stable manifold associated with the afore-
mentioned Hamiltonian system. Methods to compute invariant
manifolds of dynamical systems are also relevant in this
regard (see, e.g. [17], [18]). The second approach relies on
expressing the dynamics of a system in terms of a linear
and a nonlinear component and presents a sequence which
provides an approximation of the flow of the Hamiltonian
system on the stable manifold. A different approach, still
utilising the relationship between optimal control problems
and their associated Hamiltonian systems, is taken in [19].
Therein, solutions for the LQR problem with input constraints
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are solved via a numerical procedure which exploits the
property that the optimal solution is associated with a specific
trajectory of the associated Hamiltonian system. Approximate
solutions to the constrained optimal control problems are
then found via the generation of a “lookup table” created
based on backwards integration of the Hamiltonian dynam-
ics from initial conditions in a neighborhood of the origin.
Similarly to the approaches presented in [16], [19], we utilise
the Hamiltonian system associated with an optimal control
problem to characterise exact and approximate solutions of the
problem. Differently from the results in [16], [19], however,
the approach proposed herein ultimately requires only the
solution of an (unconstrained) static optimisation problem. It
does not rely on approximating the stable invariant manifold
of the Hamiltonian system and does not require any sequential
process or lookup table. The Hamiltonian dynamics are in fact
employed to design a certain finite-dimensional cost function
that attains its minimal value at the intersecting point of the
optimal trajectory and a hypersphere of fixed radius.

To be more specific, in this paper we consider a class of
infinite-horizon optimal control problems characterised by the
property that the underlying value function satisfies a certain
differentiability condition. This condition is implied (locally)
by equivalent properties of the data of the problem and, hence,
is easily verifiable a priori (see [20]). Such differentiability
conditions are instrumental in showing that a solution to the
HJB PDE also satisfies the so-called Hamilton condition (sen-
sitivity relations, see e.g. [21]) associated with Pontryagin’s
Minimum Principle. Namely, the optimal process is associated
with a certain trajectory of the Hamiltonian system defined on
the extended state/costate space, obtained via a Hamiltonian
lifting (see, e.g. [16]). We utilise the above property to provide
a finite-dimensional characterisation of the solution of the
problem via the formulation of a static minimisation problem,
defined in terms of trajectories of the underlying Hamiltonian
system. More precisely, the solution of the optimal control
problem is determined by first computing the intersection of
the corresponding trajectory of the Hamiltonian system with
a sufficiently small hypersphere around the origin. Conse-
quently, the optimal process is determined by forward and
backward propagating the flow of the Hamiltonian dynam-
ics from this intermediate point, which is a minimiser of
the aforementioned static cost function, involving the initial
condition of the underlying plant. It is worth observing that,
differently from existing methods that aim at providing a finite-
dimensional characterisation of the optimal policy, herein the
results do not rely on any quantisation arguments with respect
to time or space. The proposed conditions instead provide
an exact finite-dimensional description of the entire optimal
trajectory, namely over the infinite horizon. In practice the
static minimisation problem cannot, in general, be solved
by using standard gradient-descent algorithms unless explicit
expressions for the flow of the Hamiltonian dynamics and its
sensitivity are available. Such expressions are rarely available
except for specially structured classes of systems, such as
for linear systems. This limitation is therefore circumvented
through the introduction of a hybrid architecture that com-
prises state variables whose evolution captures the propagation

of the flow of the Hamiltonian dynamics and of its sensitivity
to the initial condition. Finally, a receding-horizon implemen-
tation of the architecture is suggested by suitably generating a
sequence of hyperspheres of decreasing radii. Building on the
property that such a strategy provides not only a sub-optimal
policy over a restricted time interval but ideally the entire
(infinite-horizon) optimal policy, the novel algorithm allows
for particularly large moving windows without hindering the
accuracy of the overall scheme. This is an interesting differ-
ence with respect to existing receding-horizon strategies that
are based on the computation of a (relatively small) portion
of the optimal strategy at each sampling instant.

The remainder of the paper is organised as follows. The
infinite-horizon optimal control problem and some preliminar-
ies are recalled in Section II. A finite-dimensional characteri-
sation of optimal control laws is provided in Section III. Two
results are provided therein: one is the characterisation of the
stable (which yields the optimal control law) and the unstable
invariant submanifolds of the underlying Hamiltonian system
via a static minimisation problem. Through this problem the
set containing the intersections between the invariant mani-
folds and a hyphersphere of fixed radius is determined. Having
determined these intersection points, the optimal control input
can be readily obtained by backwards/forwards integration
of the flow of the Hamiltonian system. A companion result
yields a characterisation of trajectories “close” to the stable
and unstable submanifolds via a modified (saturated) static
minimisation problem. The latter lends itself efficiently to an
algorithmic interpretation, which is provided in Section IV.
Note that while the stable and unstable manifolds of the
Hamiltonian system are crucial in the characterisation of the
optimal control laws, the proposed approach does not require
determining the submanifolds themselves. Namely, the rela-
tionship between the Hamiltonian system, its stable/unstable
invariant manifolds and the optimal control law is exploited
to determine the specific trajectory of the Hamiltonian system
associated with the optimal control input (for a given initial
condition) of an infinite-horizon optimal control problem.
Finally, the results presented in this paper are demonstrated
by means of a benchmark example, before some concluding
remarks are provided in Sections V and VI, respectively.

Notation. Let R̄ denote the extended real number line,
namely R̄ = R ∪ {−∞,+∞}. Given two vectors x1 ∈ Rn1

and x2 ∈ Rn2 , (x1, x2) denotes the column stack of x1 and x2,
i.e. (x1, x2) := [x⊤

1 , x
⊤
2 ]

⊤ ∈ Rn1+n2 . Cκ(D) denotes the set
of functions defined over D with continuous derivatives of or-
der κ. Considering a function f : Rn → Rm, f ∈ C1(Rn), we
let ∇f =

[
(∂f/∂x1)

⊤, ..., (∂f/∂xn)
⊤]⊤ denote the Jacobian

matrix of f(x), with respect to x = [x1, ..., xn]
⊤ ∈ Rn. When

f is a scalar function, ∇f = [∂f/∂x1, ..., ∂f/∂xn]
⊤ denotes

the column vector of partial derivatives of f with respect to
x, whereas ∇2f denotes its Hessian matrix. Given a square
matrix M , σ(M) denotes its spectrum.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a dynamical system with state x : R → Rn and
control input u : R → Rm. In this paper we consider the
infinite-horizon optimal control problem recalled below.
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Problem 1. Determine, if it exists, a continuous function
u⋆ : C0(R⩾0) → Rm that solves the dynamic optimisation
problem Qx0 defined as

min
u

{
1

2

∫ ∞

0

(q(x(t)) + ∥u(t)∥2)dt
}

, (1a)

ẋ = f(x) + g(x)u, x(0) = x0 , (1b)

for any x0 ∈ X , where X is a non-empty neighbourhood of the
origin and where the positive definite function q : Rn → R>0,
the vector field f : Rn → Rn, f(0) = 0, and and the vector
fields gi : Rn → Rn, i = 1, ...,m, columns of g, are assumed
to be sufficiently smooth functions in X 1. ◦

The first term of (1a) quantifies a running cost on the state vari-
able while the second term represents a penalty on the control
effort. The overall integral in (1a) is the cost functional to be
minimised via the selection of the control input u, whereas the
constraints (1b) represent the dynamics dictating the behaviour
of the system and the initial condition of the state of the
system. Problem 1 is associated with a so-called value function
V ⋆ : X → R>0, defined as V ⋆(x0) ≜ minu{Qx0}, for any
initial condition x0 ∈ X (see, for instance, [21]).

Remark 1. It has been shown in [20] that V ⋆ locally in-
herits certain properties from the problem data. In particular,
provided the requirements of Problem 1 hold, there exists a
neighbourhood X of the origin such that V ⋆ ∈ C2(X ). ▲

Let A := ∇f |x=0 and B = g(0) describe the linearized
dynamics, δẋ = Aδx + Bu, of (1b) around the origin and
let q̄(x) = x⊤Qx, with Q := ∇2q(x)|x=0 represent the
corresponding quadratic approximation of the running cost.
The following assumption is instrumental for guaranteeing the
existence of a solution to Problem 1, at least locally around
the origin, as well as ensuring (local) asymptotic stability of
the origin for the closed-loop optimal system.

Assumption 1. The pairs (A,B) and (A,Q) are stabilizable
and observable, respectively. ◦

Note that, as a consequence of Assumption 1, the linearized
dynamics together with the quadratic approximation of the
running cost admit the optimal solution uℓ = −B⊤Px, where
P ∈ Rn×n denotes the (unique) positive definite solution of
the Algebraic Riccati Equation (ARE)

0 = A⊤P + PA+Q− PBB⊤P . (2)

It can be demonstrated by means of the DP approach (see
e.g. [23]) that the solution of Problem 1 is given by the
feedback control law

u⋆(x) = −g(x)⊤∇V (x) , (3)

provided V : X → R>0, V (0) = 0, V ∈ Cκ(X ) with κ ⩾ 1,
is a solution to the PDE

0 =
1

2
q(x) +∇V (x)⊤f(x)− 1

2
∇V (x)⊤g(x)g(x)⊤∇V (x) ,

(4)

1The smoothness assumption on the data of the problem is a condition
verifiable a priori, see e.g. [22], [20].

for any x ∈ X , with X a neighbourhood of the origin. In
particular, (4) is derived from the HJB PDE

0 = min
u

{
1

2
q(x) +

1

2
u⊤u+∇V (x)⊤(f(x) + g(x)u)

}
,

(5)
for any x ∈ X . Moreover, such function V coincides with the
value function V ⋆, which possesses the properties mentioned
in Remark 1. The DP approach provides sufficient conditions
for optimality: a function V satisfying the HJB PDE (4) yields,
via (3), a solution to the optimal control problem Qx0

in (1)
in terms of a feedback control.

Since DP provides the optimal solution in terms of a
feedback policy, the DP approach yields (locally) information
regarding the optimal solution and the minimal cost for any
initial condition, hence slightly generalising the requirements
of Problem 1. However, to take advantage of these insights, a
solution of the Hamilton-Jacobi-Bellman PDE (4) or (5) is
required. Typically, closed-form solutions of the HJB PDE
are not available and numerical approaches to solve the
PDE are cursed with high computational demands. Thus,
alternative design approaches based on Pontryagin’s Minimum
principle and the Hamilton Conditions (see [21], [6], [7] for
insightful discussions on the relation between PMP and DP)
are often preferred in applications. The Hamilton conditions
are trajectory-based and therefore computed only for specific
initial states. Moreover, these requirements provide, in gen-
eral, only necessary conditions of optimality. This alternative
approach is summarised in the remainder of this section.

Let H : Rn×Rn → R denote the (minimised) Hamiltonian
function associated with the optimal control problem (1), i.e.

H(x, λ) =
1

2
q(x) + λ⊤f(x)− 1

2
λ⊤g(x)g(x)⊤λ , (6)

where λ(t) ∈ Rn is the costate variable. Provided that V ⋆(x0)
is C2(X ) for a certain X ⊆ Rn, as implied by the data of the
problem for x0 ∈ X (see Remark 1) the optimal process x⋆, i.e
the trajectory of (1b) in closed-loop with the optimal control,
evolves according to the dynamics (Hamilton conditions)[

ẋ

λ̇

]
= J∇H(x, λ) := XH(x, λ) , (7)

from the initial condition (x0,∇V ⋆(x0)), with

J =

[
0 In

−In 0

]
. (8)

Let φH(t;x0, λ0) denote the flow of the Hamiltonian dy-
namics (7), which is assumed to be complete, at time t
and from the initial condition (x0, λ0), and let πx ◦ φH
and πλ ◦ φH denote the projections of the flow on the x
components and on the λ components, respectively, of the
state/costate space. Since the conditions in Assumption 1
imply that the system (1b) is locally exponentially stabilizable
and detectable from the (virtual) output y = q(x), it follows,
by [24, Section 6] that the Hamiltonian dynamics (7) possesses
a hyperbolic equilibrium point at (x, λ) = (0, 0) with n-
dimensional global stable N s and unstable N u submanifolds
through the origin that are invariant for the system (7). The
interested reader is referred to [25] for similar results in the
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case of nonlinear H∞ control problems in which the arising
Hamiltonian dynamics are structurally identical to those in (7).
In addition, recalling that the stable and unstable submanifolds
of a Hamiltonian system are Lagrangian (see e.g. [25, Lemma
1]), one has that such submanifolds are locally described as
the graph of closed one-forms, namely N s = graph(∇V s)
and N u = graph(∇V u), respectively, for some generating
functions V s : Rn → R and V u : Rn → R that constitute
smooth solutions to the HJB equation (4). Finally, note that
the stable (unstable, respectively) invariant submanifold is
tangent at the origin to the n-dimensional subspace W s (Wu,
respectively) described by the eigenspace of the linearized
Hamiltonian system associated with eigenvalues with negative
(positive, respectively) real parts of the Hamiltonian matrix

H :=

[
A −BB⊤

−Q −A⊤

]
. (9)

As a consequence, the origin of the state-space is a locally
asymptotically stable equilibrium point of the (forward-time)
closed-loop dynamics ẋ = f(x) − g(x)g(x)⊤∇V s, x(0) =
x0 and of the (backward-time) dynamics ẋ = −(f(x) −
g(x)g(x)⊤∇V u), x(0) = x0. Moreover, the optimal costate
λ⋆ : R → Rn in (7) satisfies λ⋆(t) = ∇V s(x⋆(t)), for any
t ⩾ 0 (and, provided the problem satisfies the aforementioned
conditions, under which the DP method provides necessary
and sufficient conditions of optimality, V ⋆ = V s).

III. FINITE-DIMENSIONAL CHARACTERISATION OF
OPTIMAL CONTROL LAWS

To provide a concise statement of the following result
- which yields a finite-dimensional, static characterisation
of the solution of Problem 1 - consider a vector s =
[s1 s2 . . . s2n−1]

⊤ ∈ R2n−1 and a scalar positive constant
ε ∈ R>0, and define the vector-valued function α : R2n−1 →
R2n according to

α(s) :=



ε cos(s1)

ε sin(s1) cos(s2)

ε sin(s1) sin(s2) cos(s3)

...
ε sin(s1) . . . sin(s2n−2) cos(s2n−1)

ε sin(s1) . . . sin(s2n−2) sin(s2n−1)


. (10)

The mapping α describes the Cartesian coordinates of points
on the hypersphere of radius ε in R2n, namely the set Sε :=
{(x, λ) ∈ Rn × Rn : ∥(x, λ)∥ = ε} ⊂ R2n for the elements
si ranging in the set [0, 2π), i = 1, ..., 2n − 1. Casting the
problem in terms of the angular coordinates s, rather than the
original (x, λ) coordinates, is central to the construction of a
static, unconstrained optimisation problem characterising the
solution of Problem 1. Nonetheless, the specific selection of
the parameterisation in (10) may be replaced by alternative
descriptions. In the following it is assumed that, whenever
s consists of a set of (potentially infinitely many) values
s = {si}i∈I⊆R, the application of the function α(·) to the
set s denotes in turn the set α(s) := {α(si)}i∈I . Finally, let

φ̂(x0, λ0) define the locus of points along a specific trajec-
tory of the Hamiltonian dynamics (7), namely φ̂(x0, λ0) :=
{(x, λ) ∈ Rn × Rn : ∃ t̂ ∈ R s.t. (x, λ) = φH(t̂;x0, λ0)}.
Recall that V s : Rn → R and V u : Rn → R locally describe
the generating functions for the stable and unstable invariant
submanifolds of (7), respectively. Consider the function

Cx0(s, τ1, τ2) := ∥πx◦φH(−τ1;α(s))−x0∥2+∥φH(τ2;α(s))∥2.
(11)

The first term of (11) quantifies the distance between the
initial condition x0 and the trajectory of the Hamiltonian
dynamics (7) starting from the point α(s) and propagated
in backward or forward time (for τ1 positive or negative,
respectively). The second term, instead, quantifies the distance
between the origin and the trajectory of the Hamiltonian
dynamics (7) starting from the point α(s) and propagated
in forward or backward time (for τ2 positive or negative,
respectively). The following result shows that the Hamiltonian
system (7) has the property that the minimum of Cx0 can be
obtained by two trajectories only, namely those associated with
its stable and unstable submanifolds and passing through x0.
Moreover, such trajectories can be parameterized by the inter-
section point α(s) ∈ Sε, together with the times τ1 and τ2. As
a consequence, the solution of Problem 1 can be equivalently
characterised by the static, unconstrained minimisation of (11)
with respect to (s, τ1, τ2). The above discussion suggests that
the solution of Problem 1 can be constructed in two steps.

First, the minimisers of Cx0
(associated to the generating

functions V s and V u) are computed (see (13) below). This
requires detecting the intersections, described by the point α(s)
for some s, of two sets: (i) the loci of points of the trajectories
of (7) that both converge to the origin and have a projection on
the state space that contains x0; (ii) the surface of Sε. These
intersections are identified via the static minimisation of Cx0

.
Second, once the intersection α(s⋆) corresponding to the

stable submanifold N s has been obtained, the optimal control
law is u⋆(t) = −g(x(t))⊤λ(t), with (x(t), λ(t)) the trajectory
of (7) corresponding to the initial condition x(0) = x0 =
πx ◦ φH(−τ⋆1 ;α(s

⋆)), λ(0) = πλ ◦ φH(−τ⋆1 ;α(s
⋆)).

By inspecting the latter step (i.e. a standard forward propa-
gation of certain initial conditions), it is evident that the former
(i.e. the characterisation and the static minimisation of Cx0 )
constitutes the crucial aspect of the construction of the optimal
control law. Hence, in what follows attention is focused mainly
on this first step. The above (intuitive) discussion is formalised
in the following statements.

Theorem 1. Let x0 ∈ X ⊆ Rn be given and consider the
infinite-horizon optimal control problem Qx0

. Suppose that
V s and V u are C2(X ). Fix a sufficiently small ε > 0 and
suppose that Assumption 1 holds. Then

α(s⋆) = (φ̂(x0,∇V s(x0) ) ∩ Sε) ∪ (φ̂(x0,∇V u(x0) ) ∩ Sε) ,
(12)

where2 s⋆ ∈ [0, 2π)2n−1, is such that there exists τ⋆1 ∈ R with

2The notation [a, b]k describes the product set [a, b]× [a, b]× . . .× [a, b],
repeated k times.
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the property that

lim
τ2→ϖ

Cx0
(s⋆, τ⋆1 , τ2) = 0 , (13)

with ϖ equal to either −∞ or +∞. ◦
Remark 2. Relying on the definition of the extended real line
R̄, the intuition behind Theorem 1 can be captured by abusing
the notation (i.e. letting a minimizer belong to R̄): the values s⋆
are those that belong to the set (s⋆, τ⋆1 , τ⋆2 ) := {(s, τ1, τ2) ∈
Ξ : (s, τ1, τ2) ∈ argmin(s,τ1,τ2)∈Ξ Cx0(s, τ1, τ2)}, with Ξ =
[0, 2π)2n−1 × R̄× R̄. ▲

Proof: The claim is demonstrated by showing that the
inclusions

α(s⋆) ⊇ (φ̂(x0,∇V s(x0) ) ∩ Sε) ∪ (φ̂(x0,∇V u(x0) ) ∩ Sε)
(14)

and

α(s⋆) ⊆ (φ̂(x0,∇V s(x0) ) ∩ Sε) ∪ (φ̂(x0,∇V u(x0) ) ∩ Sε)
(15)

hold simultaneously.
Consider first the inclusion (14), which is verified provided

the cost function Cx0
obtains its infimum value, relatively to

s in Ξ, at the intersection between the trajectory identified by
φ̂(x0,∇V s(x0)) (similarly for V u) and the ball of radius ε.
The initial value problem defined by the dynamics (7) and a
generic initial condition (x0, λ0) ∈ Rn ×Rn admits a unique
solution locally around the origin of the state-costate space,
which is continuous with respect to time and such that the
limit for t that tends to +∞ (−∞, respectively) is equal to
zero for any initial condition in the stable N s (unstable N u,
respectively) invariant submanifold of (7). Thus, it follows that
the intersection between φ̂(x0,∇V s(x0) ) (φ̂(x0,∇V u(x0) ),
respectively) with Sε, for sufficiently small ε, contains a single
point zs ∈ R2n (zu ∈ R2n, respectively) such that the infimum
with respect to τ2 in R̄ of the second term of Cx0

in (11), i.e.
the limit (13), can be zero. Moreover, by definition of φ̂(·, ·),
zs is such that also the first term of Cx0 is zero for some τ1 ∈ R
since zs ∈ φ̂(x0,∇V s(x0)). Therefore, since Cx0 is clearly
non-negative and since zs satisfies ∥zs∥ = ε by definition of
Sε, if follows that zs ∈ α(s⋆). An identical reasoning can be
carried out for zu, hence showing (14).

To prove the converse inclusion (15) note that the func-
tion φH(·; z0) is continuous in R̄ and φH(±∞; z0) =
limt→±∞ φH(t; z0). Thus, it must be shown that there does
not exist any point z̃ ∈ R2n, with norm equal to ε, other
than zs and zu, at which Cx0

(z̃, τ1, τ2) = 0 for some τ1 ∈ R̄
and τ2 ∈ R̄. To this end, suppose initially that there exists
such a point z̃ that does not belong to N s ∪ N u. Then
clearly infτ2∈R̄ ∥φH(τ2; z̃)∥2 is strictly greater than zero, since
the trajectory ensuing from z̃ does not tend to the origin
neither in forward nor in backward time. If instead z̃ ∈ N s \
φ̂(x0,∇V s(x0)) (an identical discussion can be carried out
for the case of the unstable invariant submanifold N u), then
infτ1∈R̄ ∥πx ◦ φH(−τ1; z̃)− x0∥2 is strictly greater than zero
by definition of the set φ̂(x0,∇V s(x0)) and of the distance
between such a set and the locus of points defined by φH(t; z̃)
for any t ∈ R̄. The proof is concluded by recalling that

λ

x

(x0,∇V s(x0))

ε−ε

Sε

α(s?)

ϕ
H

(τ
?

2
;
·)

ϕ
H

(−
τ
?

1
;
·)

graph(∇V s)

graph(∇V u)

α(s2)

α(s1)

Fig. 1. Graphical illustration of the statement of Theorem 1. The solid
black circles constitute the set α(s⋆). The solid black line depicts the
forward/backward flow of the optimal set along the Hamiltonian dynam-
ics, which is such that Cx0(s⋆, τ⋆

1 , τ⋆
2 ) = 0. Any other trajectory of the

Hamiltonian dynamics that intersects the set Sε (depicted by the gray
lines) is such that either the first or the second term of Cx0(·, τ1, τ2) is
strictly positive for any τ1 ∈ R̄ and τ2 ∈ R̄.

λ

x
ε`

Sε

graph(∇V s)

graph(∇V u)

−ε` x0

α(ŝ)

Fig. 2. Graphical illustration of the statement of Theorem 2. The
solid segments on the set Sε indicate the arguments which attain the
minimum of Cεℓ

x0 . These constitute intermediate points of all trajectories
of the Hamiltonian system (7) that satisfy the initial condition x(0) = x0

and that (in finite time) enter (depicted by the gray, dashed line) or are
tangent (depicted by the gray, solid lines) to the set Sεℓ .

φ̂(x0,∇V s(x0)) (and similarly for V u(x0)) contains a single
point with norm equal to ε, namely zs (zu, equivalently). □

The proposed results seemingly share common ingredients
with strategies that aim at a trajectory-based characterisation
of certain invariant manifolds for nonlinear systems as well
as with the class of the so-called shooting methods, which
possess a long history in the literature. Therefore, it is worth
stressing the particular features of the method discussed herein,
which significantly distinguish them from the two above-
mentioned frameworks. First, differently from the former, the
objective here is not to approximate the entire manifold but
rather a single trajectory with certain properties. Differently
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from the latter, instead of considering only the forward prop-
agation from a prescribed boundary condition, the desired
trajectory is computed by determining its intersection with a
hypersphere centered at the origin. In fact, the key idea consists
in the simultaneous forward and backward propagation of tra-
jectories from points lying on the surface of the hypersphere.
As a consequence one obtains a computationally amenable
method that hinges upon the unconstrained minimisation of a
certain function (see (11)). Furthermore, since the radius of
the hypersphere can be selected arbitrarily small, differently
from standard shooting methods over relatively long horizons,
the knowledge of the linearized solution becomes a valid
initial guess for the nonlinear iterations (see the more detailed
discussion in Remark 5 below). Finally, it is worth mentioning
that, as a side-effect of relying on a completely unconstrained
minimisation (namely without even restricting the sign of
the time variables τ1 and τ2 in (11)), the minimum of the
equivalent cost function is obtained also at a trajectory that
belongs to the unstable invariant manifold.

Remark 3. Theorem 1 establishes that the (static) minimisation
of the function C : Ξ → R⩾0, parameterised with respect
to the initial state x0 ∈ Rn, characterises the intersection
points between the trajectories associated with the solutions
V s(x0) and V u(x0) of the HJB PDE lying on the stable and
unstable Lagrangian submanifolds of (7), respectively, with the
hypershere of radius ε in the state/costate space. ▲

Remark 4. As noted in the proof of Theorem 1, for a given
initial state x0 there are (only) two initial conditions λ0, such
that the resulting trajectories of the Hamiltonian system (7)
converge to the origin in either forward or backward time. The
set α(s⋆) contains the two intersection points between these
trajectories and the ball of radius ε. The equation (12) entails
that the knowledge of the intersection point corresponding to
the trajectory belonging to the stable submanifold, i.e. zs,
permits the computation of the optimal initial condition for
the costate variable λ0 = ∇V s(x0) by integrating back-
ward in time the Hamiltonian dynamics (7). The relation
φH(−τ⋆1 , α(s⋆)) ⊆ graph∇xV

s ∪ graph∇xV
u suggests that

by considering a certain number of suitably selected initial
conditions x0,i and by determining minimum points of Cx0,i

it is possible to envision a strategy to reconstruct the stable and
unstable invariant submanifolds, which would in turn yield the
gradient of the value function V s without explicitly solving
the HJB PDE (4). The objective of this paper is, however,
different: rather than determining the invariant manifolds, the
objective is to determine (or approximate) the trajectory of the
Hamiltonian system corresponding to the optimal process, and
thereby construct the optimal control law, for a specific initial
condition of (1b). ▲

Remark 5. The intuition of forward propagating the trajecto-
ries of the underlying Hamiltonian dynamics to determine the
solution to an optimal control problem has been explored in
the literature before, especially in the case of finite-horizon
problems, see e.g. [26] and references therein. Due to the
intrinsic instability of the Hamiltonian dynamics, the so-called
shooting methods necessarily require an accurate initial guess
of the costate initial condition λ(0) or a (short) bounded time

interval even in the case of infinite-horizon problems. A novel
feature of the method proposed herein is that the optimal
state/costate trajectory is not approximated by considering
only the forward propagation from certain initial conditions
(as is common in the literature), but by characterisating the
intersection of such a trajectory with a hypershpere, namely
by forward and backward propagating the trajectory from
an intermediate point that belongs to the surface of the
hypersphere. Provided the radius of the hypersphere is selected
sufficiently small, the interesection to be determined is (much)
closer to the origin than x0. Thus a valid initial guess for the
intermediate point on the boundary of the hypersphere may
indeed be suggested by the linearized solution, i.e. by letting
s(0) ∈ R2n−1 be such that

α(s(0)) := ε

[
x0

Px0

]/∥∥∥∥[ x0

Px0

]∥∥∥∥ . (16)

Such strategy is employed and illustrated in the numerical
simulations of Section V. ▲

Remark 6. The main objective of this paper - namely to
provide a finite-dimensional characterisation of the solution in
infinite-horizon optimal control problems - is similar in spirit
to that of the well-known Model Predictive Control (MPC)
strategies, see e.g. [27] and references therein. However, a few
relevant differences should be highlighted. In MPC the finite-
dimensional characterisation is obtained by considering a time
quantisation over a finite, typically short, time interval around
the current value of the state: this allows one to pose a static
optimisation task with respect to the (finite) samples of the
underlying control law. However, in continuous-time nonlinear
system - since portions of trajectories that are optimal over a
finite-horizon are not, in general, restrictions of the optimal
control law over the entire horizon - such a strategy inevitably
introduces a residual approximation error even in the nominal
case of perfect knowledge of the plant and absence of noise or
disturbances. Theorem 1 instead provides a finite-dimensional
exact characterisation of the optimal control law over the
entire infinite horizon. Therefore, even in a receding-horizon
implementation of the constructions proposed here, potentially
in the presence of disturbances, the proposed strategy allows
one to employ moving windows of length significantly larger
than alternative receding horizon strategies in general. This
feature is illustrated via a comparative study in Section V. ▲

The intuition behind Theorem 1 is illustrated for the scalar
case, namely with n = 1, in Figure 1, where the black
circles constitute the set α(s⋆), namely the intersections of
φ̂(x0,∇V s(x0)) and φ̂(x0,∇V u(x0)), which in the scalar
case coincide with N s and N u, respectively, with the set
Sε. The solid black line represents the forward/backward flow
of the optimal set along the Hamiltonian dynamics, which
is such that Cx0(s⋆, τ⋆1 , τ⋆2 ) = 0. As shown in the proof of
Theorem 1, any other trajectory of the Hamiltonian dynamics
that intersects the set Sε (represented by the gray lines) is such
that either the first (for α(s1)) or the second (for α(s2)) term
of Cx0

(·, τ1, τ2) is strictly positive for any τ1 ∈ R̄ and τ2 ∈ R̄.

Remark 7. The discussion in the proof of Theorem 1 suggests
two further implications on the values τ⋆1 and τ⋆2 . First, it is
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evident that the infimum of Cx0
is obtained by considering the

limit of τ⋆2 ∈ R̄ to ±∞, as implied by (13). Moreover, one has
that τ⋆1 τ

⋆
2 > 0, i.e. the infimum is obtained by simultaneous

forward/backward evaluation of Hamiltonian trajectories. ▲

Remark 7 motivates the result below, which allows one to
approximate the solution of Qx0 with an arbitrary degree of
accuracy. Let V and W be two non-empty sets and define the
Hausdorff distance between V and W , denoted dH(V,W), as

dH(V,W) = max

{
sup
v∈V

inf
w∈W

∥v − w∥, sup
w∈W

inf
v∈V

∥v − w∥
}
,

(17)
i.e. defining the largest among all the distances between the
points in one set and the closest point in the other set.

Theorem 2. Let x0 ∈ X ⊆ Rn be given and consider the
infinite-horizon optimal control problem Qx0 . Suppose that V s

and V u are C2(X ). Fix ε > 0 sufficiently small, and suppose
that Assumption 1 holds. Define

Cεℓ
x0
(s, τ1, τ2) :=∥πx ◦ φH(−τ1;α(s))− x0∥2

+max{0, ∥φH(τ2;α(s))∥2 − ε2ℓ} ,
(18)

where εℓ ∈ R>0 and εℓ < ε. Then for any µ > 0 there exist
θ1, θ2, εℓ ∈ R>0 such that

dH(α(s⋆), α(ŝ)) < µ (19)

where3 (ŝ, τ̂1, τ̂2) := argmin(s,τ1,τ2)∈Θ Cεℓ
x0
(s, τ1, τ2) and

Θ := {(s, τ1, τ2) ∈ Ξ : |τ1| ⩽ θ1, |τ2| ⩽ θ2}. ◦

Proof: First, note that, by continuity of the function
Cεℓ
x0
(s, τ1, τ2) with respect to εℓ, limεℓ→0+ Cεℓ

x0
(s, τ1, τ2) =

Cx0
(s, τ1, τ2), point-wise for any (s, τ1, τ2), where the latter

function is precisely the one defined in (11). Then, let Cx0,θ :
Θ → R>0 be the restriction of the function Cx0

in (11) to the
set Θ. Given µ > 0, select θ > 0 and µθ < µ such that, letting
θ1 = θ2 = θ in the definition of Θ,

dH(α(s⋆), α(sθ)) < µθ < µ , (20)

where (sθ, τθ1 , τθ2 ) := argmin(s,τ1,τ2)∈Θ Cx0,θ(s, τ1, τ2), which
exist by continuity of the function Cx0 with respect to its argu-
ments. Therefore, consider a sub-sequence of indices {εℓ,i}i∈N
such that limi→∞ εℓ,i = 0+ and define the corresponding
sequence of the functions {Cεℓ,i

x0 }i∈N with the underlying argu-
ments restricted to the compact domain Θ. By the discussion
above, the sequence {Cεℓ,i

x0 }i∈N converges point-wise to Cx0,θ

in Θ and each function Cεℓ,i
x0 is equi-continuous, being a

continuous function. Hence, [28, Theorem 7.10] implies also
epi-convergence4 of {Cεℓ,i

x0 }i∈N to Cx0,θ. Furthermore one has
that the restrictions of {Cεℓ,i

x0 }i∈N to Θ are level-bounded,
following from compactness of the corresponding supports,
proper and lower semi-continuous for any i ∈ N. Therefore,
by relying on [28, Theorem 7.33] it follows that

lim sup
i

(argmin Cεℓ,i
x0 ) ⊂ argmin Cx0,θ , (21)

3Considerations similar to those discussed in Remark 2 are employed here
to characterise the set (̂s, τ̂1, τ̂2).

4The interested reader is referred to [28, Chapter 7] for further definitions
and discussions.

and the claim is shown by definition of Hausdorff distance
and by the inequality (20). □

Remark 8. Similarly to the interpretation in Remark 3 follow-
ing the statement of Theorem 1, the rationale behind the formal
claim of Theorem 2 can be further explained as follows. The
arguments that attain the minimum of function Cεℓ

x0
characterise

(via the intersection points represented in spherical coordinates
ŝ) the set of all the trajectories of the Hamiltonian dynamics
(7) that enter (in finite time) or are tangent to the set Sεℓ :=
{(x, λ) ∈ Rn × Rn : ∥(x, λ)∥ = εℓ} and whose projection on
the state component intersects x0. The fundamental difference
with respect to the characterization of the trajectories as in
the statement of Theorem 1 lies in the fact that the minimum
of Cεℓ

x0
is achieved also at some |τ̂i| < ∞, namely for certain

(ŝ, τ̂1, τ̂2) belonging to the compact set Θ. These observations
are illustrated for the scalar case in Figure 2. ▲

IV. ALGORITHMS FOR MINIMIZING THE HAMILTONIAN
TRAJECTORY-BASED COST

The main objective of this section lies in presenting an
algorithm that achieves the minimisation of the trajectory-
based (finite-dimensional) cost functions defined in (11) and
especially (18). After providing a general statement, outlining
the design of such algorithm, the discussion is focused on
showing how to circumvent specific implementation issues
arising by employing standard minimisation techniques. In the
following statement we introduce a continuous-time dynamical
system, whose (asymptotically stable) equilibrium corresponds
to a minimiser of the static cost function (18). This dynam-
ical system constitutes a central component of the algorithm
presented in the following subsections. To provide a concise
statement of the result, consider the partial derivatives of the
function (18) with respect to its arguments, provided in (22)
overleaf, and let B denote a ball of radius one.

Proposition 1. Let x0 ∈ X ⊆ Rn be given. Fix ε > 0 and
εℓ > 0 sufficiently small and any θ1, θ2 ∈ R>0. Suppose in
addition that Assumption 1 holds. Let γ > 0 and consider

η̇ = −γ∇ηCεℓ
x0
(η)(∇ηCεℓ

x0
(η)⊤∇ηCεℓ

x0
(η))−1Cεℓ

x0
(η) , (23)

where η = [ξ, σ1, σ2] ∈ R2n+1 and ∇ηCεℓ
x0

=

[∇ξCεℓ
x0

⊤,∇σ1
Cεℓ
x0
,∇σ2

Cεℓ
x0
]⊤. Then, there exist µ, c1, c2 ∈

R>0 such that

dH(α(ξ(t)), α(ŝ)) ⩽ c1e
−c2 tdH(α(ξ(0)), α(ŝ)) (24)

for t ⩾ 0 and η(0) ∈ argmin(s,τ1,τ2)∈Θ Cεℓ
x0
(s, τ1, τ2) + µB. ◦

Proof: First, note that the function Cεℓ
x0

restricted to Θ
is lower semi-continuous, since it is, in fact, continuous,
proper and level-bounded. It follows by [28, Theorem 1.9]
that the set (ŝ, τ̂1, τ̂2) := argmin(s,τ1,τ2)∈Θ Cεℓ

x0
is non-empty

and compact, hence the set α(ŝ) is compact. Moreover, by
definition of the set (ŝ, τ̂1, τ̂2) (namely, the points in Θ at
which Cεℓ

x0
(s, τ1, τ2) = 0) and of (local) minimum, it follows

that there exists a strictly positive constant µ1 ∈ R>0 such
that ∇ηCεℓ

x0
(η) is different from zero for any η ∈ (ŝ, τ̂1, τ̂2) +

µ1B. As a consequence, the (right) pseudo-inverse of the
row vector ∇ηCεℓ

x0
(η)⊤ ∈ R2n+1, namely ∇ηCεℓ

x0
(η)† =
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∇sCεℓ
x0

=


2(πx ◦ ∇αφH(−τ1;α(s))∇sα(s))⊤(πx ◦ φH(−τ1;α(s))− x0)

+2(∇αφH(τ2;α(s))∇sα(s))⊤φH(τ2;α(s)) , if ∥φH(τ2;α(s))∥2 > ε2ℓ

2(πx ◦ ∇αφH(−τ1;α(s))∇sα(s))⊤(πx ◦ φH(−τ1;α(s))− x0) , if ∥φH(τ2;α(s))∥2 ⩽ ε2ℓ

(22a)

∇τ1Cεℓ
x0

= −2(πx ◦XH(α(s)))⊤(πx ◦ φH(−τ1;α(s))− x0) (22b)

∇τ2Cεℓ
x0

=

{
2(πx ◦XH(α(s)))⊤φH(τ2;α(s)) , if ∥φH(τ2, α(s))∥2 > ε2ℓ

0 , if ∥φH(τ2;α(s))∥2 ⩽ ε2ℓ
(22c)

∇ηCεℓ
x0
(η)(∇ηCεℓ

x0
(η)⊤∇ηCεℓ

x0
(η))−1, is well-defined in the

same neighborhood. The remainder of the proof then follows
directly from the result of Theorem 2 and standard Lyapunov
stability arguments. To this end, note first that the function Cεℓ

x0

is (locally) positive-definite with respect to the set (ŝ, τ̂1, τ̂2)
and for any η ∈ (ŝ, τ̂1, τ̂2) + µ2B, for some µ2 ∈ R>0,
hence it can be employed as a candidate for a Lyapunov
function. Moreover, (locally) the dynamics (23) are such that
Ċεℓ

x0
(η) = −γCεℓ

x0
(η), hence Cεℓ

x0
(η(t)) = e−γtCεℓ

x0
(η(0)) for

t ⩾ 0. The latter implies that with µ := min{µ1, µ2}, by
continuity of α(·), ξ(t) converges exponentially to ŝ. □

Remark 9. The intuition behind the statement of Proposition 1
suggests that each connected component of the set α(ŝ) is
locally exponentially stable for the dynamics (23). It is worth
observing that, for a fixed value of the parameter εℓ > 0,
while clearly α(s⋆) ⊂ α(ŝ), there may be instead connected
components of α(ŝ) that possess empty intersection with
α(s⋆) (see Figure 2 compared with the exact case depicted
in Figure 1 for a graphical intuition in the case of scalar
systems). Furthermore, note that, by combining the claims
of Proposition 1 with those of Theorem 2, one has that
the trajectories of system (23) recover in practice the actual
solution s⋆ provided εℓ is selected arbitrarily small and θi
arbitrarily large. ▲

Remark 10. The result of Proposition 1 entails that a single
static minimisation allows one to compute an essentially open-
loop approximation of the entire optimal control policy. Note
that the strategy ensures that the resulting trajectory enters the
hypersphere Sεℓ in finite time. Within the hypersphere one
could, for instance, implement the solution of the linearised
problem, which will induce a residual error of the order of
O(ε2ℓ) on the feedback policy and of the order of O(ε3ℓ) on
the cost of the optimal solution, namely on the value function.
Thus, the resulting strategy (for the entire time horizon)
can be made arbitrarily accurate through the selection of εℓ.
Towards the end of this section we also provide an algorithm
(Algorithm 1), in which the static minimisation problem is
solved iteratively, yielding a receding-horizon architecture.
The receding-horizon architecture has the additional benefit
that it can be implemented on-line and yields an overall
strategy with favourable robustness properties. ▲

By inspecting the equations (22), the dynamics (23) cannot
be easily implemented since the underlying vector field de-
pends on the knowledge of the flow φH(t; ·) and the sensitivity,

namely the Jacobian matrix of the flow with respect to the
initial condition, whose closed-form expressions are typically
not available for nonlinear Hamiltonian dynamics (7). This
computational issue can be circumvented via a hybrid imple-
mentation. In the following statement standard notation is used
to represent the hybrid time domain: (t; k), with t ∈ R≥0 and
k ∈ N, is used to denote the continuous time parameter t
along with the index k representing the discontinuous jumps
(for reasons of space the interested reader is referred to e.g
[29] for further details on hybrid systems).

Proposition 2. Suppose that the assumptions of Proposi-
tion 1 hold and consider a hybrid system with state ζ :=
(η, χb, χf ,Ψb,Ψf , τ) ∈ R2n+1 × R2n × R2n × R2n×2n ×
R2n×2n × R, flow dynamics

η̇ = 0 , (25a)

χ̇b = −(σ1/τM )XH(χb) , (25b)

χ̇f = (σ2/τM )XH(χf ) , (25c)

Ψ̇b = −(σ1/τM )∇XH(χb)Ψb , (25d)

Ψ̇f = (σ2/τM )∇XH(χf )Ψf , (25e)

τ̇ = 1 , (25f)

jump dynamics

η+ = η + τMFγ(ζ) , (26a)

χ+
b = α(ξ) , (26b)

χ+
f = α(ξ) , (26c)

Ψ+
b = I , (26d)

Ψ+
f = I , (26e)

τ+ = 0 , (26f)

flow set C := {(η, χ,Ψ, τ) : τ ⩽ τM} and jump set D :=
{(η, χ,Ψ, τ) : τ ⩾ τM}, where χ = (χb, χf ), Ψ = (Ψb,Ψf ),

Fγ(ζ) = −γG(ζ)(G(ζ)⊤G(ζ))−1h(η, χ,Ψ), (27)

with

h(η, χ,Ψ) :=∥πx ◦ χb − x0∥2 +max{0, ∥χf∥2 − ε2ℓ} , (28)

and G(ζ) := [G1(ζ)
⊤, G2(ζ), G3(ζ)]

⊤ as specified in (29)
overleaf. Then there exists τ⋆M > 0 with the property that the
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trajectories of (25), (26) are such that limt+k→∞ α(ξ(t, k)) ∈
α(ŝ) for any τM ∈ (0, τ⋆M ). ◦

Proof: To begin with, let ti denote the continuous time at
which the i-th jump occurs. Note that the flow dynamics (25f)
is such that τ increases at the same rate as the underlying
continuous-time component of the hybrid time domain until
it reaches τ ≥ τM , at which point a jump occurs and its
value is “reset” to zero, namely it behaves as a timer variable.
Thus, regardless of the initial condition of the state of the
hybrid system, the hybrid arcs exhibit non-empty continuous
time interval with the property that tk+1 − tk = τM , for any
k > 0, followed by (periodic) jumps. Note also that η remains
constant during flows. Dynamics (25b) and (26b) are such that

χb(tk + ρ, k) = χb(tk, k) +

∫ tk+ρ

tk

(−σ1/τM )XH(χb)dt ,

for any ρ ≤ τM and any k > 0. Moreover,

χb(tk + τM , k) = χb(tk+1, k) = α(ξ(tk, k))

+

∫ 0

−σ1(tk,k)

XH(χb)dt = φH(−σ1(tk, k), α(ξ(tk, k)) .

(30)

Similarly, (25c) and (26c) are such that χf (tk+1, k) =
φH(σ2(tk, k), α(ξ(tk, k)), for any k > 0. Furthermore, by
comparing the structure of (22) and of (29), it is clear that
the rationale behind the dynamics (25d) and (25e) consists
precisely in yielding the Jacobian matrix of the (unknown)
flow of the Hamitonian dynamics (7) with respect to the initial
condition. To show this claim, let Ψ : R → R2n×2n denote
the sensitivity of the flow φH(t, z0) with respect to z0, namely
Ψ(t) = ∇z0φH(t, z0), where z0 ∈ R2n denotes the initial
condition of the flow. Recalling that, by definition, the flow
satisfies the fixed-point condition

φH(t, z0) = z0 +

∫ t

0

XH(φH(s, z0))ds , (31)

it follows that the sensitivity satisfies the relation

∇z0φH(t, z0) =: Ψ(t) = I +

∫ t

0

∇XH(z(s))Ψ(s)ds . (32)

Thus, it follows from (30) (noting also that σ1 and σ2 are
constant during flows, namely for any t ∈ (tk, tk+1]) that the
dynamics (25d) and (26d) are such that

Ψb(tk+1, k) = I +

∫ 0

−σ1

∇XH(χb(s, k))Ψb(s, k)ds

= I +

∫ 0

−σ1

∇XH(φH(−σ1(tk, k), α(ξ(tk, k)))Ψb(s, k)ds

= I +

∫ 0

−σ1

∇αXH(φH(−σ1(tk, k), α(ξ(tk, k)))Ψb(s, k)ds ,

which is precisely the sensitivity (as given in (32)) of the flow
φH(−σ1, α(η)). Similarly, it can be shown that

Ψf (tk+1, k) = I +

∫ σ2

0

∇αXH(φH(−σ1, α(ξ(tk, k)))Ψfds ,

which is the sensitivity of the flow φH(σ2, α(η)). As
a consequence of the preceding discussion, one has that
h(η, χ,Ψ)

∣∣
(tk,k)

= Cℓ
x0
(η) (with Cℓ

x0
as defined in (18)) and

G(η, χ,Ψ)
∣∣
(tk,k)

= ∇Cεℓ

x0
(η) (as defined in (22)). That is, the

dynamics (25) and (26) are such that

η+ = η − τMγ∇ηCεℓ
x0
(η)(∇ηCεℓ

x0
(η)⊤∇ηCεℓ

x0
(η))−1Cεℓ

x0
(η) .

(33)
Namely, the sequence η(tk+1, k + 1), for k ∈ Z>0, real-
izes the discretization, via Euler’s method, of the continuous
dynamics (23). Recalling the main result of Proposition 1,
namely that the set α(̂s) is locally exponentially stable for
the continuous dynamics (23), it follows that for sufficiently
small τM , the set α(̂s) is locally exponentially stable for the
discretized dynamics (33). □

Remark 11. The intuition behind the formal statement of
Proposition 2 can be summarized as follows. The state τ of
the hybrid system (25)-(26) essentially represents a “sampling
time” and the system is such that at jumps χ and Ψ are “ini-
tialised” in a manner that ensures that, via the flow dynamics,
χb and χf determine the backwards and forward flows of
the Hamiltonian system, whereas Ψb and Ψf determine the
sensitivities of the backwards and forwards flows, respectively.
Namely, it is possible to periodically determine the flows
and their sensitivities, for which analytical expressions are,
in general, not available, required to integrate the continuous
dynamics (23) of Proposition 1. At jumps, this knowledge is
then used to implement a discretized version of (23).

The previous discussions and formal statements are finally
summarised in the following algorithm, which essentially
outlines a receding-horizon implementation of the results of
Propositions 1 and 2, in which the hyperspheres defined by ε
and εℓ are allowed to shrink.

Algorithm 1.
(0) Initialization. Fix τM , τrh, ν, c1, c2, τ10, τ20, γ positive

constants, such that c2 < c1. Let xc = x(0), κ = 1 and
τκ−1 = τ0 = 0.

(1) Let ε = c1∥xc∥, εℓ = c2∥xc∥.

(2) Let η(0) = [ξc, τ10, τ20] in (25), (26), with ξc such that
α(ξc) = ε[x⊤

c , x
⊤
c P ]⊤/∥[x⊤

c , x
⊤
c P ]⊤∥ as in (16) with P

denoting the positive definite solution of the ARE (2).

(3) Integrate the hybrid system (25), (26) in [0, ντM ] and let
σ̄i = σi(ντM , ν), τκ = τκ−1 +min{τrh, σ̄1 + σ̄2} and

(xa(ta), λa(ta)) =


χb

(
ντM − ta

τM
σ̄1

, ν − 1
)
,

for ta ∈ [0, σ̄1]

χf

(
(ν − 1)τM + (ta−σ̄1)τM

δτ−σ̄1
, ν − 1

)
,

for ta ∈ [σ̄1, δτ ]
(34)

with δτ = τκ − τκ−1. Define the control law

u◦(t) := −g(xa(t− τκ−1))
⊤λa(t− τκ−1) , (35)

for t ∈ [τκ−1, τκ].
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G1 =

{
2(πx ◦Ψb∇α(ξ))⊤(πx ◦ χb − x0) + 2(Ψf∇α(ξ))⊤χf , if ∥χf∥2 > ε2ℓ

2(πx ◦Ψb∇α(ξ))⊤(πx ◦ χb − x0) , if ∥χf∥2 ⩽ ε2ℓ
(29a)

G2 = −2(πx ◦XH(α(ξ))⊤(πx ◦ χb − x0) (29b)

G3 =

{
2(πx ◦XH(α(ξ)))⊤χf , if ∥χf∥2 > ε2ℓ

0 , if ∥χf∥2 ⩽ ε2ℓ
(29c)

Fig. 3. Time histories of the state x1(t) (solid line) and x2(t) (dashed
line) of system (37) with x(0) = (1, 0), in closed-loop with the control
law determined by Algorithm 1, with τM = 0.01s, τrh = 1s, ν = 6 ·
105, c1 = 0.5, c2 = 0.1, τ10 = τ20 = 1 and γ = 0.1. The dashed
vertical lines represent the time instants τκ defined in Algorithm 1.

(4) Implement the control input u◦ in the system (1b) for
τκ − τκ−1 seconds, i.e. compute

x◦(t) = φ(t;xc, u
◦(·)) (36)

with t ∈ [τκ−1, τκ], where φ(t;x, u(·)) denotes the flow
of the system (1b) at time t, from initial condition x and
driven by the control input u.

(5) Let xc = x◦(τκ), κ = κ+ 1.
(6) Repeat from step (1).

A few comments about the practical implementation of the
algorithm above are necessary before considering a benchmark
numerical simulation. To begin with, it is worth observing
that the iterations may be terminated whenever ∥xc∥ (which
defines, via ξc in step (2), the intersection of the trajectory
with the outer hypersphere of radius ε) is sufficiently small.
In addition, in order to obtain that τκ = τκ−1 + τrh for all
κ ∈ N - namely such that the time instants at which the control
law is updated coincide with the periodic pattern induced by
the desired value τrh - one should select εℓ sufficiently small
and ν sufficiently large. This aspect is further discussed also
in the numerical simulations below.

V. A BENCHMARK EXAMPLE

To illustrate and validate the theory discussed in the pre-
vious sections, the following benchmark example for infinite-
horizon optimal control problems in the presence of nonlinear

0 2 4 6 8 10

-2.5

-2

-1.5

-1

-0.5

0

0.5

Fig. 4. Time history of the control input u(t) determined by Algorithm 1,
with τM = 0.01s, τrh = 1s, ν = 6 · 105, c1 = 0.5, c2 = 0.1,
τ10 = τ20 = 1 and γ = 0.1.
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Fig. 5. Time histories of the state x1(t) of the system (37) with
x(0) = (1, 0), in closed-loop with MPC controllers for different values
of the configuration parameters δT (sampling time) and Nu (length of
the receding horizon).

dynamics is considered. In particular, the problem is borrowed
from [30] and [31], where a detailed comparative analysis is
carried out among several alternative techniques. Towards this
end, consider the nonlinear system described by the equations

ẋ1 = x2 , ẋ2 = x3
1 + u , (37)

with x(t) ∈ R2 and u(t) ∈ R, which exhibits a cubic nonlin-
earity in the state variables, together with a cost functional of
the form (1a), with q(x) = x⊤x. As implied by [20] (see also
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Remark 1) the problem admits a locally C2 value function.
The graphs in Figures 3 and 4 depict the outcome cor-

responding to the strategy obtained by implementing Algo-
rithm 1 to solve the infinite-horizon optimal control problem
defined by (37) and (1a) in the nominal setting, i.e. in the
absence of any noise or disturbances. The results are obtained
by selecting the configurable parameters of the Algorithm 1
as τM = 0.01s, τrh = 1s, ν = 6 · 105, c1 = 0.5,
c2 = 0.1, τ10 = τ20 = 1 and γ = 0.1. The dashed vertical
lines in Figure 3, which are uniformly distributed over time,
show that the selection of c2, hence in turn of εℓ at each
iteration, induces the property that τκ − τκ−1 = τrh = 1s
for all κ. Moreover, it is worth observing that - by relying
on the discussion of Remark 6, which highlights that at
each execution of the steps (2)-(4) of Algorithm 1 the entire
(infinite-horizon) optimal solution is characterized provided εℓ
is sufficiently small and ν is large - Algorithm 1 is capable
of determining a solution with a cost lower than all the
alternative techniques considered in the comparison provided
in [31]. More precisely, J(u◦) = 1.4828, even with a relatively
long moving window, namely with one second between two
consecutive updates of the approximate policy. The proposed
strategy (and its performance) is explicitly compared with
control laws designed on the basis of linear and nonlinear MPC
strategies (see e.g. [32]). In particular, within the framework of
a linear (parameter-varying) MPC architecture, the dynamics
(37) are linearised around the current value of the state -
which is assumed constant during the prediction phase - and
subsequently discretised via Euler’s method, with respect to
the sampling time δT ∈ R>0. To obtain a finite-dimensional
characterization of the optimal control task, as it is common
in this setting, it is assumed that the control action is piece-
wise constant during the evolution of the prediction model:
this choice allows one to pose the underlying optimal control
problem restricted to the moving window of length δTNu,
with Nu ∈ N denoting the prediction steps, as a static
quadratic optimisation task. Figure 5 shows the time-histories
of the state variable x1(t) of the system (37) for several
selections of the parameters δT and Nu. In particular, the
cost of the choice (δT,Nu) = (0.2, 5) (solid black line) is
equal to 1.8389. It is worth observing that for the above
selection of parameters, the optimisation is performed over a
receding window of one second, whereas the control action is
computed every 0.2s, i.e. at significantly higher rate than the
1s for the control design method we propose. Furthermore,
(δT,Nu) = (0.2, 10) (solid dark gray line) induces a cost of
2.9949 , (δT,Nu) = (0.5, 4) (solid light gray line) induces
a cost of 2.1528 and, finally, (δT,Nu) = (1, 2) (dash-dotted
gray line) results in an unbounded trajectory of the closed-loop
system. A similar comparison is performed also with respect
to a nonlinear MPC scheme, with δT = 0.2 and Nu = 5,
in which the optimisation problem at each step is solved via
the fmincon command in Matlab. A quadratic virtual weight
on the terminal state of the moving window, described by
x(t+Nu|t)⊤Sx(t+Nu|t) with S = 102I , is required to induce
a bounded evolution to the resulting closed-loop system. The
corresponding trajectory is described by the dashed gray line in
Figure 5 with associated cost equal to 1.8922. The objective

of the second numerical simulation is instead to assess the
behaviour of Algorithm 1 in the presence of an exogenous
disturbance signal affecting the dynamics (37). In particular,
the disturbance is unmatched with the control input since it
affects (linearly) the dynamics of the first state, namely ẋ1 =
x2 + w, with w(t) defined as w(t) = 0.5 for t ∈ [0.4, 0.8],
w(t) = −0.5 for t ∈ [3.7, 4.2] and zero otherwise. The time
intervals in which w(t) is different from zero are visually
depicted by the shaded red regions in Figures 6 and 7. It is
apparent from these figures that the application of Algorithm
1, with τM = 0.01s, τrh = 0.25s, ν = 104, c1 = 0.5,
c2 = 0.1, τ10 = τ20 = 1 and γ = 0.1, is capable of coping
with the presence of an unexpected exogenous disturbance,
while still providing a control law resulting in a reasonable
cost, i.e. J(u◦) = 2.1898.

VI. CONCLUSIONS

Infinite-horizon optimal control problems for nonlinear sys-
tems have been studied. Their intrinsically infinite-dimensional
nature render this class of control problems particularly chal-
lenging to solve. The contribution of this paper has been
twofold. On one hand, we have provided a finite-dimensional
characterisation of the solution of such problems in terms
of the set in which a certain function - which involves
the trajectories of the associated Hamiltonian system and
their sensitivity with respect to the initial condition - attains
its minimum value. Then, we have shown that a suitably
adapted hybrid implementation of a standard gradient-descent
algorithm permits the minimisation of such functions, without
requiring explicit knowledge of the flow of the Hamiltonian
system, which is seldom available in practice. This result is
well-suited for an algorithmic interpretation, which can be
implemented in a receding horizon fashion. The efficacy of the
resulting algorithm is demonstrated by means of a benchmark
infinite-horizon nonlinear optimal control problem.
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