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A robust Lyapunov criterion for non-oscillatory
behaviors in biological interaction networks

David Angeli, M. Ali Al-Radhawi and Eduardo D. Sontag

Abstract— We introduce the notion of non-oscillation,
propose a constructive method for its robust verification,
and study its application to biological interaction networks
(also known as, chemical reaction networks). We begin
by revisiting Muldowney’s result on the non-existence of
periodic solutions based on the study of the variational
system of the second additive compound of the Jaco-
bian of a nonlinear system. We show that exponential
stability of the latter rules out limit cycles, quasi-periodic
solutions, and broad classes of oscillatory behavior. We
focus then on nonlinear equations arising in biological
interaction networks with general kinetics, and we show
that the dynamics of the aforementioned variational system
can be embedded in a linear differential inclusion. We
then propose algorithms for constructing piecewise linear
Lyapunov functions to certify global robust non-oscillatory
behavior. Finally, we apply our techniques to study several
regulated enzymatic cycles where available methods are
not able to provide any information about their qualitative
global behavior.
Keywords: second additive compounds, robust non-
oscillation, piecewise linear Lyapunov functions, biological
interaction networks, enzymatic cycles.

I. INTRODUCTION

Natural and engineered nonlinear systems are commonly re-
quired to operate consistently and robustly under perturbations
and a variety of environmental conditions. Rational analysis
and synthesis of such systems need qualitative characteriza-
tions of their global long-term behavior, which is a notoriously
difficult task for general nonlinear systems. This problem
is compounded by the large uncertainties that pervade the
mathematical descriptions of many such systems. A prominent
class exemplifying these difficulties are biological interaction
networks, which include molecular processes such as expres-
sion and decay of proteins, metabolic networks, regulation
of transcription and translation, and signal transduction [1].
Such networks are usually described via the mathematical
formalism of Biological Interaction Networks (BINs) (also
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known as Chemical Reaction Networks (CRNs)) [2]. Ordinary
Differential Equations (ODE) descriptions of BINs have two
components, one graphical and one kinetic. The first is often
well-characterized as it corresponds to the list of reactions,
while the latter (which includes kinetic constants and the func-
tional forms of kinetics) is not, as it depends on quantifying
the “speed” of reactions which is difficult to measure and
subject to environmental changes. This information disparity
precludes the construction of full mathematical models, and
hence a pressing need has emerged for the development of
general robust techniques that can provide conclusions on the
qualitative behavior of the network based on the graphical
information only [3].

Although this problem may seem intractable, significant
progress has been made in the past few decades. A pio-
neering example has been the development of the theory of
complex-balanced networks with Mass-Action kinetics, and
the associated deficiency-based characterizations [4], [5]. It
has been shown that such networks always admit Lyapunov
functions over the positive orthant, and that global stability
can be ascertained in some cases [6], [7]. Other notions of
global behavior have also been considered in the literature. It
has been shown that the persistence of a class of BINs can be
certified via simple graphical conditions [8]. The monotonicity
of certain BINs can be established in reaction coordinates,
and this property has been used to show global convergence
to attractors [9]. More recently, new techniques have been
developed for certifying global stability by the construction
of Robust Lyapunov Functions (RLFs) in reaction coordinates
[10], [11], [12] and concentration coordinates [13], [12], [14],
[15]. These techniques have been developed into a comprehen-
sive framework with relatively wide applicability to various
key biochemical networks like transcriptional networks, post-
translational modification cascades, signal transduction, etc
[12].

Despite recent advances, many relevant networks, and many
dynamic behaviors, remain outside the scope of analysis
through available methods. In this paper, we study oscillations
in dynamical systems with particular emphasis on BINs. Un-
like earlier works which studied conditions for the emergence
of oscillations in various physical contexts [16], [17], we
propose to study another global qualitative notion, which we
call non-oscillation, by examining the variational system of
the second additive compound of the Jacobian of a nonlinear
system. This approach was originally introduced in order to
rule out periodic solutions by Muldowney [18] (see also [19],
where the approach has recently been reframed in the context
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of k-Order Contraction Theory), and it has been applied to
the study of epidemic models [20], circadian rhythms [21],
and, most remarkably, as a local analysis tool, [22], to rule
out Hopf bifurcations in BINs. We begin by revisiting Mul-
downey’s results. We will show that exponential stability of
the aforementioned variational system guarantees that the area
measure of all bidimensional compact surfaces asymptotically
converges to zero. It turns out, as a consequence, that the
same will be true of the kth-hypervolume measure for arbitrary
k-dimensional submanifolds for any k ≥ 2. This allows us
to exclude limit cycles, invariant torii, (asymptotically) quasi-
periodic solutions, and many types of oscillatory behavior. We
then show that this notion can be verified successfully for
classes of BINs where no other technique has proved useful.
We will achieve this goal by embedding the dynamics of the
second additive compounds of a BIN in a linear differential
inclusion, and then generalize the RLF approach to be applied
to this LDI. We will show that the existence of such an RLF
will guarantee robust non-oscillation by establishing a LaSalle-
like condition.

Although robust non-oscillation is technically weaker than
global stability, coupling it with local asymptotic stability is
nearly as good as it places robust and strong constraints on the
range of possible behaviors of a given network. Furthermore,
this new notion is also compatible with multi-stability and
almost global stability [23], [24], which opens the door for
applications to systems with multiple attractors.

A. Motivating example: regulation of the enzymatic cycle
We describe an open problem which is highly relevant to

systems biology. It involves regulation mechanisms of the
Post-Translational Modification (PTM) cycle which is a very
common motif in signal transduction [26]. For example, an
enzyme known as a kinase (K) binds to a substrate (S) to
form an intermediate complex (C). Then, the substrate is
phosphorylated to produce an activated substrate (P ). The
activated substrate decays back to its inactive form (S). The
network is depicted inside the dashed rectangle in Figure 1-
a)-c), and it can be written as follows:

S +K 
 C −→ P +K, P −→ S. (1)

The dynamics of the above network has been analyzed using a
Piecewise Linear (PWL) RLF. In particular, it has been shown
that it always admits a positive globally asymptotic stable
steady state, for any choice of monotone kinetics [11], [12].

However, small structural changes in the network can make
a PWL RLF fail to exist. We study various ways of regulating
the activity of the cycle as depicted in Figure 1. In one
scenario, the kinase can only be activated if two molecules
bind (e.g, a ligand (L) and a receptor (Rc)) as shown in Figure
1-a. This is modelled by adding the reaction

Rc+ L
 K (2)

to the BIN (1). It can be shown that this network has a
unique positive steady steady state for each assignment of non-
zero total substrate, ligand and receptor concentrations [27],
[28]. However, a PWL RLF fails to exist [29], [12]. It has

(a)

(b)

(c)

Fig. 1. Various architectures for regulating the PTM cycle. (a) The
kinase is only activated if a ligand binds to a receptor, (b) The kinase
gets deactivated after binding to an inhibitor, (c) The substrate-kinase
intermediate complex gets sequestered by an inhibitor. The Petri-net
[25] notation is used where a circle denotes a species, and a rectangle
denotes a reaction.

been shown recently that this network enjoys local asymptotic
stability for any choice of kinetics, i.e., the Jacobian matrix is
always Hurwitz at any steady state [30]. However, there are no
known robust global guarantees on the asymptotic behavior.
Other regulation mechanisms exist [28]. For instance, the
kinase might be inactivated by binding to an inhibitor (I)
such as a drug used in targeted cancer therapies [31]. This is
represented by adding the reaction K+I 
 EI to the network
(1) as shown in Figure 1-b). A third possible architecture has
the intermediate complex (C) sequestered by I . Hence, the
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reaction C+ I 
 CI is added to (1). None of these networks
can be globally analyzed using current techniques. We will be
studying these networks under our new framework and show
that they are globally non-oscillatory.

It is worth mentioning that not all regulation mechanisms of
the PTM are beyond current methods of analysis. For instance,
instead of a simple decay of P to S, another enzyme called a
phosphatase can be used to accelerate the dephosphorylation
of P back to S. This latter architecture is well-studied [9],
and its global stability can be certified by a PWL RLF [12].

This paper is organized as follows. Mathematical definitions
and notation are given in section II. Section III revisits Mul-
downey’s results in terms of exponential stability. Section 4
provides a robust Lyapunov criterion for robust non-oscillation
when the dynamics can be embedded in a Linear Differential
Inclusion (LDI). Section 5 studies the application of the results
to BINs. Section 6 provides algorithms for constructing the
PWL RLF. Section 7 studies several examples of enzymatic
cycles that have not been amenable to methods in the literature.
Finally, section 8 is dedicated to a brief discussion of the
results.

II. NON-OSCILLATORY SYSTEMS

A. Definitions and Notation
Our basic concepts and results are not restricted to BINs,

but apply to more general classes of nonlinear systems. For a
dynamical system

ẋ(t) = f(x(t)), (3)

with the state x : R≥0 → Rn and f : X ⊂ Rn → Rn of
class C1, we denote by ϕ(t, x0) the solution at time t from
initial condition x0 at time 0. Moreover, ω(x0) denotes the
ω-limit set of such a solution. The set X can be arbitrary, but
we assume that it is forward invariant for the dynamics, that
is, ϕ(t, x0) ∈ X for all t ≥ 0 and all x0 ∈ X . Class C1 means
that f is the restriction of a C1 function defined on some open
neighborhood of X . We let D := {z ∈ R2 : z21+z22 ≤ 1} ⊂ R2

denote the unit disk, S := {[cos(θ), sin(θ)], θ ∈ [0, 2π]} the
unit circle, and Sk the k-dimensional torus.

Definition 1: We say that (3) exhibits oscillatory behavior
if, for some integer k ≥ 1, it admits a compact invariant set
Ω ⊂ X which is the image of a C1 injection h : Sk → X not
everywhere singular. If it does not admit such a set then we
say that (3) is non-oscillatory.
Notice that Definition 1 includes systems with many kind s of
non-converging behavior, in particular, systems with periodic
solutions, or asymptotically periodic solutions. In this case
ω(x0) is invariant and diffeomorphic to S. Furthermore, it
includes systems with multiple incommensurable oscillation
frequencies, (such as quasiperiodic solutions, or asymptoti-
cally quasiperiodic solutions). In such a case ω(x0) is the
image of Sk, for some k > 1 and some map h. It also includes
other types of non-convergent behaviors, such as solutions
approaching a closed curve of equilibria, and certain types of
homoclinic and heteroclinic orbits (of finite length). Moreover,
it also encompasses certain types of chaotic systems as the
associated attractors are sometimes known to embed unstable
periodic solutions [32].

While the gap between non-convergent and oscillatory be-
havior seems to be extremely small in practice, ruling out its
existence appears to be very challenging, given the existing
technical tools.

We introduce some of the required background on com-
pound matrices and their role in assessing the evolution of
k-hypervolumes along solutions of a dynamical system. For
an arbitrary C1 injection h : D → X ⊂ Rn, the area of h(D)
can be computed as:

µ2(h(D)) :=

∫
D

√√√√ ∑
I⊂{1,...,n}:|I|=2

[
det
(
∂hI
∂z

(z)

)]2
dz1dz2.

(4)
where, for a set I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . n} with
elements ordered according to i1 < i2 < . . . < i|I|, and
a vector h, hI denotes the sub-vector [hi1 , hi2 , . . . , hi|I| ]

′.
Similarly, for any given C1 injective map h : Sk → Rn, and
k ≥ 1, the k-hypervolume of h(Sk) can be obtained according
to:

µk(h(Sk)) (5)

:=

∫
Sk

√√√√ ∑
I⊂{1,...,n}:|I|=k

[
det
(
∂hI
∂θ

(θ)

)]2
dθ1dθ2 . . . dθk.

These quantities can further be defined along solutions of
(3); in particular, we aim at quantifying µ2(ϕ(t, h(D))) and
µk(ϕ(t, h(Sk))). To this end, we associate to system (3) the
family of variational equations:

ẋ = f(x)

δ̇(k)(t) =
∂f

∂x

(k)

(x(t)) δ(k)(t)
(6)

where δ(k) is a vector in R(n
k) and, for any A ∈ Rn×n, A(k) ∈

R(n
k)×(n

k) denotes the k-th additive compound matrices for
k = 1 . . . n, which are defined element-wise as follows [18]:

A
(k)
IJ =



Ai1i1 + ...+Aikik , if I = J
(−1)`+sAisj` , if exactly one entry is of I

does not occur in J
and j` does not occur in I

0, if I differs from J in two
or more entries,

(7)
where I, J ⊂ {1, .., n} are of cardinality k, respectively
denoted as I = {i1, i2, . . . , ik}, J = {j1, j2, . . . , jk} with
entries indexed such that 1 ≤ i1 < i2 < ... < ik ≤ n and
1 ≤ j1 < j2 < . . . < jk ≤ n.

To exemplify this construction, consider the case k = 2,
which will later be our main object of study, and the 4 × 4
matrix, A = [aij ]. The corresponding 6×6 additive compound
matrix A(2) reads:


a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14

a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24

−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44


.
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Fix any subset J ⊂ {1, 2, . . . , n} of cardinality k. It is known
[18] that, by arranging minors of ∂ϕ/∂xJ for all subsets I ⊂
{1, 2, . . . , n} of cardinality k in lexicographic order within the
vector δ(k)(t) as follows

δ(k)(t) :=


...

det
(
∂ϕI

∂xJ
(t, x)

)
...

 , (8)

the resulting vector δ(k)(t) fulfills the k-th variational equation
(6) with initial condition x(0) = x and

δ(k)(0) =


...

δI,J
...

 ,
where δI,J := 1 iff J = I and 0 otherwise. These properties
will be exploited in subsequent sections to quantify how the
hypervolumes previously defined evolve along solutions of the
considered system of differential equations.

B. Muldowney’s result revisited
Our main goal for this section is to obtain an analog to

Muldowney’s result [18] by making use of the notion of
uniform exponential stability. His seminal paper shows that
if the logarithmic norm of the second-additive compound of
the Jacobian matrix is negative throughout state-space for
a nonlinear system, (non-trivial) periodic solutions cannot
exist. We formulate the result by using the notion of uniform
exponential stability of the associated second-additive com-
pound variational equation, so that we can verify assumptions
and certify properties through the construction of suitable
Lyapunov functions for an associated LDI. Moreover, we
strengthen the original result by generalising its applicability
to invariant submanifolds of any dimension. We start with the
following Lemma about time varying-matrices:

Lemma 1: Let Λ(t) : R≥0 → Rn×n be a time-varying
matrix. If all minors of order k of Λ(t) converge to 0 so
do all minors of order q ≥ k. Furthermore, if the assumed
convergence is exponential, then so is the convergence of all
minors of order q ≥ k.

Proof: We prove the result by induction, by showing that
if the convergence happens for k, then it is also fulfilled for
q = k + 1.

Recall that for an invertible square matrix A of dimension
q, it holds that A adj(A) = det(A)Iq , where adj(A) denotes
the adjoint matrix of A. Hence, taking determinants in both
sides of this previous equality we get:

det(A) · det(adj(A)) = det(A adj(A))

= det(det(A)Iq) = det(A)q.

In particular then, det(adj(A)) = det(A)q−1. Taking absolute
values and inverting this relationship yields:

|det(A)| = ψ(adj(A)) (9)

where ψ : Rn×n → R≥0 is continuous and given as ψ(B) =
q−1
√
|det(B)|. Note that ψ(0) = 0. More generally, if A is

singular, then det(A) = 0 means also that the inequality
trivially holds:

|det(A)| ≤ ψ(adj(A)). (10)

We will apply this observation to the matrices A = [Λ]IJ for
any choice of I, J ⊂ {1, 2, . . . , n} of cardinality q. By the
induction hypothesis for any Ĩ ,J̃ of cardinality k it holds,

lim
t→+∞

det ([Λ]ĨJ̃(t)) = 0.

Hence, the same is true of each of the entry of the adjoint
matrix (which by definition are minors of dimension q−1 = k
possibly multiplied by −1):

lim
t→+∞

adj ([Λ]IJ(t)) = 0.

In particular, then, our convergence claim follows from (10)
and continuity of ψ and the fact that ψ(0) = 0.

In order to prove exponential convergence, assume that for
some M and λ > 0, the following is true:

det ([Λ]ĨJ̃(t)) ≤Me−λt ∀ t ≥ 0

for all Ĩ , J̃ of cardinality k. We see that for all I , J of
cardinality k + 1, and all i, j in {1, . . . , k + 1}, it holds that:∣∣∣adj ([ΛIJ ](t))i,j

∣∣∣ ≤Me−λt ∀ t ≥ 0.

Hence, substituting the above entry-wise upper-bound in (10)
yields:

|det ([ΛIJ ](t)) | ≤ ψ (adj ([ΛIJ ](t)))

≤ k

√
(k + 1)!Mk+1e−(k+1)λt = M̃e−

k+1
k λt

for a suitable choice of M̃ . This completes the proof of the
induction step in the case of exponential convergence.
The following corollary follows:

Corollary 1: Assume that for some initial condition x(0) =
x and some k ∈ {1, 2, . . . n}, the solutions of (6) with arbitrary
initial conditions δ(k)(0) ∈ R(n

k) fulfil:

lim
t→+∞

δ(k)(t) = 0.

Then, the same is true for all solutions δ(q)(t) of (6) for q in
{k, k+ 1, . . . , n}. Moreover, if the assumed convergence to 0
is exponential (and uniform), so is it for δ(q)(t).

Proof: The result follows from the previous Lemma
because of the connection between solutions of (6) and minors
of ∂ϕ

∂x (t, x) for any given initial condition x0. Hence, the
claim is equivalent to showing that if all minors of order k
of Λ(t) := ∂ϕ

∂x (t, x) converge (exponentially) to 0 so do all
minors of order k+1. The latter statement immediately follows
from the previous Lemma.

Our main Theorem for general systems is as follows.
Theorem 1: Consider a dynamical system as in (3):

ẋ(t) = f(x(t)), (11)

and assume that, for some convex set K and all x0 ∈ K ⊂ X ,
the second variational equation

˙δ(2)(t) =
∂f

∂x

(2)

(x(t)) δ(2)(t) (12)
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is uniformly exponentially stable, i.e., there exist M,λ > 0
such that, for all t ≥ 0 and all δ(2)(0):

|δ(2)(t)| ≤Me−λt |δ(2)(0)|, (13)

with M and λ independent of x(0) and δ(2)(0). Then, the
dynamical system (3) is non-oscillatory.

Proof: The statement can be proved by contradiction.
We start for the sake of simplicity, from the case k = 2.
Assume h be a C1 function h : S2 → K, not everywhere
singular, such that h(S2) ⊂ K is invariant. Of course, since
ϕ(t, h(S2)) = h(S2) by definition of invariant set:

µ2(ϕ(t, h(S2))) = µ2(h(S2)) > 0, (14)

where the last inequality follows by the implicit function
theorem given that h is not everywhere singular. On the other
hand,

µ2(ϕ(t, h(S2))) = (15)∫
S2

√√√√ ∑
I⊂{1,...,n}:|I|=2

[
det
(
∂

∂θ
ϕI(t, h(θ))

)]2
dθ1dθ2.

Moreover, by the chain rule,

∂

∂θ
ϕI(t, h(θ)) =

∂

∂x
ϕI(t, h(θ))

∂h

∂θ
,

and therefore by the Cauchy-Binet formula:

det
(
∂

∂θ
ϕI(t, h(θ))

)
=

∑
J⊂1,...,n:|J|=2

det
(

∂

∂xJ
ϕI(t, h(θ))

)
det
(
∂hJ
∂θ

)

=
∑

J⊂1,...,n:|J|=2

δ
(2)
I (t, [h(θ), eJ ]) · det

(
∂hJ
∂θ

)
.

where δ(2)(t, [x0, δ
(2)
0 ]) denotes the δ(2)-component of the

solution of (12) from initial conditions x(0) = x0 and
δ(2)(0) = δ

(2)
0 . We may therefore seek to bound from above

the integrand (15) using:

det
(
∂

∂θ
ϕI(t, h(θ))

)2

≤ 2
∑

J⊂1,...,n:|J|=2

[
δ
(2)
I (t, [h(θ), eJ ])

]2
· det

(
∂hJ
∂θ

)2

.

Taking sums over I we get:

∑
I⊂{1,...,n}:|I|=2

[
det
(
∂

∂θ
ϕI(t, h(θ))

)]2

≤ 2
∑

I,J⊂1,...,n:|I|,|J|=2

[
δ
(2)
I (t, [h(θ), eJ ])

]2
·
[

det
(
∂hJ
∂θ

)]2

= 2
∑

J⊂1,...,n:|J|=2

∣∣∣δ(2)(t, [h(θ), eJ ])
∣∣∣2 · [det

(
∂hJ
∂θ

)]2
.

Moreover, by exponential uniform stability of (12) we see that:

µ2(ϕ(t, h(S2)))

≤
∫
S2

√√√√2
∑

J⊂1,...,n:|J|=2

M2e−2λt · det
(
∂hJ
∂θ

)2

dθ1dθ2

=
√

2Me−λtµ2(h(S2)).

The latter inequality however contradicts (14) for all t suffi-
ciently large. An analogous proof applies to any invariant set
which is the image of an injection h of Sk for k > 2, thanks
to Corollary 1. Notice that convexity of K was not crucial so
far in the proof.

We consider next the case k = 1. Let h : S → K be
a class C1 map such that h(S) is invariant. Pick any point
x̃ ∈ K. We consider the map h̃ : D→ K defined as h̃(z) :=
(1−|z|)x̃+ |z|h(z/|z|) (this is a convex combination of x̃ and
points of h(S) and it therefore belongs to K by convexity of
the set). By construction h̃ defines a surface (not necessarily
smooth everywhere) such that h̃(∂D) = h(S). Notice that,
by invariance of h(S) this is also true of the map ϕ(t, h̃(·)),
i.e., ϕ(t, h̃(∂D)) = h(S). Our goal is to estimate the area of
ϕ(t, h̃(D)). This can be computed according to:

µ2(ϕ(t, h̃(D))) (16)

=

∫
D

√√√√ ∑
I⊂{1,...,n}:|I|=2

[
det
(
∂

∂z
ϕI(t, h̃(z))

)]2
dz1dz2.

Following the same steps as in the previous proof we see that:

µ2(ϕ(t, h̃(D))) ≤
√

2Me−λtµ2(h̃(D)). (17)

However, by [33], there exists a surface of minimal area which
is bounded by a given contour. This surface may, in general,
present self-intersections depending on how complex is the
contour (for instance due to the presence of knots). Moreover,
the surface of minimal area has positive measure µ > 0, [33],
[18]. This, however contradicts (17) for all sufficiently large
t > 0. This concludes the proof of the Theorem.

Remark 1: We point out that replacing second additive
compound matrices in (12) with the standard Jacobians, that is
the case of k = 1 instead of k = 2, yields classical variational
criteria for exponential incremental stability. Theorem 1 hence
relaxes such assumptions since, by virtue of Corollary 1,
exponential convergence for k = 1 (as needed in incremental
stability) implies exponential convergence for all higher values
of k. The converse is obviously not true.
It is worth pointing out that condition (13), in combination
with the other assumptions of Theorem 1, is only a sufficient
condition for ruling out oscillatory behaviors. In the case of
constant matrices the second additive compound is asymptot-
ically stable iff the real part of the sum of the dominant and
subdominant eigenvalues is negative. This affords existence
of an unstable eigenvalue, provided the subdominant one is
sufficiently within the left-hand side of the complex plane.
Likewise, in a time-varying context, one can expect exponen-
tial stability as in (13) provided the dominant and subdominant
Lyapunov exponents have negative sum.
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Remark 2: Notice that our conditions are also independent
of so called Dual Lyapunov functions, as introduced by
Rantzer, [34]. Specifically Rantzer makes use of the derivative
of n-forms along the flow in order to impose an expansion
condition on the volume everywhere away from the equilib-
rium of interest. This implies almost global convergence to
the equilibrium under suitable integrability conditions on the
considered density functions.

III. ROBUST LYAPUNOV CRITERION FOR
PERSISTENTLY-EXCITED DIFFERENTIAL INCLUSIONS

In our subsequent treatment of BINs, we are interested
in studying notions of robust non-oscillation. We interpret
“robustness” in the control theory sense of structured un-
certainties. Hence, we study a class of uncertain dynamical
systems. Given the dynamical system (12), we want to study
the case in which the dynamics of δ(2)(t) can be embedded
in a Linear Differential Inclusion (LDI). For simplicity, we
denote z(t) := δ(2)(t).

A. Common Lyapunov functions for LDIs

Similar to our previous works [13], [12], we seek to find
a convex PWL Lyapunov function V : RN → R≥0 of the
following form:

V (z) = max
k∈{1,...,L}

cTk z, (18)

for some vectors c1, . . . , cL ∈ RN , where N :=
(
n
2

)
to be

evaluated for z(t) = δ(2)(t) as defined in (6).
We state the following definition :
Definition 2: Let the matrices A1, .., As ∈ RN×N , and a

locally Lipschitz function V : RN → R≥0 be given. For each
ε ≥ 0 let Aε denote the set:

Aε =

{
s∑
`=1

α`A` : α` ≥ ε, ` = 1 . . . s

}
. (19)

Then, we say that V is a common non-strict Lyapunov function
for the LDI

ż(t) ∈ Aεz(t) (20)

if V (z) is positive definite, (that is V (z) > 0 for all z 6= 0)
and it satisfies ∇V (z)Az ≤ 0 whenever ∇V (z) exists and for
all A ∈ Aε.

Remark 3: We show in Lemma 9 in the Appendix that the
conditions given in Definition 2 are necessary and sufficient
for the time-derivative of V (defined as the upper Dini’s
derivative) to be non-positive when evaluated over an arbitrary
trajectory of the LDI. The details are given in the Appendix.

The following characterization is standard, but we include a
proof in the Appendix to make the discussion self-contained.

Lemma 2: Let the matrices A1, .., As, and a locally Lips-
chitz function V : RN → R≥0 be given. Then, V is a common
Lyapunov function for the LDI (20) iff V is positive definite
and

V (eAtz) ≤ V (z), ∀ z,∀ t ≥ 0, ∀A ∈ Aε. (21)

B. Asymptotic stability and LaSalle’s argument
Notice that the individual subsystems only need to fulfill

the non-strict inequality (21) which implies Lyapunov stabil-
ity, and not asymptotic stability. In order to prove uniform
exponential stability of a differential inclusion on the basis
of existence of a non-strict Lyapunov function, we need a
LaSalle-like criterion in conjunction with some notion of
persistence of excitation. For this purpose, we will prove
asymptotic stability of the differential inclusion (20) for every
ε > 0. We refer to (20) as a Persistently-Excited LDI (PELDI).
Notice that,

Aε ( A0 = cone {A1, A2, . . . , As} ,

where “cone” denotes conic hull.
Intuitively speaking this system is persistently excited since

every vertex of the nominal differential inclusion (achieved
for ε = 0) takes part (at least with some ε contribution)
to the formation of the state derivative direction. This arises
naturally in the context of BINs since a topology-based criteria
based on the absence of critical siphons is sufficient to prove
non-extinction of all chemical species (a property known also
as persistence [8]) and this leads to a potentially tighter
embedding as in (20).

Hence, for a given LDI (20) and the associated PWL
Lyapunov function V (z), we define the matrices given below:

Mi := [AT1 ci, A
T
2 ci, . . . , A

T
s ci], (22)

for all i ∈ {1, 2 . . . L}.
Our main result for this section is stated below.
Theorem 2: Let V (z) be a PWL common Lyapunov func-

tion for system (20) with ε = 0. Assume that

Ker[MT
i ] = {0}, ∀ i ∈ {1, 2, . . . , L}. (23)

Then, for all ε > 0 the PELDI (20) is uniformly exponentially
stable.

Proof: Fix any ε > 0 and let x(t) be an arbitrary solution
of (20). Since V is a common Lyapunov function for (20)
with ε = 0 it is a fortiori a common Lyapunov function for
(20) because of the inclusion Aε ⊂ A0. Hence, V (x(t)) ≤
V (x(0)) for all t ≥ 0. Hence x(t) is bounded (by positive
definiteness and radial unboundedness of V ). The Lyapunov
function V (x(t)) is non-increasing along x(t) and therefore
it admits a limit as t → +∞. Let v̄ ≥ 0 be the value of this
limit. The solution x(t) approaches its non-empty ω-limit set
ω(x(·)) and V (x̄) = v̄ for all x̄ ∈ ω(x(·)). The set ω(x(·)) is
weakly invariant, [35]. We pick an arbitrary solution x̃(t) of
(20) such that x̃(t) ∈ ω(x(·)) for all t ≥ 0. For each t ≥ 0
we consider the set of active vectors:

C(t) := {k : V (x̃(t)) = cTk x̃(t)}. (24)

and define the corresponding set-valued map, C : t 7→
2{1,...,L}. By continuity of x̃(t) the set-valued map C is upper-
semicontinuous, viz. for any t and any open neighborhood
U of C(t) there exists a neighborhood Nt of t such that
C(Nt) ⊂ U . Hence, since C only takes discrete values, we see
that the above inclusion can be strengthened to C(Nt) ⊂ C(t).
Letting t be a point where the cardinality of C(t) is minimal
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(which exists by finiteness of the set {1, 2, . . . , L}) we see that
C(Nt) = C(t) and therefore there exists an interval [t, t̃] (t̃ > t)
where C(τ) = C(t) for all τ ∈ [t, t̃]. Pick any k ∈ C(t). We
know that V (x̃(τ)) = cTk x̃(τ) = v̄ for all τ in the considered
interval. Hence, by definition of solution of (20):

cTk ˙̃x(τ) = cTk

s∑
`=1

α`(τ)A`x̃(τ) =

s∑
`=1

α`(τ)cTkA`x̃(τ) = 0

for some α`(τ) ≥ ε, and almost all τ ∈ [t, t̃]. Recalling
that cTkA`x̃(τ) ≤ 0, and using continuity of x̃(τ) this in turn
implies:

cTkA`x̃(τ) = 0, ∀ ` ∈ {1, 2, . . . , L} ∀τ ∈ [t, t̃].

Hence, x̃(τ) belongs to Ker[MT
k ], and by assumption (23)

x̃(τ) = 0. By strong invariance of the origin, this implies
ω(x(·)) = {0} and therefore (see e.g. Theorem 2 in [36])
uniform exponential stability of (20) for all ε > 0 follows, by
a standard relaxation argument.

Remark 4: Conditions (23) are used to rule out, using a
first order derivative test, existence of non-zero solutions of
(20) evolving on a level-set of V for some time-interval.
As such, they could be relaxed by formulating higher order
differential tests. This, however, would increase significantly
the complexity of their verification. Such relaxation was not
needed in practical examples.

Remark 5: It is shown in [15] that a BIN admitting a non-
strict polyhedral Lyapunov function is asymptotically stable iff
a robust non-singularity condition (for strictly positive linear
combinations) holds on the matrices defining the embedding
of the nonlinear differential equation. Theorem (2) differs in
several respects.
It is, in fact, a stability result for a linear differential inclusion,
rather than for nonlinear dynamics which are embedded within
a linear differential inclusion. Notice also that the matrices
Mi in (22) both involve the Lyapunov function vectors ci
and the dynamics of the switched system. As such, condition
(23) is not immediately related to a condition of robust non-
singularity which, by definition, only involves the matrices of
the switched system. We cannot rule out that, on a deeper
level, condition (23) might be related or even equivalent to a
robust non-singularity test.

IV. ROBUST NON-OSCILLATION OF BINS

In this section we study non-oscillation of BINs as described
in §2.

A. Background on BINs

We use the standard notation [2], [5], [12]. A BIN (also
called a “Chemical Reaction Network”) is a pair (S,R) with
a set of admissible kinetics KS,R to be defined below.

Stoichiometry: The finite set of species is denoted by S :=
{S1, S2, . . . , Sns}, which combine and transform through a
finite set of reactions, R := {R1,R2, . . . ,Rnr

}. A non-
negative linear integer combination of species is called a

complex, and an ordered pair of complexes define a reaction
which is written customarily as:

Rj :

ns∑
i=1

αijSi →
ns∑
i=1

βijSi,

with integer coefficients αij , βij (called the stoichiometry
coefficients). These are usually arranged in a matrix [Γ]ij :=
βij − αij , called the stoichiometry matrix, whose (i, j)-entry
specifies the net amount of molecules of Si produced or
consumed by reaction Rj . If

∑ns

i=1 βijSi →
∑ns

i=1 αijSi is
also a reaction, then we say that Rj is reversible and we write∑ns

i=1 αijSi 

∑ns

i=1 βijSi.
Kinetics: The kinetics of the BIN can be defined by

introducing a non-negative state vector x = [x1, x2, . . . , xns
]T

quantifying the concentration of each species and a choice of
kinetics, i.e., a functional expression for the rates at which
the corresponding reaction takes place: R(·) : Rns

≥0 → Rnr

≥0.
The function R(·) can take many forms, and we assume that
it satisfies basic smoothness and monotonicity requirements
defined as follows:
A1. Rj(x) is continuously differentiable, j = 1, .., nr;
A2. if αij > 0, then xi = 0 implies Rj(x) = 0;
A3. ∂Rj/∂xi(x) ≥ 0 if αij > 0 and ∂Rj/∂xi(x) ≡ 0 if

αij = 0;
A4. The inequality in A3 holds strictly for all positive

concentrations, i.e when x ∈ Rn+.
Condition A2 represents the fact that a reaction cannot occur

when any of its reactants is missing. Conditions A3 and A4
require that, at least in the interior of the positive orthant, rates
be strictly monotone functions of reactants’ concentrations.
Furthermore, A3 specifies that only reactants can influence
the rate of any reaction. If a reaction rate R satisfies A1-4
we say that it is admissible. The set of all admissible reaction
rates of a given BIN (S,R) is denoted by KS,R.

A typical choice of kinetics are the so called Mass-Action
kinetics, which correspond to the following polynomial ex-
pression:

Rj(x) = kj

ns∏
i=1

x
αij

i , (25)

for some constant parameter kj > 0 and with the convention
that a0 = 1 for all a ∈ R.

Dynamics: the dynamical system associated to the BIN is
by definition:

ẋ = ΓR(x). (26)

This is a (generally) nonlinear, positive system, meaning that
solutions have non-negative coordinates given that the initial
conditions do. For each initial condition x0, the affine space
Cx0 = x0 + Im[Γ] is so that the corresponding solution
ϕ(t, x0) belongs to Cx0

for all t ≥ 0, i.e., Cx0
is forward

invariant. Hence, the system dimension is often reduced by
taking into account an independent set of conservation laws
(viz. vectors in Ker(ΓT )) and regarding the flow induced by
(26) as parametrized by the total amount of each conservation
law, and evolving on a lower dimensional space defined by
the corresponding stoichiometry class. This is the approach
that we will pursue also throughout this paper. In particular,
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we will choose a basis for Ker(ΓT ) (assumed of dimension
c) as {v1, v2, . . . , vc} and complete it to a basis of Rn,
{v1, v2, . . . vc, vc+1, . . . , vn} so that, defining the matrix:

T = [v1, v2, . . . , vn]T

we may define the system in x̃ coordinates according to x̃ =
Tx. Accordingly the new equations read:

˙̃x = TΓR(T−1x̃) =

[
0nc

ΓrR(T−1x̃)

]
, (27)

where Γr = [vc+1, . . . , vn]TΓ is a reduced stoichiometry ma-
trix. Of course, the natural state-space in x̃ coordinates, (i.e.,
TRn≥0) is not necessarily the positive orthant, but possibly a
subset of it (as the individual vectors vi, i = 1, . . . , n are often
chosen to be non-negative). Notice that, the vector x̃ can be
partitioned according to [x̃c, x̃d] where x̃c corresponds to the
first c components of x̃ (which are constant along solutions)
while x̃d corresponds to the remaining n − c coordinates
evolving according to non-trivial dynamics.

Siphons: Since (26) evolves on the positive orthant, cer-
tain trajectories might approach the boundary of the orthant
asymptotically, i.e., some species might go extinct. If no
species becomes extinct for every positive initial state, then
the dynamical system is said to be persistent. In order to
characterize persistence graphically, we need some definitions.
Let P ⊂ S be a nonempty set of species. A reaction Rj ∈ R
is said to be an input reaction to P if there exists Si ∈ P such
that βij > 0, while a reaction Rj ∈ R is said to be an output
reaction to P if there exists Si ∈ P such that αij > 0. Then,
the set P is called a siphon if each input reaction associated to
P is also an output reaction associated to P [8]. The species
that correspond to the support of a non-negative conservation
law automatically constitute a siphon. Hence, any siphon that
contains the support of a conservation law is said to be trivial.
If a siphon is not trivial, then it is said to be critical. If a BIN
has no critical siphons, then (26) is persistent for any choice
of monotone kinetics [8].

Graphical representation: A BIN can be represented as a
graph in various ways. We adopt the Petri-net representation
[25], [8], which is also equivalent to a species-reaction graph
[28]. For a given BIN, species correspond to places, while
reactions correspond to transitions. The incidence matrix of
the Petri-net is simply the stoichiometry matrix Γ. An example
will be discussed next.

Example: Referring to the motivational example (1)-(2),
the reactions are ordered as:

L+Rc
R1−−⇀↽−−
R2

K, S +K
R3−−⇀↽−−
R4

C
R5−→P +K, P

R6−→S. (28)

The concentrations x1, .., x6 correspond to the species
L,Rc,K, S,C, P , respectively. The ODE can be written as:

ẋ =


−1 1 0 0 0 0
−1 1 0 0 0 0

1 −1 −1 1 0 0
0 0 −1 1 1 1
0 0 1 −1 −1 0
0 0 0 0 1 −1




R1(x1, x2)
R2(x3)
R3(x3, x4)
R4(x5)
R5(x5)
R6(x6)


(29)

where the rates Rj , j = 1, .., 6 satisfy the Assumptions A1-
4. Beyond these assumptions we don’t assume that anything
is known about them. The Petri-net graph of the network is
depicted in Figure 1-a).

The BIN (28) has three conserved quantities which are the
total receptor, the total ligand, and the total substrate. The
corresponding conservation laws can be written as: x1 +x3 +
x5 = x1,tot, x2 + x3 + x5 = x2,tot, x4 + x5 + x6 = x3,tot.
Note that the network has no critical siphons and hence it is
persistent. The conservation laws can be used to reduce the
equation above from a six-dimensional to a three-dimensional
ODE. For instance, we can choose the independent variables
to be x1, x3, x6 (corresponding to L,K,P ). Hence T can be
written as:

T =


1 0 1 0 1 0
0 1 1 0 1 0
0 0 0 1 1 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 . (30)

For given total positive conserved quantities
x1,tot, x2,tot, x4,tot > 0, we obtain in this manner an
ODE for the evolution of x̃d(t) = [x1, x3, x6]T (t), as follows:

˙̃xd =

 −1 1 0 0 0 0
1 −1 −1 1 0 0
0 0 0 0 1 −1

R(x̃d), (31)

where

R(x̃d) =


R1(x1, x1 − x1,tot + x2,tot)
R2(x3)
R3(x3, x4,tot − x1,tot + x1 + x3 − x6)
R4(x1,tot − x1 − x3)
R5(x1,tot − x1 − x3)
R6(x6)

 .

While, as is well known, this change of coordinates conve-
niently achieves a dimensionality reduction of the underlying
dynamics, it plays a crucial role in enabling the analysis of
BINs by using second additive compound matrices. This is
so because structural zero eigenvalues of the Jacobian are
removed, opening up the possibility of establishing uniform
exponential convergence of the associated variational equa-
tions.

B. Lyapunov criteria for robust non-oscillation of BINs

We apply the concept of non-oscillation to BINs. Since the
reaction rates are not assumed to be known beyond satisfying
assumptions A1-4, we aim at establishing a notion of robust
non-oscillation.

Definition 3: Let a BIN (S,R) be given. We say that it
is robustly non-oscillatory if the associated dynamical system
(26) is non-oscillatory for every choice of kinetics R ∈ KS,R.

We aim at proving the non-oscillatory nature of the dynam-
ics by embedding the variational equation associated to the
second additive compound matrix within a linear differential
inclusion. This is reminiscent of our approach for treating
robust global stability for BINs [13],[12]. To this end, take the
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Jacobian of the x̃-dynamics (27), as the principal submatrix
of indices {c+ 1, . . . n}:

Jr(x̃) =

[
TΓ

∂R

∂x
T−1

]
c+1,...,n

= Γr
∂R

∂x
T−1

[
0

In−c

]
.

(32)
Accordingly, the variational equation associated to (26) can be
rewritten as:

˙̃xc = 0,
˙̃xn = ΓrR(T−1x̃),

δ̇(2) = Jr(x̃)(2) δ(2),

(33)

which has the advantage of a smaller δ(2) variable, of di-
mension N :=

(
n−c
2

)
, driven by a (n − c)-dimensional flow,

parametrized by the initial condition x̃c(0). As in classical
embedding approaches, [13],[14],[12], one may write Jr as a
positive combination of rank-one stable matrices, where each
matrix corresponds to a reaction-reactant pair. The set of all
such pairs is denoted as:

P = {(j, i)|Si participates in the reaction Rj}. (34)

Let s be the cardinality of P . Then,

∂R

∂x
=
∑
i,j

eje
T
i

∂Rj
∂xi

=

s∑
`=1

ρ`(t)eje
T
i ,

where ρ` := ∂Rj`/∂xi` , (j`, i`) ∈ P, ` = 1, .., s. By substitu-
tion into (32), we get:

Jr =

s∑
`=1

ρ`

(
(Γrej)(e

T
i T
−1
[

0
In−c

]
)

)
=:

s∑
`=1

ρ`A`.

(35)
Since the second additive compound is linear in the entries of
the original matrix, we get

J (2)
r =

s∑
`=1

ρ`A
(2)
` . (36)

Therefore, we study (33) by studying the LDI:

˙δ(2)(t) ∈ cone{A(2)
1 , . . . , A(2)

s }δ(2)(t), (37)

where Ai are the corresponding rank one matrices as in (35).
The main result for this section is a theorem to guarantee
uniform exponential stability of the δ(2)-subsystem in (33)
so that one may apply Theorem 1 with ease to BINs with
uncertain kinetics.

Theorem 3: Let a BIN (S,R) be given, and assume that
it does not have critical siphons. Assume that the associated
LDI (37) admits a PWL common Lyapunov function as in
(18) fulfilling the additional conditions (23). Then, for any
compact K ⊂ (0,+∞)n there exist M,λ > 0, such that for
all x̃(0) ∈ TK (i.e., the image of K under the linear map
T ) and all δ(2)(0) ∈ RN the corresponding solutions of (33)
fulfill

|δ(2)(t)| ≤Me−λt|δ(2)(0)| ∀t ≥ 0.
The remainder of this section is dedicated to the proof of

Theorem 3. To that end, we need to introduce some additional
concepts and an improved version of the so called Siphon

Lemma, to be defined below. For a compact set K, we denote
the corresponding ω-limit set as:

ω(K)

= {x ∈ Rn : ∃ tn → +∞, xn ∈ K : lim
n→+∞

ϕ(tn, xn) = x}.

Notice that by construction this set contains
⋃
x0∈K ω(x0).

It is, however, a potentially bigger set. For this reason the
following is an improved version of the siphon Lemma, [8],
[7].

Lemma 3: Let K ⊂ (0,+∞)n be compact and assume that
y ∈ ∂(0,+∞)n ∩ω(K). Then, {Si ∈ S : yi = 0} is a siphon.
We recall that the original siphon lemma only states this
property for K being a singleton. We prove it in the Appendix
for the case of compact sets , thus generalizing the proof
presented in [7]. This opens up the possibility of achieving
structural criteria for uniform persistence in BINs. In fact, (see
[37], pag. 8), the following holds for ω(K):

Lemma 4: Consider a continuous flow and a compact set
K, such that cl

(⋃
t≥0 ϕ(t,K)

)
is bounded. Then ω(K) is

non-empty, compact, invariant and uniformly attracts K.
We are specifically interested in compactness of ω(K). This
is crucial, since the property doesn’t necessarily hold for⋃
x0∈K ω(x0). Our main result hinges upon the following

Lemma of independent interest.
Lemma 5: Consider a chemical reaction network with uni-

formly bounded solution, i.e., for all compact K ⊂ Rn≥0, there
exists K̃ compact such that ϕ(t,K) ⊂ K̃ for all t ≥ 0.
Assume that all siphons are trivial. Hence, for any compact
K ⊂ (0,+∞)n, there exist ε > 0 and K̃ compact in [ε,+∞)n

such that ϕ(t,K) ∈ K̃ for all t ≥ 0.
Proof: Let K ⊂ (0,+∞)n be arbitrary. By assumption

ϕ(t,K) is uniformly bounded, hence by Lemma 4, ω(K)
is non-empty and compact. Its intersection with ∂[0,+∞)n,
on the other hand, is empty, since any point y ∈ ω(K) ∩
∂[0,+∞)n fulfills that {Si : yi = 0} is a siphon, by virtue of
Lemma 3. By the triviality of siphons, in turn, this amounts
to existence of a non-negative conservation law v 6= 0 such
that vT y = 0. This contradicts definition of y since, y =
limn→+∞ ϕ(tn, ξn) for ξn ∈ K and as a consequence:

0 = vT y = lim
n→∞

vTϕ(tn, ξn)= lim
n→∞

vT ξn ≥ min
ξ∈K

vT ξ > 0.

As a consequence, ε := minξ∈ω(K) mini ξi > 0. We see that
ω(K) ⊂ [ε,+∞)n∩ K̃, where K̃ is as in the statement of the
Lemma. Moreover, ω(K) uniformly attracts K, so that there
exists T > 0 such that for all t ≥ T , ϕ(t,K) ⊂ [ε/2,+∞) ∩
K̃. Finally, combining this latter inclusion, with the fact that
solutions ϕ(t,K) are uniformly away from the boundary over
any compact interval, i.e for t ∈ [0, T ] we prove the claim.
We are now ready to prove Theorem 3. Proof: Let K ⊂
(0,+∞)n be an arbitrary compact. By Lemma 5, there exist
s ε > 0 and K̃ compact in [ε,+∞)n such that ϕ(t,K) ∈ K̃
for all t ≥ 0. Hence, by the strict positivity assumption on ∂R

∂x

there exist ε > 0, such that the δ(2) component of the solutions
of (33) can be embedded in that of a PELDI as in (20). The
Theorem follows thanks to the fulfillment of conditions (23)
and by virtue of Theorem 2.
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V. CONSTRUCTION AND EXISTENCE OF PWL LYAPUNOV
FUNCTIONS

In this section, we provide a fast iterative method for
constructing Lyapunov functions, and also interpret the LDI
in discrete-time settings.

A. A fast iterative construction algorithm
Construction of PWL Lyapunov functions is a longstanding

problem in systems and control [38], [39], and several iterative
algorithms have been proposed [40]. Along similar lines, we
have proposed an iterative algorithm for constructing PWL
Lyapunov functions in our previous works [10], [11], [12]
where the dynamics can be embedded in a rank-one LDI. Since
the second compound matrices (37) are of rank N−1, we will
generalize the aforementioned approach to handle such cases.

The PWL function (18) satisfies the non-increasingness
condition in Definition 2 if we have ∇V (z)A

(2)
` z ≤ 0

whenever ∇V (z) exists. Note that we can write the following

∇V (z) = cTk for all z ∈
{
z

∣∣∣∣cTk z = max
j∈{1,..,L}

cTj z

}◦
,

where “◦” denotes interior. Therefore, we need the following
condition to be satisfied ∀` = 1, .., s, ∀k = 1, .., L

cTkA
(2)
` z ≤ 0 whenever cTk z = max

j∈{1,..,L}
cTj z. (38)

In other words, the time-derivative of the kth linear compo-
nent cTk z needs to be non-positive only when the kth linear
component is active.

Since we are looking for robust, i.e., kinetics-independent
conditions, we need to to impose a geometric condition
relating the vectors c1, .., cL with the matrices A(2)

1 , ..., A
(2)
s .

This can be achieved by noting that the (38) is automatically
satisfied if −cTkA

(2)
` lies in the conic span of {cTk − cTj |j =

1, .., L, j 6= k}. By the Farkas Lemma [41], (38) is satisfied if
there exist scalars λ(k`)j ≥ 0, j = 1, .., L, with

∑
j 6=` λ

(k`)
j > 0

such that
−cTkA

(2)
` =

∑
j 6=k

λ
(k`)
j (cTk − cTj ). (39)

Hence verifying the non-increasingness of the RLF reduces to
satisfying the condition (39).

The algorithm starts with an initial matrix C0 =
[c1, .., cL0

]T ∈ RL0×N , where N :=
(
n−c
2

)
, and we let

V0(z) = maxk∈{1,..,L0} c
T
k z. We choose C0 = diag [IN ,−IN ]

to guarantee positive-definiteness of V .
For each ck (amongst the rows of C0), and for each `,

we need to verify that condition (39) is satisfied. If not, we
compute a new row c∗ chosen as to satisfy −cTkA

(2)
` = ck−c∗.

Hence,
c∗T := cTk (A

(2)
` + I). (40)

The new vector is appended to the matrix C0 to yield a
new matrix C1 := [CT0 , c

∗]T . The same process is repeated
for each row vector of the coefficient matrix until either no
new vectors need to be added or that the number of iterations
exceeds a predefined number.

There can be many variations on the basic recipe above.
Hence, we state the following:

Theorem 4: Given a network (S,R). If Algorithm 1 termi-
nates successfully, then V is a common Lyapunov for the LDI
ż ∈ cone{A(2)

1 , .., A
(2)
s }.

Parameters: M as the upper maximum number of
iterations.
Initialization: Set flag = 0, C0 = diag [IL,−IL],
k := 1, L :=

(
n−c
2

)
.

while k < M and flag = 0 do
for ` ∈ {1, .., s} do

if cTkA
(2)
` 6= 0 then

c∗ := cTk (A
(2)
` + I) ;

if c∗ 6= c` for ` = 1, .., k then
set C := [CT , c∗T ]T ;

end
end

end
k := k + 1;
L := number of rows of C;
if L < k then

set flag:=1;
end

end
if flag = 1 then

Success. V (z) = maxk=0,..,m c
T
k z is the desired

function
else

The algorithm did not converge within the
prescribed upper maximum number of iterations.

end
Algorithm 1: Iterative construction of PWL RLFs.

B. Existence of PWL Lyapunov functions for LDIs
Recall that the dynamics of a BIN can be embedded in

an LDI of rank-one matrices (35), and that the dynamics
of (33) can be studied by the LDI of the corresponding
second-additive compounds. Our aim in this section is to
provide alternative characterization for the existence of PWL
Lyapunov functions for LDIs of rank-one stable matrices and
their second compounds. We will use their specific properties
(and their matrix exponentials) in order to simplify the test of
property (21). Some of the results in this subsection recover
the discrete-time approach first introduced in [14] for studying
the stability of BINs.

We start by stating the following result.
Lemma 6: For a square rank one matrix A = vwT (and non

zero vectors v, w ∈ RN for any integer N > 0) the following
expression holds:

eAt = I + vwT
∫ t

0

e(w
T v)τ dτ. (41)

Notice that the exponential inside the integral is a scalar
exponential. Hence, a non-trivial rank one linear system (with
A 6= 0) is globally stable if and only if wT v < 0, (in fact for
wT v > 0 exponential instability arises, while for wT v = 0
the matrix exponential grows linearly in time). Hence, without
loss of generality we limit our discussion to rank one switched
linear systems such that wT` v` < 0 for all ` ∈ {1, .., L}.
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We show that the matrix exponential of a rank-one stable
matrix can be written always as a convex combination of I
and the asymptotic value of the matrix exponential. The same
also holds for the matrix exponential of its second additive
compound. This is stated in the following Lemma:

Lemma 7: Let A = vwT be a stable n × n rank one real
matrix, for suitable vectors v, w ∈ Rn. Denote by A(2) the
associated second additive compound matrix. Then,

1) eAt = e(w
T v)tI + (1 − e(w

T v)t)Π, where Π =
limt→+∞ eAt.

2) eA
(2)t = e(w

T v)tI + (1 − e(w
T v)t)Π2, where Π2 =

limt→+∞ eA
(2)t.

Proof:
1) Using Lemma 6, we can write:

eAt = I +
vwT

wT v
(e(w

T v)t − 1),

which can be rearranged into eAt = e(w
T v)tI + (1 −

e(w
T v)t)Π, where

Π := lim
t→+∞

eAt = I − vwT

wT v
.

2) Let SKn denote the class of n×n real skew-symmetric
matrices, viz. SKn = {X ∈ Rn×n : X = −XT }. For
any matrix A ∈ Rn×n, the linear operator L defined as:

L(X) := AX +XAT

is an endomorphism in SKn, viz. L : SKn → SKn.
Moreover, the second additive compound matrix A(2)

can be interpreted as a representation of L, with respect
to the canonical basis Bn := {eieTj − eje

T
i , i < j}

of SKn, where i and j take values in {1, 2, . . . , n}, ei
denotes the i-th element of the canonical basis of Rn,
and elements of Bn are listed according to lexicographic
ordering of the underlying index pairs {i < j}, see [22].
Hence, the matrix exponential eA

(2)t can equivalently
be computed by looking at the operator induced by the
solution of the linear matrix differential equation:

Ẋ = L(X).

This is well-known to be X(t) = eAtX(0)eA
T t which

in the case of A being of rank one (assuming without
loss of generality wT v = −1 ) :

X(t) = (I − (e−t − 1)vwT )X(0)(I − (e−t − 1)vwT )T

= X(0)− (e−t − 1)vwTX(0)− (e−t − 1)X(0)wvT

+ (e−t − 1)2v wTX(0)w︸ ︷︷ ︸
=0

vT

= e−tX(0) + (1− e−t)[X(0) + vwTX(0) +X(0)wvT ].

Hence the result follows by noticing that

lim
t→+∞

X(t) = [X(0) + vwTX(0) +X(0)wvT ].

and letting Π2 be the matrix associated to the operator
L∞(X) := [X + vwTX +XwvT ] acting on real skew-
symmetric matrices of dimension n.

This allows to recast condition (21) in a simpler way that does
not directly involves time.

Lemma 8: Let the matrices A1, .., As ∈ RN×N , and a
convex locally Lipschitz function V : RN → R≥0 be given.
Assume that A`, ` = 1, .., s are either stable rank-one matrices
or their second additive compounds. Then, V is a common
Lyapunov function for the LDI ż(t) ∈ cone{A1, .., As} iff V
is positive definite and

V (Π`z) ≤ V (z), ∀ z,∀ ` ∈ {1, .., s}, (42)

where Π` := limt→∞ eA`t.
Proof: Fix `. Using Lemma 7, for any t ≥ 0 let α ∈ [0, 1]

be such that eA`t = αI + (1− α)Π. Assume that (42) holds.
Then

V (eA`tz) = V (αz+ (1−α)Π`z) ≤ αV (z) + (1−α)V (Π`z)

≤ αV (z) + (1− α)V (z) = V (z).

Hence, condition (21) follows. Conversely, let condition (21)
hold. By letting t go to infinity in both sides of the inequality
and exploiting continuity of V (x) we get:

V (Π`z) = V

(
lim

t→+∞
eA`tz

)
= lim
t→+∞

V (eA`tz) ≤ V (z).

Lemma 8 shows that common Lyapunov functions for contin-
uous time rank-one linear systems (or their second-additive
compounds) can in fact be tested by using the conditions
typical of discrete time LDIs, in particular adopting in place
of each matrix exponential eA`t the corresponding projection
matrix Π`. This has some advantages, in particular as we may
show the instability of a given LDI as we will demonstrate in
the examples section. Further, we may consider a closed-form
expression for V (z) of the following form:

V (z) := sup
L∈N,w∈{1,..,s}L

∣∣∣∣∣
(

L∏
k=1

Πwk

)
z

∣∣∣∣∣
1,∞

(43)

where, for simplicity, either 1 or ∞ norms (both piecewise
linear) are adopted. For any initial condition z, the expression
in (43) amounts to computation of the maximum 1 or∞ norm
of all possible forward solutions of the discrete differential
inclusion induced by Π`, for ` = 1, 2, . . . , s. For this reason,
V (z) as defined above is well-posed (bounded) if and only if
the corresponding LDI is stable. Notice that the supremum in
equation (43) is taken over an infinite number of possible prod-
uct combinations. In practice, it is often the case that only a
finite number of such products actively contribute to the value
of V (z) over Rn and, as a consequence, a finitely verifiable
construction algorithm for polytopic Lyapunov functions can
be derived by using the above formula whenever it is realized
that only words of up to a fixed length actively contribute to
the value of V (z).

It can be noted that this alternative algorithm is computa-
tionally slower than Algorithm 1, and it has yielded the same
results that we got using Algorithm 1. On the other hand,
the second algorithm can be terminated quickly if the spectral
radius of one of the products in (43) exceeds 1 since this
means that the corresponding LDI is exponentially unstable.
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Remark 6: Alternative methods can be proposed for de-
riving the Lyapunov functions. This includes studying the
corresponding LDI in reaction coordinates [13], [12], or via
the concept of duality. In particular, one may consider the
LDI associated to (A

(2)
i )T = (ATi )(2). Such LDI enjoys the

same stability properties of the original one and any Lyapunov
function for the latter can be transformed to a Lyapunov
function for the first one using well-known techniques, see
for instance [14].

VI. BIOCHEMICAL EXAMPLES

A. A PTM cycle regulated by the binding of a receptor
and a ligand

We continue studying the regulated PTM (28) which was
first introduced in [29]. Its Petri-net is depicted in Figure 1-a).
The ODE describing the network is given in (29). This network
is known to fulfill all necessary conditions for existence of a
PWL RLF (either in species or rates coordinates) but whose
global asymptotic stability is still an open problem [12].

The reduced Jacobian (35) (defined via the transformation
matrix (30)) is a linear (positive) combination of the following
rank one matrices,

A1 =

[
−1 0 0
1 0 0
0 0 0

]
, A2 =

[
−1 0 0
1 0 0
0 0 0

]
, A3 =

[
0 1 0
0 −1 0
0 0 0

]
,

A4=

[
0 0 0
0 −1 0
0 0 0

]
, A5=

[
0 0 0
−1 −1 1
0 0 0

]
, A6=

[
0 0 0
−1 −1 0
0 0 0

]
,

A7 =

[
0 0 0
−1 −1 0
−1 −1 0

]
, A8 =

[
0 0 0
0 0 0
0 0 −1

]
.

Notice that the LDI:

ẋ(t) ∈ {A1, ..., A8}x(t),

is not Lyapunov stable as there exists a combination of
matrices exhibiting linear instability. In particular,

e(A4+A7)t =

 1 0 0
e−2t

2 −
1
2 e−2t 0

e−2t

4 −
t
2 −

1
4

e−2t

2 −
1
2 1

 .
For this reason we introduce the corresponding second additive
compound matrices listed below:

A
(2)
1 =

[
−1 0 0
0 −1 0
0 1 0

]
, A

(2)
2 =

[
−1 0 0
0 −1 0
0 1 0

]
, A

(2)
3 =

[
−1 0 0
0 0 1
0 0 −1

]
,

A
(2)
4 =

[
−1 0 0
0 0 0
0 0 −1

]
, A

(2)
5 =

[
−1 1 0
0 0 0
0 −1 −1

]
, A

(2)
6 =

[
−1 0 0
0 0 0
0 −1 −1

]
,

A
(2)
7 =

[
−1 0 0
−1 0 0
1 −1 −1

]
, A

(2)
8 =

[
0 0 0
0 −1 0
0 0 −1

]
,

and, rather than assessing global asymptotic stability we look
at the slightly weaker notion of globally non-oscillatory be-
havior. Hence, we study stability of the differential inclusion:

˙δ(2)(t) ∈ cone{A(2)
1 , A

(2)
2 , . . . , A

(2)
8 }δ(2)(t). (44)

where δ(2)(t) is a vector of dimension
(
n
2

)
. Application

of Algorithm 1 results in the following suitable Lyapunov
function for system (44):

V (δ(2)) = max{|δ(2)1 |, |δ
(2)
2 |, |δ

(2)
3 |, |δ

(2)
2 + δ

(2)
3 |, |δ

(2)
2 − δ

(2)
1 |}.

(45)
Also, the formula (43) (by adopting the ∞-norm) results in
the same function.

Moreover, modelling the network as a Petri Net (see Fig. 1-
a)) one can show that it admits 3 minimal siphons, {R,K,C},
{L,K,C} and {S,C, P}. These are trivial siphons, as they
coincide with the support of a non-negative conservation law.
Moreover conditions (23) are fulfilled. Hence, the BIN is non-
oscillatory by virtue of Theorems 3 and 1, regardless of the
specific choice of kinetics.

Additional analysis of the network is possible, The Jacobian
is a P0 matrix for any choice of kinetics, hence the network
can not admit multiple non-degenerate steady states in a single
stoichiometric class [27], [42]. In addition, it can be shown
that the Jacobian is robustly non-degenerate in the interior of
the orthant [30], [12]. Furthermore, the boundary of any non-
trivial stoichiometric class cannot contain any steady states due
to the absence of critical siphons [8], hence no more than one
steady state can exist in the interior of each stoichiometric
class. More recently, sum-of-square optimization has been
used to show that the reduced Jacobian is Hurwitz at any
steady state, i.e., each steady state is locally asymptotically
stable relative to its stoichiometric class [30]. The existence
of at least one steady state follows by the Brouwer’s fixed point
theorem [43] or Poincaré-Hopf theorem [44]. To summarize,
each non-trivial stoichiometric class contains a unique locally
asymptotically stable steady state and the network is robustly
non-oscillatory. Though global asymptotic stability is still
technically open, this is a quite tight approximation.

Figure 2 shows sample trajectories of the system with
Mass-Action kinetics and the corresponding PWL Lyapunov
function (45) evaluated over the trajectories of δ(2).

B. A PTM cycle regulated by a kinase inhibitor
In this subsection we discuss the network depicted in Figure

1-b). This network is interesting as we will show that the
corresponding LDI is exponentially unstable.

The reactions are listed below:

I +K
R1−−⇀↽−−
R2

KI, S +K
R3−−⇀↽−−
R4

C
R5−→P +K, P

R6−→S. (46)

The concentrations x1, .., x6 correspond to the species
I,KI,K, S,C, P , respectively.

This network exhibits three conservation laws, x1 + x2 =
const, x2 + x3 + x5 = const and x4 + x5 + x6 = const.
Hence, each stoichiometry class is 3-dimensional. Choosing
x2, x5 and x6 as independent coordinates we achieve a reduced
Jacobian matrix of the following form:

Jr =

[
−ρ3,3 − ρ3,4 − ρ4,5 − ρ5,5 −ρ3,3 −ρ3,4

−ρ1,3 −ρ1,1 − ρ1,3 − ρ2,2 0
ρ5,5 0 −ρ6,6

]
,

where ρj,i :=
∂Rj

∂xi
, (j, i) ∈ P are treated as arbitrary time-

varying positive coefficients.
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Fig. 2. Sample trajectories of the regulated PTM with Mass-Action kinetics. (a) Trajectories of (31) with 500 randomly selected initial conditions.
Note that all trajectories converge to the unique steady state. (b) The corresponding trajectories of δ(2)(t) (as defined in (33)) with randomly chosen
initial conditions δ(2)(0). (c) The PWL Lyapunov function V (45) evaluated over the trajectories of δ(2) is decreasing as foretold by our results.
(d) The time-derivatives of V evaluated via MATLAB’s command diff is negative for all t ≥ 0. The chosen reaction rate vector (as in (29)) is
R(x) = [5x1x2, 3x3, 5x3x4, x5, 2x5, 6x6]. The conserved quantities are x1,tot = x2,tot = x4,tot = 15.

The associated LDI, however, does not admit a common
Lyapunov function. Indeed, by constructing products of the
resulting Π` matrices (defined in §V-B), there exist finite
products (of length 5 or higher) with spectral radius strictly
bigger than 1. A Lyapunov function can instead be found
for the embedding to the LDI of second additive compound
matrices. In particular,

V (δ(2)) = max{|δ(2)1 |, |δ
(2)
2 |, |δ

(2)
3 |, |δ

(2)
1 − δ

(2)
3 |}.

is a suitable Lyapunov function. In addition, the Petri Net
admits 3 minimal siphons, {I, EI}, {EI,K,C}, {S,C, P},
which are trivial. Again the main results of the paper can
be applied to conclude that this is a robustly non-oscillatory
dynamical system within each compact set included in the
(strictly) positive orthant. Furthermore, similar to the previous
example, it can be shown that each nontrivial stoichiometric
class contains a unique positive steady state.

Similarly, the network in Figure 1-c) can be shown to be
robustly non-oscillatory using Algorithm 1.

VII. DISCUSSION

We have proposed the notion of non-oscillation to be studied
as a useful verifiable property of nonlinear systems. A Lya-
punov criteria has been proposed for robust non-oscillation.
We have applied our theory to the study of BINs with general
kinetics, and demonstrated the power of the theory for the
study of regulated enzymatic cycles.

The failure of the existence a PWL RLF for the LDI
associated to a BIN has no bearing on the actual properties
of the BIN. While such conditions (existence of Lyapunov
functions) are essentially necessary and sufficient for the study
of stability in LDIs, they might be conservative for the study of
BINs. These, in fact, are uncertain nonlinear systems merely
embedded within an LDI but do not necessarily share all the
dynamical behaviors of the LDI. For instance, many BINs
naturally have bounded solutions due to invariance of the

positive orthant and existence of conservation laws, but this
does not imply the resulting LDI will necessarily fulfil similar
boundedness properties (invariance of the positive orthant is
often not preserved in the embedding process).

Although we have demonstrated the theory for systems
which have unique steady states, the results are applicable
to multistable systems, and finding a robustly non-oscillatory
multi-stable BIN will be a highly interesting endeavour.

To be concrete, and because of our interest in periodic
or quasiperiodic behavior, we have restricted attention to
parametrizations of invariant sets by tori, including circles.
However, the same method can be used to rule out invariant
sets of positive measure that are parametrized by more general
compact manifolds.

APPENDIX

A. Time-derivative of a locally Lipschitz Lyapunov
function

We include the following lemma and its proof. A similar
lemma has been proven in [12, Supplementary Information].

Lemma 9: Let the matrices A1, .., As ∈ RN×N , a non-
negative scalar ε ≥ 0, and a locally Lipschitz function V :
RN → R≥0 be given. Let Aε be as defined in (19), and
let ż(t) ∈ Aεz(t) be the corresponding LDI. Then for any
trajectory ϕ(t; z0) of the LDI, we have: d

dtV (ϕ(t; z0)) ≤ 0
for all t ≥ 0, iff ∇V (z)A`z ≤ 0 for all z such that ∇V (z)
exists and for all ` = 1, .., s.

Proof: Fix t. Let z := ϕ(t; z0) be a trajectory of the
LDI, and let ż := d

dtϕ(t; z0) ∈ Aεz. We can write:

d

dt
V (z(t)) = lim sup

h→0+

V (ϕ(t+ h; z0))− V (ϕ(t; z0))

h

= lim sup
h→0+

V (ϕ(t; z0) + h d
dtϕ(t; z0))− V (ϕ(t; z0))

h

= lim sup
h→0+

V (z + hż)− V (z)

h
. (47)



14

For sufficiency, we just need to prove the following statement:
assume that ∇V (z)A`z ≤ 0 whenever ∇V (z) exists and for
all ` = 1, .., s, then DżV (z) := lim suph→0+(V (z + hż) −
V (z))/h ≤ 0, for all z ∈ Rn and all ż ∈ Aεz.

Since V is assumed to be locally Lipschitz, Rademacher’s
Theorem implies that it is differentiable (i.e., gradient ∇V (z)
exists) almost everywhere [35]. Recall that for a locally
Lipschitz function the Clarke gradient at z is defined as
∂̄V (z) := co∂V (z), where: ∂V (z) := {p ∈ Rn : ∃zi →
zwith∇V (zi) exists, such that, pT = limi→∞∇V (zi)}.

Let p ∈ ∂V (z) and ż ∈ Aεz. Let {zi}∞i=1 be any
sequence as in the definition of the Clarke gradient such that
∇V (zi) → pT . Furthermore, by the assumption stated in the
Lemma, we have ∇V (zi)A`zi ≤ 0 for all ` and i. Since
ż =

∑
` ρ`A`z for some ρ1, .., ρs ≥ ε, then we can define

corresponding sequences {ρ1i}∞i=1, .., {ρsi}∞i=1 ⊂ [ε,∞) such
that żi :=

∑
` ρ`iA`zi → ż. Hence, ∇V (zi)żi ≤ 0, i ≥ 1.

The definition of p implies that pT ż ≤ 0. Since p is arbitrary,
the inequality holds for all p ∈ ∂V (z).
Now, let p ∈ ∂̄V (z) where p =

∑
i λipi is a convex

combination of any p1, ..., pn+1 ∈ ∂V (z). By the inequality
above, pT ż =

∑
i λi(p

T
i ż) ≤ 0. Hence, pT ż ≤ 0 for all

p ∈ ∂̄V (z).
As in [35], the Clarke derivative of V at z in the direction of
ż can be written as DC

ż V (z) = max{pT ż : p ∈ ∂̄V (z)}. By
the above inequality, we get DC

ż V (z) ≤ 0 for all z and all
ż ∈ Aεz. Since the Dini derivative is upper bounded by the
Clarke derivative [35], we finally get: DżV (z) ≤ DC

ż V (z) ≤
0 for all z and all ż ∈ Aεz.

We prove necessity now. For the sake of contradiction,
assume that there exists `∗, z such that∇V (z)A`∗z > 0. Then,
choose ρ1, .., ρs ≥ ε with ρ`∗ chosen sufficiently large such
that

∑
` ρ`∇V (z)A`z > 0. Then, let z(t) be a trajectory of the

LDI with z(0) = z and ż(0) =
∑
` ρ`A`z ∈ Aεz. Then, since

∇V (z) exists, we have d
dtV (z(0)) =

∑
` ρ`∇V (z)A`z > 0;

a contradiction.

B. Proof of Lemma 2
Proof: Fix A ∈ Aε. Let ϕ(t; z0, A) be a trajectory of

ż(t) = Az(t), z(0) = z0. We start with necessity. Since V is
non-increasing (in time) then V (ϕ(t; z0, A)) ≤ V (z0) for all
z0. Since ϕ(t; z0, A) = eAtz0 and z0 ∈ RN is arbitrary we
get V (eAtz) ≤ V (z) for all z as required.
For sufficiency, we write V̇ as follows: (where z(t) =
ϕ(t; z0, A))

V̇ (z(t)) = lim sup
h→0+

V (z(t+ h))− V (z(t))

h

= lim sup
h→0+

V (eAhz(t))− V (z(t))

h
≤ 0,

as required.

C. Proof of Lemma 3
Proof: We show the contrapositive of the result. Take

any point y ∈ ∂[0,+∞)n, such that {Si : yi = 0} is not a
siphon. Hence, there exists j ∈ S , such that fj(y) > 0. Fix
ε > 0 and δ > 0 such that fj(x) ≥ δ for all x ∈ Bε(y) and

Bε(y)∩K = ∅. Denote by M > 0 any upper bound of |f(x)|
in Bε(y). Consider any solution ϕ(t, ξ) with ξ ∈ K. If, at
any time tε/2 it enters the ball Bε/2, then by continuity there
exists

tε := max{t ≤ tε/2 : |ϕ(t, ξ)− y| = ε}. (48)

Moreover,

ε

2
≤ |ϕ(tε/2, ξ)− ϕ(tε, ξ)| =

∣∣∣∣∣
∫ tε

tε/2

f(ϕ(τ, ξ)) dτ

∣∣∣∣∣
≤ (tε/2 − tε)M.

Hence, (tε/2− tε) ≥ ε/2M , and the following holds for the
j-th component of the solution at time tε/2:

ϕj(tε/2, ξ) = ϕj(tε, ξ) +

∫ tε/2

tε

fj(ϕ(τ, ξ)) dτ

≥ ϕj(tε, ξ) + δ(tε/2 − tε) ≥ δε/2M.

Moreover, for as long as ϕ(t, ξ) belongs to Bε(y) we see that
the derivative fj(ϕ(t, ξ)) is going to be non-negative. As a
consequence, |ϕ(t, ξ)−y| ≥ min{ε/2, δε/2M}, for all t ≥ 0.
This shows that y /∈ ω(K) and concludes the proof of the
Lemma.
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