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Abstract
We propose a novel use of generative adversarial networks (GANs) (i) to make predictions
in time (PredGAN) and (ii) to assimilate measurements (DA-PredGAN). In the latter case,
we take advantage of the natural adjoint-like properties of generative models and the ability
to simulate forwards and backwards in time. GANs have received much attention recently,
after achieving excellent results for their generation of realistic-looking images. We wish
to explore how this property translates to new applications in computational modelling and
to exploit the adjoint-like properties for efficient data assimilation. We apply these methods
to a compartmental model in epidemiology that is able to model space and time variations,
and that mimics the spread of COVID-19 in an idealised town. To do this, the GAN is set
within a reduced-ordermodel, which uses a low-dimensional space for the spatial distribution
of the simulation states. Then the GAN learns the evolution of the low-dimensional states
over time. The results show that the proposed methods can accurately predict the evolution
of the high-fidelity numerical simulation, and can efficiently assimilate observed data and
determine the corresponding model parameters.

Keywords Generative adversarial networks · Spatio-temporal prediction · Data
assimilation · Reduced-order model · Deep learning · Compartmental model ·
Epidemiology · COVID-19

Mathematics Subject Classification 68T01 · 68T07 · 65H10 · 65M32 · 92D30

1 Introduction

A combination of the availability of large data sets, the advances in algorithms and the
accessibility of computational power has resulted in an unparalleled surge of interest in
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machine learning, and subsequently significant advances have been made in many different
fields. Machine learning can be seen as a process of solving practical problems by building a
statistical model based on a given dataset. This building process can be broadly classified as
supervised learning, when there is the presence of the outcome variable to guide the learning
process, or unsupervised learning, when there are only the features and no measurements of
the outcome. In the latter, the main goal is to describe how the data is organised or clustered
[25]. Recently, a class of machine learning methods referred to as deep learning (for either
supervised or unsupervised problems) have been achieving extraordinary results, surpassing
the ones obtained from previous machine learning techniques [21, 23, 38]. Based on artificial
neural networks, deep learning techniques use multiple layers to extract features or patterns
progressively from the data. Examples of this can be found in pioneering work by [35], using
convolutional neural networks, and by [54], using recurrent neural networks.

Deep generative models are one type of unsupervised learning and aim to generate sam-
ples from complex probability distributions in high-dimensional spaces [23]. They learn the
structure of the input data (which has an unknown closed form) and can be used to generate
new instances that appear to have been taken from the training data. There are several types
of generative models including deep belief networks (DBN) [28], variational autoencoders
(VAE) [32], and the generative adversarial network (GAN) [22]. Here, we focus our attention
on the latter. A GAN comprises two networks, a generator and a discriminator. During train-
ing, the former produces samples (so-called “fake samples") from a set of random variables,
and the second network attempts to distinguish between samples drawn from the training data
and the fake samples. After training, the generator can be used to produce realistic samples,
and the discriminator can be used to distinguish between samples.

One popular variant of the GAN is the conditional GAN (CGAN) [42], where a condition
is added to the input of the model. Therefore, samples can be generated conditional to some
attributes. However, it can come with the cost of lower accuracy [13]. As the input to the
generator of a standardGANconsists of randomnumbers and the output is a generated sample,
it is a challenge to produce consistent sequences of solutions in time. The following examples
overcome this difficulty by using CGANs, which supplement the usual input of the GANwith
a condition that can be the solution at a previous time level, the actual time, or parameters
and boundary conditions. The output of the generator can be the solution at the desired time
levels. [24] tackle the problem of predicting human trajectories using a novel CGAN based
encoder-decoder framework. Their proposed method predicted socially plausible futures that
outperformed prior work. [66] address the problem of super-resolution fluid flows by using a
CGAN to infer three-dimensional volumetric data in time. They used two discriminators, one
that focuses on space while the other focuses on temporal aspects. [68] proposed a CGAN as
a surrogate model for predicting the migration of carbon dioxide plumes in heterogeneous
reservoirs. Their results yield accurate predictions in space and time when compared with a
compositional reservoir simulator. [14] used a CGAN to make spatio-temporal predictions
of a nonlinear fluid flow. They demonstrate that the results of the CGAN are comparable
with those from the high-fidelity numerical model. [30] uses a CGAN to generate steady-
state solutions of coupled hydro-mechanical processes in heterogeneous porous media. Their
framework can be applied to solve a system of partial differential equations in a forward and
inverse setting.

By conditioning the GAN, in the previous works, the network no longer learns a mapping
between two distributions. In this paper, we wish to exploit, fully, this property of a GAN
to generate realistic outputs from a learnt distribution, which we expect will result in better
generalisation capabilities. Therefore, we present a novel approach, which enables GANs
(that are not conditional) to produce time series solutions by performing an optimisation to
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locate the GAN’s output in time. Part of this optimisation process includes finding the latent
variables that match a given output. Something similar was used by [63] in order to match
a given image with an image produced by a generative network, but for time-independent
problems.

In addition to predicting in time, for many practical applications, being able to assimilate
observed data is highly desirable. Data assimilation is an inverse problem with the aim
of calibrating uncertain model parameters in order to generate results that match observed
data within some tolerance [18, 46, 56, 60]. Some researchers used GANs to tackle this
problem. [43] trained a GAN to represent the prior distribution of subsurface properties
and integrated it within a data assimilation framework based on adjoint capabilities. [31]
proposed a method where a cluster technique using principal component analysis and K-
means is performed in the prior models to select realisation that match the observed data.
Then a GAN is trained on these realisations in order to generate calibrated models. [51]
used a similar approach of clustering the prior models; however, they also apply a CGAN to
label production responses of each model. [11] compared different deep generative networks
formulations, including GANs and VAE, integrated with a Kalman filter-based method for
proper data assimilation of facies models in reservoir simulations. A common characteristic
of these works is that they use GANs in order to generate the model parameters. The forward
simulations (spatio-temporal predictions) still need to be performed using the high-fidelity
numerical simulator. In this work, we propose two contributions: the generation of spatio-
temporal predictions using GANs and the assimilation of observed data using GANs. In the
first contribution, an algorithm is developed so that a GAN is able to make predictions in
time (PredGAN) for unseen model parameters. After the GAN has learnt the evolution of the
system, an iterative process is applied to the generator in order to march forward in time. In
the second contribution, the iterative process is extended in order to assimilate observed data
and generate the corresponding model parameters (DA-PredGAN). No additional simulation
of the high-fidelity numerical model is required during the data assimilation process adding
to the efficiency of this method.

We test the PredGAN and DA-PredGAN by applying them to a spatio-temporal compart-
mental model in epidemiology (extended SEIRSmodel) that was built to mimic the spread of
COVID-19 in an idealised town. The extended SEIRS model used in this work [49] extends
the traditional theory of the dynamics of infectious diseases [3, 7, 8] to account for variations
not only in time but also in space. Where possible, parameters of the model were chosen to
be consistent with those of COVID-19. With compartments of susceptible (S), exposed (E),
infectious (I) and recovered (R), the extended SEIRS equations [49] are used to generate the
high-fidelity numerical simulations that describe the spread of infections in both space and
time. Based on differential equations, multi-compartment SEIR-type models [61, 62] can be
very costly to solve: there may be millions of variables every time step; and the time steps
may need to be small to model the movement of people around the domain. When applied
to a city, a country or the entire world, solving such models can therefore require substantial
computational resources. In order to reduce the computational cost of numerical simulations,
reduced-order models (ROM) are now commonly used for applications in computational
physics [12, 52]. Nonetheless, they are relatively new to virus modelling [49]. A ROM is
a low-dimensional representation of a high-dimensional model or discretised system, and
should be accurate enough for the desired use and at least several orders of magnitude faster
to solve than the high-dimensional system. Three steps are involved in their construction: (i)
generation of solutions of the high-dimensional system (snapshots), (ii) compression of the
snapshots to find a low-dimensional space for the approximation, and (iii) approximation of
the high-dimensional system in the low-dimensional space. The low-dimensional space is
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often found with methods based on singular value decomposition, such as proper orthogonal
decomposition (POD) [57], although autoencoders offer a promising alternative [48]. In the
third step, the high-dimensional system is projected onto the low-dimensional space for a
projection-based ROM [6], whereas for a non-intrusive ROM (NIROM), the snapshots are
projected onto the low-dimensional space and the dynamics of the system in this space for
unseen parameters are represented by interpolation. This can be performed by classical inter-
polation methods such as cubic splines [36] or radial basis functions (RBF) [4]. The RBF
approach was extended by [65] who used a Smolyak grid to sample the parameter space; by
[34] who interpolated values of model parameters and time levels using one parametrisation;
and by [2] who used adaptive sampling in time. Recently, neural networks have been used
to perform the interpolation, and examples of this for steady-state parametrised problems
can be found in [16, 26], both of whom use POD and multi-layer perceptrons, and in [59],
who use POD and compare a number of different networks. Examples for time-dependent
parametrised problems can be found in [58], who used feed-forward neural networks to
model the viscous Burgers’ equation; [67], who proposed a nested trio of networks to learn
spatial patterns, temporal patterns and to learn the dependence on the model parameters;
[41], who combine convolutional autoencoders with recurrent neural networks for Burgers’
equation and the shallow water equations; [20, 45], both of whom combine an autoencoder
and a feed-forward neural network; and [40], who train an multi-layer perceptron with data
from both high-fidelity and low-fidelity models to improve the accuracy of the model. In
this paper, we set the PredGAN and DA-PredGAN algorithms within a NIROM framework,
using POD for the compression step and a GAN for learning how the dynamics depend on the
model parameters. However, both PredGAN and DA-PredGAN could also be used without
the NIROM framework (for smaller problems).

Themain novelties of this research involve the application of a newGAN approach to both
spatio-temporal prediction and data assimilation. This requires an additional optimisation
every time step in order to be able to use the generator within the GAN for predictions.
This optimisation proves to be well suited to data assimilation problems using adjoints and
gradient-based approaches.

In summary, we make the following contributions:

• We propose a novel GAN-based reduced-order model (PredGAN) that can make pre-
dictions in both space and time. To enable the generator of the generative adversarial
network to produce a sequence of solutions in time, an optimisation method is presented.

• We also propose an efficient way to assimilate observed data (DA-PredGAN) into the
presented PredGAN framework with no need of further high-fidelity numerical simu-
lations. The proposed methods can perform the prediction and data assimilation in the
latent space (reduced space), which improves efficiency.

• The application of a new GAN-based reduced order model and a new data assimilation
approach to a parameterised spatio-temporal epidemiological SEIRS model.

• The new methods (PredGAN and DA-PredGAN) proposed in this work are general
and not limited to the underlying physics of the SEIRS model. They can be easily
applied/extended to other physical systems (e.g. [29]).

This paper is structured as follows: the next section (Sect. 2) provides the description of the
proposed method for spatio-temporal prediction and data assimilation with GANs. Section3
introduces the test case, a spatio-temporal compartmental model in epidemiology. After that,
the results of the prediction and data assimilation are given in Sect. 4. Section5 presents some
further discussions. Finally, concluding remarks are provided in Sect. 6.
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2 Method

In this section, firstly amethod tomake spatio-temporal predictions using aGAN is proposed.
This algorithm is set within a NIROM framework in order to reduce the number of variables
that the GAN has to work on, however, for problems with fewer degrees of freedom, this
may not be necessary. The NIROM involves finding a low-dimensional space in which to
approximate high-dimensional model snapshots of a high-fidelity numerical simulation. The
GAN then learns the evolution of the numerical simulation based on the evolution of the
snapshots in the low-dimensional space. Therefore, the aim of predicting in time using GANs
is to be a surrogate model for the high-fidelity numerical simulation. Secondly, considering
we have observed data, we can extend the forecasting using GANs to match the given data
and generate the model parameters, without running any additional simulations of the high-
fidelity numerical model.

2.1 Predicting in Space and Time Using GANs

Proposed by [22], GANs are unsupervised learning algorithms capable of learning dense
representations of the input data, and can be used as generative models: they are capable of
generating new samples following the same distribution of the training dataset. The training
is based on a game theory scenario inwhich the generator networkG must compete against an
adversary. The generator network directly produces samples from a randomdistribution as the
input (latent vector z) and its adversary, the discriminator network D, attempts to distinguish
between samples drawn from the training data and samples drawn from the generator. The
output of the discriminator D(x) represents the probability that a sample came from the data
rather than a “fake” sample from the generator. The output of the generator G(z) is a sample
from the distribution learnt from the dataset. Equations (1) and (2) show the loss function of
the discriminator and generator used in this work, respectively,

LD = −Ex∼pdata(x)[log(D(x))] − Ez∼pz(z)[log(1 − D(G(z)))], (1)

LG = −Ez∼pz(z)[log(D(G(z)))]. (2)

In order to make predictions in space and time using a GAN, here an algorithm named
Predictive GAN (PredGAN) is proposed.We train a GAN to be able to generate the following
nonlinear map

G(zn) = �n, (3)

between the latent variables, zn at time level n, and the solution generated by the GAN �n .
The �n is made up of m consecutive time steps of compressed variables α (compressed
spatial outputs of the numerical simulation) which are proper orthogonal decomposition
(POD) coefficients, but could also be latent variables from an autoencoder, and the vector μ

of parameters usedwithin the high-fidelitymodel (e.g. amaterial property, or other simulation
input). For a GAN that has been trained with m time levels, �n takes the following form

�n =

⎡
⎢⎢⎢⎢⎢⎣

(αn−m+1)T , (μn−m+1)T

(αn−m+2)T , (μn−m+2)T

...

(αn−1)T , (μn−1)T

(αn)T , (μn)T

⎤
⎥⎥⎥⎥⎥⎦

, (4)
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where (αn)T = [αn
1 , α

n
2 , · · · , αn

NPOD
] and (μn)T = [μn

1, μ
n
2, · · · , μn

Nμ
]. NPOD is the number

of POD coefficients, αn
i represents the i th POD coefficient at time level n, Nμ is the number

of model parameters, and μn
i represents the i th parameter at time level n.

By design, the generator of a GAN produces realistic-looking solutions (images) from
a randomly-generated set of latent variables. In order to predict in time we have to modify
the way in which the GAN is used. When predicting with a GAN trained to produce m time
levels simultaneously, we need to know the firstm − 1 time levels in order to predict a future
value, i.e. from known solutions at time levels {0, 1, · · · ,m − 2} we can predict the solution
at time level m − 1. To predict the next time level, we use known solutions at time levels
from {1, 2, · · · ,m − 2} and the newly predicted solution at time level m − 1, to predict the
solution at time level m.

Assume we have the solutions at time levels up to and including m − 2 for the POD
coefficients, denoted by {α̃k}m−2

k=0 , and consider model parameters known over the entire
simulation time μ̃k , then to predict future solutions:

1. a latent vector (0)zm−1 is randomly generated in order to start the prediction of time level
m − 1. The superscript in brackets on the left of the latent vector is the optimisation
iteration counter within a time step prediction;

2. time iteration counter is set to n = m − 1;
3. optimisation iteration counter is set to l = 0;
4. the generator of the GAN is evaluated at the current value of the latent variables, (l)zn ,

yielding

G((l)zn) = (l)�n; (5)

5. the difference between the predicted values and the known values is calculated:

Lp(
(l)zn) =

n−1∑
k=n−m+1

(
α̃k −(l)αk

)T
Wα

(
α̃k −(l)αk

)

+
n−1∑

k=n−m+1

ζμ

(
μ̃k −(l)μk

)T
Wμ

(
μ̃k −(l)μk

)
, (6)

whereWα is a square matrix of size NPOD whose diagonal values are equal to the weights
that govern the relative importance of the POD coefficients. All other entries are zero. The
weights could be based on the singular values if a POD method is used for compression,
for example. Wμ is a square matrix of size Nμ whose diagonal values are equal to the
model parameter weights, and the scalar ζμ controls how much importance is given to the
model parameters compared to the compressed variables. It is worth mentioning that the
goal in each time iteration is to predict a new time level n, hence the POD coefficients αn

and model parameters μn of this time level are not in the loss function.
6. the gradient of the loss Lp is calculated with respect to the latent variables (l)zn (by back-

propagation), and Lp is minimised in the gradient direction leading to an updated set of
latent variables (l+1)zn ;

7. the optimisation iteration counter is incremented by one (l ← l + 1);
8. steps 4 to 7 are repeated until convergence is reached;
9. the converged latent variables are saved as zn (note, no optimisation iteration index) and

used to initialise the latent variables at the next time level, (0)zn+1 = zn . The predicted
time step n is added to the known solutions α̃n = αn ;

10. the time iteration counter is incremented by one (n ← n + 1);
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Fig. 1 One time iteration of the PredGAN for a sequence of three time levels (m = 3)

11. go back to step 3 (until the final time level is reached).

It is worth mentioning that the gradient of Eq. (6) can be calculated by automatic differen-
tiation [5, 37, 64]. In other words, minimising the loss in Eq. (6) can be achieved simply by
back-propagating the loss through the generator using the same methods that were employed
when training the GAN. Figure1 illustrates how the PredGAN works for a generator trained
to produce a sequence of 3 time steps (i.e. m = 3). One important aspect of this predictive
GAN approach to time stepping is that it never tries to extrapolate, only interpolate previous
data. Thus the results of this model will always look realistic if the GAN is well trained and
every point in the latent space z produces realistic looking models. Other generative models
can also be adapted to this methodology, as far as an iterative method can be used to minimise
the difference between the generated solutions and the known solutions.

2.2 Data Assimilation Using GANs

Data assimilation is an inverse problem that aims to combine a mathematical models with
observations [47, 60]. Data assimilation can be executed naturally byGANs due to their inher-
ent adjoint-like nature. To perform data assimilationwithGANs, we propose amethod named
Data Assimilation Predictive GAN (DA-PredGAN) that performs the following changes in
the prediction algorithm (PredGAN). First, one additional term is included in the functional
(loss) in Eq. (6) to account for the data mismatch between the generated values and obser-
vations. Secondly, instead of knowing the model parameters μk , as in the prediction, for
the data assimilation the goal is to match the observed data and determine the values of μk .
Thirdly, the forward marching in time is now replaced by forward and backward marching.
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2.2.1 The Functional for a Time Level

Analogous to the definition of � in equation (4), the primitive variables vector and observa-
tions vector are defined as

uk =

⎛
⎜⎜⎜⎝

uk1
uk2
...

ukNc

⎞
⎟⎟⎟⎠

(
uobs

)k =

⎛
⎜⎜⎜⎝

(uobs)k1
(uobs)k2

...

(uobs)kNc

⎞
⎟⎟⎟⎠ (7)

in which the primitive variable at node j of the spatial grid and time level k is ukj , and the

observation at node j of the spatial grid and time level k is (uobs)kj . Nc is the number of nodes
or cells in the grid. For the forward march, we perform the same process as the prediction in
time (Sect. 2.1); however, the functional for time level n is now written as

Lda, f (zn) =
n−1∑

k=n−m+1

(
α̃k − αk

)T
Wα

(
α̃k − αk

)

+
n−1∑

k=n−m+1

ζμ

(
μ̃k − μk

)T
Wμ

(
μ̃k − μk

)

+
n−1∑

k=n−m+1

ζobs

(
uk − (uobs)k

)T
W k

u

(
uk − (uobs)k

)
, (8)

where W k
u is a square matrix of size Nc whose diagonal values are equal to the observed

data weights, and the scalar ζobs direct controls how much importance is given to the data
mismatch. The values in the diagonal of W k

u are set to zero where we have no observation.
The subscript f of Lda indicates that this loss function applies to the forwards march.

In the previous section, before the GAN can start predicting in time, it requires m − 1
known solutions of the POD coefficients {α̃k}m−2

k=0 corresponding to the firstm−1 time levels,
and the model parameters μ̃k over all simulation time. There are two sets of POD and model
variables: a set of known variables (α̃k, μ̃k) and a set of predicted values (αk,μk). When
assimilating data, we usually do not know the values of the model parameters, hence the aim
is to match the observed data and determine the corresponding μk . To this end, during a time
iteration of the forward and backward marches the known variables of the model parameters
are updated by the newly predicted time step μ̃n = μn , the same way as for the POD
coefficients (item 9 of the prediction process, Sect. 2.1). This gives the best approximation to
these variables and allows them to vary during the data assimilation process. Furthermore,
after the forward march the solutions at the lastm−1 time levels are used as known solutions
to start the backward march, and after a backward march the solutions at the first m − 1 time
levels are used as known solutions to start the next forward march.

For marching backwards in time, the loss function should be modified thus

Lda,b(zn) =
n+m−1∑
k=n+1

(
α̃k − αk

)T
Wα

(
α̃k − αk

)
+

n+m−1∑
k=n+1

ζμ

(
μ̃k − μk

)T
Wμ

(
μ̃k − μk

)

+
n+m−1∑
k=n+1

ζobs

(
uk − (uobs)k

)T
W k

u

(
uk − (uobs)k

)
, (9)
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where the subscript b of Lda indicates that this loss function applies to the backwards march.
It is worth noting that the only difference between Eqs. (8) and (9) is the indices in the
summation. For the backward march, given the solution at time levels {n +m − 1, n +m −
2, · · · , n+1}, we can predict the solution at time level n. Then, to predict the next time level
we use known solutions at time levels from {n+m−2, n+m−3, · · · , n+1} and the newly
predicted solution at time level n, to predict the solution at time level n − 1. We continue
the process until predicting the first time step. After the backward march, we calculate the
average data mismatch, between the predicted primitive variables and the observed data (last
term on the right of Eqs. (8) and (9)), through all the last backward and forward iterations.
The process continues with a new forward and backward march until the average mismatch
has converged or the maximum number of forward-backward iterations is reached.

2.2.2 Observations of the Primitive Variables

If proper orthogonal decomposition is used to compress the grid variables, in which

uk = Bαk + u, (10)

a functional contribution that can be used directly within the optimiser is

Lobs(zn) =
∑
k

ζobs

(
Bαk + u − (uobs)k

)T
W k

u

(
Bαk + u − (uobs)k

)
, (11)

where the columns of the matrix B are the basis functions which relate the high-dimensional
solution variables to the POD coefficients, and u is the mean of the ensemble of snapshots
for the variable u.

Having written the solution in terms of the compressed variables when calculating the
mismatch of the observations, the final version of the functional for the forward and backward
march is

Lda(zn) =
∑
k

(
α̃k − αk

)T
Wα

(
α̃k − αk

)
+

∑
k

ζμ

(
μ̃k − μk

)T
Wμ

(
μ̃k − μk

)

+
∑
k

ζobs

(
Bαk + u − (uobs)k

)T
W k

u

(
Bαk + u − (uobs)k

)
,(12)

where for the forward march k ∈ {n − m + 1, n − m + 2, · · · , n − 1} and for the backward
march k ∈ {n + m − 1, n + m − 2, · · · , n + 1}.

2.2.3 Applying Relaxation

To stabilise the process of marching forwards and backwards, a relaxation parameter is used
in the resulting latent vector zn at each time iteration. After performing an optimisation using
Eqs. (8) or (9), the resulting latent vector is relaxed by

zn = (1 − r j )zn−1 + r j ẑn (13)

where ẑn is the resulting latent vector generated in each time iteration by minimising Eqs. (8)
or (9). j represents a iteration corresponding to a entire forward and backward march, and
r j is the relaxation factor used in the iteration j . Thus each relaxation parameter r j is used
in all time iterations n within the forwards and backwards march.
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The relaxation factor r j starts the data assimilation process with the value one. If the
average data mismatch at j is greater than at j − 1, then r j = r j/2 and the forward and
backward iteration j is repeated. On the other hand, if the average data mismatch at j is
less than at j − 1, the algorithm goes to the next iteration j + 1 using r j+1 = 1.5r j , also
respecting the maximum value of one for the relaxation factor (if r j+1 > 1 then r j+1 = 1).

2.2.4 Data Assimilation Algorithm Through Time

To assimilate data through time the following steps are performed:

1. march forward in time using the Eq. (6) and the prediction process in Sect. 2.1, with
guessed parameters {α̃k}m−2

k=0 for the firstm−1 time steps and μ̃k over all simulation time.
This will results in an initial guess of αn at all time levels n.

2. Timemarch backwards in time optimising Eq. (9), starting from them−1 final time levels
(obtained from the previous iteration). This tries to perform time steppingwhile attempting
to match the observations using the observed data mismatch part of the functional (last
term on the right of Eq. (9)). During the time march update the model parameters using
the newly predicted time step μ̃n = μn .

3. Keep time stepping forwards till the end of time and then backwards to the start of time
using Eqs. (8), (9) and (13), until the algorithm has converged. We use as convergence
criteria r j < 0.01.

4. If there are parameters αn and μn changing rapidly during the data assimilation process
increase the correspondingweight (in Eqs. (8) and (9)) and if they are not changing rapidly
enough decrease it.

5. After convergence, perform a last forward march using the Eq. (6) and the prediction
process in Sect. 2.1. Use the last calculated parameters {α̃k}m−2

k=0 and μ̃k for this. This last
forward march is optional (most used for parametric problems).

Figure2 shows an overview of the DA-PredGAN algorithm.

2.3 Weighting Terms in the Functionals

We suggest giving the data mismatch part of the functional greater priority than the time
stepping part of the functional. Considering that we set non-zero terms on the diagonal of
W k

u to one, then

ζobs = ζ̂obs

(
�α

�u

)2
(

(m − 1)
∑NPOD

i=1 (wα)i i∑
k
∑Nc

i=1(wu)
k
ii

)
, (14)

where ζ̂obs is a tuning parameter and in this work it is set to 10. �α and �u are the ranges of
the compressed variables and the primary variables, respectively. (wα)i i are the the terms on
the diagonal of Wα , and (wu)

k
ii are the terms on the diagonal of W k

u . For the forward march
k ∈ {n − m + 1, n − m + 2, · · · , n − 1} and for the backward march k ∈ {n + m − 1, n +
m − 2, · · · , n + 1}.

ζμ controls how quickly one lets the parameters μ change within the data assimilation
method. We choose to set all the terms on the diagonal of Wμ to one, and

ζμ = ζ̂μ

(
�α

�μ

)2
(∑NPOD

i=1 (wα)i i∑Nμ

i=1(wμ)i i

)
, (15)
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Fig. 2 Overview of the DA-PredGAN process

where �μ represents the range of the scalar parameters, (wμ)i i are the the terms on the
diagonal of Wμ, and ζ̂μ is a tuning parameter. In this work, we use ζ̂μ = 10−2 for the
prediction, and the first and last forward marches of the data assimilation. For the other
forward and backward marches of the data assimilation we can choose to dynamically update
ζμ, in order to letμk change more rapidly at the beginning and more slowly when the process
is near convergence. Therefore, we start with ζ̂μ = 10−4 and increase it by a factor of 1.2
after each forward-backward iteration.

3 Test Case

3.1 Compartmental Models in Epidemiology

The current COVID-19 pandemic, caused by the virus SARS-CoV-2, is something without
precedent in modern history, although it follows the same rules common to other pathogens
[15]. The knowledge gathered during more than one century studying these outbreaks has
given rise to a well-founded theory of the dynamics of infectious diseases [3, 8]. One of the
simplest nonlinear models to describe the spread of an infection is the SIR model, which
consists of a system of ordinary differential equations where S, I and R represent the number
of people who are susceptible, infectious or recovered [3, 9] referred to as compartments.

The model starts by considering a population of N individuals in the susceptible compart-
ment. If one individual with the disease is introduced into the population, over time, other
people will become infected and move into the infectious compartment. The members of the
infectious compartment will spread the pathogen among the population until they recover.
This is called a “closed epidemic” for which N = S+ I +R. The SIRmodel assumes that the
population mixes at random and that it is large enough for averages to be used meaningfully
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Fig. 3 Diagram of the SEIRS model. It represents the number of people in each compartment (susceptible,
exposed, infectious, recovered) and how they move between them

[8, 9]. One important factor in the dynamics of infectious diseases, and consequently in the
SIR model, is the basic reproduction number (R0) [27]. It represents the expected number of
secondary cases caused by a single infected member in a completely susceptible population.
Knowing the magnitude of the R0 gives an indication of how rapidly the infection could
spread, allowing governments and authorities to estimate the amount of effort necessary to
prevent, diminish or eliminate an infection from a population [17]. Following this line, much
effort has been committed to estimating the R0 in the COVID-19 pandemic worldwide [10,
19, 39, 55].

Albeit simple, theSIRmodel canprovide important insights into the dynamics of infectious
diseases in an idealised population. Nonetheless, for more realistic situations other factors
need to be taken into account such as births, deaths and loss of immunity. Furthermore, it
is well known for most diseases that there is an incubation period between being infected
and becoming infectious [7]. For that reason the SIR model can be extended to the SEIRS
model. In the latter formulation, after being infected an individual is moved to the exposed
compartment (E) and remains there until they become infectious. Also, recovered peoplemay
become susceptible again due to the loss of immunity. Another important factor regarding
the flow in and out of a compartment is demography. Births and deaths can also be taken into
account by adding their rates to the formulations [7]. Other types of compartments can also
be added depending on the flow patterns between the compartments [27, 53].

When large-scale simulations are considered, for example a simulation of spatial-variation
of the COVID-19 infection in a whole city or a country, the computational time becomes a
concern. Additionally, if observed data needs to be taken into account the whole process can
become impracticable. In order to tackle this problem, we propose a surrogate model that can
be used to replace the forward numerical simulation and it can also assimilate data without
any additional run of the high-fidelity model.

3.1.1 SEIRS Model

The classic SEIRS (Susceptible - Exposed - Infectious - Recovered - Susceptible) model can
be represented by the diagram in Fig. 3. The diagram shows how individuals move from one
compartment to another.

In the diagram, S, E , I and R are the number of individuals in the susceptible, exposed,
infectious and recovered compartments, respectively. N represents the total population size,
β is the transmission rate (the average rate at which an infectious individual can infect a
susceptible), σ is the rate of exposed individuals becoming infectious (1/σ is the average
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period in the exposed group), γ is the recovered rate (1/γ is the average infectious period),
and ξ is the rate recovered individuals return to the susceptible group (1/ξ is the average
period before loss of immunity). The vital dynamics are represented by η and ν, where η is
the birth rate and ν is the death rate.

The system of differential equations describing the SEIRS model dynamics can be
expressed as

dS

dt
= ηN − βSI

N
+ ξ R − νS, (16a)

dE

dt
= βSI

N
− σ E − νE, (16b)

d I

dt
= σ E − γ I − ν I , (16c)

dR

dt
= γ I − ξ R − νR, (16d)

where each equation represents the dynamics within a compartment [7]. At time t , the total
number of people can be expressed as N (t) = S(t) + E(t) + I (t) + R(t). If the birth rate
is equal to the death rate (η = ν) the total size of the population (N ) remains constant over
time. For this case the associated basic reproduction number is defined as

R0 = σ

(σ + ν)

β

(γ + ν)
. (17)

For most acute infections, the death rate ν is much smaller than the epidemic rates, thus in
realistic situations it barely affects the evolution of the disease [7].

Equations (16) can be also expanded into the extended SEIRS compartmental equations
to take into account the spatial variation of the disease [49].

3.1.2 Extended SEIRS Model

People movement is of paramount importance to model the spread of infection diseases such
as COVID-19. Therefore, this project extends Eqs. (16) in two ways (as in [49]):

1. It includes two people groups, people at home (h = 1) and peoplewho aremobile (h = 2);
2. It applies transport via diffusion to model the movement of people through the domain.

The role of the diffusion term is to incorporrate spatial variation into the classical SEIRS
model. It governs how people in each group move throughout the domain.

As a result, the extended equations could model the daily cycle of night and day for the
transient calculations, inwhich there is a “pressure” formobile people to return to their homes
at night and join the home group, and a similar pressure for people to leave their homes during
the day, who will therefore join the mobile group. To accomplish this, the extended SEIRS
model introduces a diffusion term (last term on the right of Eqs. (18)) and an interaction term
(penultimate term on the right of Eqs. (18)) to model this process:

∂Sh
∂t

= ηh Nh − Sh
∑

h′(βh h′ Ih′)

Nh
+ ξh Rh − νS

h Sh −
H∑

h′=1

λS
h h′ Sh′ + ∇ · (kSh∇Sh), (18a)

∂Eh

∂t
= Sh

∑
h′(βh h′ Ih′)

Nh
− σh Eh − νE

h Eh −
H∑

h′=1

λE
h h′Eh′ + ∇ · (kEh ∇Eh), (18b)
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∂ Ih
∂t

= σh Eh − γh Ih − ν I
h Ih −

H∑
h′=1

λI
h h′ Ih′ + ∇ · (k Ih∇ Ih), (18c)

∂Rh

∂t
= γh Ih − ξh Rh − νR

h Rh −
H∑

h′=1

λR
h h′ Rh′ + ∇ · (kRh ∇Rh), (18d)

in whichH represents the number of people and/or places groups e.g. people at home, mobile
people, people at work in the office, shops, people in hospital. Here, we have two groups of
people, hence H = 2, one representing people at home, h = 1, and the second representing
people that are mobile and outside their homes therefore, h = 2. The diffusion coefficient is
represented by kh and describes the movement of people around the domain. It is defined for
each compartment denoted by a superscript {S, E, I , R}. In addition, βh h′ determines not
only the transmission rate between compartments, but also how the disease is transmitted
from people in group h′ to people in group h. The interaction terms, λh h′ , control how people
move between groups, for example, how people that are in the mobile group move to the
home group (see Fig. 4). Given that we wish to satisfy conservation of the number of people,
the effect of the interaction terms can be contained in one parameter per group, λS , λE , λI

and λR . How these relate to λh h′ is described in [49]. When moving between groups people
remain in the same compartment, and when moving between compartments, people remain
in the same group. The aim is that most people will move from the home to the mobile group
in the morning and return home later on in the day. To achieve this, the interaction terms λh h′
are defined based on the daily cycle and are calculated to be such that conservation is obeyed.
In other words, the number of people leaving the home group (for a given compartment)
must equal the number of people entering the mobile group (for that compartment), at any
time. The set-up and values of the variables kh , βh h′ and λh h′ used in this work are the same
as in [49].

If we again consider the same value for the birth and the death rate in all groups, the total
size of the population (N = ∑

h Nh) remains constant over time. For this case the associated
basic reproduction number for each group is defined as

R0 h = σh

(σh + νh)

βh h

(γh + νh)
, (19)

where we assume βh h′ = 0 when h �= h′ because the people occupying these groups never
meet i.e. people in their homes never meet mobile people (who are outside their homes).

It is worthmentioning that instead of having the number of people in each compartment (S,
E , I and R) changing only in time, as in Eqs. (16), in the extended SEIRS model, Eqs. (18),
they can vary in space and time. Figure4 shows, for one position in space (or one cell in
the grid), how people move between groups (home, and mobile) and compartments. Futher
details about the extended SEIRS model can be found in [49].

3.1.3 Discretisation and Solution Methods Used

The spatial variation is discretised on a regular grid of NX × NY × NZ control volume
cells. Here we work on a 2D problem, so NZ = 1. We use a five-point stencil and second
order differencing of the diffusion operator, as well as backward Euler time stepping. We
iterate within a time step, using Picard iteration, until convergence of all non-linear terms
and evaluate these non-linear terms at the future time level. To solve the linear system of
equations we simply use forward backward Gauss-Seidel (FBGS) within each group (each
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Fig. 4 Diagram of the extended SEIRS model for one point in space (or one cell in the grid). The diagram
shows how peoplemove between groups and compartments within the same cell in the grid. The vital dynamics
and the transport via diffusion is not displayed here

of the variables S1, E1, I1, R1, S2, E2, I2, R2) until convergence and Block FBGS between
groups to obtain overall convergence of the system. This solver is sufficient to solve the test
problems presented here.

3.2 Problem Set-Up of an Idealised Town

The test case and problem set-up used in this work are the same as in [49], with the difference
that, here, we work with several simulations with different basic reproduction numbers. The
idealised town occupies an area of 100km by 100km as shown in Fig.5. We divided this area
in 25 regions, where those labelled as 1 are regions to or from which people do not travel,
the region labelled as 2 is where homes are located, and regions from 2 to 10 are where
people in the mobile group can travel. Thus people in the home group stay in region 2, in
other words, homes are only located in region 2. The aim is that most people move from
home to mobile group in the morning, travel to locations in regions 2 to 10, and return to
the home group later on in the day. The extended SEIRS model is used here to model this
movement of people around the the cross-shaped domain in Fig.5, in addition to calculating
which compartment and group each person is in at a given time t . A person at any time and
position within the domain belongs to one of the two groups, home or mobile, and is in one
of the four compartments, Susceptible, Exposed, Infectious, or Recovered.

Table 1 shows the epidemiological parameters used in this test case. These values are
chosen as they are representative of the COVID-19 infection in the United Kingdom, similar
to [44] and [49]. Tday is the number of seconds in 1day, and the transmission rates βh h

are calculated based on R0 h , where we assume βhh′ = 0 when h �= h′, as in [49]. We
consider R0 h , and consequently βh h , fixed for each simulation. To generate the ensemble
of simulations for the training and test data, the basic reproduction number for each group
of people is sampled from a uniform distribution with interval (0, 20). The R0 is the main
parameter to control the evolution of infectious diseases, hence we choose to vary it in the
ensemble. We also choose to use a wider range of variation for theR0 h , in accordance with
[33], than the most common values estimated for the COVID-19 pandemic. The diffusion
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Fig. 5 Domain of the 100km ×
100km idealised town showing
the different regions. Regions
where people can travel are
shown in grey

1 1 6 1 1

1 1 10 1 1

3 8 4 9 5

1 1 7 1 1

1 1 2 1 1

Table 1 Parameters for the extended SEIRS model

Parameter Home group Mobile group

Birth and death rate (η = ν) (60 × 365 × Tday)
−1 R0 2 ∼ U (0, 20)

Loss of immunity rate (ξ ) (365 × Tday)
−1 R0 2 ∼ U (0, 20)

Exposed to infectious rate (σ ) (4.5 × Tday)
−1 R0 2 ∼ U (0, 20)

Recovery rate (γ ) (7 × Tday)
−1 R0 2 ∼ U (0, 20)

Reproduction number R0 1 ∼ U (0, 20) R0 2 ∼ U (0, 20)

Tday is the number of seconds in 1day

coefficients (k) used to model the spatial movement of people and the interaction terms (λ)
are the same as those in [49].

The simulations are run for 45.5 days with a time step of �t = 4000 seconds. We use
uniformly space 10× 10 control volumes to discretise the domain in Fig. 5. Therefore, each
region in Fig. 5 comprises four control volumes. We start the simulation with 2000 people in
each control volume of region 2 and belonging to the home group. All other fields are set to
zero. The initial condition is that 0.1% of people at home have been exposed to the virus and
will thus develop an infection.

4 Results

In order to generate data with which to train the GAN, we performed 40 high-fidelity numeri-
cal simulations. Each simulation has two different values ofR0 h , one for people at home and
another for mobile people. In the numerical simulation the whole region in Fig. 5 is divided
in a regular grid of 10 × 10, totalling 100 cells. Although regions labelled 1 need not be
modelled, solving the system on the whole domain is very efficient as a structured, regular
grid can be used. Considering that each group (people at home and mobile) has four com-
partments in the extended SEIRS model (Susceptible, Exposed, Infectious and Recovered),
there will be eight variables for each cell in the grid per time step, which gives a total number
of 8 × 100 = 800 variables per time step. We perform proper orthogonal decomposition
in the 800 variables, in order to work with a low dimensional space in the GAN. Figure6
shows the decay of the singular values. The 15 largest singular values capture > 99.9999%
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(a) (b)

Fig. 6 Proper orthogonal decomposition applied to reduce the dimension of a time snapshot of the extended
SEIRS model from 800 to 15 variables. The plot shows the decay of the singular values. a Shows the singular
values in a linear scale. b Shows the singular values in a logarithm scale

of the variance held in the snapshots. This was deemed sufficient, so 15 POD coefficients
were retained for the NIROM. Hence the GAN is trained to generate the 15 POD coefficients
(αn) and the two R0 h (μn), over a sequence of 10 time levels with a step size of two. This
time length is chosen because it roughly represents a cycle (1day) in the results.

The GAN architecture is based on that of the DCGAN by [50] and is implemented using
Tensorflow [1]. Figure7 shows the architecture of the generator and discriminator used in this
work. The generator and discriminator are trained over 5, 000 epochs, and the size of the latent
vector z is set to 100. The 10 time levels are given to the networks as a two-dimensional array
with 10 rows and 17 columns. Each row represents a time level and each column comprises
the 15 POD coefficients and the two values ofR0 h . We choose this configuration, instead of a
linear representation, to take advantage of the time dependence in the two-dimensional array
(“the image”). The main goal of this work is to reproduce the outputs of the high-fidelity
numerical model and assimilate observed data using a GAN.

4.1 Predicting in Space and Time Using the PredGAN

In this section, we use the PredGAN (introduced in Sect. 2.1) to make predictions of the
spatial and temporal variation of the COVID-19 infection in the idealised town. All the test
cases here are new or ‘unseen’ simulations, generated from values ofR0 h that were not used
to train the GAN. The prediction using the PredGAN is performed by starting with nine
time levels from the high-fidelity numerical simulation (known initial solutions) and using
the generator to predict the tenth. In the next time iteration we use eight time levels from
the numerical simulation and the last prediction to predict a new point. Then we repeat this
process until the last time step. It is worth mentioning that after nine time iterations, the
PredGAN works only with data from the predictions. Data from the high-fidelity numerical
simulation is used only for the first nine time levels as an initial condition.

The first result we present here is the prediction of one time level for the valuesR0 1 = 7.7
andR0 2 = 17.4. The first nine time levels (initial condition)were taken from the high-fidelity
numerical simulation after 21 days from the start of the infection. Figure8 shows the spatial
variation of the number of people in each group and compartment throughout the domain.
Figure8a shows the prediction of the PredGAN, Fig. 8b shows the actual result from the
numerical simulation, and Fig. 8c the absolute difference between them. All the quantities
represent the number of people in a cell of the domain. The mean absolute error between the
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Fig. 7 Generator and discriminator architectures

ground truth and the prediction is 0.19 and the relative mean absolute error is 8.9 × 10−3.
These results show that the PredGAN was able to predict accurately the evolution of the
extended SEIRS model in space and time, at least for one time iteration.

Figure9 shows the same set of results as in Fig. 8, except now, we focus on the prediction
at one point in space or one cell in the domain (bottom-left corner of region 2 in Fig. 5). Each
plot corresponds to the variation of the number of people in each group and compartment
over time. The first nine time levels are used in the optimisation process of the PredGAN and
the tenth time level is actually the prediction of the unknown solution.When using PredGAN,
solutions for the POD coefficients at all 10 time levels are obtained, and all 10 time levels
are shown here for illustration. As explained in Sect. 2.1, PredGANminimises the difference
between the nine known values and its predictions at these time levels. Once converged,
PredGAN’s prediction for the tenth time level is accepted. There will be small differences
between the known values and predicted values for the first nine time levels, which are shown
in Fig. 9, but these are ignored in future calculations as only the tenth time level is added to the
known solutions. Comparable results regarding the error in the prediction were seen at other
points in the domain, therefore we do not present them here. It can be noticed from Figs. 8
and 9 that the PredGAN can reasonably predict the outcomes of the high-fidelity numerical
model for simulations that are not in training set of the GAN.

For predicting further in time, we again start with nine time levels from the high-fidelity
numerical simulation and we use the generator to predict the tenth. The next iterations we use
the last predictions as known values and we repeat this process until the end of the simulation.
Figure10 shows the result of the prediction in one cell of the grid (bottom-left corner of region
2 in Fig. 5). Each cycle corresponds to a period of 1day,whenmobile people leave their homes
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(a) Prediction.

(b) Ground truth.

(c) Absolute Difference.

Fig. 8 PredGAN applied to predict one time level (R0 1 = 7.7 and R0 2 = 17.4). a Shows the prediction
of the number of people across the domain. b Shows the number of people across the domain calculated by
the high-fidelity numerical simulation. c Shows the difference between the PredGAN and the high-fidelity
numerical simulation

123



25 Page 20 of 31 Journal of Scientific Computing (2023) 94 :25

Fig. 9 Prediction of one time level of the spatial variation COVID-19 infection (R0 1 = 7.7 andR0 2 = 17.4).
The results show the time variation in one cell of the grid (bottom-left corner of region 2). The first nine points
are used to start the PredGAN and the last one is the actual prediction

Fig. 10 Prediction of multiple time levels of the spread of the COVID-19 infection (R0 1 = 7.7 and R0 2 =
17.4). The results show the time variation in one cell of the grid (bottom-left corner of region 2). The first
nine points (indicated by green circles) are used to start the PredGAN and all the others are predictions (Color
figure online)

during the day and return at night. After the first nine time iterations the PredGANdoes not see
any data from the high-fidelity numerical simulation, and relies completely on the predictions
fromPredGAN.Data from the high-fidelity numerical simulation is only required as an initial
condition. Figure11 also shows the prediction of the PredGAN, although this time using two
more different sets of values forR0 h and starting at different times of the epidemic dynamics.
The results presented in Figs. 10 and 11 indicate that the prediction of multiple time levels
was very successful. For all compartments and groups, the prediction using the PredGAN is
almost indistinguishable from the ground truth or high-fidelity numerical simulation. Hence
the PredGAN can be used as a surrogatemodel of high-fidelity numerical simulations varying
in space and time.
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(a) 0 1 = 14.7, 0 2 = 9.6.

(b) 0 1 = 9.5, 0 2 = 10.1.

Fig. 11 Prediction of multiple time levels of the spatial variation COVID-19 infection for different basic
reproduction numbers. The results show the time variation in one cell of the grid (bottom-left corner of region
2). The first nine points are used to start the PredGAN and all the others are predictions

4.2 Data Assimilation Using the DA-PredGAN

In this section, we apply the DA-PredGAN (introduced in Sect. 2.2) to assimilate observed
data to the spatial variation of COVID-19 over time. The data assimilation using the DA-
PredGAN works similarly to the PredGAN, apart from adding an observed data mismatch
term in the functional (Eqs. (8) and (9)), not knowing the model parameters R0,h a priori,
and from working forwards and backwards in time. We generate observed data from a high-
fidelity numerical simulation that was not included in the training set of the GAN. To that
end, we useR0 1 = 7.7,R0 2 = 17.4, and also add 5% noise to the chosen data. Considering
the domain in Fig. 5, we choose to have observed data collected at the bottom-left corner
of regions 2, 3, 4, 5 and 6. In other words, the observed data is available at five points in
domain, one in the middle and one at each end of the cross shaped region. The R0 h are
not used as observed data, although we compare it with the true values used to generate
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Fig. 12 Forward-backward iterations 1 2, 10 and 30 of the DA-PredGAN applied to spatial variation of
COVID-19 infection. The results show the time variation of groups and compartments in one cell of the grid
(bottom-left corner of region 2). The horizontal axes are the time in days and the vertical axes are the number
of people. The orange circles represent the observed data, the dashed blue line the forward march, and the
dotted green line the backward march (Color figure online)

the high-fidelity numerical simulation. To start the DA-PredGAN, we perform one forward
march without the observed data term in the functional (as described in Sect. 2.2.4). The
starting points chosen for this march are from a numerical simulation with R0 1 = 6.5 and
R0 2 = 5.7. Figure12 shows the evolution of the forward-backward iterations of the data
assimilation process using the DA-PredGAN. The results show the time variation of groups
and compartments in one cell of the grid (bottom-left corner of regions 2). It can be seen
from this figure that in just a few forward-backward iterations the DA-PredGAN is able to
match the data. Although we run the simulation until the convergent criteria was reached
(see Fig. 13a), after iteration 2, only small improvements in the observed data mismatch can
be noticed. This is also shown in Fig. 13b, along with the average total loss and the other
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Fig. 13 Evolution of the data assimilation process. a Relaxation factor r j . The convergence criteria is reached
when r j < 0.01. b Loss functions of the DA-PredGAN. The curves represent the average total loss and the
average values of each term in the Eqs. (8) and (9)

Fig. 14 Evolution of the basic reproduction number (R0 h ) during the assimilation process of the DA-
PredGAN. Each plot represents a forward-backward iteration. The horizontal axes are the time in days and the
vertical axes are theR0 h . The circles represent the true value, the dashed lines the forward marches, and the
dotted lines the backward marches. Blue represents the home group (R0 1) and red the mobile group (R0 2)
(Color figure online)
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Fig. 15 Initial and final results of the DA-PredGAN applied to spatial variation of COVID-19 infection. The
results show the time variation of groups and compartments in one cell of the grid (bottom-left corner of region
2). The orange circles represent the observed data, the dashed blue line is the first forward march, and the solid
green line is the final result (last forward march) (Color figure online)

Fig. 16 Initial and final values of the basic reproduction number (R0 h ) during the assimilation process of
the DA-PredGAN. The circles represent the true value, the dashed lines the first forward march, and the solid
lines the final result (last forward march). Blue represents the home group (R0 1) and red the mobile group
(R0 2) (Color figure online)

average loss terms in the functional (Eqs. (8) and (9)). The evolution of theR0 h for the same
data assimilation is presented in Fig. 14. The result shows that as long as the data mismatch is
minimised, themodel parametersR0 h approach the true values used to generate the synthetic
observed data. We also present in Figs. 15 and 16 a comparison between the first and the last
forward iterations. These figures show that even with the initial guess far from the observed
data the method was able to match the measurements and produce model parameters R0 h

near the true value.
In order to test the DA-PredGAN in a more realistic case, we consider that observed

data is only available every 2days, and we measure only infectious people (we still generate
the observed data from a high-fidelity numerical simulation that was not included in the
training set of the GAN). Figures17 and 18 show the first and last forward marches of the
data assimilation process. We observe that the method proposed here was able to effectively
match the observed data and to producemodel parametersR0 h with similar values as the ones
used to generate the synthetic data. It is worth noticing that the data assimilation is an inverse
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Fig. 17 Initial and final results of the DA-PredGAN applied to spatial variation of COVID-19 infection for
the more realistic case. The results show the time variation of groups and compartments in one cell of the grid
(bottom-left corner of region 2). The orange circles represent the observed data, the dashed blue line is the
first forward march, and the solid green line is the final result (last forward march) (Color figure online)

Fig. 18 Initial and final values of the basic reproduction number (R0 h ) during the assimilation process of
the DA-PredGAN for the more realistic case. The circles represent the true value, the dashed lines the first
forward march, and the solid lines the final result (last forward march). Blue represents the home group (R0 1)
and red the mobile group (R0 2) (Color figure online)

and usually ill-posed problem, thus other values ofR0 h could have alsomatched the observed
data, within some tolerance. Figure19 shows the relaxation factor and the loss terms of the
DA-PredGANover the forward-backward iterations. These results demonstrate the efficiency
of theDA-PredGAN, since it was capable ofmatching the observed data in only few iterations
even starting far from the measurements. We also present in Fig. 20 a comparison between
the DA-PredGAN results and the high-fidelity numerical simulation used to generate the
observed data. Figure20a shows the evolution of the number of people in each group and
compartment for a point in space where observed data was collected. Figure20b shows the
same plots, but for a point in space without observed data. Although we would not expect
that the results of the data assimilation will reproduce the “true” simulation, since it is a
ill-posed inverse problem, we observe from these figures that the DA-PredGAN was able
to generate coherent results that resemble the dynamics of the ground truth, even at points
where observed data was not collected.
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Fig. 19 Evolution of the data assimilation process for the more realistic case. a Relaxation factor r j . The
convergence criteria is reached when r j < 0.01. b Loss functions of the DA-PredGAN. The curves represent
the average total loss and the average values of each term in the Eqs. (8) and (9)

5 Discussion

Despite one of the original purposes of generative adversarial networks (GANs), to be able to
generate realistic-looking images, this paper demonstrates that GANs can also be used to per-
form spatio-temporal prediction (PredGAN algorithm) and data assimilation (DA-PredGAN
algorithm). TheGANwas chosen here because incredible results have been achievedwith this
network, clearly outperforming other methods in many applications. However, other gener-
ative models could also fit into the PredGAN and DA-PredGAN algorithms. We also remark
that, although here the proposed methods are set within a non-intrusive reduced-order model
(NIROM) framework, these algorithms could be based directly on the high-dimensional sys-
tem. The NIROMwas used to reduce the number of degrees of freedomwhichmakes training
the GANs more manageable.

Focusing on the DA-PredGAN, it has the following advantages and disadvantages relative
to other data assimilation algorithms. The advantages are that the DA-PredGAN has poten-
tiallymore rapid convergenceproperties, as evenwithin a few forward-backward iterations the
method was able to match the observed data and update the model parameters. Furthermore,
no additional simulation of the high-fidelity numerical model is needed to assimilate data
using the DA-PredGAN. Another advantage is the use of the inherent adjoint capabilities of
neural networks to calculate the gradients. The error in the loss functions is back-propagated
through the network using the available machine learning codes e.g. Tensorflow, PyTorch.
The primary disadvantage is the need to tuning the weighting terms ζobs and ζμ in the loss
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Fig. 20 Final results of the DA-PredGAN compared with the high-fidelity numerical simulation used to
generate the observed data. The orange circles represent the observed data, the dashed brown line is the high-
fidelity numerical simulation, and the solid green line is the result of the DA-PredGAN (last forward march).
a Shows the time variation of groups and compartments in one cell of the grid (bottom-left corner of region 2)
with observed data. b Shows the time variation of groups and compartments in one cell of the grid (top-right
corner of region 10) without observed data (Color figure online)

functions. If not adjusted the method may change the solution variables prematurely within a
forward-backward iteration, or conversely, just make very small changes to them. To tackle
this problem, we have proposed some values for the weighting terms in Sect. 2.3. These
values have worked well for all the cases we have run.

6 Conclusion

In this work, we propose a generative adversarial network that is able to make predictions
in space and time (PredGAN), and we set this within a reduced-order model framework for
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efficiency. This new method enables the GAN to produce future solutions that are consistent
with previous time level solutions. The aim of the PredGAN is to be a surrogate model of
the high-fidelity numerical simulation. Furthermore, we extend the forecast using generative
adversarial networks to assimilate observed data (DA-PredGAN)without any additional sim-
ulations of the high-fidelity numerical model. We applied these approaches to an extended
SEIRS model to predict the spread of COVID-19 over space and time. The results show
that the surrogate model is able to accurately reproduce the numerical simulation for differ-
ent model inputs. We also demonstrate the efficiency of the DA-PredGAN in assimilating
observed data and determining the corresponding model parameters. The proposed meth-
ods may have important implications for a huge class of physical simulation problems, for
developing accurate surrogate models and efficiently assimilating measurements.

Acknowledgements We would like to acknowledge financial support from Petrobras for the first author. This
work is also supported by the following EPSRC Grants: RELIANT, Risk EvaLuatIon fAst iNtelligent Tool
for COVID19 (EP/V036777/1); MUFFINS, MUltiphase Flow-induced Fluid-flexible structure InteractioN in
Subsea applications (EP/P033180/1); the PREMIERE programme Grant (EP/T000414/1); INHALE, Health
assessment across biological length scales (EP/T003189/1); andMAGIC,Managing Air for Green Inner Cities
(EP/N010221/1). This work has been undertaken, in part, as a contribution to ‘Rapid Assistance in Modelling
the Pandemic’ (RAMP), initiated by the Royal Society. In particular, we would like to acknowledge the useful
discussion had within the Environmental and Aerosol Transmission group of RAMP, coordinated by Profs
Paul Linden and Christopher Pain.

Funding The authors have not disclosed any funding.

Data and code availability The source code used in this work is available at https://github.com/viluiz/gan/
tree/master/DA-PredGAN. The datasets are available at https://github.com/viluiz/gan/tree/master/datasets.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,A., Dean,
J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R.,
Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster,
M.,Shlens,J.,Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M. Wicke, M. Yu, Y., Zheng, X.: TensorFlow: Large-scale machine
learning on heterogeneous systems (2015). Software available from tensorflow.org

2. Alsayyari, F., Perkó, Z., Tiberga, M., Kloosterman, J.L., Lathouwers, D.: A fully adaptive nonintrusive
reduced-order modelling approach for parametrized time-dependent problems. Comput. Methods Appl.
Mech. Eng. 373, 113483 (2021)

3. Anderson, R.M., Anderson, B., May, R.M.: Infectious Diseases of Humans: Dynamics and Control.
Oxford University Press, Oxford (1992)

4. Audouze, C., De Vuyst, F., Nair, P.B.: Nonintrusive reduced-order modeling of parametrized time-
dependent partial differential equations. Numer. Methods Partial Differ. Equ. 29(5), 1587–1628 (2013)

123

https://github.com/viluiz/gan/tree/master/DA-PredGAN
https://github.com/viluiz/gan/tree/master/DA-PredGAN
https://github.com/viluiz/gan/tree/master/datasets
http://creativecommons.org/licenses/by/4.0/


Journal of Scientific Computing (2023) 94 :25 Page 29 of 31 25

5. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learn-
ing: a survey. J. Mach. Learn. Res. 18(1), 5595–5637 (2017)

6. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for para-
metric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

7. Bjørnstad, O., Shea, K., Krzywinski, M., Altman, N.: The SEIRS model for infectious disease dynamics.
Nat. Methods 17(6), 557–558 (2020)

8. Bjørnstad, O.N.: Epidemics: Models and Data Using R. Springer, Berlin (2018)
9. Bjørnstad, O.N., Shea, K., Krzywinski, M., Altman, N.: Modeling infectious epidemics. Nat. Methods

17, 455–456 (2020)
10. Breda, D., Kuniya, T., Ripoll, J., Vermiglio, R.: Collocation of next-generation operators for computing

the basic reproduction number of structured populations. J. Sci. Comput. 85, 40 (2020)
11. Canchumuni, S.W., Castro, J.D., Potratz, J., Emerick, A.A., Pacheco, M.A.C.: Recent developments

combining ensemble smoother and deep generative networks for facies historymatching. Comput. Geosci.
25(1), 433–466 (2021)

12. Cardoso, M.A., Durlofsky, L.J., Sarma, P.: Development and application of reduced-order modeling
procedures for subsurface flow simulation. Int. J. Numer. Methods Eng. 77(9), 1322–1350 (2009)

13. Cheng, K., Tahir, R., Eric, L.K., Li, M.: An analysis of generative adversarial networks and variants for
image synthesis on MNIST dataset. Multimedia Tools Appl. 79(19), 13725–13752 (2020)

14. Cheng, M., Fang, F., Pain, C.C., Navon, I.: Data-driven modelling of nonlinear spatio-temporal fluid
flows using a deep convolutional generative adversarial network. Comput. Methods Appl. Mech. Eng.
365, 113000 (2020)

15. Cobey, S.: Modeling infectious disease dynamics. Science 368(6492), 713–714 (2020)
16. Dal Santo, N., Deparis, S., Pegolotti, L.: Data driven approximation of parametrized PDEs by reduced

basis and neural networks. J. Comput. Phys. 416, 109550 (2020)
17. Dietz, K.: The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med.

Res. 2(1), 23–41 (1993)
18. D’Amore, L., Arcucci, R., Carracciuolo, L., Murli, A.: A scalable approach for variational data assimi-

lation. J. Sci. Comput. 61(2), 239–257 (2014)
19. Flaxman, S., Mishra, S., Gandy, A., Unwin, H., Coupland, H., Mellan, T., Zhu, H., Berah, T., Eaton,

J., Perez Guzman, P., et al.: Report 13: Estimating the number of infections and the impact of non-
pharmaceutical interventions on COVID-19 in 11 European countries (2020)

20. Fresca, S., Dede, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order
modeling of nonlinear time-dependent parametrized PDEs. J. Sci. Comput. 87, 61 (2021)

21. Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. O’Reilly Media, Sebastopol (2019)

22. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio,
Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680
(2014)

23. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge
(2016)

24. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: Socially acceptable trajectories
with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2255–2264 (2018)

25. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer, Berlin (2009)

26. Hesthaven, J.S., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural
networks. J. Comput. Phys. 363, 55–78 (2018)

27. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)
28. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput.

18(7), 1527–1554 (2006)
29. Jolaade, M., Silva, V.L., Heaney, C.E., Pain, C.C.: Generative networks applied to model fluid flows. In:

International Conference on Computational Science, pp. 742–755. Springer, Berlin (2022)
30. Kadeethum, T., O’Malley, D., Fuhg, J.N., Choi, Y., Lee, J., Viswanathan, H.S., Bouklas, N.: A frame-

work for data-driven solution and parameter estimation of PDEs using conditional generative adversarial
networks. Nat. Comput. Sci. 1(12), 819–829 (2021)

31. Kang, B., Choe, J.: Uncertainty quantification of channel reservoirs assisted by cluster analysis and deep
convolutional generative adversarial networks. J. Petrol. Sci. Eng. 187, 106742 (2020)

32. Kingma, D.P., Welling, M.: Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
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