
1

Use Coupled LSTM Networks to Solve
Constrained Optimization Problems

Zheyu Chen, Student Member, IEEE, Kin K. Leung, Fellow, IEEE, Shiqiang Wang, Member, IEEE,
Leandros Tassiulas, Fellow, IEEE, Kevin Chan, Senior Member, IEEE, Don Towsley, Fellow, IEEE

Abstract—Gradient-based iterative algorithms have been
widely used to solve optimization problems, including resource
sharing and network management. When system parameters
change, it requires a new solution independent of the previous
parameter settings from the iterative methods. Therefore, we
propose a learning approach that can quickly produce optimal
solutions over a range of system parameters for constrained
optimization problems. Two Coupled Long Short-Term Memory
networks (CLSTMs) are proposed to find the optimal solution.
The advantages of this framework include: (1) near-optimal
solution for a given problem instance can be obtained in few
iterations during the inference, (2) enhanced robustness as the
CLSTMs can be trained using system parameters with distri-
butions different from those used during inference to generate
solutions. In this work, we analyze the relationship between
minimizing the loss functions and solving the original constrained
optimization problem for certain parameter settings. Extensive
numerical experiments using datasets from Alibaba reveal that
the solutions to a set of nonconvex optimization problems
obtained by the CLSTMs reach within 90% or better of the
corresponding optimum after 11 iterations, where the number of
iterations and CPU time consumption are reduced by 81% and
33%, respectively, when compared with the gradient descent with
momentum.

Index Terms—Optimization method, resource management,
neural networks, iterative methods

I. INTRODUCTION

CONSTRAINED optimization problems are widely used
to study and resolve various technical issues in the

networks and computer infrastructures, such as the resource al-
location [2]–[4], and SDN-based network management [5]–[7].
Since the system parameters are constituent elements in the

Zheyu Chen and Kin K. Leung are with the Department of Computing,
Imperial College, London, UK (e-mail:{z.chen19, kin.leung}@imperial.ac.uk)

Shiqiang Wang is with IBM T.J. Watson Research Center, Yorktown
Heights, NY, USA (e-mail: wangshiq@us.ibm.com)

Leandros Tassiulas is with Yale University, New Haven, CT, USA (e-mail:
leandros.tassiulas@yale.edu)

Kevin Chan is with U.S. Army Research Lab, Adelphi, MD, USA (e-mail:
kevin.s.chan.civ@mail.mil)

Don Towsley is with the Department of Computer Science, University of
Massachusetts, Amherst, MA, USA. (e-mail: towsley@cs.umass.edu)

This research was partly sponsored by the U.S. Army Research Laboratory
and the U.K. Ministry of Defence under Agreement Number W911NF-16-
3-0001. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation hereon. L.
Tassiulas work was partially supported by project ONR N00173-21-1-G006:

Early results of this work have been presented in 2021 IEEE Military
Communications Conference [1].

constrained optimization problems, it requires a new optimal
solution when the system parameters change, independent of
the previous parameter settings for the same system that have
been considered. It is time-consuming to obtain new optimal
solutions by using the conventional gradient-based iterative al-
gorithms. Therefore, it is helpful to develop machine-learning
solution frameworks that can quickly produce solutions over
a range of system parameters.

The constrained optimization problem (P1) under consider-
ation is given as follows:

(P1) min
𝑥
𝑓 (𝑥)

s.t. ℎ(𝑥) ≤ 0,

where 𝑥 ∈ R𝑛. Note that we include only one constraint
in the above problem to simplify our presentation, although
the proposed CLSTM can be applied to solve optimization
problems with multiple constraints, as shown in Section IV.

To solve this problem, it requires to find the optimal 𝑥 to
minimize the objective function 𝑓 (𝑥) and satisfy the constraint
that the value of the function ℎ(𝑥) is non-positive. Note
that this is a very general formulation of the constrained
optimization, and the objective and constraint functions can
be either convex or nonconvex.

Researchers have proposed to use supervised learning tech-
niques to solve constrained optimization problems. For ex-
ample, in [8] and [9], the supervised learning techniques are
modified and enhanced to predict the optimal solutions for
given sets of optimization problem parameters. However, to
train a well-performed prediction model needs sufficient data
samples containing the input features and the ground truth
labels. Thus, it requires extra effort to generate plenty of
optimal solutions for these constrained optimization problems,
which may be difficult to solve.

Using unsupervised learning techniques to solve these con-
strained optimization problems is more efficient. For instance,
Gao et al. in [11] focus on solving optimization problems
with constraints in the form of Symmetric Positive Definite
matrices, while a LSTM network is used to find the optimal
policy for the constrained Markov decision process in [12].
However, the aforementioned work is restricted only to specific
types of constrained optimization problems and for more
general constrained optimization problems, the question about
how to use unsupervised learning techniques (e.g., LSTMs) to
solve them is still open.

To address this open issue, the main objective of this
work is to develop an unsupervised-learning-based solution

2

framework that can quickly generate optimal solutions for
general constrained optimization problems over a range of
system parameters. The contributions of this paper are as
follows:

• Propose to use the two Coupled LSTM networks, re-
ferred to as CLSTMs, for solving non-convex, constrained
optimization problems with user-defined objective and
constraint functions.

• Identify the need and propose a projection function to
ensure the Lagrangian multiplier non-negative and avoid
computational issues, and present appropriate the design
criteria for selecting the projection function that can
enable the CLSTMs to find the optimal solutions.

• Analyze the impact of the projection function on the op-
timal solutions and the relationship between minimizing
the loss functions and solving the original constrained
optimization problem with special parameter settings.

• Formulate a resource-allocation problem in the cloud
cluster as a constrained optimization problem and apply
the proposed CLSTMs to solve it with practical data from
Alibaba [13].

• Our evaluation results demonstrate that the CLSTMs can
achieve 90% of the optimum after only 11 iterations
even when the optimization problems are nonconvex.
Furthermore, we conduct an experiment to validate and
show the robustness of the proposed technique where
the CLSTMs are trained using system parameters with
distributions different from those used during inference
to generate solutions.

The rest of the paper is organized as follows. Section II
presents the details of the coupled LSTM networks. Section
III analyzes of the proposed CLSTMs and training process.
Section IV describes the resource-allocation problem under
study and the formulated constrained optimization problem.
Section V presents the evaluation of the coupled LSTM
networks using the cluster trace. Finally, section VI discusses
related research and section VII concludes the paper.

II. PROPOSED CLSTMS

In this section, we propose the CLSTMs for solving con-
strained optimization problem P1 in the last section.

By introducing a Lagrange multiplier _, a Lagrange function
can be formed for the optimization problem (P1):

𝐽 (𝑥, _) = 𝑓 (𝑥) + _ℎ(𝑥). (1)

The dual optimization problem of (P1) is

(P2) max
_
𝐽 (𝑥∗, _)

s.t. 𝑥∗ = argmin 𝐽 (𝑥, _),
_ ≥ 0.

According to the duality theory [14], the dual optimization
problem (P2) has the same optimal solution for the original
(primal) problem (P1) under the condition of zero duality
gap. Therefore, our objective is to find the optimal _∗ for
maximizing the function 𝐽 and the associated 𝑥∗.

Firstly, we describe the inference process that the two cou-
pled LSTM networks, 𝑚 and �̂�, are utilized to find the optimal

𝑚"𝑚

𝑔!

∇",!∇$,!

#𝑔!

𝑘 + 1

𝐽

𝑥! 𝑥!%&𝜆! 𝜆!%&

𝐽

𝑥!
𝑘

𝜓 𝜓

Fig. 1. Computation graph of the coupled LSTM for iteration 𝑘, where
∇𝑥,𝑘 = ∇𝑥 𝐽 (𝑥𝑘 , 𝜓 (_𝑘+1)) , ∇_,𝑘 = ∇_𝐽 (𝑥𝑘 , 𝜓 (_𝑘)) .

𝑥∗ and _∗ for a given Lagrange function 𝐽, respectively, by
iterations. In each iteration, to satisfy the requirement of non-
negative Lagrangian multiplier, the projection function 𝜓 is
used to map any _ into a value larger than or equal to 0.
(The projection function will be further discussed in Section
II-A.) The overall workflow of the proposed method is shown
in Fig. 1 where iterations indexed by 𝑘 progress from left to
right. Note that 𝑥 and _ are updated alternately and the iteration
can start from either of them. Without loss of generality, we
define that the iteration starts with updating _. In each iteration
𝑘 , the update step sizes (changes) of 𝑥 and _ are denoted by
𝑔𝑘 and �̂�𝑘 , respectively. Specifically, _ is updated according
to: [

�̂�𝑘

ℎ̂𝑘+1

]
= �̂�(∇_𝐽 (𝑥𝑘 , 𝜓(_𝑘)), ℎ̂𝑘 , 𝜙∗), (2)

_𝑘+1 = _𝑘 + �̂�𝑘 , (3)

where 𝜙∗ denotes the optimal parameters in the LSTM �̂�,
∇_𝐽 (𝑥𝑘 , 𝜓(_𝑘)) is the gradient of function 𝐽 with respect to
(w.r.t.) _, and ℎ̂𝑘 , ℎ̂𝑘+1 are the hidden state for �̂� in iteration
𝑘 and 𝑘 + 1, respectively. Then 𝑥 is updated from iteration 𝑘

to 𝑘 + 1 by the following equations:[
𝑔𝑘
ℎ𝑘+1

]
= 𝑚(∇𝑥𝐽 (𝑥𝑘 , 𝜓(_𝑘+1)), ℎ𝑘 , 𝜙∗), (4)

𝑥𝑘+1 = 𝑥𝑘 + 𝑔𝑘 , (5)

where 𝜙∗ denotes the optimal parameters in the LSTM 𝑚,
∇𝑥𝐽 (𝑥𝑘 , 𝜓(_𝑘+1)) is the gradient of function 𝐽 w.r.t. 𝑥, and
ℎ𝑘 , ℎ𝑘+1 are the hidden state for 𝑚 in iteration 𝑘 and 𝑘 + 1,
respectively. For the sake of conciseness, the hidden states ℎ𝑘 ,
ℎ𝑘+1, ℎ̂𝑘 and ℎ̂𝑘+1 are omitted from the CLSTM architecture
in Fig. 1.

The training process is to find the optimal parameters for
𝑚 and �̂�. During training, we define 𝐾 consecutive iterations
as a frame. In each iteration 𝑘 within frame 𝑖, for a given
Lagrange function 𝐽, the update step sizes �̂�𝑘 and 𝑔𝑘 are

3

generated according to:[
�̂�𝑘

ℎ̂𝑘+1

]
= �̂�(∇_𝐽 (𝑥𝑘 , 𝜓(_𝑘)), ℎ̂𝑘 , 𝜙𝑖), (6)[

𝑔𝑘
ℎ𝑘+1

]
= 𝑚(∇𝑥𝐽 (𝑥𝑘 , 𝜓(_𝑘+1)), ℎ𝑘 , 𝜙𝑖), (7)

where 𝜙𝑖 and 𝜙𝑖 denote the parameters in �̂� and 𝑚, respec-
tively. Using the generated �̂�𝑘 and 𝑔𝑘 , _ and 𝑥 are updated
according to (3) and (5). At the end of frame 𝑖 (i.e., after 𝐾
iterations), the parameters 𝜙𝑖 are updated to minimize the loss
function:

𝐿 (𝜙𝑖) = E

[
𝑖𝐾−1∑︁

𝑘=(𝑖−1)𝐾
𝑤𝑘𝐽 (𝑥𝑘 , 𝜓(_𝑘+1))

+𝑤𝑖𝐾 𝐽 (𝑥𝑖𝐾 , 𝜓(_𝑖𝐾))
]
, (8)

where 𝑤 (𝑖−1)𝐾 , . . . , 𝑤𝑖𝐾 are weighting factors and the sum
of them equals 1. Similarly, we update the parameters 𝜙𝑖 to
minimize the loss function:

�̂� (𝜙𝑖) = −E

[
𝑖𝐾∑︁

𝑘=(𝑖−1)𝐾
�̂�𝑘𝐽 (𝑥𝑘 , 𝜓(_𝑘))

]
, (9)

where �̂� (𝑖−1)𝐾 , . . . , �̂�𝑖𝐾 are another set of weighting factors
and the sum of them also equals 1. It is worth noting that the
forms of the objective and constraint functions are assumed
to be fixed. However, the associated function parameters are
randomly chosen from some distributions for the training
process. To consider such random functions, the expectation
is needed in (8) and (9).

Furthermore, to obtain sufficient sampling and experience in
the search process for the optimal solutions, we define a group
of 𝐼 consecutive frames as an epoch, where the variables (i.e.,
_ and 𝑥) and the hidden states (i.e., ℎ𝑘 and ℎ̂𝑘) are randomly
initialized at the beginning of each epoch.

The detailed training procedure is provided in Algorithm 1,
which works as follows. After the parameters 𝜙0 and 𝜙0 are
randomly initialized (Line 1), the variables (i.e., _ and 𝑥) and
the hidden states (i.e., ℎ𝑘 and ℎ̂𝑘) are set to randomly generated
values at the beginning of each epoch (Lines 3-4). Then at the
beginning of a frame, all variables and Lagrange multipliers
are updated in 𝐾 iterations (Lines 6-15). In every iteration,
for each sample (𝐽, 𝑥, _) in the training dataset, the Lagrange
multipliers _ are updated (Lines 8-10) before the variables 𝑥
are updated (Lines 11-13). Finally, at the end of each frame,
the parameters 𝜙𝑖 and 𝜙𝑖 are updated (Lines 16-17).

A. Projection Function

Note that the Lagrange multiplier _ is required to be non-
negative in the dual optimization problem (P2). To satisfy this
constraint and avoid potential numerical issues, we propose to
use a projection function 𝜓 : R→ R to map any _ into a value
larger than or equal to 0. That is,

Requirement 1: The basic requirement of the projection
function 𝜓 is that 𝑢 = 𝜓(_) where 𝑢 ∈ [0,∞) for all _ ∈ R.

Algorithm 1 Training Procedure

1: Randomly initialize the parameters 𝜙0 and 𝜙0 for 𝑚 and
�̂�, respectively;

2: for epoch =1,2,. . . do
3: Randomly initialize the values of 𝑥, _ for each function

𝐽 in the training dataset;
4: Randomly initialize the hidden state ℎ𝑘 , ℎ̂𝑘 for 𝑚 and

�̂�, respectively;
5: for frame 𝑖 = 1, 2, . . . , 𝐼 do
6: for iteration 𝑘 = (𝑖 − 1)𝐾, . . . , 𝑖𝐾 − 1 do
7: for (𝐽, 𝑥, _) in the training dataset do
8: Calculate the gradient of function 𝐽 w.r.t. _;
9: Generate the update step size of _ by (6)

10: Update _ using (3);
11: Calculate the gradient of function 𝐽 w.r.t. 𝑥;
12: Generate the update step size of 𝑥 by (7);
13: Update 𝑥 using (5);
14: end for
15: end for
16: Calculate the loss functions 𝐿 (𝜙𝑖) and �̂� (𝜙𝑖) using

(8)(9), respectively;
17: Update the parameters 𝜙𝑖 and 𝜙𝑖 using the gradients

∇𝜙𝑖 𝐿 (𝜙𝑖) and ∇�̂�𝑖 �̂� (𝜙𝑖), respectively;
18: end for
19: end for

Since the projection function is used in the training process,
its impact on the training also needs to be considered. By
applying the chain rule, the derivative of �̂� w.r.t each parameter
𝜙𝑖 can be expanded as

𝜕�̂�

𝜕𝜙𝑖
= −E

[
𝑖𝐾∑︁

𝑘=(𝑖−1)𝐾
�̂�𝑘

𝜕𝐽

𝜕𝑢𝑘

𝜕𝑢𝑘

𝜕_𝑘

𝜕_𝑘

𝜕𝜙𝑖

]
, (10)

where 𝑢𝑘 = 𝜓(_𝑘).
From (10), we can observe that the derivative of the pro-

jection function w.r.t. _𝑘 is a part of the derivative of the loss
function �̂�. Note that the gradient-based optimization method
(e.g., Adam [15]) and the backpropagation are used to update
the parameters 𝜙𝑖 using the gradients ∇�̂�𝑖 �̂� (𝜙𝑖) (line 17 in
Algorithm 1). Thus, we need the following criteria to ensure
that 𝜕�̂�

𝜕�̂�𝑖
will not be distorted by 𝜕𝜓 (_𝑘)

𝜕_𝑘
.

Firstly, 𝜕�̂�

𝜕�̂�𝑖
should be defined everywhere so that the

parameters of the CLSTMs can be updated and optimized. We
note that 𝜕�̂�

𝜕�̂�𝑖
cannot be determined if 𝜕𝜓 (_𝑘)

𝜕_𝑘
is not defined.

Therefore, we have the following:
Requirement 2: The projection function 𝜓 should be differ-

entiable everywhere.
Obviously, the most ideal situation is that 𝜕𝜓 (_𝑘)

𝜕_𝑘
is 1

everywhere so that its impact on 𝜕�̂�

𝜕�̂�𝑖
can be eliminated

as much as possible. However, this requirement is hard to
fulfil since a function with a slope equal to 1 cannot map
both negative and positive values of _𝑘 to positive values
simultaneously. Therefore, we propose the following criteria
as a relaxation:

4

Requirement 3: (a) The derivative of the projection function
𝜓 becomes a constant, which can be different from 1, when
|_ | → ∞; (b) The two constants (i.e., the two values of the
derivative of the function 𝜓 when _ → ∞ and _ → −∞,
respectively) are non-zero; (c) The two constants should not
to be too small or large to avoid numerical issues.

By using a projection function that satisfies the aforemen-
tioned three requirements, the magnitude of gradient 𝜕�̂�

𝜕�̂�𝑖
will

not be extremely large or small because the derivative of the
projection function 𝜕𝜓 (_𝑘)

𝜕_𝑘
is not too small or large. This

is important because the extreme magnitude of the gradient
will cause the CLSTMs unstable during the training process
and the parameters of the CLSTMs will not be properly
updated if the gradients become too small. Therefore, using
the projection function satisfying the requirement can lead to
proper computations without hindering the convergence of the
training process, as our experiments show.

It is interesting to observe that the function returning the
absolute value of input (i.e., 𝜓(_) = |_ |) satisfies Requirement
3, although it does not meet Requirement 2. Nevertheless,
inspired by this observation, we use a rough approximation for
the function 𝜓(_) = |_ | as the projection function as follows:

𝜓(_) =

−𝑎_ − (𝑎 − 1), if _ < −1
_𝑎, if − 1 ≤ _ ≤ 1
𝑎_ − (𝑎 − 1), if _ > 1

(11)

where 𝑎 can be any even number including 2. This projection
function is obtained by the following two steps. Firstly, we set
𝜓 = _𝑎 when −1 ≤ _ ≤ 1 where 𝑎 is a positive, even integer.
Secondly, when 1 ≤ _, we choose 𝜓(_) = 𝑎_ − (𝑎 − 1). The
main idea is that when _ becomes very large, 𝜓(_) ≈ 𝑎_

reflects the linear growth of |_ | as _ increases. Similarly, we
select 𝜓(_) = −𝑎_− (𝑎−1) for _ ≤ −1. It is important to note
that such 𝜓(_) defined in (11) captures only the increasing or
decreasing trend of |_ | as _ changes. However, (11) does not
give the precise value of |_ | as it is not needed in search for
the optimal solution.

Clearly, the proposed projection function in (11) possesses
the following properties.

Lemma 1: The proposed projection function 𝜓 is differen-
tiable and the derivative of function 𝜓 is equal to 𝑎 and −𝑎
when _ → ∞ and _ → −∞, respectively.

Note that the symmetric property is not required although
the proposed projection function in (11) is symmetric. Further-
more, although 𝑎 is not limited to be specific even numbers, 2
is a better choice than other even numbers since the function
𝜓 with 𝑎 equal to 2 can better approximate |_ | than any other
integer larger than 2.

B. Reduction of Computation Complexity and Storage Needs

For each LSTM in the CLSTMs structure, directly feeding
the vector of gradients w.r.t. every variable into the fully
connected input layer of the LSTM will require a rather
large LSTM network if there are thousands of variables.
Consequentially, two large LSTM networks will impose a
tremendous burden on computation and storage. To reduce
the computation and storage requirements, the coordinate-wise

LSTM structure proposed in [17] is adopted here. Specifically,
the gradients of function 𝐽 w.r.t. every variable are fed into the
LSTM successively so that they can share the parameters of an
LSTM network. Thus, the number of LSTM parameters can
keep small when there are thousands of variables. Meanwhile,
the hidden states for each variable are independent so that the
LSTM can generate different update step sizes for different
variables even their gradients are equal.

Furthermore, to reduce the complexity of computing the gra-
dients ∇𝜙𝑖 𝐿 (𝜙𝑖) and ∇�̂�𝑖 �̂� (𝜙𝑖), we assume that the gradients
of 𝐽 w.r.t. to 𝑥 and _ are independent of 𝜙 and 𝜙, respectively
(i.e., 𝜕∇𝑥 𝐽

𝜕𝜙𝑖
= 0, 𝜕∇_𝐽

𝜕�̂�𝑖
= 0).

III. ANALYSIS

In this section, we present the analysis of the proposed
CLSTMs and training process. Firstly, we make the following
assumption for the constrained optimization problem P1.

Assumption 1: We assume that:
1) The strong duality holds (i.e., the duality gap is zero).
2) There exists at least a dual optimal _∗ and a primal

optimal 𝑥∗.
Note that the strong duality is not equivalent to the convexity

and non-convex optimization problems can also possess the
strong duality property [18]. As a result of Assumption 1,
the optimization problems P2 and P1 have same optimal
solution. The zero-duality gap property helps us solve a wide
range of constrained optimization problems of interest in
communications and networking [18]–[21].

A. Transformed Optimization Problem

Since the projection function 𝜓 is employed to keep the La-
grangian multiplier non-negative and avoid numerical issues,
the dual optimization problem P2 for which the CLSTMs are
trained to solve can be transformed into:

(P3) max
_
𝐽 (𝑥∗, 𝜓(_))

s.t. 𝑥∗ = argmin 𝐽 (𝑥, 𝜓(_)).

Theorem 1: Having _∗ as the optimal solution to the problem
P3 is equivalent to having 𝑢∗ as the optimal solution to the
problem P2, where 𝑢∗ = 𝜓(_∗).

Proof: If 𝑢∗ is not the optimal solution to P2, there at
least exists the optimal solution 𝑢∗∗ according to Assumption
1. Then, we have 𝐽 (𝑥∗∗, 𝑢∗∗) > 𝐽 (𝑥∗, 𝑢∗), where 𝑥∗∗ =

argmin 𝐽 (𝑥, 𝜓(_∗∗)) and 𝑥∗ = argmin 𝐽 (𝑥, 𝜓(_∗)). For any
given 𝑢∗∗, there at least exists a _∗∗ such that 𝑢∗∗ = 𝜓(_∗∗). As
a result, we have 𝐽 (𝑥∗∗, 𝜓(_∗∗)) > 𝐽 (𝑥∗, 𝜓(_∗)) and thus, _∗

is not the optimal solution to P3. Therefore, we can conclude
that if _∗ is the optimal solution to P3, then 𝑢∗ = 𝜓(_∗) is the
optimal solution to problem P2. Obviously, if 𝑢∗ is the optimal
solution to P2, we have 𝐽 (𝑥∗, 𝑢∗) ≥ 𝐽 (𝑥, 𝑢) for all 𝑢, where
𝑢 = 𝜓(_) and 𝑥 = argmin 𝐽 (𝑥, 𝜓(_)). Since 𝑢∗ = 𝜓(_∗), we
then have 𝐽 (𝑥∗, 𝑢∗) = 𝐽 (𝑥∗, 𝜓(_∗)) ≥ 𝐽 (𝑥, 𝑢) = 𝐽 (𝑥, 𝜓(_)) for
all _. Therefore, if 𝑢∗ is the optimal solution to P2, _∗ is the
optimal solution to the problem with 𝑢∗ = 𝜓(_∗).

This theorem has following corollaries:
Corollary 1.1: There exists at least one _∗ that is optimal

for the problem P3.

5

Since there must exist 𝑢∗ which is optimal for the problem
P2 due to Assumption 1, Theorem 1 implies that _∗ is optimal
for the problem P3 where 𝑢∗ = 𝜓(_∗).

Corollary 1.2: Using the optimal _∗ for the problem P3, we
can find the primal optimal solution 𝑥∗.

Finding the optimal solution 𝑥∗ is straightforward since
solving argmin 𝐽 (𝑥, 𝜓(_∗)) and argmin 𝐽 (𝑥, 𝑢∗) are identical
because 𝑢∗ = 𝜓(_∗) and 𝑢∗ is optimal for the problem P2.

B. Loss Function

In the training process, (8) and (9) are approximated by us-
ing 𝐷 training samples (i.e., 𝐷 different instances of the primal
optimization problem P1 and the corresponding instances of
the dual optimization problem P2) as:

𝐿 (𝜙𝑖) =
1
𝐷

𝐷∑︁
𝑑=1

[𝑖𝐾−1∑︁
𝑘=(𝑖−1)𝐾

𝑤𝑘𝐽
(𝑑) (𝑥 (𝑑)

𝑘
, 𝜓(_ (𝑑)

𝑘+1))

+𝑤𝑖𝐾 𝐽 (𝑑) (𝑥 (𝑑)𝑖𝐾
, 𝜓(_ (𝑑)

𝑖𝐾
))
]
, (12)

�̂� (𝜙𝑖) = − 1
𝐷

𝐷∑︁
𝑑=1

[𝑖𝐾∑︁
𝑘=(𝑖−1)𝐾

�̂�𝑘𝐽
(𝑑) (𝑥 (𝑑)

𝑘
, 𝜓(_ (𝑑)

𝑘
))
]
, (13)

where 𝑥 (𝑑)
𝑘

and _
(𝑑)
𝑘

are the optimization variables and La-
grange multiplier, respectively, for the Lagrange function 𝐽 (𝑑)

in iteration 𝑘 .
Theorem 2: Assuming that each frame includes only one

iteration (i.e., 𝐾=1) and all weighting factors, 𝑤𝑘 and �̂�𝑘 , are
set to 1, the problem P1 is solved during the training process,
when the loss functions (12) and (13) reach their minimal
values.

Proof: When 𝐾 = 1, the parameters of the two CLSTMs
will be updated at the end of each iteration and each frame
includes only one iteration. Thus, by assigning 𝐾 to 1 in the
loss functions (12) and (13) we have:

𝐿 (𝜙𝑖)=
1
𝐷

𝐷∑︁
𝑑=1

[
𝑤𝑖−1𝐽

(𝑑) (𝑥 (𝑑)
𝑖−1, 𝜓(_

(𝑑)
𝑖

))

+ 𝑤𝑖𝐽
(𝑑) (𝑥 (𝑑)

𝑖
, 𝜓(_ (𝑑)

𝑖
))
]
, (14)

�̂� (𝜙𝑖)=-
1
𝐷

𝐷∑︁
𝑑=1

[
�̂�𝑖−1𝐽

(𝑑) (𝑥 (𝑑)
𝑖−1, 𝜓(_

(𝑑)
𝑖−1))

+ �̂�𝑖𝐽
(𝑑) (𝑥 (𝑑)

𝑖
, 𝜓(_ (𝑑)

𝑖
))
]
, (15)

where 𝑥 (𝑑)
𝑖

and _
(𝑑)
𝑖

are the optimization variables and La-
grange multiplier, respectively, for the Lagrange function 𝐽 (𝑑)

in iteration 𝑖, and[
𝑔
(𝑑)
𝑖

ℎ
(𝑑)
𝑖+1

]
= 𝑚(∇𝑥𝐽 (𝑑) (𝑥 (𝑑)𝑖−1, 𝜓(_

(𝑑)
𝑖

)), ℎ (𝑑)
𝑖
, 𝜙𝑖),

𝑥
(𝑑)
𝑖

= 𝑥
(𝑑)
𝑖−1 + 𝑔

(𝑑)
𝑖
,[

�̂�
(𝑑)
𝑖

ℎ̂
(𝑑)
𝑖+1

]
= �̂�(∇_𝐽 (𝑑) (𝑥 (𝑑)𝑖−1, 𝜓(_

(𝑑)
𝑖−1)), ℎ̂

(𝑑)
𝑖
, 𝜙𝑖),

_
(𝑑)
𝑖

= _
(𝑑)
𝑖−1 + �̂�

(𝑑)
𝑖
.

Here two different cases are considered according to the
position of the current iteration within an epoch:

1) Case 1: the current iteration is the first iteration in an
epoch (i.e., 𝑖 = 1), then the values of 𝑥 (𝑑)

𝑖−1 and _
(𝑑)
𝑖−1 are

randomly initialized.
2) Case 2: the current iteration is not the first iteration, the

values of 𝑥 (𝑑)
𝑖−1 and _ (𝑑)

𝑖−1 are given by the following equations:[
𝑔
(𝑑)
𝑖−1
ℎ
(𝑑)
𝑖

]
= 𝑚(∇𝑥𝐽 (𝑑) (𝑥 (𝑑)𝑖−2, 𝜓(_

(𝑑)
𝑖−1)), ℎ

(𝑑)
𝑖−1, 𝜙𝑖−1),

𝑥
(𝑑)
𝑖−1 = 𝑥

(𝑑)
𝑖−2 + 𝑔

(𝑑)
𝑖−1,[

�̂�
(𝑑)
𝑖−1
ℎ̂
(𝑑)
𝑖

]
= �̂�(∇_𝐽 (𝑑) (𝑥 (𝑑)𝑖−2, 𝜓(_

(𝑑)
𝑖−2)), ℎ̂

(𝑑)
𝑖−1, 𝜙𝑖−1),

_
(𝑑)
𝑖−1 = _

(𝑑)
𝑖−2 + �̂�

(𝑑)
𝑖−1 .

We can see that in both cases, the values of 𝑥 (𝑑)
𝑖−1 and

_
(𝑑)
𝑖−1 do not depend on the parameters 𝜙𝑖 and 𝜙𝑖 , respec-

tively. Therefore, the gradients of the first term of (14) (i.e.,
𝑤𝑖−1𝐽

(𝑑) (𝑥 (𝑑)
𝑖−1, 𝜓(_

(𝑑)
𝑖

))) w.r.t. the parameters 𝜙𝑖 and the gra-
dients of the first term of (15) (i.e., �̂�𝑖−1𝐽

(𝑑) (𝑥 (𝑑)
𝑖−1, 𝜓(_

(𝑑)
𝑖−1)))

w.r.t. the parameters 𝜙𝑖 are zero. Based on this observation,
the loss functions (14) and (15) can be simplified as:

𝐿 (𝜙𝑖) =
1
𝐷

𝐷∑︁
𝑑=1

𝐽 (𝑑) (𝑥 (𝑑)
𝑖
, 𝜓(_ (𝑑)

𝑖
)),

�̂� (𝜙𝑖) = − 1
𝐷

𝐷∑︁
𝑑=1

𝐽 (𝑑) (𝑥 (𝑑)
𝑖
, 𝜓(_ (𝑑)

𝑖
)),

where 𝑤𝑖 and �̂�𝑖 are eliminated since they are set to 1.
Therefore, minimizing the above two loss functions in each

iteration simultaneously corresponds to solving the following
minimax optimization problem:

(P4) max
�̂�𝑖

min
𝜙𝑖

1
𝐷

𝐷∑︁
𝑑=1

𝐽 (𝑑) (𝑥 (𝑑)
𝑖
, 𝜓(_ (𝑑)

𝑖
)).

When the two loss functions achieve their minimal values,
this minimax optimization problem is solved. Since these 𝐷
optimization problem instances 𝐽 (𝑑) are independent, 𝑥 (𝑑)

𝑖
and

_
(𝑑)
𝑖

generated by the CLSTMs with the optimal parame-
ters 𝜙𝑖 and 𝜙𝑖 should form a saddle-point for the function
𝐽 (𝑑) (𝑥 (𝑑)

𝑖
, 𝜓(_ (𝑑)

𝑖
)), for all 𝑑. Thus, the generated 𝑥

(𝑑)
𝑖

and
𝜓(_ (𝑑)

𝑖
) form a saddle-point for the function 𝐽 (𝑑) , for all 𝑑.

Consequently, for the original optimization problem P1 for
which the Lagrange function 𝐽 (𝑑) is formed, 𝑥 (𝑑)

𝑖
and 𝑢 (𝑑)

are primal and dual optimal points where 𝑢 (𝑑) = 𝜓(_ (𝑑)
𝑖

).

IV. FORMULATION OF RESOURCE-ALLOCATION PROBLEM

A. System Model

The resource-allocation problem under consideration is to
allocate cluster resources to competing jobs for maximizing
the sum of job utilities. Specifically, there are 𝑁 jobs com-
peting for one type of resource and the amount of available
resource is denoted by 𝐶. For each job 𝑛, let 𝑟𝑛, 𝑅𝑛, 𝑢𝑛 (𝑟𝑛)
denote the amount of resource allocated to it, its resource

6

requirement and its utility function given the allocated resource
𝑟𝑛, respectively. Moreover, each job 𝑛 must be allocated
with a minimum amount of resource to provide satisfactory
service, while it also cannot receive more than a maximum
amount of resource in order to guard against occupying a
large amount of resources by few jobs. By introducing two
parameters 𝛼 < 1 and 𝛽 > 1, the minimum and the maximum
resource requirement of job n are denoted by 𝛼𝑅𝑛 and 𝛽𝑅𝑛,
respectively.

B. Optimization Problem
By using these notations, we can formulate the resource-

allocation problem as the following optimization problem:

max
𝑥1 ,...,𝑥𝑁

𝑁∑︁
𝑛=1

𝑢𝑛 (𝑥𝑛) (17a)

s.t.
𝑁∑︁
𝑛=1

𝑥𝑛 ≤ 𝐶, (17b)

𝑥𝑛 ≥ 𝛼𝑅𝑛,∀𝑛, (17c)
𝑥𝑛 ≤ 𝛽𝑅𝑛,∀𝑛, (17d)

where 𝐶 is the amount of available resource, and 𝑥𝑛, 𝑅𝑛,
and 𝑢𝑛 (·) denote the amount of resource allocated to job 𝑛,
the resource requirement, and the utility function of job 𝑛,
respectively.

The objective function (17a) maximizes the sum utilities
of all jobs by resource allocation. The first constraint (17b)
ensures that the amount of allocated resources for all jobs
must not exceed the amount of available resources, while
the constraints (17c) guarantee that the minimum resource
requirements for jobs are satisfied. The constraints (17d)
ensure that the amount of allocated resources for each job
must not exceed its maximum resource requirement.

C. Solve the Problem with the CLSTMs
Let x denote the vector of variables [𝑥1, . . . , 𝑥𝑁] and define

the objective function 𝑓 (x) and the constraint function h(x)
as

𝑓 (x) = −
𝑁∑︁
𝑛=1

𝑢𝑛 (𝑥𝑛),

h(x) =

∑𝑁
𝑛=1 𝑥𝑛 − 𝐶
𝛼𝑅1 − 𝑥1
. . .

𝛼𝑅𝑁 − 𝑥𝑁
𝑥1 − 𝛽𝑅1
. . .

𝑥𝑁 − 𝛽𝑅𝑁

.

The optimization problem above represents a particular in-
stance of P1:

min
x

𝑓 (x) (18a)

s.t. h(x) ≤ 0. (18b)

We can obtain the Lagrange function by introducing a La-
grange multiplier vector λ = [_0, . . . , _2𝑁]:

𝐽 (x,λ) = 𝑓 (x) + λh(x).

Finally, by substituting 𝐽 (x,λ) for 𝐽 (𝑥, _), x for 𝑥, λ for
_ into Algorithm 1 and applying the projection function to
λ element by element, we can use Algorithm 1 to train the
CLSTMs for solving this constrained optimization problem. It
is worth noting that we do not make specific assumptions about
the forms of the functions 𝑓 (𝑥) and ℎ(𝑥) in (18), although the
problem (18) is assumed to satisfy the zero-duality gap.

V. NUMERICAL EXPERIMENTS

A. Setup

The Alibaba cluster trace [13] presents the resource uti-
lization of 4,000 machines and the resource requirements
of the batch workloads. In the Alibaba’s cluster, the batch
workloads are described by the ’Job-Task-Instance’ structure,
where each job has multiple tasks and each task contains
multiple instances. Furthermore, the resource requirements of
each instance in a given task are identical. In our experiments,
we allocate the available CPU in the machines in terms
of utilization in percentage to various jobs, where the CPU
requirement of a job is the aggregate CPU requirement of all
its tasks. We employ a cluster of 5 machines to provide CPU
resource to 10 competing jobs in all optimization problem
scenarios considered in the following experiments. In each
problem scenario, the amount of available CPU resource and
the CPU requirements of jobs are randomly selected from the
Alibaba cluster trace. Therefore, for all problem scenarios used
for the training and the evaluation, each scenario has 10 con-
trol variables and 21 constraints. The associated optimization
problem is convex when problem scenarios have convex utility
functions, and the problem is nonconvex when the sigmoid
utility functions are used.

In the experiments, our algorithm is implemented with
Python and Tensorflow 2.1 and evaluated on an Ubuntu 20.04
LTS server with a NVIDIA TITAN Xp graphics card. Each
LSTM of the CLSTMs has the layer with 20 neural units.
For both the training and evaluation (inference) phases, we
employ the function defined in (11) with 𝑎 equal to 2 as the
projection function. During the training process, the CLSTMs
are trained with 5,120 optimization problem scenarios. The
training process consists of 50 epochs where each epoch
has ⌊ 2000

𝐾
⌋ frames (𝐼 = ⌊ 2000

𝐾
⌋) and each frame consists of

𝐾 iterations. We set 𝑤𝑘,∀𝑘 to 1 and the learning rate in
frame 𝑖 to 0.01 × 0.95 𝑖−1

100 . For the evaluation, the trained
CLSTMs are used to solve 1,000 problem scenarios with
randomly selected parameters. For each problem scenario, the
optimization (control) variables are updated using the trained
CLSTMs by iterations and the final solutions are saved after
1,000 iterations.

We employ the fmincon from the Optimization-toolbox in
Matlab R2016a to produce the optimal solutions, which is
guaranteed to find the optimal solutions for convex problems.
Furthermore, two gradient-based methods are used to serve as
baselines for comparison with the trained CLSTMs. To solve
the optimization problem P2, these two methods update the
variables 𝑥 and _ by iterations. In each iteration, the first
method, referred to as Gradient Descent (GD), updates 𝑥 and
_ by gradient descent and gradient ascent, respectively, while

7

0 50 100
Inference Iteration

0.00

0.99

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

GD
GDM
CLSTMs

(a)

0 500 1000
Inference Iteration

0.00

0.99

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

GD
GDM
CLSTMs

(b)

0.0 0.2 0.4
CPU time in second

0.0

0.9

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

GD
GDM
CLSTMs

(c)

0.50

0.99

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

0 1 2
CPU time in second

0

GD
GDM
CLSTMs

(d)
Fig. 2. The mean relative accuracy over (a) 100 iterations, (b) 1,000 iterations, (c)(d) CPU time in seconds.

0.80 0.96
Relative accuracy

0.80

0.95

(a)

0.80 0.91
Relative accuracy

0.80

0.95

(b)
Fig. 3. The complementary cumulative distribution function (CCDF) of rel-
ative accuracy with (a) convex utility functions, (b) sigmoid utility functions.

the second method, named Gradient Descent with Momentum
(GDM) [22], [23], updates 𝑥 and _ by gradient descent with
momentum and gradient ascent with momentum, respectively.
Therefore, the second method is supposed to converge faster
than the first one.

To measure performance of the proposed CLTMs approach,
we define the relative accuracy of a solution as 1− | 𝑓 − 𝑓 |

| 𝑓 | where
𝑓 and 𝑓 are the optimal values of the objective function found
by the CLSTMs and the fmincon, respectively. Moreover, we
define the mean relative accuracy as the relative accuracy
averaged over the 1,000 problem scenarios solved by the
trained CLTMs in the evaluation process.

B. Results and Analysis with Convex Utility Functions

In this subsection, we consider convex utility functions for
which the optimal results can be accurately obtained by the
Matlab tool fmincon for the purpose of demonstrating the
performance and the robustness of the proposed CLSTMs.
For each job n, its utility function given the allocated CPU
utilization 𝑥𝑛 is given by

𝑢𝑛 (𝑥𝑛) = −`𝑛 (
𝑥𝑛

𝑅𝑛
− 1)2 + 𝑥𝑛

𝑅𝑛
,

where `𝑛 is a constant randomly selected from the uniform
distribution in the range of [0.001, 10) and 𝑅𝑛 is the CPU
utilization requirement of job 𝑛. Moreover, 𝛼 and 𝛽 are set to
0 and 5, respectively, for all jobs.

1) Compare with the baselines
In this experiment, we demonstrate that the CLSTMs can

find the near-optimal solutions in a few iterations and obtain
extremely high relative accuracy at the end. During the training

process, the number of iterations in a frame is set to 20
(K=20) so that there are 100 frames in an epoch. To select the
optimal parameters for the two baselines, we exhaustively use
all possible combinations of parameters to solve the problem
scenarios used in the evaluation phase and choose the one
that obtains the highest relative accuracy after 1,000 iterations.
Specifically, in the GD method, the possible learning rates of
gradient descent and gradient ascent are 0.001, 0.01, 0.1, 0.5
or 1. In the GDM method, the possible learning rates of
gradient descent with momentum and gradient ascent with
momentum are 0.001, 0.01, 0.1, 0.5 or 1, while the possible
momentum factors varies from 0.1 to 1 with a step size of
0.1. Finally, the optimal learning rates of gradient descent
and gradient ascent in the GD method are 0.001 and 0.5,
respectively. For the GDM method, the optimal learning rate
and the momentum factor for gradient descent with momentum
is 0.001 and 0.7, respectively, while the optimal learning rate
and the momentum factor for gradient ascent with momentum
are 0.1 and 0.5, respectively.

Fig. 2a shows the relative accuracy obtained by the CLSTMs
and the baselines in the first 100 iterations during the evalua-
tion process, where the solid curves present the mean relative
accuracy and the coloured shadows show the mean relative ac-
curacy plus and minus one standard deviation of accuracy. We
can observe that the mean relative accuracy for the CLSTMs
achieves 0.90 after 22 iterations and reaches to 0.98 after 67
iterations, while the baselines still show obvious fluctuation.
Furthermore, the narrower shadow region for the CLSTMs
indicates that the standard deviation for the CLSTMs is lower
than the baselines after the same number of iterations. This
confirms that the CLSTMs is much quicker in producing accu-
rate and stable solutions than the conventional gradient-based
methods. Fig. 2b shows the mean relative accuracy obtained by
the CLSTMs and the baselines until 1,000 iterations during the
evaluation process. We can see that the mean relative accuracy
of the two baselines gradually increases to 1, which confirms
that the gradient-based methods are able to find the optimal
solutions after enough iterations. Furthermore, we can see that
the mean relative accuracy of CLSTMs converges at 0.99 and
the change of the CLSTMs results from 100 to 1,000 iterations
becomes negligible. Although it is possible to improve the
solution quality with more iterations in the evaluation process,
the improvement will be quite marginal.

Fig. 2c and 2d present the relative accuracy obtained by
the CLSTMs and the baselines in the first 0.5 and 2 seconds

8

1 2 3 4 5
Index of projection functions

0.0

0.5

1.0

R
el

at
iv

e
ac

cu
ra

cy

(a)

2 4 6
Value of a

0.9

1.0

R
el

at
iv

e
ac

cu
ra

cy

(b)
Fig. 4. The impact of (a) projection functions (b) value of 𝑎 on the relative
accuracy

of CPU time during the evaluation, respectively, where the
solid curves correspond to the mean relative accuracy and
the coloured shadows to the mean relative accuracy plus and
minus one standard deviation of the relative accuracy. Note
that the y-axis values between 0.1 and 0.5 are omitted in
Fig. 2d so that the difference between the three curves can
be made clear. We can see that the mean relative accuracy for
the CLSTMs is higher than those of the two baselines after
consuming the same amount of CPU time and achieves the
accuracy of 0.99 earlier than the two baselines with respect
to the CPU time consumption from Fig. 2c and Fig. 2d.
Moreover, the observation can be made from Fig. 2c that
the standard deviation for the CLSTMs is lower than the two
baselines after 0.5 seconds of CPU time. Therefore, one can
confirm from Fig. 2 that using the CLSTMs require less the
CPU time and iterations to generate accuracy solutions when
compared with the conventional gradient-based methods.

Fig. 3a shows the complementary cumulative distribution
function (CCDF) of the relative accuracy of solutions gener-
ated by the CLSTMs after 1,000 iterations. From the figure,
we can make the observation that with 95% of probability,
the relative accuracy is higher than 0.96 and the mean relative
accuracy is 0.99, which are excellent for general applications.

Clearly, these numerical results validate that the CLSTMs
can find a near-optimal solution quickly (e.g., achieving 0.98
for the mean relative accuracy after 67 iterations) and the
relative accuracy of the solutions found by the CLSTMs after
enough iterations is practically equal to 100% (e.g., achieving
the mean relative accuracy of 0.99 after 1,000 iterations).

2) Impact of projection functions
In this experiment, we study the impact of different pro-

jection functions. Specifically, we train five CLSTMs with
the same training procedure except that the projection func-
tions used by the CLSTMs are different. Furthermore, the
five trained CLSTMs are evaluated with the same projection
function as used during the training. These five projection
functions that are examined here include: 𝜓(_) = |_ |, 𝜓(_) =
1
2 (
√
2 + 0.25+), and another three functions defined in (11)

with 𝑎 equal to 2, 4 and 6, respectively. Note that we index
these projection functions by 1 to 5 in this order.

Fig. 4a shows the summary of the relative accuracy obtained
by the five trained CLSTMs after 1,000 iterations. Specifically,
the lower whisker, the bottom of the box, the red horizontal
line, the top of the box and the upper whisker represent

the 5th, 25th, 50th, 75th and 95th percentile of the relative
accuracy, respectively. From this figure, we can see that the
CLSTMs trained with the first and second projection functions
(i.e., 𝜓(_) = |_ | and 𝜓(_) = 1

2 (
√
_2 + 0.25 + _)) fail to

find the optimal solutions. This is expected so because that
the first projection function does not satisfy Requirement 2
since the first function is not differentiable at 0 and the
second projection function violates Requirement 3 that the
first derivative of the projection function should be a non-zero
constant when _ → −∞.

Fig. 4b demonstrates the summary of the relative accuracy
obtained by the three CLSTMs trained with three projection
functions defined in (11) with 𝑎 equal to 2, 4 and 6, respec-
tively, after 1,000 iterations. Specifically, the whiskers, the
boundaries of the box and the red line indicate the 5th, 25th,
50th, 75th and 95th percentile of the relative accuracy from
the bottom upward. We can see that the 5th percentile of the
relative accuracy for three different 𝑎 values are all higher
than 0.9. This confirms that the projection functions satisfying
Requirements 1, 2 and 3 can be used by the CLSTMs to
generate accurate solutions. Furthermore, the 5th, 25th and
50th percentile of the relative accuracy with 𝑎 = 2 is higher
than those with 𝑎 = 4 and 6, which implies that the CLSTMs
trained with 𝑎 = 2 can generally produce more accurate
solutions.

3) Robustness: Impact of 𝐾 and 𝑀

In this experiment, we firstly show the impact of the
parameter 𝐾 in (8) and (9) on the performance of CLSTMs.
Specifically, we select six different 𝐾 values from 10 to 60
with a step size of 10 and each 𝐾 value is used to train
five CLSTMs with randomly initialized weights for neural
networks. Then, we use five datasets that are generated from
distributions different from those used during training to
evaluate the trained CLSTMs. Specifically, for each utility
function (19), the parameters `𝑛 are randomly selected from
the uniform distribution in the range of [0.001, 𝑀). To generate
the training dataset, 𝑀 is set to 1. To produce the six evaluation
datasets, the value of 𝑀 is increased by 0, 20, 40, 60, 80 and
100%, respectively.

Fig. 5a presents the average, maximum and minimum of
the mean relative accuracy for five CLSTMs using the same
𝐾 value, while Fig. 5b shows the average, maximum and
minimum of the standard deviation of the relative accuracy
for five CLSTMs using the same 𝐾 value. We can see from
the figure that the mean relative accuracy improves and the
standard deviation decreases with the increase of 𝐾 from 10
to 20. This is so because that the loss function with a larger
value of 𝐾 contains a longer future impact of each iteration.
Thus, the CLSTMs learning to minimize such loss function
can find better update step sizes to minimize the objective
functions. On the other hand, we can further observe that when
the value of 𝐾 increases from 20 to 60, the mean relative
accuracy and standard derivation only show slight fluctuation.
This confirms that training the CLSTMs with various 𝐾 values
(i.e., from 20 to 60) can obtain similarly good performance.
Based on these observations from Fig. 5a and Fig. 5b, we find
that the CLSTMs is robust to various 𝐾 values, whereas we
still suggest to avoid small 𝐾 values since they may lead to

9

10 20 30 40 50 60
The value of K

0.8

0.9

1.0

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

(a)

10 20 30 40 50 60
The value of K

0.1

0.2

0.3

0.4

St
an

da
rd

 d
ev

ia
tio

n

(b)

0 20 40 60 80 100%
Increase of the value of M

0.90

0.95

1.00

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

(c)

0 20 40 60 80 100%
Increase of the value of M

0.05

0.10

0.15

St
an

da
rd

 d
ev

ia
tio

n

(d)
Fig. 5. The impact of the value of 𝐾 on (a) the mean relative accuracy and (b) the standard deviation where 𝐾 is the parameter in (8) and (9); the impact
of the increase of the value of 𝑀 on (c) the mean relative accuracy and (d) the standard deviation where 𝑀 is the upper bound of the range for the uniform
distribution that used to randomly select the parameters `𝑛 for each utility function

0 50 100
Inference Iteration

0.30

0.98

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

GD
GDM
CLSTMs

(a)

0 500 1000
Inference Iteration

0.30

0.98

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

GD
GDM
CLSTMs

(b)

0.0 0.2 0.4
CPU time in second

0.2

0.9

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

GD
GDM
CLSTMs

(c)

0.0 0.5 1.0
CPU time in second

0.50

0.97

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

GD
GDM
CLSTMs

(d)
Fig. 6. The mean relative accuracy over (a) 100 iterations, (b) 1,000 iterations, (c)(d) CPU time in seconds.

the performance degradation.
Fig. 5c and 5d show the mean relative accuracy and the

standard deviation of the relative accuracy for six different
datasets for the CLSTMs evaluation, respectively. We observe
that the mean relative accuracy gradually decreases from 0.99
to 0.89 in Fig. 5c and the standard deviation increases from
0.01 to 0.18 when the range for the uniform distribution is
increased to 200%. This slight degradation of the relative
accuracy is intuitively correct because when the range is in-
creased by 100%, the combinations of system parameters (i.e.,
`𝑛, 𝑅𝑛, 𝐶) in the evaluation dataset are far more random than
the combinations included in the training dataset. Nevertheless,
these results show the robustness of the trained CLSTMs
as it still can find the optimal solutions for the problem
scenarios even when their system parameters are drawn from
distributions different from those used for training.

C. Results and Analysis with Sigmoid Utility Functions

In this subsection, we replace the convex utility functions
used in the last subsection with non-convex utility functions
and show the performance of the proposed CLSTMs. Specif-
ically, for each job 𝑛, its utility function given the allocated
CPU utilization 𝑥𝑛 is given by

𝑢𝑛 (𝑥𝑛) =
1

1 + 𝑒−`𝑛 (𝑥𝑛−𝑅𝑛)
, (20)

where `𝑛 is a constant randomly selected from the uniform
distribution in the range of [0.001, 10) and 𝑅𝑛 is the CPU
utilization requirement of job 𝑛. Except the utility function, the
values of parameters for the optimization problem scenarios
(i.e., 𝛼, 𝛽, `𝑛, the amount of required resource 𝑅𝑛 and the
available amount of CPU resource 𝐶) used during the training

and the evaluation are the same as these used in the last
subsection. Moreover, parameters for training the CLSTMs
(i.e., 𝑤𝑘 , �̂�𝑘 , the learning rate and the projection function)
also remain the same except that 𝐾 is set to 40.

The optimal solutions are generated by the fmincon, which
is guaranteed to converge to a local optimal where the infinity
norm (maximum) of the gradient of the objective function is
less than 1𝑒−6.

Similarly, we select the optimal parameters for the two
baselines, GD and GDM, by exhaustively evaluating potential
parameter combinations and the sets of potential parameters
are the same as in the last subsection. Finally, the optimal
learning rate of gradient descent and gradient ascent in the
GD are set to 0.01 and 0.1, respectively. In the GDM method,
the optimal learning rate and momentum factor for gradient
descent with momentum is 0.01 and 0.1, respectively, and for
gradient ascent with momentum are 0.1 and 0.1, respectively.

Fig. 6a and 6b show the relative accuracy of the solutions
generated by the CLSTMs and the baselines after the first 100
iterations and after a total of 1,000 iterations, respectively,
where the solid curve corresponds to the mean relative accu-
racy and the coloured shadow to the mean relative accuracy
plus and minus one standard deviation of the relative accuracy.
Although three curves converge to a similar mean relative ac-
curacy (0.98) in Fig. 6b, we can clearly observe that the mean
relative accuracy for CLSTMs improves much faster than the
two baselines and achieves the accuracy of 0.97 after 68
iterations in Fig. 6a. Furthermore, the observation can be made
from Fig. 6a that the shadow region for the CLSTMs is clearly
narrower than the two baselines after 20 iterations. Thus,
even when the utility functions are non-convex, the CLSTMs

10

TABLE I
THE IMPACT OF THE NUMBER OF VARIABLES ON THE RELATIVE ACCURACY AFTER 10 ITERATIONS AND THE NUMBER OF ITERATIONS/THE CPU TIME

CONSUMED WHEN THE MEAN RELATIVE ACCURACY ACHIEVES 0.97

Number of jobs
in each problem scenario

Number
of variables

Number of
constraints

Mean relative accuracy /
standard deviation after 10 iterations

Number
of iterations CPU time (second)

10 10 21 0.90 / 0.09 68 1.2
50 50 101 0.94 / 0.04 66 1.2
70 70 141 0.92 / 0.06 62 1.0
90 90 181 0.92 / 0.05 70 1.2

100 100 201 0.96 / 0.03 66 1.2

require fewer iterations than the conventional gradient-based
methods to produce accurate and stable solutions.

To consider CPU time consumption, Fig. 6c and Fig. 6d
shows the mean relative accuracy obtained by the CLSTMs
and the baselines in the first 0.5 and 1 seconds of CPU
time during the evaluation, respectively, where the solid curve
corresponds to the mean relative accuracy and the coloured
shadow to the mean relative accuracy plus and minus one
standard deviation of the relative accuracy. We can observe that
after consuming the same amount of CPU time, the CLSTMs
always outperform the two baselines in the mean relative
accuracy and the standard deviation. In other words, the
CLSTMs generate excellent solutions faster than two baselines
with respect to the CPU time.

Fig. 3b portrays the CCDF of the relative accuracy of
solutions generated by the CLSTMs after 1,000 iterations. We
can see that with 95% probability, the relative accuracy is
larger than 0.91 and the mean relative accuracy is 0.98, which
are lower than the corresponding results of 0.96 and 0.99 in
Fig. 3a, respectively. The reason for this slight degradation
is that the constrained optimization problem (17) with non-
convex utility functions is much difficult to solve, thus re-
quiring more iterations and CPU time than those with convex
utility functions.

Nevertheless, these results validate the performance of
CLSTMs, which can find the optimal solutions for the non-
convex utility functions quickly.

D. Results and Analysis for Large Numbers of Variables and
Constraints

To demonstrate the impact of large numbers of variables
on performance, the proposed CLSTMs is used to find the
solutions for the problem scenarios with the different numbers
of jobs. Specifically, we change the number of jobs in each
problem scenarios to 50, 70, 90, and 100, respectively. Con-
sequently, the number of decision variables becomes 50, 70,
90, and 100, and the number of constraints is 101, 141, 181,
and 201, respectively. Except the number of jobs, the utility
function and all other parameters are the same with these used
in the experiment with sigmoid utility functions.

As shown in Table. I, the number of variables and con-
straints increases when there are more jobs in the problem
scenarios. Furthermore, we can see that the mean relative accu-
racy obtained after 10 iterations in all settings are higher than
0.9 and the standard deviation is lower than 0.1. Furthermore,
we can observe from Table. I that the mean relative accuracy

in all settings achieve 0.97 within 70 iterations or 1.2 seconds
of the CPU time.

Therefore, the results clearly show that the proposed
CLSTMs performs consistently well over a wide range of
problem sizes. These results have led us to expect that the
CLSTMs method can quickly generate the optimal or near-
optimal solutions even when the numbers of variables and
constraints further increase.

VI. RELATED WORK

A. Learning to optimize

The term ’learning to optimize’ can generally refer to solve
optimization problems by using learning techniques, such as
the supervised learning [8]–[10] and the deep reinforcement
learning [25]–[27]. A possible approach is to predict optimal
solutions to these optimization problems using the supervised
learning techniques. For instance, authors in [8] propose to use
a deep neural network to approximate the unknown nonlinear
mapping between the parameters of signal processing prob-
lems and the optimal solutions. Another approach is to apply
learning techniques as a specific component in an optimization
algorithm. For example, Zhang et al. [10] propose to use
supervised learning techniques to learn the optimal pruning
policy in the branch-and-bound algorithm, while authors in
[24] use deep belief networks for reducing the number of
variables in the optimization problems so that the size of the
considered problem is reduced.

Besides the aforementioned two approaches, learning tech-
niques also can be applied for updating variables in opti-
mization problems by iterations. For example, Ke et al. [25]
propose a reinforcement learning based optimization frame-
work, where a deep neural network is employed as a policy
and this policy is used to generate the update step sizes for
variables. Because this type of approach can adopt different
learning techniques that optimal solutions are not required for
training, it can be more efficient and easy-to-implement when
generating the optimal solutions is difficult.

B. Learning to optimize by RNNs

In recent decades, the recurrent neural networks (RNNs)
become more attractive for designing novel ’learn to optimize’
algorithms. Lv et al. [28] design the RNNprop model, in which
the algorithms, Adam [15] and RMSprop [16], are embedded,
and Wichrowska et al. [29] propose a hierarchical RNN
architecture to better scale to larger problems and transfer to
new tasks. Although these RNNs with various architectures

11

haves been proposed, LSTM networks are still widely used for
designing ’learn to optimize’ algorithms because of its simplic-
ity and robust performance. For instance, authors in [17] apply
the LSTM networks to learn to map a given gradient to an
update step size for variables and demonstrate that the trained
LSTM network can outperform conventional gradient-based
optimization algorithms on various unconstrained optimization
problems. Moreover, LSTM networks are also used to solve
other types of optimization problems, such as the Bayesian
swarm optimization problem [30], the black-box optimization
problems [31] and the minimax optimization problems [32]–
[34].

However, none of the aforementioned research considers
using LSTM networks to solve constrained optimization prob-
lems. It is important to note that recurrent neural networks
used in [35]–[38] for solving optimization problems are a
specific type of neural networks, which uses special analog
components, such as integrators and amplifiers. In contrast, our
proposed method specifically uses LSTM networks to capture
the temporal evolution of the iterative steps in searching
optimal solutions, thus making our work totally different from
the existing techniques.

VII. CONCLUSION

In this paper, we have proposed the CLSTMs to solve
nonconvex, constrained optimization problems. In developing
the solution technique, a projection function is introduced to
resolve an issue of keeping the Lagrangian multiplier positive
and avoid numerical difficulties. In addition, we have analyzed
the impact of the projection function on the optimal solutions
and the relationship between minimizing the loss functions
and solving the original constrained optimization problem with
special parameter settings. Furthermore, we have formulated a
resource-allocation problem and applied the new CLSTMs to
solve it by using the practical datasets from Alibaba. Extensive
experiments have been conducted to validate and study the
performance of the proposed CLSTMs. By considering 1,000
parameter scenarios of the resource-allocation problem with
convex utility functions, our numerical results have shown
that (1) the trained CLSTMs can find the near-optimal and
stable solutions in few iterations (e.g., achieving 98% mean
relative accuracy after 67 iterations), (2) the proposed ap-
proach is very robust to parameter changes as the trained
CLSTMs can produce excellent solutions for problems with
system parameters drawn from distributions different from
those used in the training process, and (3) the proposed criteria
for selecting the projection functions to ensure non-negative
Lagrangian multipler(s) can help the CLSTMs obtain optimal
solutions. Moreover, we consider another 1,000 scenarios with
non-convex utility functions and the numerical results validate
the trained CLSTMs can also generate the near optimal and
stable solutions with less iterations (e.g., achieving 97% mean
relative accuracy after 68 iterations) and CPU times compared
with the conventional gradient-based methods. Moreover, the
solutions to non-convex optimization problems obtained from
the CLSTM achieve 90% or better of the true optimum after
11 iterations, which corresponds to only 19% and 17% of the

number of iterations required by the GDM and GD methods,
respectively, to produce the same results. The CLSTM perfor-
mance also represents a reduction of CPU time consumption
by 33% and 36% when compared with the GDM and GD,
respectively.

In the future, we plan to explore extension of the proposed
method to the mixed integer nonlinear programming (MINLP)
problems. This is challenging because of the following two
reasons. Firstly, although it is possible to apply the CLSTMs to
solve MINLP problems if gradients can be properly estimated,
it is unclear that how close the generated solutions will be to
the optimum. Secondly, because the CLSTMs may converge to
non-integer solutions, further processing in terms of discretiza-
tion or rounding to integers may be needed. Furthermore, the
inseparable variables will also need to be considered. Since the
dependence among these variables is invisible to the CLSTMs,
the CLSTMs may not be able to generate appropriate update
step sizes for these variables, and thus it may require additional
structures and training procedures to help the CLSTMs learn
the dependences among these variables.

REFERENCES

[1] Z. Chen, K. K. Leung, S. Wang, L. Tassiulas and K. Chan, ’Robust
Solutions to Constrained Optimization Problems by LSTM Networks,’
MILCOM 2021 - 2021 IEEE Military Communications Conference
(MILCOM), pp. 503-508, 2021.

[2] H. Halabian, ’Distributed Resource Allocation Optimization in 5G Virtu-
alized Networks’, IEEE Journal on Selected Areas in Communications,
vol. 37, no. 3, pp. 627–642, 2019.

[3] Y. Xu, H. Sun, and Y. Ye, ’Distributed Resource Allocation for SWIPT-
Based Cognitive Ad-Hoc Networks’, IEEE Transactions on Cognitive
Communications and Networking, vol. 7, no. 4, pp. 1320–1332, 2021.

[4] J. Zhao, Q. Li, Y. Gong, and K. Zhang, ‘Computation Offloading and
Resource Allocation For Cloud Assisted Mobile Edge Computing in
Vehicular Networks’, IEEE Transactions on Vehicular Technology, vol.
68, no. 8, pp. 7944–7956, 2019.

[5] J. Du, C. Jiang, A. Benslimane, S. Guo, and Y. Ren, ’SDN-Based Re-
source Allocation in Edge and Cloud Computing Systems: An Evolution-
ary Stackelberg Differential Game Approach’, IEEE/ACM Transactions
on Networking, pp. 1–16, 2022.

[6] Q. Qin, K. Poularakis, G. Iosifidis, and L. Tassiulas, ’SDN Controller
Placement at the Edge: Optimizing Delay and Overheads’, in IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications,
2018, pp. 684–692.

[7] Y. Xie et al., ‘Virtualized Network Function Forwarding Graph Placing
in SDN and NFV-Enabled IoT Networks: A Graph Neural Network
Assisted Deep Reinforcement Learning Method’, IEEE Transactions on
Network and Service Management, vol. 19, no. 1, pp. 524–537, 2022,
doi: 10.1109/TNSM.2021.3123460.

[8] H. Sun, et al, ’Learning to Optimize: Training Deep Neural Networks for
Interference Management,’ IEEE Trans. on Signal Processing, vol. 66,
no. 20, pp. 5438-5453, 2018.

[9] F. Fioretto, T. W.K. Mak, and P. Van Hentenryck, ’Predicting AC Optimal
Power Flows: Combining Deep Learning and Lagrangian Dual Methods,’
Proceedings of the AAAI Conference on Artificial Intelligence, vol.
34(01), pp. 630-637, 2020.

[10] Z. Zhang and M. Tao, ‘Learning Based Branch-and-Bound for Non-
Convex Complex Modulus Constrained Problems with Applications in
Wireless Communications’, IEEE Transactions on Wireless Communica-
tions, 2021.

[11] Z. Gao, et al. ’Learning to Optimize on SPD Manifolds.’ Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 7700-7709, 2020.

[12] C. Sun, D.-K. Kim, and J. P. How, ‘FISAR: Forward Invariant Safe
Reinforcement Learning with a Deep Neural Network-Based Optimizer’,
in 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 10617–10624, 2021.

[13] Alibaba Inc. 2018. Alibaba production cluster data v2018. Website.
//github.com/alibaba/clusterdata/tree/v2018.

12

[14] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[15] D. P. Kingma and J. L. Ba, ’Adam: A Method for Stochastic Optimiza-
tion,’ ICLR (Poster). 2015.

[16] T. Tieleman and G. Hinton, ’Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude’. COURSERA: Neural
Networks for Machine Learning, 4(2), 2012.

[17] M. Andrychowicz, et al, ’Learning to learn by gradient descent by
gradient descent,’ Advances in neural information processing systems,
pp. 3981–3989, 2016.

[18] G. Tychogiorgos, A. Gkelias and K.K. Leung, ’A Non-Convex Dis-
tributed Optimization Framework and its Application to Wireless Ad-hoc
Networks,’ IEEE Trans. on Wireless Communications, Vol. 12, pp. 4286
– 4296, September 2013.

[19] D. T. Ngo, C. Tellambura and H. H. Nguyen, ’Resource Allocation for
OFDM-Based Cognitive Radio Multicast Networks,’ Proceeding of 2009
IEEE Wireless Communications and Networking Conference, pp. 1-6,
2009.

[20] A. Ribeiro and G. B. Giannakis, ’Separation Principles in Wireless
Networking,’ in IEEE Trans. on Information Theory, vol. 56, no. 9, pp.
4488-4505, Sept. 2010.

[21] S. Nazemi, K.K. Leung and A. Swami, ’Distributed Optimisation Frame-
work for In-network Data Processing,’ IEEE/ACM Trans. on Networking,
Vol. 27, No. 6, pp. 2432-2443, Dec. 2019.

[22] B. T. Polyak, ‘Some methods of speeding up the convergence of iteration
methods’, Ussr computational mathematics and mathematical physics,
vol. 4, no. 5, pp. 1–17, 1964.

[23] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson, ‘Global con-
vergence of the heavy-ball method for convex optimization’, in 2015
European control conference (ECC), 2015, pp. 310–315.

[24] L. Liu, Y. Cheng, L. Cai, S. Zhou, and Z. Niu, ‘Deep learning based
optimization in wireless network’, in 2017 IEEE international conference
on communications (ICC), 2017, pp. 1–6.

[25] K. Li and M. Jitendra, ’Learning to optimize,’ Proceedings of 5th
International Conference on Learning Representations (ICLR), 2017.

[26] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, ’Learning
Combinatorial Optimization Algorithms over Graphs’, in Advances in
Neural Information Processing Systems, vol. 30, 2017.

[27] K. Yonekura and H. Hattori, ‘Framework for design optimization using
deep reinforcement learning’, Struct Multidisc Optim, vol. 60, no. 4, pp.
1709–1713, Oct. 2019.

[28] K. Lv, S. Jiang, and J. Li, ‘Learning gradient descent: Better gener-
alization and longer horizons’, in International Conference on Machine
Learning, pp. 2247–2255, 2017.

[29] O. Wichrowska et al., ’Learned Optimizers that Scale and Generalize’, in
Proceedings of the 34th International Conference on Machine Learning,
vol. 70, pp. 3751–3760, Aug. 2017.

[30] Y. Cao, T. Chen, Z. Wang, and Y. Shen, ’Learning to optimize
in swarms,’ Advances in Neural Information Processing Systems, pp.
15018–15028, 2019.

[31] Y. Chen et al., ‘Learning to Learn without Gradient Descent by Gradient
Descent’, in Proceedings of the 34th International Conference on Machine
Learning, vol. 70, pp. 748–756, Aug. 2017.

[32] Y. Xiong, and H. Cho-Jui, ’Improved Adversarial Training via Learned
Optimizer,’ European Conference on Computer Vision, pp. 85-100.
Springer, Cham, 2020.

[33] H. Jiang, Z. Chen, Y. Shi, B. Dai, and T. Zhao, ‘Learning to Defend by
Learning to Attack’, in Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, vol. 130, pp. 577–585, Apr. 2021.

[34] J. Shen, X. Chen, H. Heaton, T. Chen, J. Liu, W. Yin, and Z. Wang,
’Learning a minimax optimizer: A pilot study,’ Proceeding of 9th ICLR,
2021.

[35] X.-B. Liang and J. Wang, ‘A recurrent neural network for nonlinear
optimization with a continuously differentiable objective function and
bound constraints’, IEEE Transactions on Neural Networks, vol. 11, no.
6, pp. 1251–1262, 2000.

[36] Y. Xia and J. Wang, ‘A general projection neural network for solving
monotone variational inequalities and related optimization problems’,
IEEE Transactions on Neural Networks, vol. 15, no. 2, pp. 318–328,
2004.

[37] M. Mestari, M. Benzirar, N. Saber, and M. Khouil, ‘Solving nonlinear
equality constrained multiobjective optimization problems using neural
networks’, IEEE Transactions on Neural Networks and Learning Systems,
vol. 26, no. 10, pp. 2500–2520, 2015.

[38] Y. Xia, J. Wang, Z. Lu, and L. Huang, ‘Two Recurrent Neural Networks
With Reduced Model Complexity for Constrained 𝑙1-Norm Optimization’,

IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13,
2022.

13

Zheyu Chen received the M.Eng. degree at the
School of Computer Science and Technology, Bei-
jing Institute of Technology in 2019. He is currently
pursuing the Ph.D. degree with the Computing De-
partment, Imperial College, London, UK.

His Ph.D. research focuses on the network man-
agement, learning to optimize.

Kin K. Leung received his B.S. degree from the
Chinese University of Hong Kong, and his M.S. and
Ph.D. degrees from University of California, Los
Angeles.

He began his career at AT&T Bell Labs in New
Jersey in 1986. Since 2004, he has been the Tanaka
Chair Professor at Imperial College in London.
His current research focuses on machine learning
and optimization for communication, computer and
sensor networks. He also works on multi-antenna
systems for wireless networks.

He received the Distinguished Member of Technical Staff Award from
AT&T Bell Labs (1994). He was elected IEEE Fellow (2001), received the
Royal Society Wolfson Research Merits Award (2004-09), and became a
member of Academia Europaea (2012), IET Fellow (2021) and Fellow of
Royal Academy of Engineering (2022). Jointly with his collaborators, he
received the IEEE ComSoc Leonard G. Abraham Prize (2021), IEEE ComSoc
Best Survey Paper Award (2022), U.S.-UK Science and Technology Stocktake
Award (2021), Lanchester Prize Honorable Mention Award (1997), and several
best conference paper awards. He currently serves as the IEEE ComSoc
Distinguished Lecturer (2022-23). He chaired the IEEE Fellow Evaluation
Committee for ComSoc (2012-15). He has served as an editor for ten IEEE
and ACM journals. Currently, he chairs the Steering Committee for the IEEE
Transactions on Mobile Computing, and is an editor for the ACM Computing
Survey and International Journal on Sensor Networks.

Shiqiang Wang (S’13–M’15) is a Research Staff
Member at IBM T. J. Watson Research Center,
NY, USA. He received his Ph.D. from Imperial
College London, United Kingdom, in 2015. His
current research focuses on the intersection of dis-
tributed computing, machine learning, networking,
and optimization, with a broad range of applica-
tions including data analytics, edge-based artificial
intelligence (Edge AI), Internet of Things (IoT), and
future wireless systems. He has made foundational
contributions to edge computing and federated learn-

ing that generated both academic and industrial impact. Dr. Wang serves as
an associate editor of the IEEE Transactions on Mobile Computing, IEEE
Transactions on Parallel and Distributed Systems, and IEEE Transactions
on Computational Social Systems. He received the IEEE Communications
Society (ComSoc) Leonard G. Abraham Prize in 2021, IEEE ComSoc Best
Young Professional Award in Industry in 2021, IBM Outstanding Technical
Achievement Awards (OTAA) in 2019, 2021, and 2022, multiple Invention
Achievement Awards from IBM since 2016, Best Paper Finalist of the
IEEE International Conference on Image Processing (ICIP) 2019, and Best
Student Paper Award of the Network and Information Sciences International
Technology Alliance (NIS-ITA) in 2015.

Leandros Tassiulas (S’89, M’91, SM/05 F/07) is
the John C. Malone Professor of Electrical Engineer-
ing at Yale University. His research interests are in
the field of computer and communication networks
with emphasis on fundamental mathematical models
and algorithms of complex networks, architectures
and protocols of wireless systems, sensor networks,
novel internet architectures and experimental plat-
forms for network research. His most notable con-
tributions include the max-weight scheduling algo-
rithm and the back-pressure network control policy,

opportunistic scheduling in wireless, the maximum lifetime approach for
wireless network energy management, and the consideration of joint access
control and antenna transmission management in multiple antenna wireless
systems. Dr. Tassiulas is a Fellow of IEEE (2007) and of ACM (2020).
His research has been recognized by several awards including the IEEE Koji
Kobayashi computer and communications award (2016), the ACM SIGMET-
RICS achievement award 2020, the inaugural INFOCOM 2007 Achievement
Award “for fundamental contributions to resource allocation in communication
networks,” several best paper awards including the INFOCOM 1994, 2017
and Mobihoc 2016, a National Science Foundation (NSF) Research Initiation
Award (1992), an NSF CAREER Award (1995), an Office of Naval Research
Young Investigator Award (1997) and a Bodossaki Foundation award (1999).
He holds a Ph.D. in Electrical Engineering from the University of Maryland,
College Park (1991). He has held faculty positions at Polytechnic University,
New York, University of Maryland, College Park, University of Ioannina and
University of Thessaly, Greece.

Kevin Chan (S’02–M’09–SM’18) received the B.S.
degree in electrical and computer engineering and
engineering and public policy from Carnegie Mellon
University, Pittsburgh, PA, USA and the M.S. and
Ph.D. degrees in electrical and computer engineering
from the Georgia Institute of Technology, Atlanta,
GA, USA. He is currently an Electronics Engineer
at the U.S. Army Combat Capabilities Development
Command, Army Research Laboratory, Adelphi,
MD, USA. He is actively involved in research on
network science, distributed analytics, and cyber-

security. He received the 2021 IEEE Communications Society Leonard G.
Abraham Prize and multiple best paper awards. He also recently served as
Co-Editor of the IEEE Communications Magazine—Military Communications
and Networks Series.

Don Towsley holds a B.A. in Physics (1971) and a
Ph.D. in Computer Science (1975) from University
of Texas. He is currently a Distinguished Professor
at the University of Massachusetts in the College of
Information Computer Sciences. He has held visit-
ing positions at numerous universities and research
labs including University of Paris VI, IBM Research,
ATT Research, Microsoft Research, and INRIA. His
research interests include security, quantum commu-
nications, networks and performance evaluation. He
is a co-founder ACM Transactions on Modeling and

Performance Evaluation of Computing Systems (ToMPECS) and served as
one of its first co-Editor in Chiefs. He served as Editor-in-Chief of the
IEEE/ACM Transactions on Networking and on numerous other editorial
boards. He has served as Program Co-chair for numerous conferences and
on the program committees of many other. He is a corresponding member
of the Brazilian Academy of Sciences and has received numerous IEEE and
ACM awards including the 2007 IEEE Koji Kobayashi Award, 2007 ACM
SIGMETRICS Achievement Award, and 2008 ACM SIGCOMM Achievement
Award. He has also received numerous best paper awards including the IEEE
Communications Society 1998 William Bennett Paper Award, a 2008 ACM
SIGCOMM Test of Time Award, a 2018 ACM MOBICOM Test of Time
award, the 10+ Year 2010 DASFAA Best Paper Award, the 2012 ACM
SIGMETRICS Test of Time Award and five ACM SIGMETRICS Best paper
awards. Last, he is Fellow of both the ACM and IEEE.

