
Robust Solutions to Constrained Optimization
Problems by LSTM Networks

Zheyu Chen∗, Kin K. Leung†, Shiqiang Wang‡, Leandros Tassiulas§, Kevin Chan¶
∗†Imperial College London, UK

‡IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
§Yale University, New Haven, CT, USA

¶U.S. Army Research Lab, Adelphi, MD, USA
{∗z.chen19, †kin.leung}@imperial.ac.uk, ‡wangshiq@us.ibm.com, §leandros.tassiulas@yale.edu, ¶kevin.s.chan.civ@mail.mil

Abstract—Many technical issues for communications and
computer infrastructures, including resource sharing, network
management and distributed analytics, can be formulated as
optimization problems. Gradient-based iterative algorithms have
been widely utilized to solve these problems. Much research
focuses on improving the iteration convergence. However, when
system parameters change, it requires a new solution from the
iterative methods. Therefore, it is helpful to develop machine-
learning solution frameworks that can quickly produce solutions
over a range of system parameters.

We propose here a learning approach to solve non-convex, con-
strained optimization problems. Two coupled Long Short Term
Memory (LSTM) networks are used to find the optimal solution.
The advantages of this new framework include: (1) near optimal
solution for a given problem instance can be obtained in very
few iterations (time steps) during the inference process, (2) the
learning approach allows selections of various hyper-parameters
to achieve desirable tradeoffs between the training time and the
solution quality, and (3) the coupled-LSTM networks can be
trained using system parameters with distributions different from
those used during inference to generate solutions, thus enhancing
the robustness of the learning technique. Numerical experiments
using a dataset from Alibaba reveal that the relative discrepancy
between the generated solution and the optimum is less than 1%
and 0.1% after 2 and 12 iterations, respectively.

Index Terms—Constrained optimization, LSTM, optimization,
SDC, stochastic optimization

I. INTRODUCTION

Using learning techniques to solve optimization problems
has attracted great attention in recent years. In [1] and [2], the
supervised learning techniques are modified and enhanced to
predict the optimal solutions for given optimization problem
parameters. Because the ground truth labels are required for
the supervised learning techniques, to train a well-performed
prediction model for optimization needs sufficient problem
parameters, and the optimal solutions of these optimization
problems for the training process, which requires extra effort

This research was partly sponsored by the U.S. Army Research Laboratory
and the U.K. Ministry of Defence under Agreement Number W911NF-16-
3-0001. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

to generate. Besides the supervised learning, reinforcement
learning techniques and meta-learning techniques are also used
for solving optimization problems. For instance, authors in
[3] propose to model the optimization solving process as a
Markov Decision process and employ a deep neural network
as the decision policy, while authors in [6] propose to embed
the optimization problem into a meta-learning problem and
employ a Long Short-Term Memory (LSTM) network as the
optimizer.

Motivated by the success of these prior works, researchers
start to focus on more specific types of optimization problems.
For instance, authors of [4] propose a framework, named
TwinL2O, consisting two LSTMs for solving minimax opti-
mization problems. Different from the Twin-L2O, we propose
here to use the two Coupled LSTM networks, referred to
as CLSTMs, for solving non-convex, constrained optimization
problems with user-defined objective and constraint functions.
Since the CLSTMs and the Twin-L2O are derived for solv-
ing different types of problems, different considerations are
required in the design of the loss functions and the overall
workflows, although the proposed CLSTMs and the Twin-
L2O both employ two LSTM networks. Instead of solving
the minimax optimization problems as by the Twin-L2O, the
constrained optimization problem we consider here is given as
follows:

min
θ
f(θ)

s.t. h(θ) ≤ 0.
(1)

By introducing a Lagrange multiplier λ, a Lagrange function
can be formed for the optimization problem in (1):

J(θ, λ) = f(θ) + λh(θ). (2)

The dual optimization problem of (1) is

max
λ
J(θ∗, λ)

s.t. θ∗ = argmin J(θ, λ), λ ≥ 0
(3)

According to the duality theory, the dual optimization
problem (3) has the same optimal solution for the original
(primal) problem (1) under the condition that the duality gap

𝑚 ෝ𝑚

ℎ𝑘

ℎ𝑘+1

𝑔𝑘

𝜃𝑘

𝜃𝑘+1

∇𝜃,𝑘 ∇𝜆,𝑘
𝜆𝑘

𝜆𝑘+1

ℎ𝑘

ℎ𝑘+1

ො𝑔𝑘

𝑘

𝑘 − 1

𝑘 + 1

𝐽𝑘

Fig. 1: Computation graph of the coupled LSTM for the iter-
ation k, where ∇θ,k = ∇θJ(θk, λk),∇λ,k = ∇λJ(θk+1, λk).

is zero. Therefore, our objective is to find the optimal θ and λ
for minimizing and maximizing the function J , respectively.
Note that the dual optimization problem (3) can be regarded as
a special minimax optimization problem. Thus, the proposed
CLSTMs can also be applied to solve minimax optimization
problems.

We also formulate here a resource-allocation problem in
the cloud cluster as a constrained optimization problem and
apply the proposed CLSTMs to solve it with practical data
from Alibaba [7]. Our evaluation results demonstrate that
the CLSTMs can achieve the 99% optimality accuracy after
2 iterations and the mean relative discrepancy between the
generated solution and the optimum is less than 0.1% after
12 iterations. Furthermore, we explore and demonstrate the
impact of various hyper-parameters in the CLSTMs on perfor-
mance. Specifically, our numerical results show that selecting
these hyper-parameters can serve as a mechanism to achieve
desirable tradeoffs between the training time and the solution
quality. Finally, we conduct an experiment to validate and
show robustness where the CLSTMs can be trained using
system parameters with distributions different from those used
during inference to generate solutions.

The rest of the paper is organized as follows. Section II
presents the detail of the coupled LSTM networks. Section
III describes the resource-allocation problem under study and
the formulated constrained optimization problem. Section IV
presents the evaluation of the coupled LSTM networks using
the cluster trace [7]. Finally, section V discusses related
research and section VI concludes the paper.

II. PROPOSED CLSTMS

In this section, we propose the CLSTMs for solving con-
strained optimization problems.

Firstly, we describe the inference process that the CLSTMs
are utilized to find the optimal θ and λ for a given Lagrange
function J , respectively, by iterations. The overall workflow is
shown in Fig. 1 where iterations indexed by k progress from
the bottom upward. In each iteration k, the update step sizes of
θ and λ are denoted by gk and ĝk, respectively. Specifically, θ

Algorithm 1: Training Process of the CLSTMs in a
frame

1: for iteration k = (i− 1)K, (i− 1)K + 1, . . . , iK do
2: for (J(θ, λ), θ, λ) in the training data set do
3: Calculate the gradient of function J w.r.t. θ:

∇θJ(θk, λk);
4: Generate the update step size gt by:[

gk
hk+1

]
= m(∇θJ(θk, λk), hk, φi)

5: Update θ using (5);
6: Calculate the gradient of function J w.r.t. λ:

∇λJ(θk+1, λk);
7: Generate the update step size ĝt by:[

ĝk
ĥk+1

]
= m̂(∇λJ(θk+1, λk), ĥk, φ̂i)

8: Update λ using (7);
9: end for

10: end for
11: Calculate the loss functions L(φi) and L̂(φ̂i) using

(8)(9), respectively;
12: Update the parameters φi and φ̂i using the gradients
∇φiL(φi) and ∇φ̂iL̂(φ̂i), respectively;

Algorithm 2: Training Procedure
1: for epoch =1,2,. . . do
2: Randomly initialize the values of θ, λ for each

optimization problem J(θ, λ);
3: Randomly initialize the hidden state hk, ĥk for m and

m̂, respectively;
4: for frame i = 1, 2, . . . , I do
5: Algorithm 1;
6: end for
7: end for

is updated from iteration k to k+1 by the following equations:[
gk
hk+1

]
= m(∇θJ(θk, λk), hk, φ∗), (4)

θk+1 = θk + gk, (5)

where φ∗ denotes the optimal parameters in m, ∇θJ(θk, λk)
is the gradient of function J with respect to (w.r.t.) θ, and
hk, hk+1 are the hidden state for m in iteration k and k + 1,
respectively. Then λ is updated according to:[

ĝk
ĥk+1

]
= m̂(∇λJ(θk+1, λk), ĥk, φ̂

∗), (6)

λk+1 = λk + ĝk, (7)

where φ̂∗ denotes the optimal parameters in m̂,
∇λJ(θk+1, λk) is the gradient of function J w.r.t. λ,
and ĥk, ĥk+1 are the hidden state for m̂ in iteration k and
k + 1, respectively.

We define K consecutive iterations are a frame. The training
process is to update the parameters for m and m̂ at the end of

each frame. Specifically, at the end of frame i, the parameters
φi are updated to minimize the loss function:

L(φi) = E
[iK+1∑

k=(i−1)K+1

wkJ(θk, λk)
]
, (8)

where wk are weighting factors and the sum of all wk equals
1. Meanwhile, we update the parameters φ̂i to minimize the
loss function:

L̂(φ̂i) = −E
[iK∑

k=(i−1)K+1

ŵkJ(θk+1, λk) + ŵiK+1J(θiK+1, λiK+1)
]
,

(9)

where ŵk are weighting factors and the sum of all ŵk equals 1.
The expectation is needed because that the objective functions
f(θ) used for training are sampled from a set of random
functions, while the constraint functions h(θ) are chosen
from another set of random functions. That is, the form of
the random functions is fixed, while function parameters are
randomly chosen from some distributions.

The detailed training process in a frame is illustrated in
Algorithm 1, which works as follows. At the beginning of a
frame, all variables and Lagrange multipliers are updated in
K iterations (Lines 1-10). In every iteration, for each sample
(J(θ, λ), θ, λ), the variables θ are updated (Lines 3-5) before
the Lagrange multipliers λ are updated (Lines 6-8). Finally, at
the end of a frame, the parameters φi and φ̂i are updated (Lines
11-12). Furthermore, to reduce the computational complexity
of computing the gradients ∇φiL(φi) and ∇φ̂iL̂(φ̂i), we
assume that the gradients of J w.r.t. to θ and λ are independent
of φ and φ̂, respectively (i.e., ∂∇θJ∂φi

= 0, ∂∇λJ
∂φ̂i

= 0).

A. Training Procedure
To obtain sufficient sampling and experience about how

to optimize near and far from the optimum, a group of
I consecutive frames are defined as an epoch, where the
optimization variables (i.e., λ and θ) and the hidden states
(i.e., hk and ĥk) are randomly initialized at the beginning of
each epoch. The detailed training procedure is provided in
Algorithm 2.

B. Parameters Shared in the CLSTMs
For each LSTM in the CLSTMs, directly feeding the vector

of gradients w.r.t. every variable into the fully connected
input layer of the LSTM will require a rather large LSTM
network if there are thousands of variables. Consequentially,
two large LSTM networks will impose a tremendous burden
on computation and storage. To reduce the computation and
storage requirements, the coordinate-wise LSTM structure
proposed in [6] is adopted here. Specifically, the gradients
of function J w.r.t. every variable are fed into the LSTM
successively so that they can share the parameters of an LSTM
network. Thus, the number of LSTM parameters can keep
small when there are thousands of variables. Meanwhile, the
hidden states for each variable are independent so that the
LSTM can generate different update step sizes for different
variables even their gradients are equal.

C. Scale function

Note that there is a constraint on the Lagrange multiplier λ
required to be non-negative in the dual optimization problem
(3). Thus, the scale function ψ(λ), as defined in (10), is
used to ensure that the values of λ are larger than or equal
to 0. Using the scale function ψ(λ) has the following two
advantages. Firstly, compared with the absolute value of λ or
ReLU function max(0, λ), the derivative of the scale function
ψ(λ) exists everywhere. Compared with the square function
λ2, the scale function ψ(λ) remains the linear property expect
the range [−1, 1]. These two advantages help the CLSTMs to
converge and obtain better performance as confirmed in our
experiments.

ψ(λ) =

−2λ− 1, if λ < −1
λ2, if − 1 ≤ λ ≤ 1

2λ+ 1, if λ > 1

(10)

III. PROBLEM FORMULATION

A. System Model

The resource-allocation problem is to allocate cluster re-
sources to competing tasks for maximizing the sum of task
utilities. Specifically, there are N tasks competing for a type
of resource and the amount of available resource is denoted
by C. For each task n, let rn, Rn, un(rn) denote the amount
of resource allocated to it, its resource requirement and its
utility function given the allocated resource rn, respectively.
Moreover, each task n must be allocated with a minimum
amount of resource to provide good service, while it also
cannot receive more than a maximum amount of resource in
order to guard against occupying a large amount of resources
by few tasks. By introducing two parameters α > 1 and β < 1,
the maximum and the minimum resource requirement of task
n are denoted by αRn and βRn.

B. Optimization Problem

By using these notations, we can have the optimization
problem derived from the resource allocation problem:

max
r1,...,rN

N∑
n=1

un(rn) (11a)

s.t.
N∑
n=1

rn ≤ C (11b)

rn ≥ βRn,∀n (11c)
rn ≤ αRn,∀n. (11d)

The first constraint (11b) ensures that the amount of allo-
cated resources for all tasks must not exceed the amount of
available resources, while the constraints (11c) guarantee that
the minimum resource requirements for tasks are satisfied.
The constraints (11d) ensure that the amount of allocated
resources for each task must not exceed its maximum resource
requirement.

C. Solve the Problem with the CLSTMs

Let θ denotes the vector of variables [r1, . . . , rN] and define
the objective function f(θ) and the constraint function h(θ)
as:

f(θ) = −
N∑
n=1

un(rn)

h(θ) =

∑N
n=1 rn − C
βR1 − r1

. . .
βRN − rN
r1 − αR1

. . .
rn − αRN

(12)

Then, we can have an optimization problem whose form is
similar to (1):

min
θ
f(θ)

s.t. h(θ) ≤ 0.
(13)

The Lagrange function can be derived by introducing a La-
grange multiplier vector λ = [λ0, . . . , λ2N]:

J(θ,λ) = f(θ) + λh(θ) (14)

Finally, by substituting J(θ,λ) for J(θ, λ), θ for θ, λ for λ
in the Algorithm 2, we can apply Algorithm 2 to train the
CLSTMs for solving this constrained optimization problem. It
is worth noting that we have not made specific assumptions
about the forms of the functions f(θ) and h(θ) in (13) as long
as the problem (13) satisfies the zero-duality gap.

IV. EXPERIMENT

A. Setup

The Alibaba cluster trace [7] presents the resource utiliza-
tion of 4,000 machines and the resource requirements of the
batch workloads. In the Alibaba’s cluster, the batch workloads
are described by the ’Job-Task-Instance’ structure, where
each job has multiple tasks and each task contains multiple
instances. Furthermore, the resource requirements of each
instance in a given task are identical. In our experiments, we
allocate the available CPU in the cluster in terms of utilization
in percentage to tasks where the resource requirement of a task
is the aggregate resource requirement of all its instances. We
employ a cluster of 10 machines randomly selected from the
Alibaba cluster trace to provide CPU resource to competing
tasks in all optimization problem scenarios considered in the
following experiments. In addition, for each problem scenario,
we randomly select 10 tasks and each task is allowed to have
most 100 instances. For each task n, its utility function given
the allocated CPU utilization rn is given by

un(rn) =
1

1 + e−µn(rn−Rn)
, (15)

where µn is a constant randomly selected from the uniform
distribution in the range of [0.5, 1) and Rn is the CPU

utilization requirement of task n. Moreover, α and β are set
to 1.4 and 0.7, respectively, for all tasks.

In the experiments, our algorithm is implemented with
Python and Tensorflow 2.1 and evaluated on an Ubuntu 20.04
LTS server with a NVIDIA TITAN Xp graphics card. Each
LSTM of the CLSTMs has two layers and each layer has
20 neural units. During the training process, the CLSTMs
are trained with 10,240 optimization problem scenarios. The
training process consists of 30 epochs where each epoch has
50 frames (I = 50) and each frame consists of 10 iterations
(K = 10). We set wk,∀k to 1 and the learning rate in the frame
i to 0.01× 0.97

i−1
300 . For the evaluation, the trained CLSTMs

are used to solve 1,000 optimization problem scenarios with
randomly selected parameters. For each problem scenario, the
optimization (control) variables are updated using the trained
CLSTMs by iterations and the solutions are saved after 1,000
iterations.

We employ a gradient-based method to produce the optimal
solutions, which serve as a baseline for comparison with the
CLSTMs. Given the optimization problem (3), this method
updates the variables θ and λ by iterations. In each iteration,
this method first finds the optimal θ for the given λ through
the gradient-descent and then updates the λ with the found
optimal θ by gradient ascent. After the iterations converge,
the optimal solutions are saved.

To measure performance of the proposed CLTMs approach,
we define the relative accuracy of a solution as:

α = 1− |x̂− x|
|x|

, (16)

where x̂ and x are the optimal values of the objective function
found by the CLSTMs and the gradient-based method, re-
spectively. Moreover, we define Mean relative accuracy as the
relative accuracy averaged over the 1,000 problem scenarios
solved by the trained CLTMs in the evaluation (inference)
process.

B. Results and Analysis

1) Compare with the baseline: In this experiment, we
demonstrate that the CLSTMs can find the near-optimal so-
lutions in a few iterations and obtain extremely high relative
accuracy in the end.

Fig. 2a shows the mean relative accuracy obtained by the
CLSTMs and the baseline in the first 200 iterations during
the evaluation process. Note that the mean relative accuracy
after the first iteration is omitted in Fig. 2a so that the
difference between the two curves can be made clear. Although
not shown in the figure, the mean relative accuracy for the
CLSTMs and the baseline after the first iteration is in fact
0.972 and 0.729, respectively. We can further observe that the
mean relative accuracy for the CLSTMs achieves 0.9929 after
2 iterations and reaches to 0.9993 after 12 iterations, while
the baseline still presents obvious fluctuation. This confirms
that the CLSTMs is much quicker in producing accurate and
stable solutions than the conventional gradient-based method.
Furthermore, we can see that the mean relative accuracy

12 100 200
Iterations

0.9900

0.9993
M

ea
n

re
la

tiv
e

ac
cu

ra
cy

CLSTMs
Baseline

(a)

0.983 0.997
Relative accuracy

0.00

0.99

(b)

Fig. 2: (a) The mean relative accuracy over iterations and (b)
the complementary cumulative distribution function (CCDF)
of relative accuracy.

achieves 0.9995 at the end of 1,000 iterations. Although it
is possible to improve the solution quality (i.e., from 0.9993
to 0.9995) with more iterations in the evaluation process, the
improvement is quite marginal.

Fig. 2b shows the complementary cumulative distribution
function (CCDF) of relative accuracy of solutions generated
by the CLSTMs after 1,000 iterations. From the figure, we can
make the observation that the 99% relative accuracy is larger
than 0.997 and the minimal relative accuracy is 0.983.

Clearly, these numerical results validate that the CLSTMs
can find a near-optimal solution quickly (e.g., achieving 0.993
and 0.9993 for the mean relative accuracy after 2 and 12 iter-
ations, respectively) and the relative accuracy of the solutions
found by the CLSTMs after enough iterations is practically
equal to 100% (e.g., achieving 0.9995 for the mean relative
accuracy after 1,000 iterations).

2) Impact of neural network structures: The purpose of this
aspect of our experiment is to study the impact of number
of neural units in each LSTM layer on the performance
of the CLSTMs. Toward this goal, we set the number of
neural units in each LSTM layer to 10, 15, 20, 25 and
30 as five different settings. Consequently, the corresponding
numbers of parameters in the CLSTMs are 2662, 5792, 10122,
15652 and 22382 in the five settings, respectively. Through
comparing the optimal solutions generated by CLSTMs of
five different settings after 1,000 iterations, we find that their
mean relative accuracy are similar (i.e., the difference between
them is less than 0.001) within the range of (0.998, 0.999).
Therefore, these confirm that the CLSTMs can perform well
with different neural network structures for the considered
problem scenarios.

3) Impact of K: In this experiment, we show the impact
of the parameter K in (8) and (9) on the performance of
CLSTMs. Specifically, we train five CLSTMs with the same
training procedure except that the K value is set to 1, 3, 5, 7
and 10, respectively.

Fig. 3a presents the mean relative accuracy and the standard
deviation of relative accuracy when K is set to the five differ-
ent values. We can see from the figure that the mean relative
accuracy improves and the standard deviation decreases with
the increase of K. This is so because that the loss function with

a larger value of K contains a longer future impact of a single
iteration. Thus, the CLSTMs learning to minimize such loss
function can find better update step sizes for minimizing the
objective functions. On the other hand, the training process for
K equal to 1, 3, 5, 7, 10 consumes 14, 31, 51, 69, 113 minutes
of CPU time, respectively. The reason for longer training time
for increased K is that the training procedure contains a fixed
number of frames and the number of iterations in a frame
increases as the K value grows.

Based on these observations from Fig. 3a, we can improve
the CLSTMs performance by increasing the value of K,
although it will consume more time for training.

4) Impact of wk: This experiment aims to present the impact
of wk on the performance. We fix K to 10 and employ three
different strategies to set weights. Specifically, the random
strategy chooses weights with random values sampled from a
uniform distribution in [0, 1), the decay strategy sets weights
to be exponentially decayed with the decay factor equal to
0.9, and the uniform strategy sets all weights to 1. Then, each
strategy normalizes the chosen weights so that the sum of
all weights chosen by the strategy equals 1. For the training
process, three CLSTMs with weights chosen by the three
different strategies are trained for 30 epochs. Then, these
trained CLSTMs are applied to solve identical 1,000 problem
scenarios and the generated solutions are saved after 1,000
iterations.

Fig. 3b presents the value of loss function (8) with different
weights setting strategies throughout the training epoch. First
of all, we can observe that the curve of the decay strategy
becomes relatively “flat” when it comes to the 20 epoch while
the curve of the uniform strategy still has obvious fluctuation
until the last few epochs. We can further observe that three
curves in this figure reach a similar value of the loss function at
the end of the training process after 30 epochs. This explains
why the trained CLSTMs can generate similar performance
(i.e., very narrow range of y-axis values) in Fig. 3c.

Specifically, Fig. 3c shows the mean relative accuracy and
the standard derivation of the relative accuracy with three
different weight settings. We can see that the CLSTMs trained
with randomly selected weights produces the highest standard
deviation and the lowest mean relative accuracy, while the
CLSTMs trained with weights selected by the uniform strategy
generate the lowest standard deviation and the highest mean
relative accuracy. Therefore, the strategy of uniform weights
provides the most desirable performance. We can further
observe that the mean relative accuracy with the decay strategy
decreases by 0.0008 and the standard deviation increases by
0.0002 when compared with the uniform strategy. Since this
difference is very small, the decay strategy and the uniform
strategy are comparable with respect to the performance.

Based on the observations of Fig. 3c and Fig. 3b, we find
that the exponential decayed weights can help the CLSTMs
converge despite slight performance degradation.

5) Robustness: This experiment aims to show the robustness
of a trained CLSTM. We use two datasets that are generated
from different distributions to train and evaluate the CLSTMs.

1 3 5 7 10
The value of K

0.99

1.00
M

ea
n

re
la

tiv
e

ac
cu

ra
cy

0.002

0.004

0.006

St
an

da
rd

 d
ev

ia
tio

n

(a)

0 10 20 30
Epoch

Lo
ss

 fu
nc

tio
n Uniform

Decay
Random

(b)

Random Decay Uniform
Weights setting strategy

0.9980

0.9985

0.9990

0.9995

M
ea

n
re

la
tiv

e
ac

cu
ra

cy

0.001

0.002

St
an

da
rd

 d
ev

ia
tio

n

(c)

0.986 0.991 1.000
Relative accuracy

0.00

0.99

(d)

Fig. 3: The impact of (a) the value of K (b) wk on the the mean relative accuracy and the standard deviation of relative
accuracy, (c) The value of the loss function with different weights wk over epochs, and (d) the CCDF of relative accuracy
evaluated using system parameters with distributions different from those used during training

Specifically, for each utility function (15), the parameters µn
are randomly selected from the set {0.5, 0.6, 0.7, 0.9} in the
training dataset, while they are randomly sampled from the
uniform distribution in [0.5, 1.0) in the evaluation dataset.

Fig. 3d shows the CCDF of relative accuracy for the
uniformly distributed dataset for the CLSTMs evaluation.
From this figure, we see that the minimal relative accuracy
is 98.6% in Fig. 3d, which is higher than the result of 98.3%
in Fig. 2b. On the other hand, the 99 percentile of the relative
accuracy is 99.1%, which represents a small reduction of
0.6% when compared with the corresponding result of 99.7%
accuracy in Fig. 2b. This slight degradation of 99 percentile
of the relative accuracy is intuitively consistent because the
combinations of system parameters (i.e., µn, Rn, C) in the
evaluation dataset are far more random than the combinations
included in the training dataset. Nevertheless, these results
show that the robustness of the trained CLSTMs as it still can
find the optimal solutions for the problem scenarios even when
the system parameters are drawn from distributions different
from that used for training.

V. RELATED WORK

The term ’learning to optimize’ can generally refer to using
learning techniques to solve optimization problems. A possible
approach is to predict optimal solutions for these optimiza-
tion problems using the supervised learning techniques. For
instance, authors in [1] propose to use a deep neural network
to approximate the unknown nonlinear mapping between the
parameters of signal processing problems and the optimal
solutions. Authors in [2] propose a specific deep neural net-
work structure to predict the optimal solution for constrained
optimization problems based on the supervised deep learning
techniques and demonstrate that the average prediction error
evaluated on a realistic system is as low as 0.2%. Besides
the supervised learning techniques, other learning techniques
are also applied to solve optimization problems, such as the
deep reinforcement learning [3] and the meta-learning [6].
Meanwhile, learning techniques are used to solve other types
of optimization problems. For example, authors in [8] focus on
solving the Bayesian swarm optimization problem, while au-
thors in [4] and [9] propose to solve the minimax optimization
problems by learning. However, none of the aforementioned

research considers solving constrained optimization problems
without the help of optimal labels.

VI. CONCLUSION

In this paper, we have proposed the CLSTMs to solve
nonconvex, constrained optimization problems. Furthermore,
we have formulated a resource-allocation problem and applied
the new CLSTMs to solve it by using the practical data
from Alibaba. Experiments have been conducted to study the
performance of the proposed CLSTMs. By considering 1,000
scenarios of the resource-allocation problem, our numerical
results have shown that (1) the trained CLSTMs can find the
near-optimal and stable solutions in very few iterations (e.g.,
achieving 99% and 99.9% optimality accuracy after 2 and 12
iterations, respectively), (2) the CLSTMs include a number of
selectable hyper-parameters to trade off the training time for
the solution quality, and (3) the proposed approach is robust
as the trained CLSTMs can produce excellent solutions for
problems with system parameters drawn from distributions
different from those used in the training process.

REFERENCES

[1] Sun, Haoran and Chen, Xiangyi and Shi, Qingjiang and Hong, Mingyi
and Fu, Xiao and Sidiropoulos, Nicholas D., ”Learning to Optimize:
Training Deep Neural Networks for Interference Management,” in IEEE
Transactions on Signal Processing, vol. 66, no. 20, pp. 5438-5453, 2018.

[2] Fioretto, Ferdinando, Mak, Terrence W.K. and Van Hentenryck, Pascal,
“Predicting AC Optimal Power Flows: Combining Deep Learning and
Lagrangian Dual Methods”, Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34(01), pp. 630-637, 2020.

[3] Li, Ke, and Jitendra Malik. ”Learning to optimize.” Proceedings of 5th
International Conference on Learning Representations (ICLR), 2017.

[4] Shen, Jiayi, Xiaohan Chen, Howard Heaton, Tianlong Chen, Jialin Liu,
Wotao Yin, and Zhangyang Wang. ”Learning a minimax optimizer: A
pilot study.” Proceeding of 9th ICLR, 2021.

[5] Sepideh Nazemi, Kin K. Leung and Ananthram Swami. ”Distributed
Optimization Framework for In-Network Data Processing,” IEEE/ACM
Trans. on Networking, vol. 27, pp. 2432–2443, 2019.

[6] Marcin Andrychowicz, et al. ”Learning to learn by gradient descent by
gradient descent,” Advances in neural information processing systems,
pp. 3981–3989, 2016.

[7] Alibaba Inc. 2018. Alibaba production cluster data v2018. Website.
//github.com/alibaba/clusterdata/tree/v2018.

[8] Yue Cao, Tianlong Chen, Zhangyang Wang, and Yang Shen. Learning
to optimize in swarms. In Advances in Neural Information Processing
Systems, pp. 15018–15028, 2019.

[9] Xiong, Yuanhao, and Cho-Jui Hsieh. ”Improved Adversarial Training
via Learned Optimizer.” In European Conference on Computer Vision,
pp. 85-100. Springer, Cham, 2020.

