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BACKGROUND: Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is 
vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied 
within the context of poststroke upper-limb sensorimotor impairment. We investigated associations between non-lesioned 
hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsile-
sional hippocampal volumes would be associated with greater sensorimotor impairment.

METHODS AND RESULTS: Cross-sectional T1-weighted magnetic resonance images of the brain were pooled from 357 participants 
with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta-Analysis) Stroke 
Recovery Working Group. Sensorimotor impairment was estimated from the FMA-UE (Fugl-Meyer Assessment of Upper Extremity). 
Robust mixed-effects linear models were used to test associations between poststroke sensorimotor impairment and hippocam-
pal volumes (ipsilesional and contralesional separately; Bonferroni-corrected, P<0.025), controlling for age, sex, lesion volume, 
and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships 
between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly as-
sociated with ipsilesional (P=0.005; β=0.16) but not contralesional (P=0.96; β=0.003) hippocampal volume, independent of lesion 
volume and other covariates (P=0.001; β=0.26). Women showed progressively worsening sensorimotor impairment with smaller 
ipsilesional (P=0.008; β=−0.26) and contralesional (P=0.006; β=−0.27) hippocampal volumes compared with men. Hippocampal 
volume was associated with lesion size (P<0.001; β=−0.21) and extent of sensorimotor damage (P=0.003; β=−0.15).

CONCLUSIONS: The present study identifies novel associations between chronic poststroke sensorimotor impairment and ip-
silesional hippocampal volume that are not caused by lesion size and may be stronger in women.
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Sensorimotor impairments are a major burden of 
disease for stroke survivors.1 To help clinicians, 
caregivers, and patients make informed and ef-

fective rehabilitation treatment decisions, there is a 
critical need to identify biomarkers that accurately pre-
dict a patient’s potential for sensorimotor recovery.2,3 
Magnetic resonance imaging (MRI) studies of regional 
brain volumes suggest that secondary degeneration 
of adjacent or remote regions may contribute to sen-
sorimotor impairment and could influence poststroke 
sensorimotor outcomes.4,5

The hippocampus is a brain region that is particu-
larly vulnerable to poststroke secondary degeneration. 
Both rodent6 and human7–9 stroke studies have shown 
evidence of damage within the hippocampus in the 
same hemisphere as an infarct (ipsilesional), but out-
side of the lesion itself. Using structural MRI, smaller 
ipsilesional hippocampal volumes in patients with 
stroke have been reported in comparison to healthy 

controls,7–9 as well as smaller bilateral hippocampal 
volumes at the time of stroke10 and accelerated hippo-
campal atrophy observed most prominently 3 months 
after stroke.6,9 Studies have also reported magnetic 
resonance spectroscopy evidence of contralesional 
hippocampal neuronal loss8 and contralesional hip-
pocampal atrophy measured with longitudinal MRI.9 
Given that stroke-related infarctions of the hippocam-
pus are uncommon,11 poststroke hippocampal atrophy 
may be attributed to secondary degenerative mecha-
nisms such as spreading depression (SD)6 or reduced 
connectivity to lesioned structures,11 among others. 
However, the extent to which lesion volume relates to 
hippocampal damage remains unclear.

The hippocampus is widely known for its key role in 
memory, and this has led the field of stroke recovery 
research to primarily focus on the role of hippocam-
pal damage in cognitive impairment.6–8 Although not 
typically considered a primary sensorimotor region, 
there is evidence that the hippocampus may also be 
involved in sensorimotor behavior. The hippocampus 
is densely connected to brain areas that play an im-
portant role in sensorimotor processing such as the 
thalamus and basal ganglia through the spinal-limbic 
pathway.12 Reports of hippocampal activity during sen-
sorimotor behavior such as sensorimotor integration,13 
sensorimotor learning,14 and motor control14 suggest 
that the hippocampus plays a role in sensorimotor cir-
cuits. Sensorimotor task-related functional connectiv-
ity with the hippocampus has also been reported with 
the thalamus,15 sensorimotor cortex,14 and the supple-
mentary motor area.16 However, the relationship be-
tween hippocampal structural integrity and poststroke 
upper-limb sensorimotor impairment remains unclear. 
Given the potential involvement of the hippocampus 
in sensorimotor circuits, hippocampal damage caused 
by secondary degeneration after stroke could fur-
ther weaken sensorimotor circuits, leading to greater 
chronic sensorimotor impairment. Alternatively, dam-
age to the thalamus, basal ganglia, sensorimotor cor-
tex, or supplementary motor area, which are typically 
associated with greater sensorimotor impairment, may 
lead to downstream degeneration of the hippocampus 
through functional or structural connections.

Dementia studies17 and healthy aging18 research 
also suggest that hippocampal atrophy may differ by 
sex, because hippocampal atrophy has been found to 
accelerate in women after menopause. Estrogen levels 
may play a mediating role in these trends19 and have 
been associated with stroke severity and mortality.20 
Stroke-related outcomes including disability and qual-
ity of life are generally poorer in women than men,1,21 

CLINICAL PERSPECTIVE

What Is New?
•	 In this study, we report a novel association 

between more severe sensorimotor impair-
ment and smaller ipsilesional hippocampal vol-
ume in patients with chronic stroke, which is 
not caused by lesion size or lesion damage to 
sensorimotor-specific regions, and which may 
be stronger in women than in men.

What Are the Clinical Implications?
•	 These findings are of clinical interest because 

they provide initial evidence linking the integrity 
of the non-lesioned hippocampus (a key region 
of the limbic system associated with cognition 
and mood) to poststroke sensorimotor out-
comes. This result provides support for holistic 
therapeutic approaches that are applicable to 
multiple domains of well-being.

Nonstandard Abbreviations and Acronyms

ENIGMA	 Enhancing NeuroImaging Genetics 
through Meta-Analysis

FMA-UE	 Fugl-Meyer Assessment of Upper 
Extremity

SD	 spreading depression
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although conclusive sex differences have not been 
reported in terms of poststroke sensorimotor impair-
ment.22 As such, sex could moderate the relationship 
between sensorimotor impairment and hippocampal 
volume following a stroke. In particular, women may 
have smaller hippocampal volumes and worse senso-
rimotor impairment, potentially leading to stronger ef-
fect sizes compared with men.

In addition, associations between lesion size and 
hippocampal volume remain unclear. One study re-
ports that larger lesion size is directly associated with 
smaller hippocampal volumes,7 while other studies 
report no clear relationship.6,8 Given this lack of con-
sensus, we also investigated whether lesion size was 
independently associated with hippocampal volume, 
using a large sample of brain MRI scans with manually 
segmented stroke lesions.

The current study is a first step towards examining 
whether there is an association between the volume of 
the non-lesioned poststroke hippocampus and senso-
rimotor impairment using a large cross-sectional data 
set. In this study, we aimed to investigate the relation-
ship between sensorimotor impairment and ipsilesional 
and contralesional hippocampal volumes (separately) 
in 357 participants with chronic stroke across 18 co-
horts from the ENIGMA (Enhancing NeuoImaging 
Genetics through Meta-Analysis) Stroke Recovery 
Working Group.23 Because of the heterogeneity of 
poststroke brain reorganization across individuals, 
large consortium-based multisite studies such as the 
ENIGMA Stroke Recovery Working Group are import-
ant for achieving large and diverse samples that can 
identify associations that may have otherwise been un-
detectable in a smaller single-site sample.24 In addition, 
the diversity of data allows us to verify whether asso-
ciations are maintained beyond a single cohort, im-
proving the robustness and generalizability of research 
findings. First, we investigated associations between 
sensorimotor impairment and hippocampal volume, 
controlling for lesion size and additional covariates of 
age, sex, and lesioned hemisphere. The Fugl-Meyer 
Assessment of Upper Extremity (FMA-UE) was used 
as a measure of sensorimotor impairment of the paretic 
upper limb.25 We hypothesized that greater poststroke 
sensorimotor impairment would be correlated with 
smaller ipsilesional but not contralesional hippocampal 
volume. We hypothesized, based on the involvement 
of the hippocampus in sensorimotor circuits, that the 
association between ipsilesional hippocampal volume 
and sensorimotor impairment would be independent 
of lesion size. Second, in an exploratory analysis, we 
tested to see whether sex had a moderating effect on 
the relationship between sensorimotor impairment and 
hippocampal volume. Because of more severe hippo-
campal vulnerability and poorer stroke outcome trends 
in women, we hypothesized that women would have a 

stronger relationship between more severe sensorimo-
tor impairment and smaller hippocampal volume than 
men. Given the lack of consensus in the literature re-
garding lesion size and hippocampal volume, we inde-
pendently tested associations between lesion size and 
hippocampal volume, without the FMA-UE included 
in the model. We hypothesized that larger lesion size 
would be significantly associated with smaller ipsile-
sional but not contralesional hippocampal volumes. 
Finally, we also tested to see whether damage to sen-
sorimotor regions specifically was associated with ip-
silesional hippocampal volume. We hypothesized that 
greater damage to sensorimotor regions would be cor-
related with smaller ipsilesional hippocampal volumes, 
independent of lesion size.

METHODS
Data Availability
To protect the privacy of research participants, indi-
vidual subject data used in this study are not available 
in a public repository. Participating research cohorts 
vary in public data-sharing restrictions as determined 
by the following: (1) ethical review board and consent 
documents; (2) national and transnational sharing 
laws; and (3) institutional processes that may require 
signed data transfer agreements for limited, predefined 
data use. However, data sharing is possible for new 
and participating ENIGMA Stroke Recovery Working 
Group members who agree to the consortium’s ethi-
cal standards for data use and upon the submission 
of a secondary analysis plan for group review. Upon 
the approval of the proposed analysis plan, access to 
relevant data is provided contingent on local principal 
investigator approval, data availability, and compliance 
with supervening regulatory boards. Deidentified sum-
mary data as well as code used for this study can be 
made available upon reasonable request to the cor-
responding author.

ENIGMA Stroke Recovery Data Set
A subset of cross-sectional data from the ENIGMA 
Stroke Recovery Working Group database (avail-
able as of December 15, 2020) was used. Details of 
the ENIGMA Stroke Recovery procedures and meth-
ods are available in Liew and colleagues.23 The data 
were derived from 18 research studies (cohorts) con-
ducted at 10 different research institutes in 6 coun-
tries (Table 1). Informed consent was obtained from all 
subjects, and data were collected in compliance with 
each institution’s local ethical review boards and in ac-
cordance with the Declaration of Helsinki.

ENIGMA Stroke Recovery participants with the fol-
lowing data were included: (1) high-resolution (1-mm 
isotropic) T1-weighted brain MRI (T1w) acquired with a 
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3T MRI scanner; (2) Fugl-Meyer Assessment of Upper 
Extremity score (FMA-UE; acquired on a scale from 0 
to 66: 0=severe sensorimotor impairment, 66=no sen-
sorimotor impairment); (3) age; and (4) sex. Because 
we were interested in studying effects of secondary 
degeneration of the hippocampus, we only included 
participants with chronic stroke (defined as data ac-
quired at least 180 days poststroke26). Behavioral data 
were collected within ≈72 hours of the MRI. Exclusion 
criteria included site-reported bilateral, brainstem, or 
cerebellar lesions; participants with no identifiable le-
sions; and participants with no sensorimotor impair-
ment (FMA-UE=66). In addition, each hippocampus 
was visually inspected with lesion masks overlaid, and 
any brains with hippocampal lesions were excluded. 
The total initial sample size was N=357 (age: me-
dian=61  years, interquartile range=18, range=23–93; 
FMA-UE: median=41, interquartile range=28, 
range=0–65; 135 women and 222 men) (Table 1).

MRI Data Analysis
Hippodeep, an automated convolutional neural 
network-based hippocampal segmentation algorithm, 
was used to segment ipsilesional and contralesional 
hippocampal volumes as well as estimated total head 
size from the T1-weighted MRI scan.27 Hippodeep was 
previously found to be the most robust out of the freely 

available methods for segmenting the hippocampus 
in people with stroke pathology.28 Hippocampal seg-
mentations were visually inspected according to previ-
ously described protocols.23,28 Any segmentations that 
were not properly segmented were marked as failed 
and excluded from the analysis. This resulted in differ-
ent sample sizes for the ipsilesional and contralesional 
analyses. More information on demographics of sam-
ples after quality control can be found in Tables  S1 
and S2. We performed a supplemental analysis using 
only participants with hippocampal segmentations that 
passed quality control for both ipsilesional and contral-
esional hippocampi and confirmed that differences in 
sample sizes did not significantly influence the results 
(Tables S3 through S6). To account for differences in 
head size, hippocampal volume was normalized for 
head size by taking the ratio of hippocampal volume 
to head size for each participant and multiplying it by 
the average head size across the sample, as done in 
previous studies of poststroke hippocampal volume.7,8

Manually Segmented Lesions
Lesions were manually segmented on the T1w MRI 
by B.L., M.D., J.S., A.Z.P., and S.-L.L. according to an 
updated version of the Anatomical Tracings of Lesions 
After Stroke (ATLAS) protocol.29 Briefly, brain lesions 
were identified, and masks were manually drawn on 

Table 1.  Demographics for ENIGMA Stroke Recovery Working Group Participants Included in the Study by Cohort

Cohort Total No. (women/men)
Median age (y)
(IQR, min–max)

Median FMA-UE
(IQR, min–max)

Median lesion size (cm3)  
(IQR, min–max)

Cohort 1 39 (10/29) 61 (17, 31–80) 43 (16, 0–58) 6.1 (20.3, 0.04–120.8)

Cohort 2 12 (6/6) 69.5 (12, 39–85) 33 (27, 13–48) 28.3 (28.5, 4.2–137.4)

Cohort 3 15 (6/9) 61 (17, 33–85) 16 (13, 5–40) 21.1 (68.7, 0.6–182.2)

Cohort 4 19 (6/13) 44 (15, 30–68) 10 (11, 1–34) 35.8 (54.4, 4.5–313.5)

Cohort 5 28 (12/16) 64 (18, 44–81) 52 (33, 8–65) 1.9 (25.7, 0.1–237.7)

Cohort 6 10 (3/7) 61 (12.5, 49–72) 65 (3, 45–65) 1.4 (1.1, 0.5–9.1)

Cohort 7 14 (5/9) 58 (12, 45–69) 63 (14, 6–65) 2.0 (2.9, 0.04–6.9)

Cohort 8 11 (4/7) 56 (12, 45–74) 48 (15, 25–55) 35.8 (50.2, 0.7–103.9)

Cohort 9 11 (3/8) 59 (3, 45–68) 38 (18, 15–49) 2.6 (21.7, 0.7–53.7)

Cohort 10 8 (4/4) 58 (8, 46–73) 48 (16, 35–59) 28.4 (43.2, 0.4–59)

Cohort 11 22 (6/16) 61.5 (11, 23–75) 49 (22, 23–64) 5.6 (41.5, 0.4–201.4)

Cohort 12 13 (4/9) 57 (13, 32–80) 54 (15, 38–63) 4.8 (18.2, 0.3–98)

Cohort 13 12 (4/8) 66 (16, 31–83) 51 (26, 19–62) 4.4 (37.6, 0.2–107.5)

Cohort 14 29 (18/11) 50 (15, 25–79) 41 (13, 24–53) 12.1 (28.6, 0.1–143.6)

Cohort 15 10 (3/7) 61.5 (11, 42–76) 29 (16, 11–60) 9.1 (23.4, 3–186.1)

Cohort 16 40 (14/26) 66.5 (11, 43–93) 47 (30, 4–65) 9.2 (26.1, 0.5–111.8)

Cohort 17 36 (15/21) 70 (14, 37–80) 53 (27, 8–65) 7.6 (29.3, 0.3–188.4)

Cohort 18 28 (12/16) 64 (14, 34–85) 27 (5, 14–34) 5 (29.4, 0.7–136.9)

Total 357 (135/222) 61 (18, 23–93) 41 (28, 0–65) 7.6 (33.4, 0.04–313.5)

Total sample size (N), number of women and men, and information about age (years), Fugl-Meyer Assessment of Upper Extremity (FMA-UE), and raw lesion 
size in cubic centimeters (cm3) are listed. For more information regarding cohort demographics by sex, see Tables S1 and S2. ENIGMA indicates Enhancing 
NeuoImaging Genetics through Meta-Analysis; and IQR, interquartile range.
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each individual brain in native space using ITK-Snap.30 
Each lesion was checked for quality by at least 2 differ-
ent tracers. An expert neuroradiologist (G.B.) was also 
consulted to ensure lesion segmentation accuracy. The 
ATLAS protocol for manually tracing stroke lesions has 
been technically validated, with high inter- and intrarater 
reliability. More details on the criteria used to manually 
trace lesions, including links to the lesion-tracing proto-
col, can be found in Liew and colleagues.29 The sample 
includes 81 participants with cortical lesions, 100 par-
ticipants with subcortical lesions, and 176 participants 
with mixed cortical and subcortical lesions. Although 
all participants were listed by the providing research 
sites as having unilateral lesions, additional second-
ary lesions were discovered in 100 participants during 
manual tracing, which were likely silent, subclinical, and/
or prior strokes. Secondary lesions were found in both 
hemispheres, the brainstem, and the cerebellum, and 
ranged in size. For this article, we refer to the primary 
lesioned hemisphere as the lesioned hemisphere noted 
by the research site. We also performed follow-up analy-
ses excluding participants with any identified secondary 
lesions (Figure S1), which did not significantly impact re-
sults (Tables S7 and S8). Lesion probability maps were 
generated by nonlinearly normalizing lesion masks and 
registering them to the MNI-152 template (Figure 1).

Finally, lesion volume was calculated by summing 
the voxels within each lesion mask. Lesion size was 
also normalized for head size as previously described 
for hippocampal volume in MRI Data Analysis Section. 
Lesion size was then log transformed to normalize the 
distribution of the data.

Sensorimotor Damage
Sensorimotor damage was estimated by calculating the 
percentage of lesion voxels that overlapped with the sen-
sorimotor cortex, supplementary motor cortex, thalamus, 
or the basal ganglia, as calculated using the open-source 
software Pipeline for Analyzing Lesions after Stroke 
(PALS31). Briefly, T1w images and their accompanying le-
sion masks were nonlinearly registered to the MNI-152 
template. Regions of interest reflecting the sensorimo-
tor cortex, supplementary motor cortex, thalamus, and 
basal ganglia were identified using the Desikan-Killiany 
Atlas.32 Sensorimotor cortex and supplementary motor 
cortex were estimated using the pre- and postcentral 
gyrus. The basal ganglia were estimated using the cau-
date, pallidum, putamen, and nucleus accumbens. The 
number of lesioned voxels in the sensorimotor cortex, 
supplementary motor cortex, thalamus, and basal gan-
glia was summed and divided by the sum of the size of 
each sensorimotor region. This value was then multiplied 
by 100 to create a percent of lesion overlap with sensori-
motor regions, reflecting sensorimotor damage.

Statistical Analysis
Hippocampal Volume and Sensorimotor 
Impairment

We first tested our primary hypothesis that more severe 
poststroke sensorimotor impairment is correlated with 
smaller ipsilesional but not contralesional hippocam-
pal volumes by performing robust mixed-effects linear 
regressions with hippocampal volume as the depend-
ent variable (see Model 1). Sensorimotor impairment 

Figure 1.  Lesion density maps for primary lesions from participants with cohort-reported left 
and right hemisphere lesions are overlaid on a coronal (left) and axial (right) slice of the Montreal 
Neurological Institute (MNI) MNI-152 template.
Lesioned hemisphere refers to the primary lesion, as reported by the research cohort. The color bar refers 
to the percentage of overlapping lesions across participants.
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was measured using the FMA-UE.33 Sex (coded as a 
binary variable: women=0, men=1), age, and lesioned 
hemisphere (coded as binary variable: left hemisphere 
lesion=0.5, right hemisphere lesion=1.5) were included 
in the model as fixed effects and cohort was included 
in the model as a random effect (Model 1):

Next, we tested our exploratory hypothesis that 
sex may have a moderating effect on the relationship 
between sensorimotor impairment and hippocampal 
volume by including an FMA-UE×Sex interaction co-
variate as a fixed effect (Model 2):

Sex differences in sensorimotor impairment, lesion 
size, and age were tested using an independent t test.

Finally, we tested our hypothesis that sensorimotor 
impairment is independently associated with hippo-
campal volume regardless of lesion size by including 
lesion size as a fixed covariate (Model 3):

Associations Between Lesion Size and 
Hippocampal Volume

To investigate associations between lesion size and 
hippocampal volume, regardless of sensorimotor im-
pairment, we performed a robust mixed-effects regres-
sion with ipsilesional and contralesional hippocampal 
volume as dependent variables with lesion size, age, 
sex, and lesioned hemisphere as fixed effects, and co-
hort as a random effect (Model 4):

Associations Between Sensorimotor 
Damage and Hippocampal Volume

We investigated our hypothesis that greater 
sensorimotor-specific lesion damage would be asso-
ciated with smaller ipsilesional hippocampal volumes 
with a robust mixed-effects regression with ipsilesional 
hippocampal volume as the dependent variable and 

(1)
Hippocampus∼FMA−UE

+Sex+Age+Lesionedhemisphere

+ random(Cohort)

(2)

Hippocampus∼ FMA−UE

+Sex+FMA−UE×Sex

+Age+Lesionedhemisphere

+ random (Cohort)

(3)

Hippocampus∼ Lesionsize+ FMA−UE

+Sex+FMA−UE×Sex

+Age+Lesionedhemisphere

+ random(Cohort)

(4)
Hippocampus∼ Lesionsize

+Sex+Age+Lesionedhemisphere

+ random (Cohort)

Table 2.  Summary Statistics From Robust Mixed-
Effects Linear Regression to Test Associations Between 
Ipsilesional Hippocampal Volume and Sensorimotor 
Impairment and Contralesional Hippocampal Volume and 
Sensorimotor Impairment When Including a Sensorimotor 
Impairment and Sex Interaction

Hippocampus~FMA-UE×Sex+FMA-UE+sex+lesioned 
hemisphere+age+random (cohort)

Covariates β (CI) SE P value

Ipsilesional hippocampal volume (N=336; R2=0.30)

FMA-UE* 0.31 (0.15 to 0.46)* 0.08* <0.001*

FMA-UE×sex* −0.26 (−0.46 to −0.07)* 0.10* 0.009*

Sex* −0.53 (−0.73 to −0.33)* 0.10* <0.001*

Lesioned 
hemisphere

0.17 (−0.03 to 0.37) 0.10 0.09

Age* −0.32 (−0.42 to −0.22)* 0.05* <0.001*

Contralesional hippocampal volume (N=349; R2=0.32)

FMA-UE 0.16 (0.01 to 0.31) 0.08 0.04

FMA-UE×sex* −0.27 (−0.46 to −0.08)* 0.10* 0.006*

Sex* −0.51 (−0.70 to −0.32)* 0.10* <0.001*

Lesioned 
hemisphere*

−0.35 (−0.54 to −0.16)* 0.10* <0.001*

Age* −0.41 (−0.51 to −0.32)* 0.05* <0.001*

The full model as well as the sample size (N), conditional R2, β coefficient 
(β) with 95% CI, SE, and uncorrected P value for all fixed-effect covariates 
are reported. FMA-UE indicates Fugl-Meyer Assessment of Upper Extremity.

*Significant covariates.

Table 3.  Summary Statistics From Robust Mixed-
Effects Linear Regression to Test Associations Between 
Ipsilesional Hippocampal Volume and Sensorimotor 
Impairment and Contralesional Hippocampal Volume and 
Sensorimotor Impairment When Including Lesion Size as a 
Covariate

Hippocampus~lesion size+FMA-UE×Sex+FMA-UE+sex+lesioned 
hemisphere+age+random (cohort)

Covariates β (CI) SE P value

Ipsilesional hippocampal volume (N=336; R2=0.33)

FMA-UE* 0.26 (0.10 to 0.41)* 0.08* 0.001*

FMA-UE×sex* −0.26 (−0.45 to −0.07)* 0.10* 0.008*

Lesion size* −0.19 (−0.29 to −0.09)* 0.05* <0.001*

Sex* −0.58 (−0.78 to −0.39)* 0.10* <0.001*

Lesioned 
hemisphere

0.17 (−0.03 to 0.36) 0.10 0.09

Age* −0.36 (−0.46 to −0.26)* 0.05* <0.001*

Contralesional hippocampal volume (N=349; R2=0.32)

FMA-UE 0.15 (0.00 to 0.30) 0.08 0.05

FMA-UE×sex* −0.27 (−0.46 to −0.08)* 0.10* 0.006*

Lesion size −0.03 (−0.13 to 0.07) 0.05 0.58

Sex* −0.52 (−0.71 to −0.33)* 0.10* <0.001*

Lesioned 
hemisphere*

−0.35 (−0.54 to −0.16)* 0.10* <0.001*

Age* −0.42 (−0.52 to −0.32)* 0.05* <0.001*

The full model as well as the sample size (N), conditional R2, β coefficient 
(β) with 95% CI, SE, and uncorrected P value for all fixed-effect covariates 
are reported. FMA-UE indicates Fugl-Meyer Assessment of Upper Extremity.

*Significant covariates.
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percent of sensorimotor damage, age, sex, and le-
sioned hemisphere as fixed effects, and cohort as a 
random effect (Model 5):

We also tested the hypothesis that sensorimotor 
damage is independently associated with hippocam-
pal volume regardless of lesion size by including lesion 
size as a fixed covariate (Model 6):

Statistical Tools
All statistical analyses were performed in R (version 4.0.233). 
The Mahalanobis distance was used to detect multivari-
ate outliers,34 which were then removed from the analy-
ses (Data S1). All continuous measures were normalized 
using the scale function in R and analyzed as z-scores to 

(5)
Hippocampus∼ Sensorimotordamage

+Sex+Age+Lesionedhemisphere

+ random (Cohort)

(6)

Hippocampus∼ Sensorimotordamage

+Lesionsize+Sex+Age

+Lesionedhemisphere

+ random (Cohort)

Figure 2.  Effect sizes (standardized β values) for ipsilesional and contralesional hippocampi are mapped onto a template 
for associations between hippocampal volumes and sensorimotor impairment (top left) and lesion size (bottom left), with 
warmer colors representing stronger positive associations.
Trend lines (black line) are plotted for the association between ipsilesional hippocampal volume z-scores with Fugl-Meyer Assessment 
of Upper Extremity (FMA-UE) z-scores (top right) and lesion size z-scores (bottom right). Scatterplot points are colored by research 
cohort.
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calculate standardized β coefficients. All mixed-effects re-
gressions were initially run as linear mixed-effects regres-
sions (lmer function from nlme package). To ensure that 
there was no redundancy in the included independent 
variables, collinearity for variables in every model tested 
was ruled out (variance inflation factor ≤2.5; Tables  S9 
and S10). Regression assumptions of linearity, normality 
of the residuals, and homogeneity of the residual vari-
ance were tested by visually inspecting residuals versus 
fits plots as well as qq-plots. After detecting influential 
observations using Cook’s distance in each analysis,35 
the analyses were repeated using robust mixed-effects 
regression. Robust mixed-effects regression (rlmer from 
the robustlmm package) avoids excluding data by reduc-
ing the weight of influential observations.36 We therefore 
report the results of the robust mixed-effects regression. 
For all analyses, β coefficients for the factor of interest and 
CIs (β [CI]), SE), and uncorrected P values are reported. 
For each analysis, a Bonferroni correction was applied 
for 2 comparisons (ipsilesional, contralesional; corrected 

P<0.025). Effect sizes were mapped onto a template of 
the hippocampus to visualize the results using ggseg.37

RESULTS
Hippocampal Volume and Sensorimotor 
Impairment
Greater sensorimotor impairment was significantly as-
sociated with smaller ipsilesional (β=0.16, P=0.005, 
R2=0.27) but not contralesional (β=0.003, P=0.96, 
R2=0.29) hippocampal volume after adjusting for age, 
sex, lesioned hemisphere, and cohort (Table S11). When 
including FMA-UE×Sex interaction as a covariate, we 
observed a better model fit and an increase in effect size 
for the association between sensorimotor impairment 
and ipsilesional hippocampal volume (β=0.31, P<0.001, 
R2=0.30; Table  2). Furthermore, FMA-UE remained in-
dependently associated with ipsilesional hippocampal 
volume after including lesion size in the model (β=0.26, 
P=0.001, R2=0.33; Table 3, Figure 2). This association 

Figure 3.  Trend lines are plotted for the association between Fugl-Meyer Assessment of Upper Extremity (FMA-UE) z-
score (x-axis) and hippocampal volumes z-score (y-axis) for women (red) and men (blue) calculated from the FMA-UE×Sex 
interactions.
Histograms for FMA-UE scores (bottom left), age (bottom middle), and lesion size (bottom right) are plotted by sex (women in red and 
men in blue).
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remained significant when excluding participants with 
secondary lesions (β=0.30, P=0.001, R2=0.35; Table S7).

Sex Effects on the Association Between 
Hippocampal Volume and Sensorimotor 
Impairment
A t test revealed no significant differences in FMA-UE 
(t[260])=1.13, P=0.26) or age (t[249]=1.12, P=0.26) be-
tween women and men. Women did have significantly 
larger lesions than men (t[277]=2.9, P=0.004) (Figure 3). 
The FMA-UE×Sex interaction was a significant covari-
ate for both ipsilesional (β=−0.26, P=0.009, R2=0.30) 
and contralesional (β=−0.27, P=0.006, R2=0.32) hip-
pocampal volumes (Figure 3, Table 2), even after ac-
counting for lesion size (ipsilesional: β=−0.26, P=0.008, 
R2=0.33; contralesional: β=−0.27, P=0.006, R2=0.32; 
Table 3). In the ipsilesional hippocampus, women had 
a positive slope (β=0.26) and men had a negative slope 
close to 0 (β=−0.002). In the contralesional hippocam-
pus, women had a positive slope (β=0.15) while men 
had a negative slope (β=−0.12) (Figure 3). The FMA-
UE×Sex interaction remained significantly associated 
with both ipsilesional (β=−0.31, P=0.008, R2=0.35) and 
contralesional (β=−0.28, P=0.017, R2=0.32) hippocam-
pal volumes, even when excluding participants with 
secondary lesions (Table S7).

Hippocampal Volume and Lesion Size
Larger lesion size was significantly associated with 
smaller ipsilesional (β=−0.21, P<0.001, R2=0.33) but 
not contralesional hippocampal volume (β=−0.03, 
P=0.60, R2=0.30), after adjusting for age, sex, lesioned 
hemisphere, and cohort (Table S12; Figure 2). Lesion 
size remained significantly associated with smaller ip-
silesional, but not contralesional, hippocampal volume, 
even when excluding participants with secondary le-
sions (β=−0.18, P=0.003, R2=0.33; Table S8).

Hippocampal Volume and Sensorimotor 
Damage
More sensorimotor damage was significantly associ-
ated with a smaller ipsilesional hippocampal volume 
(β=−0.15, P=0.003, R2=0.30; Table S13). However, this 
association did not remain significant after including 
lesion size in the model (β=−0.03, P=0.66, R2=0.32; 
Table S14).

DISCUSSION
In this study, associations between sensorimotor im-
pairment, lesion size, sex, and hippocampal volume 
were investigated in participants with chronic stroke 
from 18 research cohorts in the ENIGMA Stroke 
Recovery Working Group.23 Greater sensorimotor 

impairment and larger lesion sizes were both signifi-
cantly associated with smaller ipsilesional hippocampal 
volumes, and the association between sensorimotor 
impairment and hippocampal volume was stronger in 
women than in men.

To our knowledge, this is the first study to report 
associations between hippocampal volume and sen-
sorimotor impairment in patients with chronic stroke. 
Greater sensorimotor impairment was independently 
associated with smaller ipsilesional hippocampal vol-
ume, even after adjusting for lesion size. This suggests 
that poststroke ipsilesional hippocampal integrity may 
be related to sensorimotor impairment. SD might ex-
plain the sensitivity of stroke-related ipsilesional hippo-
campal atrophy, where damaging neurotoxic signals 
from the core of the lesion propagate to adjacent gray 
matter regions.6–8 The blockage of blood supply during 
the acute phase of a stroke leads to an ionic imbal-
ance that causes a buildup of extracellular glutamate, 
triggering a self-propagating wave of cell depolariza-
tion throughout neighboring gray matter.38 The hippo-
campus is filled with tightly packed, easily excitable 
glutamatergic neurons and a high density of N-methyl-
d-aspartate receptors,39 making it more susceptible to 
damage from SD. Overexcitation of the hippocampal 
glutamatergic network leads to hippocampal excitotox-
icity, resulting in hippocampal neuron apoptosis, which 
is thought to be reflected on a macroscale as reduced 
hippocampal volume.8 The damaging effects of SD are 
likely more prominent in the lesioned hemisphere be-
cause SD waves do not propagate easily through white 
matter38; therefore, the waves cannot easily traverse 
to the contralesional hippocampus. While a magnetic 
resonance spectroscopy study reported evidence of 
hippocampal neuronal loss in the contralesional hip-
pocampus, it was less severe and not detectable 
using volumetric MRI.8 SD still is not well understood; 
therefore, contralesional hippocampal damage may 
be caused by mild SD or might be attributed to other 
forms of secondary degeneration such as diaschisis.5 
The available evidence is insufficient to support SD 
as the key cause of reduced ipsilesional hippocampal 
volumes observed in this study, and there are several 
other mechanisms that may explain stroke-related hip-
pocampal damage such as chronic inflammation.40 
However, these findings could provide future directions 
for research investigating the mechanisms of stroke-
related hippocampal damage.

One question is whether the smaller hippocampal 
volumes observed is reflective of general atrophy of re-
gions across the entire ipsilesional hemisphere, or if it 
is specific to the hippocampus. Although the current 
work cannot directly address this, because Hippodeep 
only provides measures of hippocampal volume and 
total brain volume, recent work examined relation-
ships between the volumes of 5 subcortical regions 
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associated with sensorimotor processing (ie, thalamus, 
caudate, putamen, pallidum, and nucleus accumbens) 
in relation to sensorimotor impairment after stroke.4 
In chronic stroke, only the ipsilesional putamen was 
significantly associated with sensorimotor impairment 
specifically, suggesting that volumes of distinct regions 
are related with sensorimotor deficits. Thus, it is likely 
that the hippocampal association is a true relationship 
and not reflective of general ipsilesional atrophy.

We initially hypothesized that in addition to hippo-
campal damage incurred by SD, ipsilesional disruption 
to sensorimotor circuits may cause secondary degen-
eration of the ipsilesional hippocampus, possibly as 
a result of anatomical connectivity to damaged areas 
(eg, through the thalamus,15 basal ganglia,12 sensorim-
otor cortex,14 or supplementary motor area16) via an-
terograde degeneration. While we found a significant 
relationship between extent of sensorimotor damage 
and ipsilesional hippocampal volume, this relationship 
became insignificant once lesion size was added into 
the model. This suggests that smaller hippocampal 
volumes are likely not attributed to secondary degen-
eration derived from ipsilesional disruption to sen-
sorimotor circuits specifically. Further structural and 
functional connectivity research as well as longitudinal 
investigations may provide a more complete picture 
of the role of hippocampal damage in sensorimotor 
circuitry.

Furthermore, because the hippocampus is an im-
portant limbic system structure, it is heavily involved in 
learning, memory, and emotion.39 Poststroke cognitive 
impairment, depression, and anxiety are all common 
pervasive symptoms in stroke survivors that interfere 
with rehabilitation and are associated with poor stroke 
outcomes.41 Limbic system disruption caused by sec-
ondary poststroke hippocampal damage may cause 
cognitive impairment or aggravate symptoms of de-
pression and anxiety, which in turn, may interfere with 
stroke sensorimotor rehabilitation efforts. Further func-
tional and longitudinal research is necessary to under-
stand the relationship between hippocampal damage 
and sensorimotor circuits and how hippocampal vol-
ume loss may impact sensorimotor rehabilitation.

In an exploratory analysis, we found significant sex 
differences in the association between FMA-UE and 
bilateral hippocampal volume, where women showed 
progressively greater sensorimotor impairment with 
smaller hippocampal volumes compared with men. 
This observation suggests that women with greater 
sensorimotor impairment may also have more hippo-
campal damage or more pre-existing hippocampal at-
rophy compared with men. In addition, sex differences 
observed in the association between sensorimotor 
impairment and hippocampal volume did not appear 
to be driven by age or severity of sensorimotor impair-
ment. Although lesion size was significantly larger in 

women, the FMA-UE×Sex interaction covariate was 
independently associated with hippocampal volume, 
even when accounting for lesion size. Overall, these 
findings should be considered exploratory given the 
unequal number of men and women in the sample. 
Further research is needed to confirm these findings, 
because our sample was unable to account for addi-
tional variables thought to influence the hippocampus 
in a sex-dependent way such as estrogen levels,19 de-
mentia,17 and depression.42 Additionally, the current 
sample does not have information about race, which 
is known to affect stroke risk factors, possibly in a sex-
dependent way.43 Furthermore, the extent to which sex 
differences observed in stroke research are a result of 
physiological differences between sexes versus differ-
ent contextual factors such as treatment received by 
women poststroke remains unclear.21 For example, 
a recent meta-analysis showed that women are less 
likely to receive thrombolytic treatment thought to im-
prove stroke outcomes, compared with men.44 Further 
research on sex differences in stroke is crucial to im-
prove our understanding of the relationship between 
hippocampal damage and sensorimotor impairment.

Lastly, we found that larger lesion sizes were signifi-
cantly associated with smaller hippocampal volumes, 
but only within the lesioned hemisphere, independent 
of sensorimotor impairment. This finding is in line with 
a previous study7 and may indicate that smaller hippo-
campal volumes observed in patients with stroke may 
be specific to the amount of stroke-related damage 
within the lesioned hemisphere beyond that which is 
attributed to age-related atrophy39 or other stroke risk 
factors such as hypertension45 or changes in estro-
gen19 that are typically observed bilaterally.

Limitations and Future Directions
This study only considered gross hippocampal volume. 
However, the hippocampus is composed of structur-
ally and functionally distinct subfields, each differen-
tially vulnerable to disease.46 Structurally, reduced 
neuron density has been observed in the cells of the 
CA1 subfield of postmortem patients with stroke when 
compared with controls,47 and larger white matter hy-
perintensity volume has been associated with a smaller 
hippocampal-amygdala transition area.48 Functionally, 
while the posterior extents of the hippocampus along 
the long axis are thought to be more involved with mem-
ory and cognitive processing,49 the anterior extents 
have been implicated in sensorimotor integration.39 
Further research investigating sensorimotor impairment 
and the hippocampus at a finer resolution, such as at 
the level of hippocampal subfields49 or vertex-wise as-
sociations,50 may reveal more specific and robust rela-
tionships that can better inform the understanding of 
the impact of hippocampal damage on recovery and 
rehabilitation.
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One limitation of the Hippodeep software used in 
this study is that it only generates measurements for 
hippocampal volume and total head size and does not 
provide information about other brain regions such as 
cortical and subcortical volumes. Further research is 
necessary to compare the strength of associations be-
tween sensorimotor impairment and volumes of other 
cortical and subcortical regions in relation to associa-
tions with hippocampal volume.

In addition, although secondary lesions were 
discovered while manually tracing lesion masks, 
our findings did not change when participants with 
secondary lesions were excluded. Additionally, our 
preliminary results on lesion location only investi-
gated sensorimotor region damage. As mentioned 
previously, the hippocampus is a densely connected 
region and further research is necessary to investi-
gate the impact of lesion location on the association 
between hippocampal volume and sensorimotor 
impairment.

Given the focus on hippocampal volumes, another 
limitation of this study is the lack of cognitive and de-
pression data. While cognitive and depressive scores are 
available for a small number of cohorts in the ENIGMA 
Stroke Recovery database, the participants with avail-
able data have very limited information. In addition, many 
of the participating ENIGMA Stroke Recovery research 
cohorts used cognitive impairment as an exclusion cri-
terion, which is a fairly common practice in sensorimotor 
rehabilitation research,51 resulting in participants with no 
or mild cognitive deficits. However, given the high preva-
lence of poststroke dementia,52 future prospective stud-
ies collecting both sensorimotor and cognitive behavioral 
information across a range of impairment levels are nec-
essary to improve our understanding of how poststroke 
cognitive impairment may interfere with sensorimotor 
rehabilitation.53

Finally, the current sample is cross-sectional and 
cannot account for the extent of longitudinal hippo-
campal atrophy that may have occurred as a result 
of stroke, mild cognitive impairment, pre-existing de-
mentia, or normal aging. Additionally, without longi-
tudinal data, we cannot investigate the directionality 
of the association between sensorimotor impairment 
and hippocampal volume. Our findings reflect a cross-
sectional association, which does not imply causality. 
Future well-powered longitudinal research should ex-
amine causal relationships between these 2 factors.

This sample also does not contain data on type or 
dose of rehabilitation treatment received, which could 
also influence sensorimotor outcomes. However, the 
current cross-sectional analysis serves as a first step 
to examining the relationship between hippocampal 
volumes, sensorimotor impairment, lesion volume, and 
sex and can be used to guide future questions using a 
longitudinal data set.

CONCLUSIONS
Our findings demonstrate a novel association between 
chronic poststroke sensorimotor impairment and hip-
pocampal volume that may be modulated by sex. We 
provide supporting evidence to existing literature that 
reduced hippocampal volume is likely a consequence 
of stroke-related damage within the lesioned hemi-
sphere. Overall, these findings provide unique insight 
into the role that the hippocampus may play in post-
stroke sensorimotor impairment.
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Data S1. 

 

Data demographics following removal of multivariate outliers and 

segmentations that failed quality control 

 

3 participants were identified as multivariate outliers using the Mahalanobis distance. These 

participants were excluded from the analysis. Additionally, 18 participants were excluded from the 

ipsilesional analysis (Table S1) and 5 participants were excluded from the contralesional analysis (Table 

S2), due to hippocampal segmentations that failed quality control. More details regarding ENIGMA quality 

control protocols can be found in Zavaliangos-Petropulu et al., 2020 and Liew et al., 2020. Briefly, a 

segmentation failed quality control if the segmentation grossly underestimated the hippocampus, 

overestimated the hippocampus by including regions of the brain outside of the hippocampus, or missed 

the hippocampus entirely.  To ensure that differing sample sizes for the ipsilesional and contralesional 

analyses did not influence the results, we performed a supplemental analysis only including participants 

with hippocampal segmentations that passed quality control for both ipsilesional and contralesional 

hippocampi (Tables S3-S6). 

 

 

 

 



 

Table S1. Detailed demographics for the sample used to analyze sensorimotor impairment and 

ipsilesional hippocampal volume.  

 Women Men 

Cohort N Age (yrs) FMA-UE Lesion Size (cc) N Age  (yrs) FMA-UE Lesion Size (cc) 

Cohort 1 10 53 (14,31-75) 35 (16,0-58) 8.1 (31.5,1.1-96.6) 26 65 (12,42-80) 44 (13,19-56) 3.8 (7.6,0-37) 

Cohort 2 3 64 (17,51-85) 31 (17,14-48) 9.8 (24.6,6.3-55.5) 5 71 (18,39-74) 37 (22,13-46) 10 (23.4,4.2-34.1) 

Cohort 3 6 62 (9,35-85) 15 (7,5-18) 21.6 (16.1,1.3-112.4) 6 52 (15,33-71) 29 (11,5-40) 7.6 (6.7,0.6-113.4) 

Cohort 4 5 34 (19,30-68) 11 (5,9-34) 48.8 (23.4,9.7-90) 10 46 (11,32-63) 9 (11,1-24) 31.9 (30,8.1-130.2) 

Cohort 5 12 62.5 (14,44-81) 55 (21,22-65) 1.7 (6.2,0.1-70.2) 16 67 (18,50-81) 40 (32,8-65) 5.2 (66.6,0.3-237.7) 

Cohort 6 3 63 (10, 2-72) 65 (0,65-65) 5 (4.3,0.5-9.1) 7 59 (14,49-66) 64 (9,45-65) 1.3 (0.5,0.6-2.2) 

Cohort 7 5 61 (4,57-65) 49 (43,14-63) 4.3 (1.3,0.3-6.9) 9 53 (10,45-69) 63 (4,6-65) 1.5 (1.2,0.04-5.3) 

Cohort 8 4 58 (16,45-74) 50 (10,32-55) 45.2 (43,0.7-64.6) 7 56 (9,45-68) 45 (15,25-55) 35.8 (47.2,0.9-103.9) 

Cohort 9 3 59 (1, 8-60) 42 (11,26-49) 2.5 (11.6,0.8-24) 8 59 (5,45-68) 36 (20,15-49) 4.9 (22,0.7-53.7) 

Cohort 10 4 61 (11,46-73) 55 (9,35-58) 10.9 (28,0.4-59) 3 58 (4,56-64) 43 (11,37-59) 37 (27.3,1.4-55.9) 

Cohort 11 6 65 (5,51-75) 47 (24,23-61) 5.2 (31.3,0.4-201.4) 16 59 (10,23-75) 49 (18,29-64) 5.8 (42,0.6-71) 

Cohort 12 4 51 (16,32-62) 58 (8,54-63) 1.8 (14.5,0.3-55.9) 9 58 (7,47-80) 48 (11,38-62) 8.2 (17.8,1.3-98) 

Cohort 13 4 68 (20,31-75) 60 (4,51-62) 23.2 (55,0.5-107.5) 7 68 (19,52-83) 37 (31,19-61) 4.5 (30.3,0.2-62.6) 

Cohort 14 17 50 (15,36-79) 41 (15,24-47) 13.6 (44.7,0.7-143.6) 11 50 (15,25-76) 44 (9,31-53) 3.8 (12.5,0.1-32.4) 

Cohort 15 3 47 (11,42-63) 18 (5,11-21) 36.7 (91.4,3.2-186.1) 7 62 (12,51-76) 35 (16,23-60) 8.6 (3.3,3-97.5) 

Cohort 16 14 68 (12,43-93) 48 (33,20-65) 12.1 (24.9,1.1-54.4) 26 65 (9,45-81) 47 (26,4-62) 8 (25.2,0.5-111.8) 

Cohort 17 15 68 (19,37-79) 38 (34,8-64) 7.6 (31.2,0.5-188.4) 20 72 (12,51-80) 56 (11,23-65) 5.2 (22,0.3-110.8) 

Cohort 18 12 62 (15,34-85) 28 (5,14-34) 15.6 (47.9,0.8-136.9) 13 65 (17,50-78) 27 (4,23-33) 3.1 (3.6,0.7-34.1) 

Total 130 60 (20,30-93) 39 (29,0-65) 9.3 (39.5,0.11-201.4) 206 62 (16,23-83) 44 (25,1-65) 5.6 (24.1,0.04-237.7) 

 

Demographics for women and men are broken down by cohort. Sample size (N) and median (IQR, range) 

of age, FMA-UE, and raw lesion size are reported. 

 

 

 

 

 



 

Table S2. Detailed demographics for the sample used to analyze sensorimotor impairment and 

contralesional hippocampal volume.  

 Women Men 

Cohort N Age (yrs) FMA-UE Lesion Size (cc) N Age (yrs) FMA-UE Lesion Size (cc) 

Cohort 1 10 53 (14,31-75) 35 (16,0-58) 8.1 (31.5,1.1-96.6) 28 64 (17,32-80) 44 (13,19-56) 4.9 (12,0.04-120.8) 

Cohort 2 6 66 (9,51-85) 23 (29,13-48) 38 (39,6.3-137.4) 6 71 (14,39-74) 36 (17,13-46) 19 (26.2,4.2-34.1) 

Cohort 3 6 62 (9,35-85) 15 (7,5-18) 21.6 (16.1,1.3-112.4) 8 57 (17,33-71) 22 (22,5-40) 10.5 (50.6,0.6-171.2) 

Cohort 4 5 34 (19,30-68) 11 (5,9-34) 48.8 (23.4,9.7-90) 12 45 (11,32-63) 8 (11,1-24) 31.9 (38.8,4.5-130.2) 

Cohort 5 12 63 (14,44-81) 55 (21,22-65) 1.7 (6.2,0.1-70.2) 16 67 (18,50-81) 40 (32,8-65) 5.2 (66.6,0.3-237.7) 

Cohort 6 3 63 (10,52-72) 65 (0,65-65) 5 (4.3,0.5-9.1) 7 59 (14,49-66) 64 (9,45-65) 1.3 (0.5,0.6-2.2) 

Cohort 7 5 61 (4,57-65) 49 (43,14-63) 4.3 (1.3,0.3-6.9) 9 53 (10,45-69) 63 (4,6-65) 1.5 (1.2,0.04-5.3) 

Cohort 8 4 58 (16,45-74) 50 (10,32-55) 45.2 (43,0.7-64.6) 7 56 (9,45-68) 45 (15,25-55) 35.8 (47.2,0.9-103.9) 

Cohort 9 3 59 (1,58-60) 42 (11,26-49) 2.5 (11.6,0.8-24) 8 59 (5,45-68) 36 (20,15-49) 4.9 (22,0.7-53.7) 

Cohort 10 4 61 (11,46-73) 55 (9,35-58) 10.9 (28,0.4-59) 4 57 (4,53-64) 43 (5,37-59) 39.2 (16.9,1.4-55.9) 

Cohort 11 6 65 (5,51-75) 47 (24,23-61) 5.2 (31.3,0.4-201.4) 16 59 (10,23-75) 49 (18,29-64) 5.8 (42,0.6-71) 

Cohort 12 4 51 (16,32-62) 58 (8,54-63) 1.8 (14.5,0.3-55.9) 8 58 (9,47-80) 51 (11,43-62) 6.5 (9,1.3-34.3) 

Cohort 13 4 68 (20,31-75) 60 (4,51-62) 23.2 (55,0.5-107.5) 8 66 (16,52-83) 40 (27,19-61) 3.4 (27,0.2-62.6) 

Cohort 14 18 49 (14,36-79) 41 (15,24-47) 14.3 (45.9,0.7-143.6) 10 54 (15,25-76) 43 (9,31-53) 3.1 (10.8,0.1-16.5) 

Cohort 15 3 47 (11,42-63) 18 (5,11-21) 36.7 (91.4,3.2-186.1) 7 62 (12,51-76) 35 (16,23-60) 8.6 (3.3,3-97.5) 

Cohort 16 14 68 (12,43-93) 48 (33,20-65) 12.1 (24.9,1.1-54.4) 26 65 (9,45-81) 47 (26,4-62) 8 (25.2,0.5-111.8) 

Cohort 17 15 68 (19,37-79) 38 (34,8-64) 7.6 (31.2,0.5-188.4) 20 72 (12,51-80) 56 (11,23-65) 5.2 (22,0.3-110.8) 

Cohort 18 12 62 (15,34-85) 28 (5,14-34) 15.6 (47.9,0.8-136.9) 15 64 (14,50-78) 27 (4,19-34) 4.8 (18.8,0.7-100.4) 

Total 134 61 (20,30-93) 39 (29,0-65) 9.7(42.1,0.1-201.4) 215 62 (16,23-83) 43 (26,1-65) 5.8 (26.9,0.04-237.7) 

 

Demographics for women, men, and total are broken down by cohort. Sample size (N) and median (IQR, 

range) of age, FMA-UE, and raw lesion size are reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S3. Summary statistics from robust mixed-effects linear regression to test associations between 

ipsilesional hippocampal volume and sensorimotor impairment (top) and contralesional hippocampal 

volume and sensorimotor impairment (bottom) in participants who passed quality control for 

bilateral hippocampi.  

Hippocampus ~ FMA-UE + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=334; R2=0.27) 

FMA-UE 0.16 (0.05 – 0.27) 0.06 0.004 

Sex -0.54 (-0.74 – -0.34) 0.10 <0.001 

Lesioned Hemisphere 0.19 (-0.01 – 0.39) 0.10 0.06 

Age -0.32 (-0.43 – -0.22) 0.05 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=334; R2=0.33) 

FMA-UE 0.02 (-0.09 – 0.12) 0.05 0.78 

Sex -0.55 (-0.75 – -0.36) 0.10 <0.001 

Lesioned Hemisphere -0.36 (-0.56 – -0.16) 0.10 0.001 

Age -0.41 (-0.51 – 0.32) 0.05 <0.001 

 

The full model as well as the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence 

interval (CI), standard error (SE), and uncorrected p-value for all fixed effect covariates are reported. 

Significant covariates are denoted in bold. 

 

 

 

 

 

 



 

Table S4. Summary statistics from robust mixed-effects linear regression to test associations between 

ipsilesional hippocampal volume and sensorimotor impairment (top) and contralesional hippocampal 

volume and sensorimotor impairment (bottom) when including a sensorimotor impairment and sex 

interaction in participants who passed quality control for bilateral hippocampi.  

Hippocampus ~ FMA-UE*Sex + FMA-UE + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=334; R2=0.29) 

FMA-UE 0.32 (0.16 – 0.47) 0.08 <0.001 

FMA-UE*Sex -0.27 (-0.47 – -0.07) 0.10 0.007 

Sex -0.54 (-0.74 – -0.35) 0.10 <0.001 

Lesioned Hemisphere 0.18 (-0.03 – 0.38) 0.10 0.09 

Age -0.32 (-0.43 – -0.22) 0.05 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=334; R2=0.35) 

FMA-UE 0.17 (0.02 – 0.32) 0.08 0.028 

FMA-UE*Sex -0.27 (-0.46 – -0.08) 0.10 0.006 

Sex -0.56 (-0.76 – -0.37) 0.10 <0.001 

Lesioned Hemisphere -0.38 (-0.58 – -0.19) 0.10 <0.001 

Age -0.42 (-0.51 – -0.32) 0.05 <0.001 

 

The full model as well as the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence 

interval (CI), and uncorrected p-value for all fixed effect covariates are reported. Significant covariates are 

denoted in bold. 

 

 

 

 

 

 



 

Table S5. Summary statistics from robust mixed-effects linear regression to test associations between 

ipsilesional hippocampal volume and sensorimotor impairment (top) and contralesional hippocampal 

volume and sensorimotor impairment (bottom) when including lesion size as a covariate in 

participants who passed quality control for bilateral hippocampi.  

Hippocampus ~ Lesion Size + FMA-UE*Sex + FMA-UE + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=334; R2=0.32) 

FMA-UE 0.27 (0.11 – 0.42) 0.08 0.001 

FMA-UE*Sex -0.27 (-0.46 – -0.08) 0.10 0.006 

Lesion Size -0.19 (-0.30 – -0.09) 0.05 <0.001 

Sex -0.60 (-0.79 – -0.40) 0.10 <0.001 

Lesioned Hemisphere 0.17 (-0.03 – 0.37) 0.10 0.09 

Age -0.36 (-0.46 – -0.26) 0.05 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=334; R2=0.34) 

FMA-UE 0.17 (0.01 – 0.32) 0.08 0.032 

FMA-UE*Sex -0.27 (-0.46 – -0.08) 0.10 0.006 

Lesion Size -0.01 (-0.11 – 0.09) 0.05 0.84 

Sex -0.57 (-0.76 - -0.37) 0.10 <0.001 

Lesioned Hemisphere -0.38 (-0.52 – -0.32) 0.10 <0.001 

Age -0.42 (-0.52 – -0.32) 0.05 <0.001 

 

The full model as well as the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence 

interval (CI), standard error (SE), and uncorrected p-value for all fixed effect covariates are reported. 

Significant covariates are denoted in bold. 

 

 



 

Table S6. Summary statistics from robust mixed-effects linear regression to test associations between 

ipsilesional hippocampal volume and lesion size (top) and contralesional hippocampal volume and 

lesion size (bottom) in participants who passed quality control for bilateral hippocampi.  

Hippocampus ~ Lesion Size + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=334; R2=0.32) 

Lesion Size -0.22 (-0.32 – -0.12) 0.05 <0.001 

Sex -0.59 (-0.79 – -0.39) 0.10 <0.001 

Lesioned Hemisphere 0.17 (-0.03 – 0.36) 0.10 0.10 

Age -0.35 (-0.45 – -0.25) 0.05 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=334; R2=0.33) 

Lesion Size -0.01 (-0.11 – 0.09) 0.05 0.81 

Sex -0.56 (-0.75 – -0.36) 0.10 <0.001 

Lesioned Hemisphere -0.36 (-0.56 – -0.17) 0.10 0.001 

Age -0.42 (-0.52 – -0.32) 0.05 <0.001 

 

The full model as well as the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence 

interval (CI), standard error (SE), and uncorrected p-value for all fixed effect covariates are reported. 

Significant covariates are denoted in bold. 

 

 

 

 

 

 



 

Table S7. Summary statistics from robust mixed-effects linear regression to test associations between 

ipsilesional hippocampal volume and sensorimotor impairment (top) and contralesional hippocampal 

volume and sensorimotor impairment (bottom) when including lesion size as a covariate and 

excluding participants with secondary lesions.  

Hippocampus ~ Lesion Size + FMA-UE*Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=240; R2=0.35) 

FMA-UE 0.30 (0.12 – 0.48) 0.09 0.001 

FMA-UE*Sex -0.31 (-0.53 – -0.08) 0.11 0.008 

Lesion Size -0.14 (-0.27 – -0.02) 0.06 0.019 

Sex -0.57 (-0.80 – -0.35) 0.11 <0.001 

Lesioned Hemisphere 0.18 (-0.06 – 0.41) 0.12 0.14 

Age -0.29 (-0.41 – -0.18) 0.06 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=245 R2=0.32) 

FMA-UE 0.18 (0.00 – 0.35) 0.09 0.05 

FMA-UE*Sex -0.28 (-0.50 – -0.05) 0.12 0.017 

Lesion Size 0.05 (-0.08 – 0.17) 0.06 0.45 

Sex -0.45 (-0.68 – -0.22) 0.12 <0.001 

Lesioned Hemisphere -0.38 (-0.62 – -0.15) 0.12 0.001 

Age -0.36 (-0.48 – -0.25) 0.06 <0.001 

 

The full model as well as the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence 

interval (CI), standard error (SE), and uncorrected p-value for all fixed effect covariates are reported. 

Significant covariates are denoted in bold. 

 

 

 

 



 

Table S8. Summary statistics from robust mixed-effects linear regression to test associations between 

ipsilesional hippocampal volume and lesion size (top) and contralesional hippocampal volume and 

lesion size (bottom) after excluding participants with secondary lesions.  

Hippocampus ~ Lesion Size + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=240; R2=0.33) 

Lesion Size -0.18 (-0.30 – -0.06) 0.06 0.003 

Sex -0.58 (-0.80 – -0.35) 0.12 <0.001 

Lesioned Hemisphere 0.16 (-0.08 – 0.39) 0.12 0.19 

Age -0.28 (-0.40 – -0.16) 0.06 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=245; R2=0.29) 

Lesion Size 0.04 (-0.08 – 0.16) 0.06 0.53 

Sex -0.45 (-0.68 – -0.22) 0.12 <0.001 

Lesioned Hemisphere -0.37 (-0.60 – -0.14) 0.12 0.002 

Age -0.36 (-0.48 – -0.24) 0.06 <0.001 

 

The full model as well as the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence 

interval (CI), standard error (SE), and uncorrected p-value for all fixed effect covariates are reported. 

Significant covariates are denoted in bold. 

 

 

 

 

 

 



 

Table S9. To ensure no redundancy in the included independent variables, collinearity for variables 

in every model tested was ruled out (variance inflation factor ≤ 2.5).  

Model 1 Model 2 Model 3 

Covariates VIF Covariates VIF Covariates VIF 

FMA-UE 1.0 FMA-UE 2.1 Lesion Size 1.1 

Sex 1.0 Sex 1.0 FMA-UE 2.1 

Age 1.0 FMA-UE*Sex 2.1 Sex 1.0 

Lesioned Hemisphere 1.0 Age 1.0 FMA-UE*Sex 2.1 

  Lesioned Hemisphere 1.0 Age 1.1 

    Lesioned Hemisphere 1.0 

Model 4 Model 5 Model 6 

Covariates VIF Covariates VIF Covariates VIF 

Lesion Size 1.1 Sensorimotor Damage 1.1 Lesion Size 1.7 

Sex 1.0 Sex 1.0 Sensorimotor Damage 1.7 

Age 1.0 Age 1.1 Sex 1.0 

Lesioned Hemisphere 1.0 Lesioned Hemisphere 1.0 Age 1.1 

    Lesioned Hemisphere 1.0 

 

Variance inflation factors (VIF) for each variable in every model testing associations with ipsilesional 

hippocampal volume is listed. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S10. To ensure no redundancy in the included independent variables, variance inflation factors 

(VIF) for each variable in every model testing associations with contralesional hippocampal volume 

is listed. 

Model 1 Model 2 Model 3 

Covariates VIF Covariates VIF Covariates VIF 

FMA-UE 1.0 FMA-UE 2.2 Lesion Size 1.0 

Sex 1.0 Sex 1.0 FMA-UE 2.3 

Age 1.0 FMA-UE*Sex 2.2 Sex 1.0 

Lesioned Hemisphere 1.0 Age 1.0 FMA-UE*Sex 2.2 

  Lesioned Hemisphere 1.0 Age 1.1 

    Lesioned Hemisphere 1.0 

Model 4   

Covariates VIF     

Lesion Size 1.0     

Sex 1.0     

Age 1.0     

Lesioned Hemisphere 1.0     

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S11. Summary statistics from robust mixed-effects linear regression to test associations 

between ipsilesional hippocampal volume and sensorimotor impairment (top) and contralesional 

hippocampal volume and sensorimotor impairment (bottom).  

Hippocampal Volume ~ FMA-UE + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=336; R2=0.27) 

FMA-UE 0.16 (0.05 – 0.27) 0.06 0.005 

Sex -0.53 (-0.73 – -0.33) 0.10 <0.001 

Lesioned Hemisphere 0.19 (-0.01 – 0.39) 0.10 0.06 

Age -0.32 (-0.42 – -0.22) 0.05 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=349; R2=0.29) 

FMA-UE 0.003 (-0.10 – 0.11) 0.05 0.96 

Sex -0.50 (-0.69 – -0.31) 0.10 <0.001 

Lesioned Hemisphere -0.32 (-0.51 – -0.13) 0.10 0.001 

Age -0.41 (-0.51 – 0.32) 0.05 <0.001 

 

The full model as well as the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence 

interval (CI), standard error (SE), and uncorrected p-value for all fixed effect covariates are reported. 

Significant covariates are denoted in bold. 

 

 

 

 

 

 

 

 

 



 

Table S12. Summary statistics from robust mixed-effects linear regression to test associations 

between ipsilesional hippocampal volume and lesion size (top) and contralesional hippocampal 

volume and lesion size (bottom).  

Hippocampal Volume ~ Lesion Size + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=336; R2=0.33) 

Lesion Size -0.21 (-0.31 – -0.12) 0.05 <0.001 

Sex -0.58 (-0.77 – -0.38) 0.10 <0.001 

Lesioned Hemisphere 0.16 (-0.03 – 0.36) 0.10 0.10 

Age -0.35 (-0.45 – -0.25) 0.05 <0.001 

CONTRALESIONAL HIPPOCAMPAL VOLUME (N=349; R2=0.30) 

Lesion Size -0.03 (-0.12 – 0.07) 0.05 0.60 

Sex -0.51 (-0.70 – -0.32) 0.10 <0.001 

Lesioned Hemisphere -0.32 (-0.51 – -0.13) 0.10 0.001 

Age -0.42 (-0.52 – -0.32) 0.05 <0.001 

 

The full model as well as the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence 

interval (CI), standard error (SE), and uncorrected p-value for all fixed effect covariates are reported. 

Significant covariates are denoted in bold. 

 

 

 

 

 

 

 



 

Table S13. Summary statistics from robust mixed-effects linear regression to test associations 

between ipsilesional hippocampal volume and sensorimotor damage.  

Hippocampal Volume ~ Sensorimotor Damage + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=334; R2=0.30) 

Sensorimotor Damage -0.15 (-0.25 – -0.05) 0.05 0.003 

Sex -0.56 (-0.76 – -0.36) 0.10 <0.001 

Lesioned Hemisphere 0.17 (-0.03 – 0.37) 0.10 0.10 

Age -0.34 (-0.45 – -0.24) 0.05 <0.001 

 

Two participants were removed from the analysis due to poor image registration. The full model as well as 

the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence interval (CI), standard 

error (SE), and uncorrected p-value for all fixed effect covariates are reported. Significant covariates are 

denoted in bold. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S14. Summary statistics from robust mixed-effects linear regression to test associations 

between ipsilesional hippocampal volume and sensorimotor damage after accounting for lesion size.  

Hippocampal Volume ~ Sensorimotor Damage + Lesion Size + Sex + Lesioned Hemisphere + Age + random(Cohort) 

Covariates Beta(CI) SE p-value 

IPSILESIONAL HIPPOCAMPAL VOLUME (N=334; R2=0.30) 

Sensorimotor Damage -0.03 (-0.15 – -0.10) 0.06 0.66 

Lesion Size -0.20 (-0.32 – -0.38) 0.06 0.002 

Sex -0.58 (-0.78 – -0.38) 0.10 <0.001 

Lesioned Hemisphere 0.16 (-0.03 – 0.36) 0.10 0.10 

Age -0.35 (-0.46 – -0.25) 0.05 <0.001 

 

Two participants were removed from the analysis due to poor image registration. The full model as well as 

the sample size (N), conditional R2, beta coefficient (Beta) with 95% confidence interval (CI), standard 

error (SE), and uncorrected p-value for all fixed effect covariates are reported. Significant covariates are 

denoted in bold. 

  



 

Figure S1. Lesion density maps for lesions from participants with cohort-reported left and right 

hemisphere lesions, and without any secondary lesions (e.g., bilateral, brainstem or cerebellar 

lesions), overlaid on the Montreal Neurological Institute (MNI) MNI-152 template.  
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