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Abstract
Purpose Attenuation correction and scatter compensation (AC/SC) are two main steps toward quantitative PET imaging, 
which remain challenging in PET-only and PET/MRI systems. These can be effectively tackled via deep learning (DL) 
methods. However, trustworthy, and generalizable DL models commonly require well-curated, heterogeneous, and large 
datasets from multiple clinical centers. At the same time, owing to legal/ethical issues and privacy concerns, forming a 
large collective, centralized dataset poses significant challenges. In this work, we aimed to develop a DL-based model in a 
multicenter setting without direct sharing of data using federated learning (FL) for AC/SC of PET images.
Methods Non-attenuation/scatter corrected and CT-based attenuation/scatter corrected (CT-ASC) 18F-FDG PET images 
of 300 patients were enrolled in this study. The dataset consisted of 6 different centers, each with 50 patients, with scan-
ner, image acquisition, and reconstruction protocols varying across the centers. CT-based ASC PET images served as the 
standard reference. All images were reviewed to include high-quality and artifact-free PET images. Both corrected and 
uncorrected PET images were converted to standardized uptake values (SUVs). We used a modified nested U-Net utilizing 
residual U-block in a U-shape architecture. We evaluated two FL models, namely sequential (FL-SQ) and parallel (FL-PL) 
and compared their performance with the baseline centralized (CZ) learning model wherein the data were pooled to one 
server, as well as center-based (CB) models where for each center the model was built and evaluated separately. Data from 
each center were divided to contribute to training (30 patients), validation (10 patients), and test sets (10 patients). Final 
evaluations and reports were performed on 60 patients (10 patients from each center).
Results In terms of percent SUV absolute relative error (ARE%), both FL-SQ (CI:12.21–14.81%) and FL-PL (CI:11.82–
13.84%) models demonstrated excellent agreement with the centralized framework (CI:10.32–12.00%), while FL-based 
algorithms improved model performance by over 11% compared to CB training strategy (CI: 22.34–26.10%). Furthermore, 
the Mann–Whitney test between different strategies revealed no significant differences between CZ and FL-based algorithms 
(p-value > 0.05) in center-categorized mode. At the same time, a significant difference was observed between the different 
training approaches on the overall dataset (p-value < 0.05). In addition, voxel-wise comparison, with respect to reference 
CT-ASC, exhibited similar performance for images predicted by CZ (R2 = 0.94), FL-SQ (R2 = 0.93), and FL-PL (R2 = 0.92), 
while CB model achieved a far lower coefficient of determination (R2 = 0.74). Despite the strong correlations between CZ 
and FL-based methods compared to reference CT-ASC, a slight underestimation of predicted voxel values was observed.
Conclusion Deep learning-based models provide promising results toward quantitative PET image reconstruction. Specifically, 
we developed two FL models and compared their performance with center-based and centralized models. The proposed FL-
based models achieved higher performance compared to center-based models, comparable with centralized models. Our work 
provided strong empirical evidence that the FL framework can fully benefit from the generalizability and robustness of DL 
models used for AC/SC in PET, while obviating the need for the direct sharing of datasets between clinical imaging centers.
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Introduction

PET is widely used for in vivo quantification of physiologi-
cal processes at the molecular level [1]. The introduction of 
hybrid imaging, in the form of PET/CT has thrived its adop-
tion in a clinical setting, particularly for oncological applica-
tions [1]. Corrections for physical degrading factors mainly 
linked to the interaction of annihilation photons with matter, 
such as attenuation and Compton scattering, are needed to 
achieve the full potential of quantitative PET imaging [2]. 
During the image formation process, a significant number 
of annihilation photons undergo photoelectric absorption 
and multiple Compton interactions with underlying mate-
rial along their trajectory (patient body, scanner hardware, 
etc.) before reaching the PET detectors [2, 3]. Attenuation 
and scattering interactions result in undetected annihilation 
events and the recording of anomalous coincidences, respec-
tively [4]. This leads to a large tracer uptake quantification 
bias. It has been reported that a fraction of around 30–35% 
of all detected events in 3D brain scanning are recorded from 
scattered photons, while this fraction exceeds 50–60% in 
whole-body scanning [5]. The probability of photon interac-
tions increases either with the traveling distance (patient’s 
size) or the electron density of the medium [4]. Hence, for 
an effective attenuation/scatter correction (AC/SC) of PET 
images, a prior knowledge of the attenuation map at 511 keV 
through the traveling medium is required [4].

The problem of AC/SC to achieve quantitative PET imag-
ing has been relatively successfully resolved following the 
commercial emergence of hybrid PET/CT modality where 
CT-based correction algorithms are commonly implemented 
on commercial systems [4, 6]. However, AC and SC remain 
challenging on PET/MRI and PET-only scanners [7, 8]. 
Unlike PET/CT, direct attenuation correction in PET/MRI 
is not straightforward owing to the lack of direct correlation 
between MR signals, i.e., proton density and time-relaxa-
tion properties of tissues and electron density [8]. Hence, 
various strategies have been devised for MRI-guided AC/
SC, including bulk segmentation, atlas-based algorithms, 
and emission-based techniques. Although these methods 
improve the quantification accuracy of PET images, they 
are affected by the misclassification of tissues (segmenta-
tion-based approach), as well as inter/intra-subject variabil-
ity of MR images for co-registration to the best-fitted atlas 
model (atlas-based approach) [8]. Furthermore, in PET-only 
scanners, emission-based algorithms that estimate directly 
the attenuation map from the emission data, time-of-flight 
(TOF) information, and anatomical prior knowledge have 
been proposed [9, 10].

The past decade has witnessed significant progress in 
the development and implementation of artificial intelli-
gence (AI)-based methods in different areas of medical 

image analysis, e.g., detection, segmentation, classifica-
tion, regression, and outcome prediction [11–14]. Several 
AI-based algorithms, in particular deep convolutional neu-
ral networks, have been developed to address the limita-
tions of conventional attenuation correction techniques, 
demonstrating significant benefits in terms of improved 
image quality and quantitative accuracy of PET imag-
ing [15, 16]. In this context, four main learning-based 
approaches for AC/SC of PET data, including (i) the gen-
eration of synthesized CT from MR images [17], (ii) gen-
erating synthesized CT from non-corrected PET images 
[18], (iii) predicting the scattered component from emis-
sion information (TOF, event position) in either the image 
or sinogram domain [10, 19], and (iv) generating directly 
AC/SC PET images from non-attenuation/scatter corrected 
images [20]. Although, a number of studies reported prom-
ising performance of deep learning (DL)-based algorithms 
within an acceptable clinical tolerance, the size of training 
and testing datasets is a major limitation of these methods 
[21]. To build a generalizable and trustworthy DL model, 
a large multicenter dataset is required to tune millions of 
model parameters [22–24]. However, the sensitivity of 
medical images, and the ensuing ethical/legal considera-
tions and regulations, challenge gathering large datasets 
to feed such data-hungry algorithms [22–24]. To address 
this issue, federated learning (FL), initially developed for 
mobile technologies, is being increasingly considered in 
the healthcare domain [4].

A single hospital, often, cannot provide a sufficient 
number of samples, as required for successful training 
of machine learning models with acceptable accuracy, 
generalizability, and trustworthiness [22–25]. As such, it 
may not be feasible to train a high-quality model for PET 
AC/SC images based on a limited sample dataset avail-
able from a single hospital. Moreover, all hospitals do not 
have infrastructures and expertise for machine learning 
model developments. One strategy involves collecting data 
from different hospitals to train a more accurate model. 
However, this approach is challenged by various privacy 
regulations and policies on data sharing. FL techniques 
enable the collaborative training of machine learning mod-
els among multiple parties without exchanging the local 
data to preserve privacy and solve the concerns of data 
users and data owners [22–24].

A typical FL protocol consists of three main components: 
(i) the manager (e.g., trusted server), (ii) participating parties 
as data owners (e.g., hospitals and departments), and (iii) 
computation-communication framework to train the local 
and global models [26]. Depending on the parties, FL pro-
tocols can be divided into two settings: (i) cross-device FL, 
where the parties are edge devices; and (ii) cross-silo FL, 
where the parties are reliable organizations (e.g., hospitals). 
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In designing an FL system, one needs to consider three prop-
erties regarding the participating parties namely, (a) com-
putational and storage capacity of the parties, (b) stability 
and scale of the parties, and (c) data distribution among 
the parties [27, 28]. The manager (trusted server or party) 
supervises the training procedure of the global model and 
manages the communication between the data owners and 
itself. To produce an accurate model, the stability and reli-
ability of the server need to be guaranteed [27, 28]. In the 
cross-device setting, various solutions have been proposed 
to increase the reliability of the system [29–32]. Fortunately, 
in the cross-silo setting, organizations have powerful com-
putational machines, better facilitating FL [29–32]. Hence, 
one possible option is to consider one of the organizations 
as the manager of the FL model [27, 28]. Alternatively, the 
organizations can act in a fully decentralized setting. In this 
setting, all the participated parties communicate with each 
other directly [29–32].

Collaborative models could be trained in a decentralized 
manner using an FL framework without exchanging data 
between the different centers/hospitals [27, 28]. In recent 
years, FL-based DL models have been applied to multi-insti-
tutional data for different medical imaging tasks, including 
image segmentation [33–35] and abnormality detection and 
classification [36–38]. The main contribution of the pre-
sent study is to propose, implement, and assess a robust FL 
algorithm for attenuation/scatter correction of PET data to 
achieve a generalized model using a limited data obtained 
from each center without direct sharing of data amongst the 
different centers. The hope is to propose this development 

for potential applications on standalone CT-less PET scan-
ners or enhanced quality assurance in PET/CT scanners.

Materials and methods

PET/CT datasets

Non-attenuation-corrected and CT-based attenuation-cor-
rected 18F-FDG PET images of 300 patients were included 
in this study. The dataset were acquired at 6 different centers, 
each providing 50 patients acquired on various PET scan-
ners, using different image acquisition and reconstruction 
protocols across the different centers, more information of 
dataset is provided in Table 1 [20, 39–47]. All images were 
reviewed to include only high-quality and artifact-free PET 
images. PET images were converted to standardized uptake 
values (SUVs) for both corrected and non-corrected images.

Image preprocessing

We converted all PET images to SUV values and resa-
mpled both NAC and CT-ASC PET images to the same 
voxel spacing (3 × 3 × 4  mm3) and finally normalized 
by empirical values of 3 and 9 for NAC and CT-ASC, 
respectively. To harmonize the intensity range of PET 
images across the different centers, the voxel values of 
both non-AC and CT-AC PET images were converted to 
SUV. Subsequently, non-ASC and CT-ASC PET images 
were normalized by SUV factors of 3 and 9, respectively. 

Table 1  Patients demographics and PET/CT image acquisition and reconstruction settings across the six different centers

Centre 1 Centre 2 Centre 3 Centre 4 Centre 5 Centre 6

Demographic Sex (F/M) 15/35 17/33 19/31 22/28 6/44 21/29
Age 54 ± 22.7 62.6 ± 8.8 63.9 ± 12.2 68 ± 9.4 58.2 ± 9 52.6 ± 20.2
Weight 69.1 ± 15.9 68.2 ± 18.4 77.3 ± 18.7 74.5 ± 16.1 84.3 ± 18 70.2 ± 23.3

Scanners Manufacture GE GE GE GE GE Siemens
Model Duo LS ST Discovery 690 RX Biograph

CT acquisition Average tube 
current

115.7 ± 9.2 120.6 ± 41 149.2 ± 51.9 98.3 ± 61 264.1 ± 41.9 176 ± 32.0

kVp 130 ± 0 135 ± 8.8 134 ± 9.3 134 ± 9.3 119.2 ± 4 130± 0
PET acquisition 

and reconstruc-
tion parameters

Injected dose 487.2 ± 72.9 514.3 ± 118.1 549.7 ± 95.2 425.5 ± 91.2 448.9 ± 121.8 373.9 ± 92.6
Time to scan 75.7 ± 18.9 72.1 ± 25.5 75.2 ± 17.6 73.1 ± 18.8 86.7 ± 13.6 97.6 ± 13.9
Time Per Bed 2.6 ± 0.5 4.6 ± 1 3.6 ± 0.6 2.4 ± 1 3.1 ± 0.3 3.1 ± 0.4
Scatter
Correction

Model-based Convolution sub-
traction

Convolution sub-
traction

Model-based Model-based Model-based

Reconstruction OSEM OSEM OSEM VPHD, VPHDS OSEM OSEM + PSF
Matrix size 256 × 256 128 × 128 128 × 128 192 × 192 128 × 128 168 × 168
Slice thickness 3.4 4.3 3.3 3.5 3.3 3
Slice numbers 14,598 10,647 13,683 16,282 11,002 26,210
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In this way, the intensity range of all PET images across 
the different centers was between 0 and 5.

Global FL training

In typical machine learning problems, the goal is to mini-
mize an appropriate loss function F(θ) , where θ ∈ ℝ

d 
denotes the parameters of the model. The loss function 
F(θ) represents the average of empirical loss functions over 
the available data samples with respect to model parameter 
θ . A common approach to minimize the loss function F(θ) 
is to use the iterative Stochastic Gradient Descent (SGD) 
algorithm. The idea of federated DL originates from the 
fact that SGD allows parallelization [26, 48–53]. Hence, 
one can optimize a machine learning model using distrib-
uted SGD. The framework is as follows.

Consider the FL system with K parties, where the k-th 
party has a local training dataset Dk =

{
Xi, Yi

}Nk

i=1
 , where 

Xi and Yi are the feature vector and the ground-truth label 
vector, respectively, and Nk is the sample size available 
at partyk ∈ {1, 2, ...,K} . Let all parties have N =

∑K

k=1
Nk 

samples, and let Fk(θ) denotes the local objective function 
of the k-th client, i.e., we have:

where θ ∈ ℝ
d denotes the model parameters to be opti-

mized and L(.;.) is the specific loss function. As an exam-
ple, one can consider the mean square error loss func-
t i onL

�
Θ;
�
Xi, Yi

��
=

1

2
‖yi − ŷi‖

2

2
 ,  whe re  ŷi  i s  t he 

corresponding predicted label, and ‖.‖ is the l2-norm. In 
this case, we consider the global optimization problem of 
our FL system as follows:

In this framework, the local objective function for each 
center is weighted by the fraction of data emerging from that 
center. In order to solve the above optimization problem, the 
SGD algorithm can be utilized. Therefore, at the t th iteration, 
each party computes local gradients using the SGD method, 
and sends them back to the manager (server) for aggregation 
and updating. Let ∇Fk

(
�t
)
 denote the local gradient on the local 

data of the k th party at the t th iteration. Let � represent the 
learning rate and let �t denote the model at tth iteration. The 
server aggregates and updates the model parameters as follows:

(1)F
k(θ) =

1

N
k

∑N
k

i=1
L
(
�;
(
X
i
, Y

i

))
,

(2)min
θ

(
F(�) =

∑K

k=1

N
k

N
F
k(�)

)
,

(3)�t+1 ← �t − �
∑K

k=1

Nk

N
∇Fk

(
�t
)
,

Note that in the case of massive datasets, the SGD 
becomes prohibitively demanding. Hence, the parameter 
vector is updated with the stochastic gradient:

where �
[
G
(
�t
)]

= ∇F
(
�t
)
.

We evaluate two different training strategies for our feder-
ated pipeline. In the first training approach, a server aggre-
gates the FL workflow as summarized in Fig. 1. We refer to 
this first strategy as parallel federated learning (FL-PL): first 
(step A), the central global model is distributed through dif-
ferent departments and then (step B) the models are trained 
in each center separately, and finally (step C) the locally 
trained models return to the central server and aggregate the 
results to the central global model. Steps A–C are repeated 
until the model is fully trained and converges. In the second 
approach, referred to as sequential federated learning (FL-
SQ), the model meets the data serially center-after-center. 
First (step A in Fig. 1), model training begins in one center 
for a predefined number of epochs, and then (step B) the 
model passes sequentially through all centers. Finally (step 
C), this process will be repeated for a predefined number 
of rounds to generate the ultimate model. FL-SQ requires 
longer training time since the learning procedure is sequen-
tial. As for the implementation of our experiments, all FL 
algorithms and DL models were implemented in TensorFlow 
2.6 (details on DL models are provided below). The FL pro-
cess in this work was performed on a server with multiple 
local GPUs similar to previous studies [36, 54–59], where 
each local GPU was considered as our node and center.

Deep neural network

In this study, we used the modified  U2-Net [60] which 
utilizes residual U-blocks in a U-shaped architecture. It 
employs a deep network supervision strategy, where the 
training loss includes information in all scales. Deep super-
vision allows to extract both local and global contextual 
information [60]. The advantage is that unlike the preva-
lently utilized U-Net based on successive down-sampling 
of the image and hence gradually losing high-resolution 
information [60], the  U2-Net does not sacrifice the high-
resolution content of the images [60], which is crucial for 
many image-to-image conversion tasks, such as attenuation 
scatter correction.

This is performed using a nested two-level U-structure 
inspired from the classical U-Net. The idea is to keep the 
general U-structure of the U-Net [61], but inside each 
convolutional block, it uses another structure which again 

(4)�t+1 = �t − �tG
(
�t
)
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Fig. 1  Schematic of two FL algorithms and network architectures as 
implemented in this study. In parallel federated learning (FL-PL), 
in the first step (A), the central global model is distributed through 
different centers and then (B) the models are trained in each center 
separately, and finally (C), local-trained models return to the central 
server and aggregate the results to the central global model. Steps 
(A–C) are repeated until the model is fully trained and converged. In 
sequential federated learning (FL-SQ), the model meets the data seri-

ally center-after-center. First (step A in Fig. 1), model training begins 
in one center for a predefined number of epochs, and then (step B) the 
model passes sequentially through all centers. Finally (step C), this 
process will be repeated for a predefined number of rounds to gener-
ate the ultimate model. The bottom image depicts our U2Net archi-
tecture; each blue block in the main body (left) consists of a residual 
U-Net (right)
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has a U-shaped form with its symmetric encoder-decoder 
architecture [60]. This block is known as ReSidual U-block 
(RSU), which enables intra-stage multi-scale features to be 
extracted. The RSU is motivated by the classic U-Net [61] 
with a symmetric encoder-decoder structure. It provides 
a mixture of receptive fields with different sizes, which is 
highly desirable for fine-grained image-to-image tasks [60]. 
This is equivalent to drastically increasing network layers, 
but with the important advantage of keeping the compu-
tational and memory footprint low and hence the training 
procedure simple [60]. Note that the idea of having nested 
U-Net is different from the more common strategy of cas-
cading multiple U-Nets together, which increases the com-
putational burden proportional to the number of networks 
used [60]. The nested structure enables the  U2-Net to extract 
intra-stage multi-scale, as well as aggregated inter-stage 
multi-level features [60]. As for the training strategy, the 
network further uses deep supervision, where the training 
loss includes information in all scales [60]. Deep supervision 
allows to further extract both local and global contextual 
information [60].

It can evoke intra-stage features in different scales 
depending on the depth and kernel size [60]. One can select 
an optional depth to achieve various single-level or multi-
level nested U-shape structures [60]. Although too deep 
models might get too complex with respect to implementa-
tion and employment in training procedures and real-world 
applications. In this work, non-attenuation/scatter-corrected 
images were used as input to the modified  U2-Net to generate 
attenuation/scatter-corrected PET images directly. The net-
work was trained in a 2D manner with an Adam optimizer, a 
learning rate of 0.001, an L2-norm loss, as well as a weight 
decay of 0.0001. The schema of the network is depicted in 
Fig. 1.

Evaluation strategy

In this study, we evaluated two federated models, referred 
to as FL-SQ and FL-PL, and compared their performance 
with the centralized (CZ) approach, wherein the data are 
pooled to one server. Moreover, center-based (CB) models 
were built and evaluated separately using only the training/
test datasets from the same center. Each center’s data were 
divided into training (30 patients), validation (10 patients), 
and test sets (10 patients). A standard train/validation/test 
data splitting was followed for the training of all models and 
the results were reported on untouched test sets to avoid the 
risk of overfitting. There was no overlap between training, 
validation, and testing sets. The same patients were used 
for evaluation of the different non-CB models to facilitate 
comparison of the various models. In the three non-CB strat-
egies, including FL-SQ, FL-PL, and CS, the models were 
built using a 180/60 train/validation set, and the results were 

reported using 60 test sets (the 10 test datasets from each of 
the six centers). In CB models, six different models were 
developed using 30/10 train/validation, and only 10 test sets 
from the same center were employed for model evaluation.

For model performance evaluation, voxel-wise mean 
error (ME), mean absolute error (MAE), relative error 
(RE%), absolute relative error (ARE%), and peak signal-to-
noise ratio (PSNR) were computed between ground truth 
CT-based attenuation/scatter corrected and the predicted 
corrected PET images, as follows:

where PETpredicted denotes DL-based corrected PET 
image while PETCT-ASC stands for the reference PET-CT-
ASC image, and vxl and v denote the total number of voxels 
and voxel index, respectively. Moreover, the structural simi-
larity index (SSIM) was calculated based on [62].

The different plots (box, bar, and scatter plots) were pro-
vided to enable different comparisons. Two-sample Wil-
coxon test (Wilcoxon rank sum test or Mann–Whitney test) 
was used for the statistical comparison of image-derived 
metrics between the different training models. We corrected 
p-values using Benjamin Homberg to provide an adjusted 
p-value (q-value). A threshold of 0.05 was considered as 
the significance level of q-values. In addition, we used joint 
histogram analysis  to depict the distribution of voxel-wise 
PET SUV correlations between the reference CT-based ASC 
images and different DL approaches.

Results

Figure 2 represents an example of non-ASC, CT-ASC, CB 
model, CZ model, FL-SQ model, FL-PL model, and the cor-
responding bias maps generated for DL models with respect 
to CT-based ASC (CT-ASC) images. As can be seen, the 
CZ-based model, FL-SQ model, and FL-PL model generated 

(5)ME =
1

vxl

∑vxl

v=1
PETPredicted(v) − PETCT−ASC(v)

(6)MAE =
1

vxl

∑vxl

v=1

|||PETpredicted(v) − PETCT−ASC(v)
|||

(7)

RE(%) =
1

vxl

∑vxl

v=1

(
PETpredicted

)
v
−
(
PETCT−ASC

)
v(

PETCT−ASC

)
v

× 100%

(8)

ARE(%) =
1

vxl

∑vxl

v=1

||||||

(
PETpredicted

)
v
−
(
PETCT−ASC

)
v(

PETCT−ASC

)
v

||||||
× 100%

(9)PSNR(dB) = 10log10(
Peak2

MSE
)
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high-quality images. More examples of images for each of 
the centers are provided in supplemental Fig. 1.

Figure 3 compares quantitative image quality metrics, 
i.e., RE (%), ARE (%), ME, MAE, SSIM, and PSNR, 
calculated on SUV images between the different train-
ing strategies with respect to CT-ASC images serving 
as ground truth. As expected, the CB training strategy is 
the worst method in terms of quantitative analysis, result-
ing in the highest absolute error (MAE = 0.21 ± 0.07). 
The performance of the FL-based algorithms is com-
parable with the centralized training strategy, while the 
CZ method shows a lower deviation and smaller vari-
ance compared to FL-SQ and FL-PL, in terms of MAE 
(0.10 ± 0.03 versus 0.14 ± 0.07 and 0.14 ± 0.06, respec-
tively). Table 2 summarizes the statistical comparisons 
of quantitative metrics between these four training strate-
gies. In terms of overall structural similarity, the different 

approaches demonstrated comparable performance against 
ground truth (CZ = 0.93 ± 0.01, FL-SQ = 0.93 ± 0.01, and 
FL-PL = 0.92 ± 0.03), except for the CB achieving an 
SSIM of 0.70 ± 0.04. Table 3 summarizes the statistical 
comparison of quantitative metrics calculated between 
these four training strategies separately for each center. 
The same pattern of quantitative metrics in Table 2  is 
repeated for each center and all metrics across the differ-
ent frameworks.

The quantitative performance of the different training 
strategies categorized by the clinical center is reported in 
Fig. 4 (Supplemental Fig. 2 depicts similar information 
for each patient). The center-wise relative error for the CZ 
approach (ARE = 11.16 ± 3.24%) demonstrates slightly bet-
ter performance compared to FL-SQ (ARE = 13.51 ± 5.04%) 
and FL-PL (ARE = 12.83 ± 3.91%) approaches. Conversely, 
ARE metric for the CB approach was larger (24.22 ± 7.28%). 

Fig. 2  Example of non-ASC, 
CT-ASC, CB model, CZ model, 
FL-SQ model, FL-PL model, 
and their corresponding bias 
maps generated for DL models 
with respect to CT-based ASC 
(CT-ASC) images. Sequential 
federated learning (FL-SQ), 
and parallel federated learning 
(FL-PL), centralized (CZ), and 
center based (CB)
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The highest MAE was achieved by the CB method 
(0.21 ± 0.07) compared to CZ, FL-SQ, and FL-PL which 
achieved values of 0.10 ± 0.03, 0.14 ± 0.07, and 0.14 ± 0.06, 
respectively. For all approaches, SSIM and PSNR metrics 
demonstrated a consistent behavior over the different cent-
ers (0.93 ± 0.02 and 34.0 ± 3.23, respectively), except for 
CZ which achieved the poorest performance in terms of 

structural analysis, resulting in SSIM of 0.70 ± 0.04 and 
PSNR of 28.66 ± 2.70. Supplemental Fig. 2 depicts the 
quantitative performance of the different training strategies 
categorized by the different cases in the test dataset.

Furthermore, the voxelwise joint histogram analysis 
depicting the correlation between the predicted and CT-
ASC images serving as ground truth is illustrated in Fig. 5. 

Fig. 3  Comparison of quanti-
tative image quality metrics, 
including RE (%), ARE (%), 
ME, MAE, SSIM, and PSNR, 
calculated on SUV images 
between different training strat-
egies with respect to CT-ASC 
images serving as ground truth 
sequential federated learning 
(FL-SQ), and parallel federated 
learning (FL-PL), centralized 
(CZ), and center-based (CB)
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The coefficient of determination (R2) achieved by CB, CZ, 
FL-Sq, and FL-PL methods were 0.76, 0.94, 0.93, and 0.92, 
respectively.

The results of the statistical analysis between the dif-
ferent learning strategies in the form of center-based 
categorization are summarized in Fig. 6. As illustrated, 
the CB approach is significantly different from the other 
algorithms as reflected by almost all quantitative param-
eters, except for RE and ME. The CZ model performance 
demonstrates consistent behavior against FL algorithms 

in almost all parameters in center-based categorization 
(p-value > 0.05).

Discussion

DL approaches are data-hungry algorithms that require 
large, reliable datasets to generate robust and generalizable 
models [27, 28]. However, the collection of large, central-
ized datasets for training DL models is challenging and not 

Table 2  Statistical comparison of quantitative metrics between the four training strategies used in this study. Sequential federated learning (FL-
SQ) and parallel federated learning (FL-PL), centralized (CZ), and center based (CB)

CB CZ FL_SQ FL_PL

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

MAE 0.21 ± 0.07 0.19 to 0.22 0.10 ± 0.03 0.09 to 0.11 0.14 ± 0.07 0.12 to 0.15 0.14 ± 0.06 0.12 to 0.15
ME  − 0.03 ± 0.12  − 0.06 to − 0.003  − 0.01 ± 0.06  − 0.02 to 0.01  − 0.10 ± 0.09  − 0.12 to − 0.07  − 0.10 ± 0.09  − 0.12 to − 0.07
PSNR 28.66 ± 2.70 27.95 to 29.35 34.77 ± 2.56 34.11 to 35.43 33.17 ± 3.53 32.25 to 34.08 33.11 ± 3.49 32.20 to 34.00
ARE (%) 24.22 ± 7.28 22.34 to 26.10 11.16 ± 3.24 10.32 to 12.00 13.51 ± 5.04 12.21 to 14.81 12.83 ± 3.91 11.82 to 13.84
RE (%) 4.70 ± 11.47 1.73 to 7.66 2.05 ± 6.07 0.48 to 3.61  − 6.01 ± 9.18  − 8.38 to 3.63  − 5.64 ± 8.04  − 7.71 to 3.55
SSIM 0.70 ± 0.04 0.68 to 0.70 0.93 ± 0.01 0.92 to 0.93 0.92 ± 0.03 0.91 to 0.93 0.93 ± 0.01 0.92 to 0.93

Table 3  Comparison of various image quality metrics (mean ± SD) for the different training models performed at the different centers

Center 1 Center 2 Center 3 Center 4 Center 5 Center 6

Center based MAE 0.18 ± 0.03 0.23 ± 0.07 0.19 ± 0.04 0.24 ± 0.07 0.23 ± 0.11 0.19 ± 0.03
ME 0 ± 0.08  − 0.06 ± 0.12 0 ± 0.09  − 0.09 ± 0.13  − 0.03 ± 0.18  − 0.03 ± 0.09
PSNR 29.79 ± 1.56 27.87 ± 3.96 29.45 ± 1.94 27.52 ± 3.28 28.16 ± 2.87 29.16 ± 1.53
ARE (%) 21.96 ± 4.64 24.45 ± 5.92 25 ± 7.07 25.34 ± 9.19 27.42 ± 10.79 21.18 ± 3.19
RE (%) 7.24 ± 9.71 2.82 ± 11.22 8.63 ± 10.75 0.71 ± 10.83 5.6 ± 16.92 3.21 ± 8.66
SSIM 0.71 ± 0.03 0.69 ± 0.03 0.71 ± 0.03 0.7 ± 0.06 0.69 ± 0.03 0.69 ± 0.04

Centralized MAE 0.09 ± 0.02 0.11 ± 0.04 0.1 ± 0.02 0.12 ± 0.04 0.12 ± 0.05 0.09 ± 0.01
ME 0.01 ± 0.04  − 0.01 ± 0.08 0.01 ± 0.04  − 0.04 ± 0.07  − 0.01 ± 0.09  − 0.02 ± 0.04
PSNR 35.75 ± 1.59 34.01 ± 3.45 35.53 ± 1.99 33.73 ± 3.4 34.06 ± 2.66 35.55 ± 1.05
ARE (%) 10.37 ± 2.62 11.8 ± 3.77 11.63 ± 3.29 11.26 ± 2.84 12.48 ± 4.6 9.44 ± 1.11
RE (%) 3.65 ± 4.9 1.53 ± 7.45 4.38 ± 5.2  − 0.59 ± 5.84 2.55 ± 7.93 0.77 ± 4.34
SSIM 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01

Federated SQ MAE 0.14 ± 0.05 0.16 ± 0.11 0.13 ± 0.04 0.15 ± 0.06 0.14 ± 0.06 0.12 ± 0.04
ME  − 0.08 ± 0.10  − 0.14 ± 0.13  − 0.07 ± 0.10  − 0.12 ± 0.09  − 0.08 ± 0.10  − 0.09 ± 0.06
PSNR 33 ± 3.15 32.01 ± 5.39 33.98 ± 2.98 32.88 ± 3.4 33.17 ± 2.99 33.97 ± 3.24
ARE (%) 14.51 ± 7.67 14.1 ± 6.29 13.72 ± 3.3 13.23 ± 4.46 14.29 ± 4.6 11.21 ± 2.8
RE (%)  − 4.81 ± 12.9  − 9.26 ± 8.67  − 3.36 ± 10.2  − 8.27 ± 7.61  − 3.82 ± 9.7  − 6.53 ± 4.94
SSIM 0.91 ± 0.07 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.93 ± 0.01

Federated PL MAE 0.13 ± 0.04 0.16 ± 0.11 0.13 ± 0.04 0.15 ± 0.06 0.14 ± 0.06 0.12 ± 0.04
ME  − 0.09 ± 0.08  − 0.13 ± 0.13  − 0.07 ± 0.09  − 0.12 ± 0.08  − 0.08 ± 0.10  − 0.1 ± 0.05
PSNR 33.43 ± 2.89 31.82 ± 5.34 33.9 ± 2.97 32.67 ± 3.34 33.1 ± 3.01 33.71 ± 3.26
ARE (%) 12.22 ± 3.16 13.6 ± 5.69 13.35 ± 2.96 12.85 ± 3.95 13.95 ± 4.49 11.02 ± 2.6
RE (%)  − 5.54 ± 8.5  − 8.49 ± 8.2  − 2.82 ± 9.59  − 7.65 ± 7.25  − 3.38 ± 9.4  − 5.94 ± 4.89
SSIM 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.93 ± 0.01
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always feasible owing to the sensitivity of clinical datasets 
and specifically medical images [27, 28]. FL algorithms 
provide the opportunity to train a model using multicentric 
datasets without sharing data [27, 28]. In this work, we pro-
vide a framework for DL-based AC/SC model generation 

from PET images from different centers without the direct 
sharing of clinical datasets. Our FL-based DL models pro-
vided promising results which could improve model gener-
alizability and robustness for AC/SC of PET images without 
sharing dataset in multicentric studies.

Fig. 4  Quantitative performance of the different training strategies, including sequential federated learning (FL-SQ) and parallel federated learn-
ing (FL-PL), centralized (CZ), and center based (CB), categorized by clinical center
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The quantitative analysis performed on SUV PET images 
demonstrated highly reproducible performance against 
intra/inter-patient variability. In terms of SUV quantifica-
tion bias, the ARE% metric demonstrated excellent agree-
ment between FL-SQ (CI:12.21–14.81%) and FL-PL 
(CI:11.82–13.84%) models and conventional centralized 
training approach (CI:10.32–12.00%), while FL-based 
algorithms improved model performance in terms of ARE 
by more than 11% compared to CB training strategy (CI: 
22.34–26.10%). The center-based voxel-wise quantitative 
analysis and structural indices (Figs. 3 and 4) illustrated the 
superior performance of FL-based algorithms compared 

to the CB approach. Furthermore, although in the center-
categorized mode, the Mann–Whitney test between differ-
ent strategies (Fig. 6) revealed consistency between CZ and 
FL-based algorithms (p-value > 0.05) on the overall dataset, 
the statistical analysis demonstrated significant differences 
between the different training approaches (p-value < 0.05). 
In addition, the joint histogram analysis (Fig. 5), depicting 
a voxel-wise comparison between reference CT-ASC and 
predicted images, exhibited close performance between CZ 
(R2 = 0.94), FL-SQ (R2 = 0.93), and FL-PL (R2 = 0.92), while 
the CB model achieved a far lower coefficient of determina-
tion (R2 = 0.74). Despite the strong correlation coefficient 

Fig. 5  Voxelwise joint histogram analysis depicting the correlation between the predicted images using the different training approaches and CT-
ASC images serving as ground truth

Fig. 6  Statistical analysis 
between the different learning 
strategies in the form of CB 
as well as centralized CZ and 
FL approaches for the different 
quantitative metrics reflecting 
evaluation on the overall data 
as well as on data from each 
center. Blue and red colors 
indicate p-value < 0.05 and 
p-value > 0.05, respectively. 
Abbreviations: sequential 
(FL-SQ) and parallel federated 
learning (FL-PL), centralized 
(CZ), and center-based (CB) 
learning
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between CZ and FL-based methods compared to reference 
CT-ASC, a slight underestimation of the predicted tracer 
uptake was observed. Even though slightly inferior results 
were observed in some CB models, which could be attrib-
uted to the different number of slices used in the training of 
the models (as reflected in Table 1). Overall, all CB models 
exhibited very similar values of quantitative errors.

In a previous study in the context of conventional cen-
tralized learning [20], direct AC/SC of PET images using 
a modified ResNet algorithm achieved good performance 
(MAE = 0.22 ± 0.09 and ARE = 11.61 ± 4.25%) using a large 
dataset (1150 patient images), as gathered from one center 
and single PET scanner [20]. We then further improved 
the performance of our algorithm by developing a modi-
fied bilevel nested U-NET architecture inspired by  U2-Net 
applied for object detection from natural images (central-
ized mode: MAE = 0.10 ± 0.03 and ARE = 11.16 ± 3.24%). 
In our previous study [20], DL-based attenuation and scat-
ter correction in the image domain were extensively evalu-
ated on 150 clinical cases including quantitative analysis 
of radiotracer uptake in 170 lesions/abnormal high-uptake 
regions (colorectal, head and neck, lung, lymphoma, …). A 
mean relative SUV error of less than 5% was observed for 
 SUVmax and  SUVmean across all lesions/regions. Although 
the quantitative analysis was not performed on malignant 
lesions in the current study, the voxel-wise SUV error for 
CZ and FL algorithms was within the same range as our 
previous study [20].

In comparison to previous works, Yang et  al. [63] 
reported an average ARE of 16.55 ± 4.43% for AC/SC of 
whole-body PET images using 3D generative adversarial 
networks. Dong et al. [64] tested different network architec-
tures (U-Net, GAN, and cycle-GAN) achieving good per-
formance in terms of ME (0.62 ± 1.26%) and normalized 
mean square error (0.72 ± 0.34%), respectively. Van Hem-
men et al. [65] developed a modified U-Net architecture for 
AC/SC of whole body PET images only images resulting in 
an average ARE of 28.2% on a small-scale dataset. Hwang 
et al. [66] compared different PET attenuation correction 
approaches using emission data, including DL-based μ-map 
generation from non-attenuation-corrected (NAC) images, 
improved estimation of μ-maps using maximum likeli-
hood estimation of activity and attenuation (MLAA) and 
a combination of these two methods. They reported that 
the combination of the MLAA algorithm and DL approach 
outperformed μ-maps estimated from NAC PET images, 
whereas no improvement was observed when combin-
ing these two approaches. Apart from direct AC/SC on 
PET images, a number of studies reported on MRI-guided 
AC/SC by generating pseudo-CT images from PET/MR 
images and attenuation maps based on tissue classification 
from PET-only images [67–69]. Although the synthesized 

attenuation map-based approaches demonstrate promising 
results, they suffer from numerous challenges, including a 
mismatch between anatomical (MRI) and PET images and 
organ motion [67–69]. However, the direct AC/SC approach 
is less sensitive to noise, metal artifacts, truncation, and local 
mismatch between anatomical and functional images [70, 
71]. Furthermore, this approach is potentially capable of 
correcting for organ motion and hollow artifacts provided 
that the model is trained on a clean and accurately corrected 
PET images [20, 70].

Although direct attenuation/scatter correction in the 
image domain has a number of advantages, the generation 
of pseudo µ-maps (synthetic CT) from non-attenuation cor-
rected images or MR images would provide an explainable 
AC map to verify/detect errors/drawbacks within PET atten-
uation and scatter correction procedures [20, 66, 72, 73]. 
The suboptimal performance of direct AC approaches cannot 
be easily depicted from the resulting PET-AC images (local 
under/over estimation of radiotracer uptake). However, the 
suboptimal performance of DL-based synthetic CT genera-
tion approaches could be visually detected from the result-
ing synthetic µ-maps. The resulting synthetic CT images 
could be visually checked to detect any possible anatomical 
defects and/or artifacts prior to PET attenuation correction. 
The other drawback of direct AC in the image domain is 
the sensitivity of the models to the quality of the query data 
wherein increased levels of noise, abnormalities, and minor 
image artifacts may result in erroneous signals in the result-
ing images. Moreover, the occurrence of outliers (cases with 
gross errors) in the outcome of these models should be care-
fully monitored (owing to black-box nature of DL models).

Different studies have been recently performed to assess 
the performance of FL approaches in medical image analy-
sis [74]. In a study by Feki et al.[36], COVID-19 detection 
from chest X-ray images using VGG16 and ResNet50 tested 
federated and centralized frameworks, reporting similar per-
formance for both models. In a more recent study [37], an 
FL-based model, referred to as EXAM, was developed based 
on vital signs laboratory exams and chest X-rays for future 
oxygen requirements of COVID-19 patients across twenty 
centers. They compared the FL-based model with the center-
based model (where each center developed and evaluated the 
model separately) achieving 16% and 38% improvement in 
average AUC and generalizability, respectively. Gawali et al. 
[75] compared different privacy-preserving DL methods for 
chest X-ray classification tasks. They reported an AUROC 
of 0.95/0.72 and an F1 score of 0.93/0.62 for a DenseNet 
model trained in a centralized way and their best-performing 
FL approach, respectively. In our study, we evaluated two 
FL-based models and achieved better and comparable results 
for CB and CZ models, respectively. Building a generaliz-
able and robust model requires a large dataset, while privacy 
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concerns could be addressed by FL approaches without 
sacrificing models’ performance. In a more recent study, 
Shiri et al. [76] proposed a FL based multi-institutional PET 
image segmentation framework on head and neck studies. 
They enrolled 404 patients from eight different centers and 
reported that FL-based algorithms outperformed CB and 
achieved similar performance as the CZ approach.

The FL paradigm enables the training of machine/DL 
models on multiple decentralized datasets without the need 
for exchanging data. This preserves data privacy, data secu-
rity, and data access rights while allowing access to the 
large-scale heterogeneous database for model training [77]. 
In the FL framework, the local data are not made available 
to other participants, or on the server. However, a curious 
server may infer sensitive data from the exchanged model 
parameters. In the literature, various attacks have been 
investigated against machine learning models [78, 79]. For 
instance, Shokri et al. [80] studied membership inference 
attacks, whereas Fredrikson et al. [81] addressed model 
inversion attacks. Possible threats can be classified into 
three categories, depending on the stage of the process of 
an FL system. Malicious parties can perform data poisoning 
attacks at the “input” of the learning model [82, 83]. For 
instance, they may modify the label of the data samples. 
Alternatively, they can perform model poisoning attacks 
during the learning process [84, 85]. For example, they may 
upload random updates to the global model. Finally, a mali-
cious party can perform inference attacks on the “released 
learnt model” [77, 80, 81]. For instance, a curious server 
may infer sensitive information about the training data from 
the communicated model parameters.

CB framework faces generalizability challenges even 
with large datasets owing to the large variability across 
different centers in terms of scanner brands, data acqui-
sition and reconstruction protocols, and post-processing 
schemes. Moreover, due to the absence of infrastructures 
and expertise, it may not possible to build ML models 
at each center. The CZ training framework is the ideal 
option for ML model development. Yet, it suffers from 
limitations imposed by ethical and legal constraints. FL 
algorithms provide the opportunity to train a model using 
multicentric datasets without sharing data, and models 
trained with the FL framework can converge to the CZ 
performance in the ideal situation. Overall, the CZ model 
training would lead to the highest accuracy and general-
izability. However, in cases where ethical and legal con-
straints do not allow data sharing or when a center does 
not have enough training samples FL approaches would 
be an attractive solution. Models trained with FL in the 
best-case scenario might approach the performance of the 
CZ models. On the other hand, CB models are observed 
to suffer from very poor generalizability.

Data heterogeneity arising from the use of different scan-
ners, image acquisition and reconstruction protocols, is the 
main source of error impairing building a generalizable 
model [17]. The heterogeneity of data across the different 
centers prevents CB models from working properly on an 
unseen dataset from the other centers. To build a generaliz-
able model, data from different centers should be included 
in the training dataset, which is possible in CZ and FL pipe-
lines. In FL, a global model is built based on a portion of the 
data from the different centers in a federated approach and 
then for each center, the global model will be specialized 
for each center by applying a transfer learning technique 
using a transfer-FL framework [27, 28]. This approach could 
be employed to comply with the heterogeneous data col-
lected from the different centers with various acquisition 
parameters.

This study inherently bears a number of limitations. The 
implementation of all models was performed on a server using 
different GPUs where the different nodes were considered as 
centers similar to previous FL studies [35, 36, 54–59, 74, 76]. 
The challenges of FL, such as local computer capacity, and 
communication bottleneck between centers and local server 
should be considered in the real clinical scenario. Further 
studies should be performed in real clinical situations using 
a larger size of the training dataset. In the current version, a 
proof-of-concept has been demonstrated and further inves-
tigation with larger cohorts is warranted. One limitation of 
FL is data preparation and preprocessing due to the nature of 
the decentralized process. However, for image preprocessing, 
including normalization, we used an easy method to ensure 
reproducibility.

Conclusion

AC/SC are key corrections required to enable quantitative 
PET imaging, which remains challenging on CT-less PET 
scanners (PET/MRI and standalone PET-only scanners). 
DL-based models provide very promising results and might 
outperform conventional algorithms in terms of attenua-
tion and scatter corrections. At the same time, robust and 
generalizable DL models require heterogeneous, large, and 
reliable datasets from multiple centers. Yet, legal/ethical/
privacy considerations prevent the collection of very large 
datasets. In this work, we developed an FL-based framework 
for anatomical knowledge free or CT-less AC/SC of PET 
images, which proved to outperform center-based models, 
demonstrating comparable performance with respect to 
centralized DL. FL-based DL provided promising results 
through improving model generalizability and robustness 
for AC/SC of PET images without direct sharing of datasets 
amongst centers.
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