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Abstract. Automated disease classification could significantly improve
the accuracy of prostate cancer diagnosis on MRI, which is a difficult
task even for trained experts. Convolutional neural networks (CNNs)
have shown some promising results for disease classification on multi-
parametric MRI. However, CNNs struggle to extract robust global fea-
tures about the anatomy which may provide important contextual infor-
mation for further improving classification accuracy. Here, we propose a
novel multi-scale hybrid CNN/transformer architecture with the ability
of better contextualising local features at different scales. In our ap-
plication, we found this to significantly improve performance compared
to using CNNs. Classification accuracy is even further improved with a
stacked ensemble yielding promising results for binary classification of
prostate lesions into clinically significant or non-significant.

Keywords: Prostate Cancer · Convolutional Neural Network · Trans-
former.

1 Introduction

Multi-parametric MRI differentiates non-significant from significant cancers with
high accuracy [6]. The scoring system for prostate cancer classification, however,
is still somewhat subjective with a reported false positive rate of 30-40 percent
[4]. Therefore there is great interest and clinical need for more objective, auto-
mated classification methods for prostate lesions with the goal to improve diag-
nostic accuracy [7]. There have been various approaches for automated methods
based on hand-crafted, quantitative features (radiomics) such as textural and sta-
tistical measures that are extracted from regions of interest and used in a machine
learning classifier [16]. Textural features have already shown to be beneficial to
identify significant prostate cancer [13,19]. Convolutional neural networks are
now the most popular approach for automating prostate disease classification
on MRI with some promising results [2,7,12,17,21,23]. Due to weight-sharing,
the resulting translational invariance and the relatively small receptive field of
shallow CNNs, the extracted features tend to capture mostly local information
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[1]. One has to build much deeper CNNs, combined with down-sampling and
multi-scale processing to extract more global information. This problem is rele-
vant to the classification of prostate cancer where global anatomical information
and the relationship between different features is important. More recently, the
vision transformer has shown competitive performance with convolutional neural
networks on natural image classification tasks when pre-trained on large-scale
datasets such as ImageNet [20]. However, while transformers can extract better
global features by leveraging the power of self-attention for modelling long-range
dependencies within the data, the direct tokenisation of patches from an image
makes it more difficult to extract more fine low level features while also ignoring
locality unlike in deep CNNs. Yet, we know local pixels are highly correlated
and this lack of inductive bias means Visual Transformer need a large scale
dataset to compete with deep CNN’s. It has also been shown that self-attention
in the initial layers of a model can learn similar features to convolutions [8]. This
shows that the inductive biases imposed by CNNs is appropriate and helpful for
feature extraction. Therefore, the use of transformer-only models such as the
vision transformer on smaller medical imaging data-sets seems limited and an
intriguing approach would be to combine the best of both worlds, giving rise to
multi-scale hybrid CNN/transformer networks.

1.1 Contribution

We devise a deep learning approach capable of contextualising local features
of prostate lesions through a novel hybrid CNN/transformer architecture with
the aim to improve classification of prostate lesion into clinically significant and
non-significant. The first stage of our architecture extracts features in a shallow
multi-resolution pathway CNN. Each scale extracts CNN based features ranging
from more fine grained textural features in the high resolution pathway to more
coarse global information from the larger receptive field in the low resolution
pathway. Instead of extending the depth of the CNN and using fully connected
layers to combine the features within and across different scales, we leverage the
powerful self-attention mechanism of the transformer to do this. We specifically
use a transformer architecture which takes as input the feature maps from the
CNN pathways which we hypothesise will learn better contextualised features
to build a richer representation of the input lesion. Our model demonstrates
excellent classification accuracy and outperforms a CNN only based approach.
We finally further improve performance through a stacked ensemble of our model
to outperform other baseline models in the ProstateX challenge [15].

2 Methods

Our proposed model (Fig. 1) has two stages. Stage 1 consists of 3 parallel path-
ways, each with a different resolution input. There is no weight-sharing between
parallel pathways, so each learns discriminative features for a specific resolution.
We use 5 × 5 × 3 convolutional filters in the first layer followed by 2D max
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pooling in order to account for the anisotropic nature of the input patches. This
is followed by residual block layers using 3 × 3 × 3 convolutions and 3D max
pooling. We also used grouped convolutions of size 4, which we found to have
better performance than single-grouped convolutions during cross-validation for
hyper-parameter tuning [22]. The final 128 features maps for each resolution
pathway are concatenated to form a stack of 384 feature maps of size 8× 8× 4
for stage 1. Each feature map is flattened into a one-dimensional vector forming
the input for stage 2 of our model.
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Fig. 1. Proposed model for prostate disease classification. The first stage is the feature
extractor for 3 resolution pathways. The second stage is the transformer encoder.

Stage 2 of the model (Fig. 1) involves a linear transformation of the flattened
feature maps to an embedding space of dimension 256. A random vector of size
1 × 256 denoted as the classification token is concatenated to the embedding
matrix to learn an image level representation of the feature maps through self-
attention. The embedding matrix is of size 385 × 256. We encode position p
using a combination of sine and cosine waves as used in the vision transformer
[9]. Each positional encoding i is a vector of 1 × d, where d is the embedding
dimension with each element in the vector denoted with j. The formulation is
described in equation 1 below.
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pi,j =

{
sin( i

1000
j
d

, if j is even.

cos( i

1000
j−1
d

, if j is odd.

}
(1)

We sum the positional encodings to the embeddings to form new embeddings
as input into the transformer encoder visualised in Fig. 2. The first part of the
encoder consists of layer normalisation followed by a linear transformation of
the embedding to Query(Q), Key(K) and value(V) matrices. The Q, K and
V matrices are logically split by the number of heads (h) to be of dimension
385× 256/h. Multi-headed self attention is calculated using scaled dot product
attention as:

headi = softmax(
Q×KT√

256/h
)× V (2)

Q = M ∈ R385×256/h,K = M ∈ R385×256/h, V = M ∈ R385×256/h

MultiHead(Q,K, V ) = Concat(Head1, Head2...Headh)×W0 (3)

MultiHead(Q,K, V ) = M ∈ R256×385,W0 = M ∈ R256×256

The different heads are concatenated and undergo linear transformation
(equation 3). The next stage is a multi-layer perceptron (MLP) with two fully
connected layers (Fig. 2). The transformer encoder network is repeated L(layers)
times. Residual connections are incorporated to aid with gradient flow. We use
Gaussian error linear unit (GELU) activation for both stages [11] and a dropout
rate of 0.2 after every dense layer except for linear transformation of Q, K, V
in stage 2 of the model. During 5-fold cross validation we observe the optimum
number of heads, layers and MLP hidden dimension to be 8, 8 and 1024 re-
spectively. Finally, the learnt classification token vector is consumed by an MLP
classifier which consists of two fully connected layers with a hidden dimension
of 1024 (Fig. 2). Stage 1 and 2 of the model are trained end-to-end.
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Fig. 2. Transformer encoder architecture with L layers and h heads for multi headed
self attention. An MLP is used as the classifier after L layers of the Transformer encoder

2.1 Model Comparison

CNNs: We compare with a number of models using convolutions only. Firstly,
we train the three resolution pathways in stage 1 of our model separately followed
by 2 fully connected layers of size 4096 and 512 with dropout (0.5) to form 3
separately trained CNN models without masking. We then train a new high and
medium resolution CNN with tumour masking followed by a new low resolution
CNN with whole prostate masking as its goal is to extract prostate anatomical as
well as lesion information. After evaluating the effect of masking on classification
performance, we trained two multi-resolution CNNs (high and medium resolution
vs all 3 resolutions). We replace the second stage with 2 fully connected layers
of size 8192 and 1024 with dropout (0.5) for both multi-resolution CNNs.

Model Ensemble: To improve classification accuracy of our proposed model,
We trained an ensemble of our multi-Scale hybrid transformer by varying the
number of epochs during training (14-16 epochs), number of layers (6-9 Layers)
and the MLP hidden dimension (1024 and 1280) to produce 24 trained models
for each training fold in 5-fold cross-validation. We employ a stacked ensemble
method and use the class output probability from each model as input to train a
logistic regression model with L2 penalty (λ = 1.0) to predict the class outputs.
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Radiomics: A total of 2724 features were extracted using TexLab2.0; a Ra-
diomics analysis software [3]. The tumour segmentations were used for masking.
Various feature selection methods were explored during 5 fold cross-validation.
The best feature selection process firstly involved removing highly correlated
features(correlation coefficient > 0.95) using Pearson Correlation [5]. Secondly,
uni-variate feature selection with Analysis of variance (ANOVA) analysis was
performed to select the best 20 features [18]. Least absolute shrinkage and se-
lection operator (LASSO) logistic regression was then employed which identified
6 features useful for model building. 18 different classifiers were evaluated for
classification. Logistic regression with L2 penalty (λ = 1.0) optimised during
cross-validation demonstrated the best classification accuracy.

Other Baslines: We trained only on the ProstateX challenge training dataset
and therefore validate our final stacked ensemble model on the ProstateX chal-
lenge test set to compare to other baseline models in the literature trained and
tested on the same dataset [15]. A challenge entry returns a single AUC-ROC
value and position on the leaderboard.

3 Experiments and Results

3.1 Dataset

The PROSTATEx challenge dataset which was acquired on two, 3 Tesla scan-
ners [15]. For the purpose of this study, the T2 weighted axial, diffusion weighted
imaging (b-800), apparent diffusion coefficient (ADC) maps and K-trans images
were used. The dataset consists of 330 pre-selected lesions [15]. Clinically signifi-
cant lesions are classed as Gleason grade group 2 and above. Non-biopsied lesions
were considered non-significant as ground truth and histology results were used
as ground truth for biopsied lesions. The dataset is imbalanced with only 23
percent of lesions labelled as significant.

Segmentation of each lesion and prostate was performed by a Radiologist
using ITKsnap [24]. The lesion segmentation was performed on the T2 axial,
ADC, b-800 and K-trans. All patients had a lesion visible on at least one sequence
which were segmented manually. The sequence with the maximum lesion volume
(from sequences with the lesion visible) is mapped to the sequences where a lesion
is not visible. Whole prostate segmentation was performed on the T2 axial only.

3.2 Pre-processing and Augmentation

We resample to form 3 sets of images: high resolution (0.5mm×0.5mm×1.5mm),
medium resolution (1.0mm × 1.0mm × 3.0mm) and low resolution (2.0mm ×
2.0mm × 4.0mm). Cubic B-spline interpolation is used for resampling of the
MR images. Nearest-neighbour is used for resampling of the mask. The high
resolution images were used for radiomics input. The ADC, b800 and K-trans
images were then registered with the T2 axial images using affine transformation.
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We then mask out irrelevant background areas that are further away from the
boundary of the prostate as only nearby extra-prostatic regions are assumed
to be valuable for tumour classification. We do this by using the boundaries of
the whole prostate segmentation mask to form an initial bounding box for each
slice around the prostate. The bounding box is then extended to include more
extra-prostatic region by adding an optimal length to the width and height of
the bounding box defined as 10 divided by the resolution(mm) in the axial plane.

Patches were then extracted for each resolution. For, high and medium res-
olution images, 32 × 32 × 8 patches were extracted centred on the lesion. In
the low resolution images, the goal is to capture as much of the prostate in the
region of interest (ROI). Therefore we limit the area outside of the prostate,
by centering a 32× 32× 8 patch on a point equidistant between the lesion and
whole prostate centre. All patches are then processed with and without masking
as described in section 2.1. Finally, we re-scaled the intensities between 0 and 1
for normalisation.

We augment the significant class to handle class imbalance through vertical
or horizontal flipping followed by random rotations between -90 and 90 degrees
and random translation of 0 to 10mm.

3.3 Training

Despite accounting for class imbalance using augmentation. This would not com-
pletely account for natural variations of significant tumour appearance. There-
fore we use a weighted binary cross entropy loss function (equation 4) with the
weighting parameters fine tuned during cross validation. This was applied to all
models.

WeightedCrossEntropy = −0.6log(p)− 0.4log(1− p) (4)

All model were implemented using PyTorch. Experiments were run on three
NVIDIA Geforce RTX 2080 GPUs. Stratified (using label) 5 fold cross-validation
is used for model training/ validation and to optimise the number of epochs,
batch size, learning rate, weight decay, loss function weightings, dropout rate, the
transformer encoder hidden dimension and number of CNN/transformer encoder
layers. The model weights are initialised with Kaiming initialisation [10]. The
CNN based models use Adam optimisation with a base learning rate of 0.0001
[14] and weight decay of 0.001 for all models. The hybrid model uses Adam
optimisation with weight decay(0.001) and cosine annealing (base learning rate:
0.001) as a learning rate scheduler. We use a batch size of 40 for training. The
single and two resolution CNNs were trained for 10 epochs. The multi-resolution
CNN and our multi-Scale hybrid transformer were trained for 12 and 15 epochs,
respectively.

For testing, our final proposed stacked ensemble of multi-scale hybrid trans-
formers is trained on the entire dataset and submitted for external validation on
the ProstateX test set.
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3.4 Results

Table 1. Mean and standard error on 5-fold cross-validation for metrics comparing all
trained models. Best result for each metric is highlighted in bold.

Accuracy Specificity Precision Recall

High Res CNN(no mask) 0.841± 0.009 0.811± 0.025 0.826± 0.020 0.866± 0.015

High Res CNN(mask) 0.840± 0.009 0.813± 0.015 0.828± 0.056 0.868± 0.022
Medium Res CNN(no mask) 0.810± 0.001 0.794± 0.019 0.802± 0.004 0.866± 0.043

Medium Res CNN(mask) 0.818± 0.043 0.800± 0.019 0.803± 0.035 0.857± 0.045
Low Res CNN(no mask) 0.771± 0.037 0.751± 0.039 0.739± 0.070 0.788± 0.053

Low Res CNN(mask) 0.764± 0.012 0.742± 0.058 0.752± 0.028 0.782± 0.043

Two Res CNN(no mask) 0.875± 0.009 0.854± 0.021 0.860± 0.006 0.888± 0.019
Three Res CNN(no mask) 0.883± 0.008 0.865± 0.028 0.868± 0.009 0.895± 0.022

Radiomics 0.775± 0.053 0.751± 0.055 0.753± 0.048 0.799± 0.040
Our Model (no mask) 0.900± 0.018 0.899± 0.024 0.879± 0.014 0.918± 0.017
Our Model Ensemble 0.944 ± 0.013 0.927 ± 0.023 0.933 ± 0.009 0.959 ± 0.022

We observe slightly improved performance from not using a mask for all three
single resolution CNN models (Table 1). This suggests that the prostate area
outside the volume of the tumour and nearby area outside the prostate itself
provides useful information for classification. We therefore did not use whole
prostate and tumour masks for the multi-resolution CNNs and our model.

We also find that increasing the input resolution of the CNN improves clas-
sification performance (Table 1). This is most likely due to class imbalance as
the ROI increases which is more pronounced after masking. This is also likely
due to the loss of fine features important for classification at coarser resolutions.
However, we find the two resolution CNN demonstrates improved performance
in evaluation metrics which is further enhanced with the three resolution CNN
(Table 1). This demonstrates the importance of combining local and global fea-
tures to learn better contextual information of the tumour lesion using the lower
resolution pathways to provide more informative anatomical localisation of the
tumour region. Our model outperforms all CNN only models in all metrics (Ta-
ble 1). This shows our model improves CNN performance by harnessing self-
attention in the transformer to extract better contextual features by learning
important relationships between the features maps extracted in each CNN path-
way. We also demonstrate significantly better performance of using multi-scale
CNNs and our model compared to the radiomics approach (Table 1) highlight-
ing the benefit of feature learning. A stacked ensemble of our model leads to
overall best performance on all evaluation metrics (Table 1) and achieves an av-
erage AUC of 0.95 during 5- fold cross-validation (Fig. 3). Our model ensemble
achieves an AUC of 0.94 and 3rd place on the leader-board for the ProstateX
challenge test set.
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Fig. 3. ROC curves from the merged predictions of each fold comparing our model and
model ensemble to radiomics and the three resolution CNN.

4 Conclusion

We demonstrate the importance of extracting contextual information of the tu-
mour region in regards to its anatomical location and extension. We propose a
novel multi-scale hybrid CNN/transformer network with the ability to extract
richer contextualised features to build stronger representations which signifi-
cantly improves prostate disease classification in all evaluation metrics compared
to radiomics and multi-resolution CNNs. We believe our novel transformer-based
approach could be appealing for many other disease classification tasks where
the contextualisation of fine-detailed local features is important. This will be
explored in future work.

Acknowledgements. This work was supported and funded by Cancer Research
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