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Reverse circular Bragg phenomenon
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The problem of axial propagation of circularly polarized light in a circularly birefringent structurally chiral
medium is exactly solved via full electromagnetic analysis. Underlying symmetries of the system’s characteristic
matrix reveal interesting insights, which are confirmed by coupled wave theory. For extreme values of chirality,
a reverse circular Bragg resonance arises in the negative refraction regime where handedness reversal of
counterpart modes occurs. A condition is identified under which circular birefringence precisely offsets structural
chirality, rendering the medium simply linearly birefringent. Manufacturing such a medium is feasible via current
metamedia and inorganic materials technology and has applications in optics, optoelectronics, and sensing.
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I. INTRODUCTION

Chirality, or the geometric property that an object cannot
be superimposed with its mirror image, is pervasive in nature
[1], and was recently studied in artificial metamedia for its
potential applications in optoelectronics [2] and sensing [3].
The electromagnetic response of chiral media has two distinct
origins. The first is via magnetoelectric coupling, which in
natural media arises from chirality at the molecular scale. The
characteristic response of this form of chirality is optical rota-
tion, whereby the plane of linearly polarized light is rotated on
transmission, or, equivalently, circular birefringence, whereby
right and left circular polarizations (RCP and LCP, respec-
tively) propagate at different speeds. On optical rotation,
we note that electric-dipole–electric-quadrupole coupling also
exists, with its contribution becoming comparable to the mag-
netoelectric coupling in natural Rayleigh or Raman optical
activity [4]. The other origin of electromagnetic chirality is
via helical stacking of birefringent layers in structurally chiral
media, such as cholesteric liquid crystals [5] or sculptured
thin films [6]. Their signature response is the circular Bragg
phenomenon, wherein cohanded polarized light effectively
experiences a periodic modulation of the refractive index
by alternately sampling the two refractive indices associated
with the two orthogonal axes, progressively rotating along
the direction of propagation. Then, monochromatic light is
strongly reflected when its wavelength in the medium matches
the helical pitch, the so-called Bragg condition. On the other
hand, the propagation of contrahanded polarized light, whose

*m.mccall@imperial.ac.uk
†steven.koufidis20@imperial.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

helicity is opposite to the medium’s spatial handedness, is
unaffected, seeing an average refractive index.

How to optically characterize media with either form of
chirality was discussed in Ref. [7], and the differentiation
between structural and molecular chirality was recently ex-
plained in the context of polymer thin films in Ref. [8].
Either or both forms of chirality represent opportunities for
manipulation of circularly polarized light, which is attract-
ing increasing attention in modern optoelectronics [9]. Such
polarization selectivity can, e.g., enhance the throughput effi-
ciency of organic light-emitting diode (OLED) displays [10]
or enhance spin polarized electron transport in chiral organic
semiconductors [11]. Although the interaction of light with
naturally chiral media is typically weak, recent advances in
metamedia fabrication have augmented the chiroptical re-
sponse [12]. In particular, a “curled” metasurface with giant
chirality was experimentally demonstrated in Ref. [13], while
in Ref. [14], it was shown that incrementing the metasurface
area significantly enhances optical activity.

The asymmetrical response of structurally chiral media
was studied in Refs. [15–19], where the problem of axial prop-
agation was exactly solved via full electromagnetic analysis
and approximately via coupled wave theory. The location of
the Bragg resonances is sensitive to various parameters and
plays an important role in many applications in sensing [20].
Indeed, in Ref. [21], the increment of the volumetric fraction
shifted the Bragg resonance towards the blue, and an experi-
ment conducted in Ref. [22] found a similar blue-shifting with
increment of the deposition angle [18]. Two opposite-sign
lateral shifts at the edges of the Bragg zone of a nanocom-
posite structurally chiral medium were seen in Ref. [23], and
in Ref. [24] a shift towards shorter wavelengths was associ-
ated with material changes occurring during annealing. The
porosity of structurally chiral media offers a platform for fluid
infiltration, and a spectral shift, strongly dependent on the
fluid’s refractive index, was demonstrated in Ref. [25]. This
extended the work in Ref. [26], which found that infiltration of
void regions with a higher-refractive-index material enhanced
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optical activity, which is approximately proportional to the
square of the local linear birefringence [27].

A natural question to address is the electromagnetic re-
sponse of a medium that combines both structural and
magnetoelectric chirality. This appears to have been first
examined numerically in Refs. [28,29], where the optical
response of a chiral sculptured thin film, infiltrated by an
isotropic chiral fluid, was studied. Apparently, the chiral fluid
shifts the optical spectrum, linearly to its chirality, also af-
fecting the peak reflectance and bandwidth. In this paper, the
axial propagation of circularly polarized light in a circularly
birefringent structurally chiral medium is solved analytically,
and identification of some of the system’s underlying symme-
tries reveals significant insights. In particular, we demonstrate
that additional resonances compared with those demonstrated
in Refs. [28,29] occur, as in Refs. [30,31], but in a different
kind of material-light interaction. When the optical rotatory
power is extreme, eliciting negative refraction due to chi-
rality (as was theoretically predicted in Refs. [32,33] and
experimentally realized in Refs. [34–36]), the handedness and
phase velocity of counterpart modes interchange. This re-
verse circular Bragg phenomenon is related to metamaterials
with giant optical activity [37] and is fundamentally distinct
from the handedness reversal phenomenon due to the per-
mittivity and permeability being simultaneously negative that
was found in Ref. [38]. Furthermore, chiral inorganic nano-
materials exhibiting enough chirality so that the refractive
index associated with one polarization becomes negative [39]
are preferable candidates for small-volume and low-energy-
consumption practical realizations of the proposed medium.

The paper is organized as follows: In Sec. II, constitutive
relations for circularly birefringent structurally chiral media
are formed, and in Sec. III the problem of axial propagation
is exactly solved via full electromagnetic analysis. In Sec. IV
the optical response of a slab of the considered medium is
investigated and the aforementioned resonances are demon-
strated. Finally, a condition under which circular birefringence
precisely offsets structural chirality, rendering the medium
simply linearly birefringent, is identified in Sec. V. Con-
clusions are given in Sec. VI. The handedness reversal of
counterpropagating modes in the negative refraction regime
is reviewed in Appendix A, and coupled wave theory, applied
to corroborate the theoretical predictions, is summarized in
Appendix B.

II. CONSTITUTIVE RELATIONS

A. Circularly birefringent media

According to the Drude-Born-Fedorov model [40], the
temporal frequency domain constitutive relations for optical
activity in a bi-isotropic reciprocal medium are

D = ε0(εE + iαη0H), (1)

B = μ0[−i(α/η0)E + μH]. (2)

Here, E, B are the fundamental electromagnetic fields and
D, H are the excitation fields. The free-space permittivity,
permeability, and impedance are ε0, μ0, and η0 = (μ0/ε0)1/2,
respectively, the relative permittivity is ε, and the relative

permeability is μ. The chirality parameter α ∈ R measures
the distance (in wavelengths) after which the E vector of a
linearly polarized wave completes a full rotation. Defining the
auxiliary fields h = η0H, b = (η0/μ0)B, and d = ε−1

0 D, with
the same dimensions as E, Eqs. (1) and (2) become

d = εE + iαh,

b = −iαE + μh,

respectively. Maxwell’s macroscopic source-free curl rela-
tions, under the exp (−iωt ) harmonic convention, are written
as

∇ × E = k0αE + ik0μh, (3)

∇ × h = −ik0εE + k0αh, (4)

where k0 = (ε0μ0)1/2ω is the free-space wave number. For
plane wave propagation along z, with a unit vector ẑ, com-
bining Eqs. (3) and (4) yields

d2E
dz2

+ 2αk0
d

dz
(ẑ × E) + k2

0 (με − α2)E = 0, (5)

which is the Helmholtz wave equation describing axial prop-
agation in isotropic circularly birefringent media.

B. Structurally chiral media

A structurally chiral medium is modeled by a dielectric
tensor of the form

ε = R · ε̂ · R−1,

where ε̂ is the background (i.e., static) dielectric tensor, and in
Cartesian coordinates,

R =
⎛
⎝ cos (pz) −h sin (pz) 0

h sin (pz) cos (pz) 0
0 0 1

⎞
⎠

describes the periodic rotation of the eigenaxes of ε along and
about the z axis with a spatial period Lp = 2π/p [19]. For h =
+1, the eigenaxes of ε rotate in a right-handed (RH) sense,
while for h = −1, the rotation is regarded as left-handed (LH).
The transverse projection of R can be expressed as [15]

R⊥ = 1
2σeipz + 1

2σ∗e−ipz, (6)

where

σ =
(

1 hi
−hi 1

)
.

Denoting as εref the reference tensor, with Cartesian
components εref = diag(εa, εb, εc), the background tensor ac-
counts for the orientation of the principal axes as

ε̂ = χ · εref · χ−1,

where

χ =
⎛
⎝cos χ 0 − sin χ

0 1 0
sin χ 0 cos χ

⎞
⎠,

and the so-called rise angle χ tilts the eigenaxes in the x-z
plane. It is straightforward to show that the projection of ε̂ in
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the x-y plane takes the diagonal form [19]

ε̂⊥ =
(̃

ε 0
0 εb

)
, (7)

where

ε̃ = εaεc

εa sin2 χ + εc cos2 χ
.

It is convenient to reexpress the tensor of Eq. (7) as

ε̂⊥ = ε̄ I + δε J ,

where

ε̄ = (̃ε + εb)/2, δε = (̃ε − εb)/2, (8)

I is the 2 × 2 identity, and J = diag(1,−1). Overall,

ε⊥(z, h) = R⊥ · ε̂⊥ · R−1
⊥ (9)

is the z-dependent tensor describing structural chirality, which
also depends on the medium’s spatial handedness h.

C. Circularly birefringent structurally chiral media

As we are interested in axial propagation in an anisotropic
medium that combines circular birefringence with structural
chirality, the scalar ε appearing in Eq. (5), for the transverse
component of the electric field E⊥, is replaced by the tensor ε⊥
of Eq. (9), presumed to be inhomogeneous along the z direc-
tion only. Such a Helmholtz wave equation shall be describing
axial propagation in circularly birefringent structurally chiral
media.

III. FULL ELECTROMAGNETIC ANALYSIS FOR AXIAL
PROPAGATION

Considering the transverse components of the fields,
Eqs. (3) and (4) can be written in a matrix notation as

d

dz
(×)

(
E⊥
h⊥

)
= ik0

(−iαI μI
−ε⊥ −iαI

)(
E⊥
h⊥

)
, (10)

where (×) has Cartesian components
(0 −1

1 0

)
and acts on

both E⊥ and h⊥. The system of Eq. (10) can be rendered
autonomous via the Oseen transformation [41]

e = R−1
⊥ · E⊥, (11a)

h̃ = R−1
⊥ · h⊥, (11b)

under the convention of Ref. [42]. Via Eqs. (11a) and (11b),
the two lines of the system in Eq. (10) become

d

dz
(×)e = −R−1

⊥
dR⊥

dz
(×)e + αk0e + ik0μh̃,

d

dz
(×)̃h = −R−1 dR⊥

dz
(×)̃h − ik0ε̂⊥ · e + αk0h̃,

and it is easy to show that they can be simplified to

d

dz

(
e
h̃

)
= (×)

(−hp − k0α −ik0μ

ik0ε̂⊥ −hp − k0α

)(
e
h̃

)
. (12)

In terms of the G = (ex, ey, h̃x, h̃y)T components of
the Oseen-transformed fields, where T denotes transpose,

FIG. 1. A length L = 6 µm slab of a right-handed (h = +1)
circularly birefringent structurally chiral medium, stacked between
two non-index-matched isotropic dielectrics with refractive indices
n1 = 1 and n2 = 2. Light is normally incident and the arrows indicate
the incident, reflected, and transmitted circular polarizations. The
medium’s base parameters are εa = 3.2 + 0.02i, εb = 2.9 + 0.02i,
εc = 2.8 + 0.02i, μ = 1, Lp = 300 nm, and χ = 30◦.

Eq. (12) can be equivalently written in the vectorial-
differential form

dG
dz

= F · G, (13)

where the components of the characteristic matrix are

F =

⎛
⎜⎝

0 hp + k0α 0 ik0μ

−hp − k0α 0 −ik0μ 0
0 −ik0εb 0 hp + k0α

ik0ε̃ 0 −hp − k0α 0

⎞
⎟⎠.

(14)
The exact solution to the autonomous system of Eq. (13)

can be used to construct the axially propagating fields via
Eqs. (11a) and (11b), from which the reflection and trans-
mission coefficients of polarized light incident to a slab of
the considered medium may be computed. Indeed, assuming
a slab extended between z = 0 and z = L, as illustrated in
Fig. 1, the solution to Eq. (13) for the transverse components
of the fields is [19](

E⊥
h⊥

)
z=L

=
(
R⊥ 0

0 R⊥

)
eFL

(
E⊥
h⊥

)
z=0

,

where 0 is the 2 × 2 null matrix and eFL is a well-defined
matrix exponential. For ax,y, rx,y, and tx,y being the ampli-
tudes of the incident, reflected, and transmitted electric fields
in Cartesian coordinates, respectively, field matching at both
interfaces of Fig. 1 requires

(
E⊥
h⊥

)
z=0

=

⎛
⎜⎝

ax + rx

ay + ry

−n1(ay − ry)
n1(ax − rx )

⎞
⎟⎠,

(
E⊥
h⊥

)
z=L

=

⎛
⎜⎝

tx
ty

−n2ty
n2tx

⎞
⎟⎠.
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The linear reflection and transmission coefficients are defined
as (

rx

ry

)
=

(
rxx rxy

ryx ryy

)(
ax

ay

)
,

(
tx
ty

)
=

(
txx txy

tyx tyy

)(
ax

ay

)
,

respectively, and converting to a circular basis yields(
rLL rLR

rRL rRR

)
= 1

2

(
1 i
1 −i

)(
rxx rxy

ryx ryy

)(
1 1
i −i

)
,

(
tLL tLR

tRL tRR

)
= 1

2

(
1 −i
1 i

)(
txx txy

tyx tyy

)(
1 1
i −i

)
.

The intensity reflectances are then Ri, j = |ri, j |2, while
the intensity transmittances Ti, j = (n2/n1)|ti, j |2, with {i, j} =
{R, L} indicating reflection or transmission of the i polariza-
tion for incident j polarization.

IV. OPTICAL RESPONSE

A. Regular circular Bragg phenomenon

In the absence of circular birefringence, α = 0 and the
characteristic matrix F of Eq. (14) describes axial propagation
through a usual structurally chiral medium. It is well estab-
lished that the resulting optical spectrum shows the circular
Bragg phenomenon if the condition λBr

0 = Re(n̄)Lp, where
n̄ = (ε̄μ)1/2 with ε̄ defined in Eq. (8), is met. In this instance,
circularly polarized light that is cohanded with the medium
will be strongly reflected, whereas contrahanded light will be
transmitted (see, e.g., Refs. [15,16,19,42]).

If the structurally chiral medium is now infiltrated by a
chiral fluid, i.e., if α �= 0, it will also become circularly bire-
fringent. From Eqs. (13) and (14), it is evident that combining
circular birefringence with structural chirality is mathemati-
cally described by a linear perturbation to the characteristic
matrix of a simple uninfiltrated structurally chiral medium (cf.
Eq. (14) for α = 0 and p = p′), namely,

p′ → p + (α/h)k0. (15)

In a circularly birefringent structurally chiral medium, the
perturbation of Eq. (15) will result in a shift of the Bragg
wavelength determined from

(
λBr

0

)′ = 2π

p′ Re(n̄) = 2πRe(n̄)

p + (α/h)
[
2π/

(
λBr

0

)′] ,

where solving for (λBr
0 )′ yields(

λBr
0

)′ = Lp[Re(n̄) − α/h]. (16)

Hence setting h = +1 for a right-handed medium, RCP light
will be resonant at

λBr
0

∣∣RCP

RH = Lp[Re(n̄) − α], α < Re(n̄), (17)

whereas in a left-handed medium, h = −1 and LCP light will
be resonant at

λBr
0

∣∣LCP

LH = Lp[Re(n̄) + α], α > −Re(n̄), (18)

FIG. 2. Intensity reflectances of the setup in Fig. 1 for a physical
value of chirality, α = 0.084. The contrahanded reflectances RLR and
RRL coincide.

where we have also stated the conditions that α and n̄ must
satisfy so that the wavelengths remain positive. These con-
siderations quantitatively explain the spectral shifts observed
numerically in Refs. [28,29], since our system in Eq. (13) is a
special case of Eq. (18) in Ref. [28] describing infiltration by
a general anisotropic chiral fluid.

To demonstrate these resonances, we consider a sculptured
thin film, whose porous nature makes it ideal to be infiltrated
by a chiral fluid, e.g., the D-glucose solution C6H12O6 · H2O.
In Ref. [43], the real part of the specific chirality of such a so-
lution is [α] ≈ 1.37 × 10−6 cm3/g, while the imaginary part
is almost zero (at 21.5 ◦C). For a concentration close to satu-
ration C = 1.8 g/cm3, the chirality parameter is α = 2.46 ×
10−6. For the purpose of demonstration, we set α = 0.084,
which is a reasonably high but not extreme value (almost six
times lower than the chirality value used in Ref. [28]), lying
within −n̄ < α < n̄. The intensity reflectances and transmit-
tances, for the setup in Fig. 1, can be seen in Figs. 2 and 3,

FIG. 3. Intensity transmittances for the scenario of Fig. 2.
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respectively. We note that in the presence of absorption, the
transmittance responds asymmetrically to the reflectance and
the R + T = 1 condition no longer holds.

Evidently, circularly birefringent structurally chiral media
exhibit a circular Bragg phenomenon for cohanded polarized
light. In the absence of circular birefringence the central
Bragg wavelength would be λBr

0 = 519.1 nm, while in its
presence, it is shifted towards the blue at (λBr

0 )′ = 493.9 nm
for a right-handed medium, as per Eq. (17), or towards the red
at (λBr

0 )′′ = 544.3 nm for a left-handed one, as per Eq. (18),
by |δλ| = |Lpα| = 25.2 nm. This spectral shift characterizes
both the medium and the chiral fluid, offering a platform for
sensing either the concentration or the specific chirality of
solutions [20].

B. Reverse circular Bragg phenomenon

The characteristic matrix of Eq. (14) is generally a func-
tion of the medium’s parameters F ≡ F(εb, ε̃, μ; k0; p, h, α).
Working explicitly in the |α| > Re(n̄) regime, by performing
the transformation

(εb, ε̃, μ; k0; p, h, α) → (εb, ε̃, μ; k0; −p, h,−α), (19)

so that the perturbation of Eq. (15) becomes p′ → −p −
(α/h)k0, we effectively reverse the handedness via p and not
via h, which is fixed for a particular medium. For εb, ε̃, and
μ unchanged, it turns out that an underlying symmetry of the
characteristic matrix F is

F(p, h, α) = H · F(−p, h,−α) · H, (20)

where H = diag(1,−1,−1, 1), with H−1 = H. We now re-
turn to Eq. (13), which via Eq. (20) is written as

d[G(p, h, α)]

dz
= [H · F(−p, h,−α) · H] · G(p, h, α)

and implies that

G(p, h, α) = H · G(−p, h,−α). (21)

Such symmetry entails that

{aL ↔ aR, rL ↔ rR, tL ↔ tR}, (22)

according to Eq. (18) of Ref. [38], meaning that the indices of
the reflection and transmission coefficients are interchanged
(R ↔ L). Then, nominally RCP light will become LCP and
vice versa. Thus the transformation of Eq. (19) creates the
illusion that the medium’s handedness is reversed, although
h is fixed.

To provide a firmer explanation of Eq. (22), we may ex-
amine the modes supported by a purely circularly birefringent
medium. As discussed in Appendix A, for |α| < Re(n̄), the
forward propagating eigenmodes have field vectors that trace
both left- and right-handed spatial helices (cf. Eqs. (A2) and
(A3), respectively). For |α| > Re(n̄), if we apply the transfor-
mation of Eq. (19) to the real part of the nominally forward
propagating RCP electric field, it is straightforward to show
that both the direction of propagation and the handedness
of the mode reverse. That is, the handedness of the co-
handed forward propagating mode swaps with the handedness
of the contrahanded backward propagating one. Indeed, for

α → −α and p → −p, the handedness is reversed,(
cos [k0(Re(n̄) − α)z]
sin [k0(Re(n̄) − α)z]

)
→

(
cos [k0(Re(n̄) + α)z]

− sin [k0(Re(n̄) + α)z]

)
,

since on-resonance, the wave number transforms as k0 =
p/(Re(n̄) − α) → −p/(Re(n̄) + α).

If we apply the transformation of Eq. (19) to the general
expression of the shifted Bragg wavelength in Eq. (16), we
obtain (

λBr
0

)′ = 2π

p′ Re(n̄) = 2πRe(n̄)

−p − (α/h)
[
2π/

(
λBr

0

)′] ,

where solving for (λBr
0 )′ yields(

λBr
0

)′ = −Lp[Re(n̄) + α/h], (23)

which is obviously Eq. (16) for α → −α and p → −p.
With the polarization states reversed, the resulting reso-

nance in a right-handed medium for LCP light is at

λBr
0

∣∣LCP

RH = −Lp[Re(n̄) + α], α < −Re(n̄), (24)

while in a left-handed medium, for RCP light, it is at

λBr
0

∣∣RCP

LH = −Lp[Re(n̄) − α], α > Re(n̄). (25)

Remarkably, in a right-handed medium, the condition for the
resonance occurrence in Eq. (17), α < Re(n̄), is still satis-
fied when the condition of Eq. (24) is met. Consequently,
for α < −Re(n̄), two resonances are expected: one corre-
sponding to light that is cohanded with the medium being
reflected and another resonance, unforeseen, that backscat-
ters light that is nominally contrahanded with the medium.
Similarly, for a left-handed medium the condition of Eq. (25),
α > Re(n̄), simultaneously satisfies the condition of Eq. (18).
This backscatters RCP light in a left-handed medium. These
resonances are signatures of a reverse circular Bragg phe-
nomenon.

For the setup in Fig. 1, the co- and contrahanded in-
tensity reflectances for an extreme value of chirality, α =
−1.5Re(n̄), are illustrated in Fig. 4. Evidently, for a particular
set of parameters, two resonances arise: one, regular, for RCP
light at λBr

0 |RCP
RH = 1.29 µm and one, reverse, for LCP light at

λBr
0 |LCP

RH = 259.55 nm. The relevant intensity transmittances
are illustrated in Fig. 5, where the envelope behavior is associ-
ated with increased absorption for increased optical thickness.
The peculiar response at the wavelength lying exactly between
the two resonances is discussed in Sec. V.

The requirement |α| > Re(n̄) signifies extreme values of
chirality, equivalent to a rotation of the electric field vector
within a wavelength in the medium. This has been identified
in Refs. [32,33] as the negative refraction due to the chirality
regime, and in Ref. [44], modes with negative phase velocity
in isotropic chiral media were demonstrated. This is funda-
mentally distinct from the handedness reversal phenomenon
of Ref. [38], where both the permittivity and permeability
of a structurally chiral medium were taken to be negative.
Accessing such large values of chirality has been achieved in
metamaterials at terahertz [34], gigahertz [35,36], and optical
frequencies [45], without, however, requiring the permittivity
and permeability to be simultaneously negative. Regarding
the visible spectrum, varying the conductivity, as done in
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FIG. 4. Intensity reflectances of the setup in Fig. 1 for an extreme
value of chirality, α = −1.5Re(n̄). The contrahanded reflectances
RLR and RRL coincide.

Ref. [46], provides the necessary tunability for switching op-
erations. We note, however, that for n̄ ≈ ±α, the credibility
of the Drude-Born-Fedorov model is questioned [47]. The
existence of these remarkable resonances is further confirmed
via coupled wave theory in Appendix B, where the rigorous
analysis is significantly simplified.

V. CIRCULAR BIREFRINGENCE OFFSETTING
STRUCTURAL CHIRALITY

A further interesting observation can be made on Eq. (14).
In fact, when k0α = −hp (N.B. α can take either sign), or in
terms of wavelength at

λc
0 =

h=+1

1
2

(
λBr

0

∣∣LCP

RH + λBr
0

∣∣RCP

RH

) = −Lpα

=
h=−1

1
2

(
λBr

0

∣∣LCP

LH + λBr
0

∣∣RCP

LH

) = Lpα, (26)

FIG. 5. Intensity transmittances for the scenario of Fig. 4.

which lies exactly in between the two resonances of Fig. 5
and is equal to the chirality-induced spectral shift, circu-
lar birefringence precisely offsets structural chirality. At this
wavelength, the fields e, h̃, which are twisting along with
the helix, experience a linearly birefringent medium. The
forward propagating modes are then e1 = (exp (iñk0z), 0)T

and e2 = (0, exp (inbk0z))T , where ñ = (ε̃μ)1/2 and nb =
(εbμ)1/2. When transformed back using Eqs. (11a) and (11b),
we get

E1 = eiñk0z

(
cos (pz)

h sin (pz)

)
, (27a)

E2 = einbk0z

(−h sin (pz)
cos (pz)

)
, (27b)

which correspond to linearly polarized fields, in Cartesian
coordinates, that rotate with the eigenaxes of the structurally
chiral medium. The total transverse field is

E⊥ = A1E1 + A2E2, (28)

where A1,2 are the amplitudes of the electric fields. Inter-
estingly, E1 and E2 are at once orthogonal but cohanded,
taking the same chirality as the structurally chiral medium.
Converting the expression in Eq. (28) to an equivalent in a
circular basis, we obtain(

E+
L

E+
R

)
z=L

= T
(

E+
L

E+
R

)
z=0

, (29)

where

T =
(

eik0(n̄+α)z cos (k0 ˜̃nz) ieik0(n̄+α)z sin (k0 ˜̃nz)
ie−ik0(n̄−α)z sin (k0 ˜̃nz) e−ik0(n̄−α)z cos (k0 ˜̃nz)

)
,

with ˜̃n = (ñ − nb)/2. This represents a continuous exchange
between circular states as light propagates through a linearly
birefringent medium, due to its unnatural expansion in a cir-
cular basis.

At λc
0, plotting the transmittances of Fig. 1, accessed via

Eq. (29), as functions of the slab thickness in Fig. 6, we see
that the energy between TLL (TRR) and TRL (TLR) is exchanged.
In this regime, circular birefringence counteracts structural
chirality, effectively “unwrapping” the medium, which light
now sees as simply linearly birefringent with refractive in-
dices ñ and nb. Moving towards shorter wavelengths, the
medium is “wrapped” again but this time with an opposite
handedness, so that a reverse circular Bragg phenomenon
occurs.

VI. CONCLUSIONS

The axial propagation of circularly polarized light in cir-
cularly birefringent structurally chiral media was addressed
via full electromagnetic analysis, and some underlying sym-
metries of the system’s characteristic matrix led to additional
resonances, previously unknown. For chirality comparable to
the average refractive index, in the negative refraction regime,
the handedness of the cohanded forward propagating mode
swaps with the handedness of the contrahanded backward
propagating one, bringing the latter into resonance. At another
wavelength, lying exactly between the two resonances, circu-
lar birefringence exactly offsets structural chirality, rendering
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FIG. 6. Periodic exchange of circular states as a function of the
slab thickness at λc

0 (cf. Fig. 5) as per Eq. (29). The parameters are
those of Fig. 1.

the medium simply linearly birefringent. There, circular po-
larizations degenerate to linear, orthogonal, and cohanded,
rotating at the same rate as the structurally chiral medium’s
eigenaxes. Assessing the required parameter, we contend that
they are accessible via current metamedia technology at ter-
ahertz, gigahertz, and optical frequencies. Applications in
switching operations, modern optoelectronics, and sensing
may be stimulated.
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APPENDIX A: REVIEW OF CIRCULAR BIREFRINGENCE

The eigenvalues of the matrix S on the right-hand side
of Eq. (10), for ε⊥ reverted to ε, are λ± = −i(α ± n̄), each
with multiplicity 2, with corresponding eigenvectors u± =
(v,∓iv/η)T , where η = (μ/ε)1/2 and v ∈ C2. Then,

D =
(

λ+I 0
0 λ−I

)
= U−1 · S · U,

where

U =
(

I I
−i/ηI i/ηI

)
.

For fields propagating along the z axis, with an exp (ikz)
dependence, Eq. (10) is expressed as

k(×)

(
Q1

Q2

)
=

(−iγ+I 0
0 −iγ−I

)(
Q1

Q2

)
, (A1)

where γ± = k0(α ± n̄) and the Beltrami fields are(
Q1

Q2

)
= U−1

(
E⊥
h⊥

)
= 1

2

(
E⊥ + iηh⊥
E⊥ − iηh⊥

)
.

Then, Eq. (A1) yields(
iγ+ −k
k iγ+

)(
Q1x

Q1y

)
= 0,

with eigenvalues k1± = ±γ+, and(
iγ− −k
k iγ−

)(
Q2x

Q2y

)
= 0,

with eigenvalues k2± = ±γ−.
For |α| < Re(n̄), the modes propagating along +z have

wave numbers k1+ and k2−. The corresponding eigenvectors
propagate according to

Q1+ = Q1+
eik0(n̄+α)z

√
2

(
1
i

)
,

Q2+ = Q2+
eik0(n̄−α)z

√
2

(
1
−i

)
,

where Q1+ and Q2+ are constants. If Q2+ = 0, then E⊥ =
E1+ = Q1+, and we have

Re(E1+) = |Q1+|e−k0Im(n̄)z

√
2

(
cos [Re(γ+)z + arg(Q1+)]

− sin [Re(γ+)z + arg(Q1+)]

)
,

(A2)
corresponding to an electric field that describes a left-handed
helix in space. Similarly, if Q1+ = 0, then E⊥ = E2+ = Q2+
and

Re(E2+) = |Q2+|e−k0Im(n̄)z

√
2

(
cos [−Re(γ−)z + arg(Q2+)]
sin [−Re(γ−)z + arg(Q2+)]

)
,

(A3)
corresponding to a field describing a right-handed helix in
space. The modes propagating along −z have wave numbers
k1− and k2+ with corresponding eigenvectors

Q1− = Q1−
e−ik0(n̄+α)z

√
2

(
1
i

)
,

Q2− = Q2−
e−ik0(n̄−α)z

√
2

(
1
−i

)
.

The fields found by setting Q2− = 0 and Q1− = 0 are

Re(E1−) = |Q1−|ek0Im(n̄)z

√
2

(
cos [Re(γ+)z + arg(Q1−)]
sin [Re(γ+)z + arg(Q1−)]

)
and

Re(E2−) = |Q2−|ek0Im(n̄)z

√
2

(
cos [−Re(γ−)z + arg(Q2−)]

− sin [−Re(γ−)z + arg(Q2−)]

)
,

respectively.
When α > Re(n̄) (respectively, α < −Re(n̄)), the direc-

tion of phase advance for E2+ (E1+) changes from being
positive to being negative, so that E2+ (E1+) describes a
wave whose phase propagates along −z. Moreover, Re(E2+)
(Re(E1+)) changes from describing a right-handed (left-
handed) helix to a left-handed (right-handed) helix. Similarly,
the direction of phase advance for E2− (E1−) changes from
being negative to being positive, so that E2− (E1−) describes
a wave whose phase propagates along +z and Re(E2−)
(Re(E1−)) changes from describing a left-handed (right-
handed) helix to a right-handed (left-handed) helix. While the
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direction of phase propagation changes, the Poynting vector
does not change [48].

APPENDIX B: COUPLED WAVE THEORY DESCRIPTION
OF CIRCULAR BIREFRINGENCE WITH STRUCTURAL

CHIRALITY

Reverting the tensor ε to a scalar ε, Eq. (5) will be describ-
ing circular birefringence without structural chirality. The
transverse electric field of plane waves is

E⊥ = (A+
L eik0(n̄+α)z + A−

R e−ik0(n̄−α)z )Q1

+ (A+
R eik0(n̄−α)z + A−

L e−ik0(n̄+α)z )Q2, (B1)

in a circular basis, where

Q1 = 1√
2

(
1
i

)
and Q2 = 1√

2

(
1
−i

)
.

For |α| < n̄, the amplitudes of Eq. (B1) are appropriately no-
tated, whereas for |α| > n̄, the phase velocity and handedness
of some modes reverse; see Appendix A.

The amplitudes are assumed to be slowly varying functions
of z. Substituting Eq. (B1), along with Eqs. (6), (7), and (9),
into Eq. (5), retaining potentially phase-matched terms, and
resolving along Q1 and Q2 yields

dA+
L

dz
eik0(n̄+α)z − dA−

R

dz
e−ik0(n̄−α)z

= iκA+
R ei[k0(n̄−α)−2hp]z + iκA−

L e−i[k0(n̄+α)+2hp]z (B2)

and

dA+
R

dz
eik0(n̄−α)z − dA−

L

dz
e−ik0(n̄+α)z

= iκA+
L ei[k0(n̄+α)+2hp]z + iκA−

R e−i[k0(n̄−α)−2hp]z. (B3)

The coupling constant is κ = πδn̄/λ0, where δn̄ = |ñ − nb|
is the local linear birefringence. The absorption is almost
constant over the range of δn̄ so that κ ∈ R.

For different phase-matching scenarios, Eqs. (B2) and (B3)
can be distilled into

d

dz

⎛
⎜⎜⎝

A+
L

A−
L

A+
R

A−
R

⎞
⎟⎟⎠ = K

⎛
⎜⎜⎝

A+
L

A−
L

A+
R

A−
R

⎞
⎟⎟⎠, (B4)

where

K = iκ

⎛
⎜⎜⎝

0 e−iδLz e−iδcz 0
−eiδLz 0 0 −eiδcz

eiδcz 0 0 e−iδRz

0 −e−iδcz −eiδRz 0

⎞
⎟⎟⎠,

and the various detuning parameters are given by

δR = 2k0(n̄ − α) − 2hp, (B5a)

δL = 2k0(n̄ + α) + 2hp, (B5b)

δc = 2k0α + 2hp. (B5c)

For a right-handed medium, the on-resonance condition
for RCP light, Re(δR) = 0, corroborates Eq. (17). For a
left-handed medium the Re(δL ) = 0 condition for LCP light

corroborates Eq. (18). Finally, setting δc = 0, we obtain k0α =
−hp, corroborating Eq. (26) and corresponding to the modes
given by Eqs. (27a) and (27b).

For each identified resonance, coupled wave theory pro-
vides a pair of readily solved equations from which the
relevant z-dependent amplitudes are deduced. Then, the total
transverse electric field may be reconstructed via Eq. (B1) so
that the optical spectrum can be calculated as in Ref. [19].
For δR,L ≈ 0, the evolution of the amplitudes is given by the
solutions to Eqs. (B4)(

A+
R,L

A−
R,L

)
z=L

=
(

p+
R,L q+

R,L
q−

R,L p−
R,L

)(
A+

R,L
A−

R,L

)
z=0

,

where

p±
R,L(z) = e∓ iδR,L

2 z

[
cosh (R,Lz) ± i

δR,L

2R,L
sinh (R,Lz)

]
,

q±
R,L(z) = ± ie∓ iδR,L

2 z κ

R,L
sinh (R,Lz),

with R,L = [κ2 − (δR,L/2)2]1/2.
For δc ≈ 0, the solution is slightly different. In fact,(

A+
L

A+
R

)
z=L

=
(

p̃+ q̃
q̃ p̃−

)(
A+

L
A+

R

)
z=0

,

where

p̃±(z) = e∓i δc
2 z

[
cos (cz) ± i

δc

2c
sin (cz)

]
,

q̃(z) = ie∓i δc
2 z κ

c
sin (cz),

with c = [κ2 + (δc/2)2]1/2. The circular components of the
forward propagating electric fields are then(

E+
L

E+
R

)
z=L

= eik0 n̄z

(
e−ihpz p̃+ e−ihpzq̃

eihpzq̃ eihpz p̃−

)(
E+

L
E+

R

)
z=0

. (B6)

On noting that 2κ = k0(ñ − nb) and applying the condi-
tion k0α = −hp, the on-resonance (δc = 0) representation of
Eq. (B6) coincides with Eq. (29). In this instance, coupled
wave theory, despite being an approximate method, yields the
exact result.

Examining the on-resonance approximate expression for
the peak reflectance, Rpeak = tanh2 (κL) and for a particular
handedness, say, right, for RCP, we have kR

0 = p/(n̄ − a),
while for LCP, kL

0 = −p/(n̄ + a). Then,

Rpeak
RR = tanh2

(
p

n̄ − α

μδε

2n̄
L

)
, (B7)

where it is evident that increasing α increases Rpeak
RR . In con-

trast, for a left-handed medium, increasing α has the opposite
impact on Rpeak

LL . Therefore Eq. (B7) clearly demonstrates the
monotonic relationship of Rpeak

RR with α.
Finally, as seen in Ref. [28], circular birefringence also

affects the resonance bandwidth. This can be estimated as
λ0 = Re(δn̄)Lp. Considering that the optical rotation is
roughly proportional to the square of δn̄ [27], we have λ0 ∼
α2Lp, explaining the quadratic behavior found in Ref. [28].
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