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Abstract— With the uptake of automated transport, espe-
cially Pick-Up and Drop-Off (PUDO) operations of Shared
Autonomous Vehicles (SAVs), the valet parking of passenger
vehicles and delivery vans are envisaged to saturate our future
streets. These emerging behaviours would join conventional on-
street parking activities in an intensive competition for scarce
curb resources. Existing curbside management approaches
principally focus on those long-term parking demands, ne-
glecting those short-term PUDO or docking events. Feasible
solutions that coordinate diverse parking requests given limited
curb space are still absent.

We propose a Reinforcement Learning (RL) method to
dynamically dispatch parking areas to accommodate a hybrid
stream of parking behaviours. A partially-learning Deep De-
terministic Policy Gradient (DDPG) algorithm is trained to
approximate optimum dispatching strategies. Modelling results
reveal satisfying convergence guarantees and robust learning
patterns. Namely, the proposed model successfully discriminates
parking demands of distinctive sorts and priorities PUDOs and
docking requests. Results also identify that when the demand-
supply ratio situates at 2:1 to 4:1, the service rate approximates
an optimal (83%), and curbside occupancy surges to 80%. This
work provides a novel intelligent dispatching model for diverse
and fine-grained parking demands. Furthermore, it sheds light
on deploying distinctive administrative strategies to the curbside
in different contexts.

I. INTRODUCTION

As the crucial interface between land use and transport
systems, curbside represents a scarce asset where various
means of mobility compete for room to stop or park [1],
[2]. Whilst on-street parking activities [3], [4], Pick-Up and
Drop-Offs (PUDOs) passengers, brief docking, and freights
loading are emerging as primary and dominant curb activities
in recent years [5], [6]. Furthermore, with the uptake of Au-
tonomous Vehicles (AVs), in particular Shared AVs (SAVs),
the average Vehicle Kilometres Travelled (VKT), the level
of ride-sharing, frequencies of PUDOs and curb delivery
are all envisaged to surge drastically [7], [8]. Therefore, it
is reasonable to expect more intensive competition between
distinctive curb parking demands.

Conventional curbside administrative measurements have
limited effects on restraining unfettered parking behaviours
and alleviating double park effects [1]. Meanwhile, merely
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expanding the parking space supply represents an unsustain-
able solution, which still fails to coordinate a diverse set
of parking demands at the bottom [9]. Through optimising
the curbside parking patterns at the district level, the system
reduces 50% of traffic delays [10], and alleviates 64% of
double parking incidents [11]. The real-time allocation of
curbside parking space remains a critical factor towards
efficient utilisation of curb resources. However, existing
dynamic parking assignment models lack capabilities in
considering those short-term parking activities. They also
lack fine-grained strategies regarding a broad spectrum of
diverse parking behaviours.

This paper addresses the curbside parking assignment
problem in a novel context of the Intelligent Transport
System (ITS) to fill this research gap. We assume that the
curbside parking asset can be efficiently managed and dy-
namically coordinated among diversifying parking demands
[5]. Based on well-established communications between ve-
hicles and infrastructures, a fixed capacity of curb space
could simultaneously accommodate PUDOs, docking and on-
street parking demands in a finite time horizon.

We propose a Reinforcement Learning (RL) method to ap-
proximate optimum dispatching policies, of which sequential
decisions address whether to accept the requests and where
to accommodate them. The objectives maximise the rates of
parking service and curbside occupancy. A partially learn-
ing Deep Deterministic Policy Gradient (DDPG) algorithm
performs this online acting whilst off-policy training task.
The model is trained for 1,500 epochs under multiple hybrid
parking conditions.

The principal contribution of this paper is its novelty
of optimising the sequential curbside dispatching strategy
regarding both short and long-term parking behaviours. In
addition, the findings shed light on the relationship be-
tween parking demand patterns and curbside performance,
potentially benefiting city administrators to manage scarce
curbside resources efficiently and strategically.

II. LITERATURE REVIEW

A. Curbside Management

Curb space represents the physical interface between urban
land use and transport systems [1]. Statistics revealed that
on-street parking accounts for over 20% of total parking
demands in USA [3] and 36% in Europe [4]. Along with
parking, the PUDO operations of the taxi or the ride-sharing
mobility contribute to almost 55% of curb use in busy streets
[5]. Meanwhile, the curb delivery business is projected to



grow 75% by 2040, thanks to the continuously booming e-
commerce [6].

Different parking purposes have distinctive average dura-
tion of stopping. Approximately 90% of PUDO behaviours
last less than 1.5mins, while docking activities usually last
less than 30mins [5]. On the other hand, on-street parking
vehicles usually stop for a more extended period, about 3hrs
on average [8].

Conventional curbside management imposes regulations
to restrain unfettered parking behaviours for the benefit of
a balanced demand-supply distribution [6]. However, 34%
of passenger vehicle trips are still cruising for parking [9],
while, 86% delivery vehicles stop on unauthorised zones [6].
Consequentially, their double-park manoeuvres potentially
obstruct traffic flow. These under-coordinated conflicts sig-
nificantly impede multi-stakeholders to access to curb space,
and endanger the safety of vulnerable groups.

The mainstream studies agreed that merely expanding
parking space supply can not secure sustainable and efficient
exploitation of curb spaces [2]. Besides, in the era of AVs,
the VKT, the level of ride-sharing, valet parking operations,
frequencies of PUDOs, and curb delivery events are envis-
aged to surge drastically [7], [8]. Therefore, the intelligent
and dynamic coordination of curb parking events are critical.
Novel solutions were proposed to establish more automated
curbside, where designated PUDO zones [5], sensing sys-
tems, dynamic pricing schemes [12] and dynamic allocation
schemes are devised and some practised. An example showed
that, by deploying pilot PUDO areas, 64% of double parking
events are eliminated [11]. Another study found that through
optimising the patterns of curb parking lanes, the average
traffic delay reduces 194s/veh [10].

B. Reinforcement Learning and Applications

The curbside parking assignment problem is usually for-
mulated as a Dynamic Programming (DP) problem. Rein-
forcement learning (RL) proves to be a promising method to
unravelling these problems. The Deep Deterministic Policy
Gradient (DDPG) algorithm is a quintessential RL method,
which conducts off-policy learning in continuous action
domains [13]. DDPG algorithms have been applied to op-
timal sequential decision problems in the field of Intelligent
Transport Systems (ITS), like AVs operations, traffic signal
control, and the right-of-way control [14].

RL has also been introduced to solve curbside parking
assignment problems. For instance, A multi-agent RL model
was built to dispatch parking sites for AVs [15]. Furthermore,
the Estimation of Distribution Algorithm (EDA) represents
another application of RL method to facilitate parking al-
location decisions [16]. Despite existing progress, we have
identified research opportunities as follows.

• Previous models principally focus on optimising on-
street parking behaviours, whereas dynamic decisions
on short-term parking demands, such as PUDOs and
docking requests, are literately neglected.

• Most dynamic assignment models adopt vehicular-based

Fig. 1. Illustration of Curbside Environment and Parking Assignments.
Purple line: rejected request; Orange lines: approved request; Yellow lines:
movement direction; Yellow box: reserved parking areas; Red box: occupied
area; Green box:available parking area; Blue-dashed box: demands area

modelling perspectives instead of strategically consider-
ing curbside performance.

• By adding PUDOs and docking behaviours into the
arena, correlations between demands and curbside per-
formance, such as optimum occupancy rate and opti-
mum service rate, present a new puzzle.

• RL presents a promising solution to curb assignments.
However, the current applications are still limited.

III. METHODOLOGY

A. Problem Statement

Consider a discrete-time transport system involving a
hybrid parking demand stream given a finite time horizon
of T= 3,600s. Let V represents a fleet of SAVs potentially
carrying out these demands. The total number of operational
vehicles in the system is |V|=1,000 vehs. The subset VD
comprises all vehicles v dispatched to demands q ∈Q, where
|Q| denotes the total number of parking demands.

In this work, we consider three types of parking be-
haviours: the PUDOs, docking, and on-street parking, of
which we use u ∈U to index each type. kv

u represents the
parking duration per vehicle v. The pattern of all kv

u follows
a truncated distribution g(k̄u,σu). Herein, the mean duration
k̄u are 1.5mins, 10mins and 60mins, respectively.

We designed a curbside comprising |P|=20 parallel parking
areas to suffice the parking demands. Each parking area
p ∈ P is in a size of 5m× 3m. As illustrated in Fig.1, an
intelligent controller decides whether to accept a proceeding
AV upon its parking request at t ∈TR. The set TR documents
time steps when requests are received. A comprehensive
assignment procedure considers the mean parking duration
and the status-quo of the parking asset. However, the actual
parking duration per vehicle is unknown to the controller.
Once a request is approved, the controller reserves a space
for this SAV.

The controller aims at high parking occupancy (rc) and
service rate (rs). On the one hand, a high parking occupancy
level reflects effective exploitation of the curbside asset. On
the other hand, increasing the parking service rate means
more parking demands are satisfied, with fewer idling costs
and emissions. Table.I outlines the notations of variables and
parameters of our proposed problem.



TABLE I
NOTATIONS OF CURB PARKING DYNAMIC ASSIGNMENT PROBLEM

Notations Specifications Domains
T set of discrete time step
V set of SAVs fleet
VD set of SAVs with parking demand VD ⊂ V
VPt set of parking SAVs VPt ⊂ V
Q set of parking demand
P set of parking areas
U set of types of parking behaviours
K set of parking duration
St set of observed system states
t a time step t ∈T
v an SAV v ∈V
u a type of parking behaviour u ∈U
p a parking area p ∈P
p∗ an optimum parking area at t p∗ ∈ Pt
q a ride demand or request q ∈Q
kv

u parking duration of v kv
u ∈ R(0,+∞)

k̄u mean duration of type u
dv

u,t the parking state of an SAV v at t dv
u,t = 1 or 0

xu,t
v,p allocation decision p to v xu,t

v = 1 or 0
av

u,t suggested action by controller av
u,t ∈ R[−1,1]

su,t occupation rate of type u sv
u,t ⊂ St

semp
t empty ratio of curb space semp

t ⊂ St
rt cumulative reward at t rt ∈ R[0,1]
rct parking area occupancy rate at t rct ∈ R[0,1]
rst parking demand service rate at t rst ∈ R[0,1]
lat, lon coordinate of location lat, lon ∈ R

B. Problem Formulation

The modelling objective approximates optimum sequential
policies π∗ = {µ̃t(·)|t ∈ T R}, to improve curbside occupancy
(rc) and service rate (rs). The optimum decision (xv,p

u,t )
addresses whether to allocate a space p ∈Pt to a vehicle,
where Pt represents a real-time set of available parking areas.

Objective Function (1) maximises the expectation of fu-
ture reward (rt ). It equals the discounted (γ t ) sum of both
immediate rewards: rct and rst . Besides, we amplify this
cumulative return by φ =100 times for the convenience of
numerical analysis. Equation (2) demonstrates that parking
occupancy equals the proportion of occupied and reserved
areas to total supply |P|. Equation (3) calculates the ratio of
total accepted requests to all demands |Q|.

max
xv,p

u,t
∑
t=t ′

rt = φγ
t(rct + rst) ∀t ∈ T R (1)

rct =

∑
u

∑
v

∑
p

xv,p
u,t

|P|
∀u ∈U,v ∈V Pt , p ∈ Pt (2)

rst =

∑
u

∑
v

∑
p

xv,p
u,t

|Q|
∀u ∈U,v ∈V Pt , p ∈ Pt (3)

Constraint (4) expresses the binary parking request state
dv

u,t of an SAV v ∈ VD. dv
u,t = 1 indicates a parking request

is accepted; Otherwise, dv
u,t = 0. Meanwhile, Constraint (5)

regulates that the length of staying equals its designated

duration.

s.t. dv
u,t =


1 i f (∑

p
xv,p

u,t ≡ 1)∩ (v ∈V D)

0 i f (∑
p

xv,p
u,t ≡ 0)∪ (v ∈V −V D)

(4)

kv
u = ∑

t=t ′
dv

u,t ∀u ∈U,v ∈V D, t ∈ T R (5)

Constraint (6) elaborates the conditions of the binary
decision variable xv,p

u,t . If an action av,p
u,t ∈R[−1,1] suggested by

the controller is less than 0, then xv,p
u,t = 0; Otherwise, xv,p

u,t = 1.
Constraints (7) further explain the estimation process of
av,p

u,t . Namely, in conditions when no space remains for any
request, or the parking area is not an optimum choice for a
demand, av,p

u,t takes a random value from a negative sigmoid
function. In contrary conditions, the controller calculates this
action value using a policy function µt(St) controlled by
observed states St . Note that µt(·) can be smaller than 0,
meaning that the chance of declining a parking request still
exists.

xv,p
u,t =

{
0 i f av,p

u,t < 0
1 i f av,p

u,t ≥ 0 (6)

av,p
u,t =

 − 1
1+e−b i f (∑

p
xv,p

u,t ≡ |P|)∪ (p ̸= p∗)

µt(st) ∈ R[−1,1] otherwise
(7)

Constraints (8)-(10) express the system states that been
observed by the controller. It includes the individual occu-
pancy rate of three types of parking activities su,t , the mean
parking duration k̄u, and the ratio of empty areas semp

t .

st =
{

su,t , k̄u,s
emp
t |u ∈U

}
∀v ∈V Pt , t ∈ T R (8)

su,t =

∑
v

∑
p

xv,p
u,t

|P|
∀v ∈V Pt ,u ∈U, t ∈ T R (9)

semp
t = 1−

∑
u

∑
v

∑
p

xv,p
u,t

|P|
∀v ∈V Pt ,u ∈U, t ∈ T R (10)

Following an accepted request, a greedy algorithm
matches an optimum parking area p∗ ∈Pt to a demand
q. Namely, as per Constraint (11), the controller estimates
distances to all available parking areas and selects one
with the minimal Euclidean distance to accommodate this
demand. Note that lat and lon represent the coordinate of
locations.

p∗ = argmin
p∈Pt

√
(latp− latq)2 +(lonp− lonq)2 (11)

In agreement with peer studies [14], [17], the attributes of
microscopic traffic simulation are defined as follows. Regard-
ing SAVs, acceleration is 4.5m/s2; deceleration is 4.5m/s2;
vehicular length is 4m; the maximum speed is 30km/h;
the minimum longitudinal gap is 0.5m. For pedestrians, the
length-width is 0.48-0.21m; the minimal gap is 0.25m; the
speed factor is 1 and the maximum speed is 1.35m/s.



Fig. 2. Reinforcement Learning Modelling Framework

C. Reinforcement Learning Model

We introduced a partially learning Deep Deterministic
Policy Gradient (DDPG) algorithm to approximate optimum
solutions. Fig.2 demonstrates our proposed RL modelling
framework and Algorithm.1 specifies concrete learning pro-
cedure. This algorithm enables a controller to store its past
decisions for off-policy learning discriminatingly. Namely,
those accepted decisions are integrally stored and learned.
In contrast, declined requests are learned provided a drop
rate ε=66.7%, meaning that only a third of these experi-
ences are replayed later. We implemented the Simulation of
Urban MObility (SUMO) [18] for simulation and retrieving
observed states.

DDPG algorithm records past experience using a data
cache, also named the replay buffer R (sized B =99,999).
It samples a mini-batch (sized M =64) of transition tuple
T =<Sm, am, rm, Sm+1 > ∀m∈R[0,M−1], to reproduce plenty
of conditions for learning. In our model, the soft update
coefficient η = 0.005 and the discount factor γ is 0.99.

DDPG algorithm implements a dual Actor-Critic (AC)
structure which consists of four neural networks: an online
critic network (θ Q), an online actor network (θ µ ), a target
critic network (θ Q

′
), and a target actor network (θ µ

′
).

Hereby, θ denotes their neural network weights.
DDPG follows the Bellman Equation and soft update

mechanism for updating its critic network weights. In the first
instance, the online critic network estimates the approximator
(ym) of the Q-value as per Equations (12)(13). If the learning
sampling is not the terminate step, this approximator equals
the sum of reward and discounted future Q-value using
the target policy function. Otherwise, ym only considers the

Algorithm 1: Pseudocode of DDPG Algorithm
Input: E, B, M, S0, η , dv

u,t ′
, ε

Initialise θ Q,θ µ ,θ Q
′
← θ Q, θ µ

′
← θ µ , R← B,

T ←M, S0 ;
for e = 0 : E−1 do

for t = 0 : T −1 do
at,e ← θ µ(st,e), as per Eq(7);
St+1,e, rt,e ← TraCI(at,e) ;
if dv

u,t ′
= 1 then

R := < St,e, at,e, rt,e, St+1,e > ;
else

R := P(< St,e, at,e, rt,e, St+1,e > |ε) ;

while m ∈ N[0,M] do
< St,e, at,e, rt,e, St+1,e >←R ;
T := < at , st , rt , st+1 > ;

while m ∈ N[0,M] do
ym← θ Q

′
, as per Eq (12)(13);

θ Q,θ Q
′
,θ µ ,θ µ

′
← η ,ym,θ

Q,θ µ , as per
Eq(14)(18);

reward.
Let L indicates the loss between the approximator and the

online Q-value. Equation (14) calculates the Mean Squared
Bellman Error (MSBE) of all samples with respect to the
distribution of µ . Meanwhile, the target network updates to
new weights controlled by η , as per Equation (15).

ym =

{
rm i f sm=T−1

rm + r
′
m otherwise

(12)

r
′
m = γQ[sm+1,µ(sm+1|θ µ

′
)|θ Q

′
] m ∈ R[0,M−1] (13)

L ≈ E
m

(
ym−Q(sm,am|θ Q)

)2
m ∈ R[0,M−1] (14)

θ
Q
′

:= ηθ
Q +(1−η)θ Q

′
η ∈ R(0,1) (15)

The online actor network executes an action following its
deterministic policy function. Let J(θ µ) denotes the actor
loss of θ µ . The network updates its weight by applying a
policy gradient method, following Equation (16)(17). The
target actor network updates its parameters as per Equation
(18), of which the mechanism is identical to the target critic
network.

J(θ µ) = E
m
{Q(Sm,am|θ µ)} m ∈ R[0,M−1] (16)

∇θ µ J ≈ E
m

(
Q(Sm,am|θ Q)∇θ µ µ(Sm|θ µ)

)
(17)

θ
µ
′

:= ηθ
µ +(1−η)θ µ

′
η ∈ R(0,1) (18)

IV. RESULTS AND DISCUSSION

This section presents experiment results under varied
PUDO, docking and on-street parking demand patterns. Our
RL model has been trained in E=1,500 epochs under each



Fig. 3. Curbside Occupancy and Rewards of Three Parking Behaviours in
Four Scenarios. (a) Scenario A, (b) Scenario B, (c) Scenario C, (d) Scenario
D, (e) Rewards of Four Scenarios

condition. We compared the curbside performance and learn-
ing convergence patterns in these conditions. Then, optimum
occupancy and service rate distributions under multiple (225)
PUDOs and docking demands scenarios are analysed.

A. Curbside Performance

We designed four demand scenarios to investigate the
curbside performance. Fig.3 demonstrates changes in epoch-
based and ten epochs-based (thick coloured lines) occupancy
rates throughout the course of learning.

In Scenario A, PUDOs and docking activities equally
dominate the request. The demand rates for PUDOs, docking
and on-street parking demands are 40veh/h, 40veh/h and
20veh/h, respectively. It means that trade-offs are expected
under such a saturated demand condition. The result shows
that the allocation plan converges at a pattern of 40%:38%:0
by Epoch 436th. The optimum occupancy approximates 78%.
PUDO occupancy rate is 2% marginally higher than that of
docking, but significantly higher than on-street parking.

Contrary to that, Scenario B represents an on-street park-
ing dominant case, with a demands setting of 5veh/h, 5veh/h
and 20veh/h. This scenario may reflect residential streets
where demands for long-term parking are high [19], while
PUDOs or docking behaviours are sporadic. As a result, on-
street parking events have been allocated 22% of curb space,
whereas 6% for PUDOs and 5% for docking requests. Its
total observed occupancy rate approximates 32%, which is
140% lower than Scenario A.

Scenario C simulates a saturated docking demands sit-
uation for frequent valet parking occasions. The demand
rates are 20veh/h, 80veh/h and 20veh/h. After optimisation,
PUDO accounts for 16%, which is secondary to its docking
counterpart. In contrast, on-street parking requests fail to
compete for a space.

Scenario D considers busy urban centre streets where
PUDO demands exceed the rest. However, on-street park-

ing is suppressed due to the high parking price [9]. The
designated demand rates are 80veh/h, 20veh/h and 5veh/h.
Result reveals that PUDO dominates 68% of curbside use,
and the corresponding optimum strategy converges at Epoch
431st , which is identical to Scenario C.

These findings imply that our model prioritises PUDO and
docking behaviours over on-street parking requests. When
short-term parking events are insufficient, like Scenario B,
raising on-street parking demands has limited contribution to
curbside occupancy. This outcome suggests that the model is
expecting more PUDOs or docking requests for potentially
higher rewards in both occupancy and service rates.

B. Learning Performance of DDPG Algorithm

Fig.3e presents the learning performance of our model
under these four testing scenarios. Y-axis indicates reward
(r), while the x-axis indexes learning epochs.

All four learning curves demonstrate satisfying conver-
gence guarantees at Epoch 431st -439th. After a shared initial
declining tendency, rewards in conditions climb and converge
at respective optimal of 158.28, 128.96, 156.62 and 157.31.
Amongst, Scenario A obtains the highest optimum reward.
The sheer increases in total rewards equal 38.27, 60.37,
31.01 and 31.13, where Scenario B has the most considerable
improvement. The fastest increase occurs between Epoch
200th to 410th. Findings indicate that the overflow rate of
cumulative short-term parking demand seemingly remains
positively correlated with the optimum reward.

Results also reveal that our model prioritise the allocation
of short-term parking behaviours for higher service level
(77%) regarding total demand requests whilst keeping a
high occupancy level (83%). Furthermore, it well explains
why providing saturated on-street parking demands still fails
to guarantee a high occupancy rate. In such a situation,
our model prefers to consume less curb space (51%) while
satisfying an equivalent level of parking requests (74%).
These findings complement the knowledge on curb parking
regarding ideal occupancy rate [12]. That is, maintaining
20%-40% of curb space flexibility may not be efficient
for achieving higher curbside performance, particularly in
PUDO and docking saturated conditions.

C. Distribution of Optimum Parking Service Rate

We further explore the correlations between multiple short-
term parking demands and curbside performance given a
fixed parking capacity. To this end, a demand matrix is
established, which is composed of 10veh/h-150veh/h PUDO
and 10veh/h-150veh/h docking requests. Meanwhile, the on-
street parking demand rate remains at 5veh/h.

Fig.4a demonstrates the distribution of optimum curbside
occupancy (rc). This occupancy rate significantly increases
while raising demands level. The minimum occupancy is
33% at the demands of (20veh/h, 10veh/h), while the
maximum equals 98% at (120veh/h, 140veh/h). As the
demands rate to supply approximates 4:1, this occupancy
tends to exceed 80%. In these saturated demand conditions,
raising demands is less likely to keep an equivalent ascending



Fig. 4. Distribution of Optimum Occupancy and Service Rate under
Multiple Demand Rates Conditions. (a) Distribution of occupancy rates (rc).
(b) Distribution of parking service rates (rs).

gradient in the parking areas consumption. In other words,
additional parking sites are needed to accommodate exces-
sive parking needs.

Fig.4b shows the distribution of service rate (rs). As the
demand rate increases to 40veh/h-80veh/h, the optimum
service rate reaches around 83%. Afterwards, the value
generally declines to 38%. Findings further reveal that when
the demand-supply ratio falls below 2:1, curbside parking
demand is under-saturated. In these conditions, our model
would accept on-street parking events for the sake of a
basic occupancy. Consequently, 20% of requests may be
re-directed to other curbsides. When such a ratio situates
between 2:1 and 4:1, the model receives the maximum
service rate. When this ratio passes a threshold of 4:1, the
service rate non-monotonically drops as spillover expands to
PUDOs and docking events.

V. CONCLUDING REMARKS

We formulated the real-time allocation over curbside
space as a DP problem. Namely, it focused on sequential
dispatching decisions in a finite time horizon, serving a
continuous stream of hybrid parking behaviours. The ob-
jectives maximised the accumulative parking service rate
and curbside occupancy. Furthermore, we applied the RL
method and proposed a partially learning DDPG algorithm-
embedded controller to learn optimum allocation strategies.
This controller interacted with a gym environment in SUMO
for partially observable parking states retrieval.

Evaluated under multiple scenarios, results reveal good
convergence performances and robust learning patterns. The
model learned to prioritise PUDOs and docking requests for
a higher parking service rate. However, in an under-saturated
parking condition, where the demand-supply ratio is less than
2:1, our model would exploit on-street parking requests to
maximise curbside occupancy. The optimum range is 2:1 to
4:1, where parking service rate reaches a maximal (83%)
and spillover of PUDOs or docking SAVs approximates zero.
When this ratio passes beyond 4:1, curbside occupancy rises
slowly, and the service rate declines.

Our model provides a feasible curbside parking dispatch-
ing method to the increasingly diversifying parking demands
in the AVs era. This work also sheds light on deploying

distinctive curb parking policies to streets in different con-
texts. Future works will extend this current model to real-
world cases-based simulations and incorporate the current
controller with real-time parking demand flows.
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