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ABSTRACT

A method for simulating coupled electromagnetic and mechanical vibrations on arbitrarily shaped piezoelectric structures is presented. This
method is based on weak forms and can be implemented in any finite-element-method software, allowing editable access to their defini-
tions. No quasi-static approximation is imposed, meaning that magnetic fields generated by displacement currents within piezoelectric
materials are captured, enabling the flow of electromagnetic energy inside and around structures containing such material to be accurately
simulated. The method is particularly relevant to the design of piezoelectric antennas, resonators, and waveguides exploiting either bulk or
surface-acoustic waves. The accuracy and capabilities of the method are demonstrated by simulating, in COMSOL Multiphysics, (i) a
Rayleigh mode on the surface of Z-cut lithium niobate crystal and (ii) a torsional mode of a cylinder of lead zirconium titanate (PZT-5H)
ceramic functioning as a micro-antenna.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0120630

I. INTRODUCTION

Piezoelectric materials are anisotropic materials that enable
the transfer of energy between acoustic (i.e., elastomechanical) and
electromagnetic fields. Hybrid vibrations comprising both electro-
magnetic and acoustic components can be induced by either
driving the material mechanically or by exposing it to an oscillating
electric field (most often produced by a pair of electrodes).

One example of electromagnetic-acoustic (EMA) coupling is a
surface acoustic wave (SAW) on a piezoelectric substrate. Here, the
hybrid wave is localized on the substrate’s surface. Both the acoustic
and the electromagnetic parts of such a SAW propagate along the
surface with the same frequency and wavenumber. Each part is
uniform in the transverse direction. Devices exploiting piezoelectric
SAWs encompass delay lines, filters, and resonators; such SAWs
also provide a way of coupling phonons to artificial atoms1 in
quantum systems.

Another example of EMA coupling is a piezoelectric antenna. To
radiate efficiently, the length of a conventional antenna needs to
approach the wavelength of the electromagnetic wave being emitted.
Because elastomechanical waves propagate much more slowly (by a

factor of around 104), the size of a piezoelectric antenna operating at
the same frequency is vastly smaller. If such an antenna could be
gotten to radiate at reasonable efficiency (electromagnetically), it would
offer huge potential for the further miniaturization of telecom devices.

Owing to the anisotropy of the medium, the complete simula-
tion of EMA coupling in piezoelectric devices can rarely be done
analytically. The so-called quasi-static approximation is often
applied to simplify the set of equations to be solved. Under this
approximation, the magnetic field is completely neglected, and the
electric field strength is represented by the electric potential f as
E ¼ �∇f. In many piezoelectric applications, this approximation
works well because the magnetic field stores far less energy than
what the electric field does.2 However, in certain applications, such
as antennas3 or high magnetic-Purcell-factor resonators,4 knowl-
edge of the magnetic field is crucial: one cannot calculate the
antenna’s efficiency (radiation impedance) without it. The quasi-
static approximation must be avoided.

Certain known analytical methods can precisely simulate the
EMA coupling without invoking the quasi-static approximation.
Examples include the superposition-of-partial-waves method,2
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transverse-resonance method,5 and Kirchhoff-plate-theory method.6,7

These methods are limited to very specific spatial geometries and
crystal classes (point group symmetry)—they cannot be extended to
simulate arbitrary 3D structures or piezoelectric materials of a differ-
ent class. Alas, many it not all of the popular finite-element-method
(FEM) based simulation platforms, like COMSOL Multiphysics (both
its structural mechanics and MEMs modules), implicitly invoke the
quasi-static approximation, meaning that they cannot be used to
simulate the complete electromagnetic behavior of piezo-mechanical
devices. The prime purpose of this paper is to remedy this frustrating
inadequacy. Our open method is applicable to any FEM simulation
software where weak forms define the whole system of coupled
partial differential equations. COMSOL is used here to provide
explicit examples. Results for a Rayleigh mode propagating in the
X-direction on the Z-cut surface of a LiNbO3 crystal are compared
against both experimental results and analytical solutions, so as to
validate our method’s correctness and accuracy. The results corre-
sponding to the torsional mode on a cylindrical piezoelectric antenna
showcase the capability of our method to simulate complicated
devices. Definitions of variables, example codes and various details
and tips relevant to the building of working simulations are provided
in the supplementary material.

II. METHODOLOGY

A. Weak forms

The total energy density U at an arbitrary point in space is
represented using 8 variables: velocity v, momentum density p,
strain S, stress T , electric field strength E, electric displacement D,
magnetic field strength H and magnetic flux density B,2

2U ¼ v � pþ S :T þ E � Dþ H � B, (1)

where “:” denotes the double dot product between tensors. Note
that this form of U restricts our analysis to linear materials.

The above weak form is written as an integration of the negative
total energy density throughout space, where one of the two variables
in each term is replaced with a test function (denoted by “�”),

ð
V
� ~v � pþ ~S :T þ ~E � Dþ ~H � B
� �

dV ¼ 0: (2)

In a piezoelectric material, the coupling between acoustic
fields and electromagnetic fields is described using the constitutive
relations

T ¼ cE : S� eT � E, (3a)

D ¼ e : Sþ εS � E, (3b)

where cE is the stiffness tensor at zero or constant electric field

strength, e and eT are the piezoelectric coupling tensor and its

transpose, and εS is the permittivity matrix at zero or constant

strain. The number of underlines (“ ”) denotes a tensor’s rank.

For simplicity, we assume that the piezoelectric material is
non-magnetic, i.e.,

H ¼ B
μ0

, (4)

though extending our analysis to linear magnetic media with non-
unity relative permeabilities would be wholly straightforward. We
use Faraday’s law to connect the electric field strength to the mag-
netic flux density

∇� E ¼ � @B
@t

: (5)

Here, (3a), (3b), (4), and (5) enable (2) to be represented by only
three variables ω, u, and E. In COMSOL, the last two variables are
named Dependent Variables, which are defined when establishing a
new model. The components of (2) then serve as the inputs into
Weak Form PDE and Weak Contribution nodes in COMSOL’s
various different physics interface(s). The independent variable
angular, frequency ω, is finally solved in Eigenfrequency study.
The detailed, explicit representation of our method (defining how
each contraction is performed—for example) is provided in the
supplementary material.

Like Ref. 8, a penalty term is used to regulate the electromag-
netic field. This penalty term is modified from Gauss’s Law. Since the
charge density in the device is zero, the penalty term is written as

∇ � D ¼ 0: (6)

B. M-field method

As mentioned in Sec. II A, the components of electric field
strength {Ex , Ey , Ez} are usually chosen as the dependent variables
for the electromagnetic field. The subsequent derivation of the
magnetic field strength, however, requires division by the angular
frequency ω (of the simulated mode), which is a priori unknown.
This paradoxical situation can be gotten around by constructing
{Mx , My , Mz} as the dependent variables. These variables are
defined as

Mx ¼ Ex
ω
, My ¼ Ey

ω
, Mz ¼ Ez

ω
: (7)

C. Magnetic coupling coefficient

The performance of a piezoelectric structure as a magnetic-
field generator can be quantified by its magnetic coupling coeffi-
cient, defined as

η ¼ Eext
mag

Eint
kin þ Eint

ela þ Eint
elec þ Eint

mag þ Eext
elec þ Eext

mag
, (8)

where Ekin, Eela, Eelec, and Emag denote kinetic energy, elastic
energy, electric energy, and magnetic energy, respectively. The
superscripts “int” and “ext” denote the internal field (within the
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piezoelectric substrate) and external field (in the surrounding envi-
ronment). Each energy is calculated using an integration of corre-
sponding energy density throughout its area.

III. EXAMPLE APPLICATIONS

Two test cases are illustrated below to verify the accuracy and
capability of our method. These cases correspond to two of the
most popular applications of saw devices: SAW waveguides and
piezoelectric antennas.

A. Rayleigh mode on an infinitely large substrate

We here purely focus on how the SAW propagates—as
opposed to how is it generated and detected using interdigital
transducers (IDTs). The domain analyzed can be divided into two
cuboids: one contains the piezoelectric substrate; the other contains
the surrounding environment. These two cuboids are separated by
the surface of the substrate. Spatial coordinate axes are chosen such
that x is oriented along the direction of propagation, y lies along
the surface and is perpendicular to x, while z is outward normal to
the surface. When no rotation is applied, the material coordinates
(or crystal axes used by Auld2) align the spatial coordinates.

Compared to others, a Rayleigh mode generates a relatively
strong and moreover analytically calculable magnetic field. The ver-
ification of our method thus focuses on its simulation. A schematic
diagram of the Rayleigh mode is shown in Fig. 1. Boundary condi-
tions suitable for this mode are applied: A periodic boundary con-
dition is applied on the propagating direction [surfaces ① and ②
and their opposites in Fig. 2(a)]. The distance between these two
surfaces is set as 100 μm, and this distance will become the wave-
length of the Rayleigh mode. Another periodic boundary condition
is applied in the y direction [surfaces ④ and ⑤ and their opposites
in Fig. 2(a)]. Since the Rayleigh mode is uniform in this direction,
the distance between the two surfaces does not influence the form
of the solution. This distance is set as 10 μm. The fixed constrain is
applied in the z direction [surface ③ and its opposite in Fig. 2(a)].

The Rayleigh mode is evanescent in this direction so that 300 μm,
which is three times as long as the wavelength, is set as the distance
from the surface to the fixed constraint. The electromagnetic conti-
nuity boundary condition is applied on surface ⑥, whereas this
boundary is set as a free boundary for the acoustic field. For some
metallized surfaces, an electric-wall boundary condition needs to be
applied on surface ⑥. In this simulation, z , 0 [Area A in Fig. 2(a)]
is filled with piezoelectric materials and z . 0 [Area B in Fig. 2(a)]
is chosen to be air. z ¼ 0 is the surface of the substrate. COMSOL’s
built-in material properties are used.

The acoustic displacement field, electric field, and magnetic
field of the X-propagating Rayleigh mode on Z-cut LiNbO3 are
illustrated in Figs. 2(b)–2(d), respectively; the fields shown have
been normalized. Comparison among experimental results, analyti-
cal results, and our FEM method results of SAW velocities is
shown in Table I. Velocities of different materials and different
modes with different boundaries are included. The relative errors
of our results compared with analytical results are defined as

relative error ¼ v � vA
vA

, (9)

where v denotes our results and vA denotes the analytical results.
The analytical results are calculated by ourselves using the method
introduced by Tseng.9 All results of our method were calculated
using 1.7 μm element size. Note that the built-in densities of CdS

FIG. 1. A sketch of the Rayleigh mode being modeled in this paper.

FIG. 2. (a) Geometry of the infinitely large substrate model. “A” and “B” symbol-
ize the areas of the piezoelectric substrate and air, respectively. The simulation
result of normalized (b) acoustic wave, (c) electric wave, and (d) magnetic wave
patterns for the Rayleigh mode on X-prop Z-cut LiNbO3 are shown. Fields with
larger magnitudes have warmer colors. Note that these three waves already
decayed significantly before reaching the LiNbO3–air interface. Relative to the
buried magnetic field in the substrate, the accessible magnetic field in the head
space above is thus substantially weaker.
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and ZnO are different from standard values so that the standard
values should be input manually. Furthermore, the slowness
surface of 128� Y-cut LiNbO3 is simulated and plotted (Fig. 3).
Experimental results from the literature10 are also included for
comparison. We find that our FEM-simulation results lie very close
in value to the analytically calculated ones. Both lie reasonably close
to what is measured experimentally. These proximities strongly
suggest that our method is correct and accurate. The small residual
differences stem from experimental measurement errors, the choice
of tolerance in the bi-section method used to solve the analytical
equation, and the fineness of the mesh used in our FEM method.

B. T00 torsional mode of a cylinder antenna

The torsional mode also has a significant magnetic field. The
material is exactly on the equatorial plane and the z-axis is motion-
less. Beyond this nodal plane and axis, the material rotates around

the z-axis, the amplitude of displacement increases with the dis-
tance from the origin [shown in Fig. 5(1)]. In uni-axial materials
like PZT-5H, this mode is significant. A cylinder made with other
materials, like LiNbO3, will show a torsional mode only when the
aspect ratio (defined as the ratio of height to the radius h=r) is sub-
stantial. [There is no hard cut-off but we would suggest h=r . 5.]
If the aspect ratio is small, the frequency of the torsional mode is
very high, with many other competing modes close to it (in fre-
quency) (Fig. 4).

Simulations were conducted on a series of PZT-5H cylinders,
varying in height from 1 to 5 mm, all with a fixed radius of 10 mm.
In each simulation, the cylinder resides at the center of a sphere,
representing the surrounding environment. A continuous boundary
condition is applied to the cylinder’s surfaces, while, an absorbing
boundary condition is applied on the sphere’s outer surface. The
acoustic displacement field, electric field, and magnetic field on the
central YZ cross section are shown in Fig. 5 as an example. It is
found that when the aspect ratio decreases, both the magnetic cou-
pling coefficient and frequency will increase. The relation among
those three quantities is shown in Fig. 6. The highest coupling coef-
ficient in this model is 2:6� 10�7 for a cylinder with a small aspect
ratio of (h=r ¼ 0:1). In reality, the torsional mode is unlikely to

TABLE I. Comparison between velocities obtained from methods.

Experimental Analytical Our Relative
Material Mode Boundary Direction results (m/s) results (m/s) results (m/s) error (%)

CdS Rayleigh Free X-prop Y-cut 173011 1731.0007 1731.2782 0.016 031
ZnO Rayleigh Free X-prop Y-cut 26909 2695.4553 2695.4558 0.000 019
PZT-4 Rayleigh Free X-prop Y-cut 212012 2241.8391 2241.8401 0.000 045
PZT-5H Rayleigh Free X-prop Y-cut … 2038.4889 2038.4892 0.000 015
PZT-5A Rayleigh Free X-prop Y-cut … 1977.6175 1977.6186 0.000 056
LiTaO3 Rayleigh Free X-prop 36° Y-cut 312413 … 3114.0920 …
LiTaO3 Rayleigh Metallized X-prop 36° Y-cut 312213 … 3114.0791 …
LiTaO3 Leaky Metallized X-prop 36° Y-cut 409913 … 4075.4072 …

FIG. 3. Comparison of simulated (blue line) and measured10 (amber triangles)
Rayleigh velocities corresponding to different propagating directions on 128�
Y-cut LiNbO3. In the simulation, the propagating direction is initially along the
X-axis and then rotates anti-clockwise.

FIG. 4. A sketch of the cylinder antenna being modeled in this paper. An axial
symmetric normal mode is shown.
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appear on a disk with a very small aspect ratio so the magnetic cou-
pling coefficient should not be very high in this system.

Verification of the accuracy of our model was performed on
fundamental modes. Shaw14 measured the frequency of axial sym-
metric normal modes on barium titanate disks with different
aspect ratios. The same modes were simulated using our method
and the corresponding resonant frequencies and acoustic displace-
ment fields were compared with Shaw’s results. A barium titanate
cylinder was used in the simulation, whose height was set as 5 mm
and radius changed from 2.5 to 17.5 mm. The properties (elasticity
matrix, coupling matrix, and relative permittivity) of barium tita-
nate ceramic were obtained from Dent.15 The simulated and mea-
sured frequencies are plotted in Fig. 7. The simulated acoustic
displacement fields at the upper surface of the disk with two differ-
ent aspect ratios are plotted and compared in Fig. 8. These proxim-
ities clearly suggest that our method is correct and accurate. The
discrepancies stem from experimental measurement errors, the
fineness of the mesh used in our method, and the accuracy of the
properties of barium titanate. Note that an inverse aspect ratio

FIG. 6. How frequency (orange circles) and magnetic coupling coefficient (blue
triangles) vary with aspect ratio for the T00 torsional mode of a PZT-5H cylinder
with a 10 mm radius. With connecting solid orange and blue lines, respectively.
The radius of the sphere containing the analyzed air-space surrounding the cyl-
inder is 300 mm. When the aspect ratio decreases (i.e., the cylinder becomes
squatter), both the frequency and the magnetic coupling coefficient increase.
The magnetic coupling coefficient can reach 2:6� 10�7 when the aspect ratio
is 0:1. This value is extremely small, although it is the largest coupling coeffi-
cient we have ever found. Since it is difficult to generate torsional mode on a
very thin device, we believe it is trivial to simulate a cylinder with an even
smaller aspect ratio.

FIG. 5. Normalized (1) acoustic displacement field, (2) electric field, and (3)
magnetic field on the YZ section of a PZT-5H cylinder. Places with larger mag-
nitudes have warmer colors. The height and radius of this cylinder are 5 and
10 mm, respectively. The frequency of this mode is 175:12 kHz. Rotation direc-
tions on different sides are opposite from each other. The torsion generates a
rotational electric field concentrated at the arc-shaped surface of the cylinder.
This solenoid-like electric field then induces a magnetic field concentrated at the
center.

FIG. 7. The stimulated frequencies-thickness product of three axial symmetric
normal modes vs inverse aspect ratio (black curves). Simulations were per-
formed on in a barium titanate cylinder whose height was fixed (5 mm). Results
are compared with experimental results (brown circles) measured by Shaw.14
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2r=h was used in Shaw’s paper. For consistency, we use the same
quantity as the independent variable.

IV. CONCLUSION

This paper fills a fundamental “blind spot” in the electromag-
netic simulation of devices involving piezoelectric crystals/sub-
strates: mechanical motion in piezoelectric materials generates
magnetic fields, which need to be precisely quantified. A lack of
such simulation leads to numerous limitations like one cannot cal-
culate the Poynting vector, which is the radiation energy flow of an
antenna. To remedy the problem, we have constructed an efficient,
cost/resource-effective simulation method, as described in this
paper. This method is generic, based on the so-called “weak forms”
and can be implemented in any finite-element-method simulation
software. Because of its fundamental scope and the many areas in
applied device physics it connects to, we believe our handy method
will be useful in the simulation of many fields, such as SAW-based
resonators, piezoelectric antennas, and magnetically sensitive
quantum devices involving spins.

SUPPLEMENTARY MATERIAL

See the supplementary material for an introduction to the
boundary conditions and more detailed code and configurations of
this simulation. Step-by-step instruction for building readers’ own
simulation is also included.
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APPENDIX: BOUNDARY CONDITIONS

In COMSOL, each boundary requires a condition (or else
several consistent conditions) applied to it. An optimal choice of
boundary condition can, furthermore, increase accuracy and reduce
the time of calculation.

This section introduces all the choices we have explored so far
in our method, which are based on the various “nodes” provided in
COMSOL’s weak form PDE interface.

1. Fixed boundary condition

On boundaries that waves cannot (or barely) reach, the fixed
boundary condition is a simple choice.

This boundary condition is realized using the Dirichlet
Boundary Condition node, where all three input boxes are filled
with zeros.

2. Periodic boundary condition

When analyzing some models like an infinitely large substrate,
the periodic boundary condition is inevitable. This boundary con-
dition truncates the propagating distance to an integer multiple of
the wavelength. It is applied on the boundaries normal to the prop-
agating direction. If one wishes to restrict a simulation to waves
that are uniform across a transverse direction, one can implement
this restriction by imposing periodic boundary conditions across an
analyzed domain that is thin (sub propagation wavelength) in this
same direction.

Periodic Condition node is provided by the weak form PDE
interface.

FIG. 8. Normalized acoustic displacement fields of two axial symmetric normal
modes vs normalized radius on the upper surface of a barium titanate cylinder.
The results were obtained from our method (blue curves) and Shaw’s experi-
ments14 (maroon squares). The height of the cylinder was set as 5 mm and the
inverse aspect ratio was set as 2r=h ¼ 3:86. The two modes were found at the
frequency-thickness product (a) 2685 Hz � m and (b) 2885 Hz � m.
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3. Free boundary condition and continuity boundary
condition

On the interface between a piezoelectric material and the envi-
ronment, the propagation of an acoustic wave stops but the propa-
gation of an electromagnetic wave does not. Thus, the free
boundary condition should be applied here for acoustic waves and
the continuous boundary condition for the electromagnetic field.

For electromagnetic fields on both sides, the tangential part of
E and the normal part (relative to an interface) of D are the same,

(E1 � E2)� n̂ ¼ 0, (A1a)

(D1 � D2) � n̂ ¼ 0: (A1b)

The free boundary condition can be realized using the default
Zero Flux node. The continuity boundary condition can be realized
using the Pointwise Constraint node, and its configuration can be
found in the supplementary material.

4. Electric-wall boundary condition

In some models, the piezoelectric device is placed in a cavity
enclosed by highly conductive walls. The electric-wall boundary
condition can accurately represent such walls while avoiding the
need to introduce of a specific material and analyze an additional
domain. This condition constrains the tangential part of electric
field strength to be zero,

E � n̂ ¼ 0: (A2)

These constraints are applied using three Pointwise Constraint
nodes.

5. Absorbing boundary condition

An absorbing boundary condition (ABC) is applied to trun-
cate the calculation domain to a reasonable size. Without the ABC,
the radiating electromagnetic wave will reflect off the truncating
surfaces and disturb (interfere with) wave patterns in other
domains. The ABC can reduce this reflection. The ABC is in the
form of a constraint and does not need the introduction of an extra
cladding domain. The explicit form of the first-order ABC is16

r̂ � ∇� E ¼ jkEt � (s� 1)∇tEr , (A3)

where r̂ is the spherical radius, j is the imaginary unit, k is the

wavenumber, and s is a factor and s ¼ 0:5 gives the minimum
reflection.16

In COMSOL, (A3) is separated into three component direc-
tions and written into three Pointwise Constraint nodes.
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