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ABSTRACT 

This work focussed on developing approximate methods for rapidly estimating gas field production 

performance. Proper orthogonal decomposition (POD) - Radial basis function (RBF) and POD-

Autoencoder (AE) Non Intrusive Reduced Order Models (NIROMs) were considered. The accuracy and 

speed of both NIROMs were evaluated for modelling different aspects of gas field modelling including 

reservoirs with time-varying and mixed production controls, reservoirs with and without aquifer 

pressure support, and for wells that were (or not ) shut-in during production lifecycle. These NIROMs 

were applied to predicting the performance of four gas reservoir models: a homogeneous synthetic 

model; a heterogeneous gas field with 3 wells and structures similar to the Norne Field; a water coning 

model in radian grid; and a sector model of a real gas field provided by Woodside Petroleum.  

The POD-RBF and POD-AE NIROMs were trained using the simulation solutions from a commercial 

reservoir simulator (ECLIPSE): grid distributions of pressure and saturations as well as time series 

production data such as production rates, cumulative productions and pressures. Different cases were 

run based on typical input parameters usually used in field performance studies. The simulation 

solutions were then standardised to zero mean and reduced into hyperspace using POD. In most cases, 

the optimum number of POD basis functions (99.9% energy criterion) of the solutions (training data) 

were used to reduce the training data into a lower-dimensional hyperspace space. The reduced 

training data and their corresponding parameter values were combined to form sample and response 

arrays based on a cause and effect pattern. RBF or AE was then used to interpolate the weighting 

coefficients that represented the dynamics of the gas reservoir as captured within the reduced training 

data. These weighting coefficients were used to propagate the prediction of new unseen simulation 

cases for the duration of predictions. The simulation results from either or both NIROMs was then 

compared against the simulation solution of the same cases in ECLIPSE. 

It was found that the POD-RBF is a better predictive tool for gas field modelling. It is faster, more 

accurate and consistent than the POD-AE, giving satisfactory predictions with up to 99% accuracy and 

2 orders of magnitude speed-up. No single POD-AE is sufficient for predicting different production 

scenarios, besides, the process of arriving at a suitable POD-AE involves finetuning several hyper-

parameters by trial and error, which may be more burdensome for practising petroleum engineers.  

The accuracy of NIROM’s prediction of production variable is generally improved by using more than 

the optimal number of POD-basis functions, while predictions of grid distributed properties are 

satisfactorily predicted with the optimal number of POD-basis functions. NIROM’s accuracy is 

dependent on whether the range of parameters of the prediction, their duration and specific 

production scenarios (such as having mixed production controls or aquifer pressure support) reflect 
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those of the training cases. Overall, the number of training runs, the size of the reservoir model as well 

as the number of time intervals at which simulation output data is required all affect the speed of 

training both NIROMs for prediction. 

Other contributions of this work include showing that the linear RBF is the most suitable RBF for gas 

field modelling; developing a novel normalisation approach for time-varying parameters; and applying 

NIROMs to seasonally varying production scenarios with mixed production controls. This work is the 

first time that the POD-AE has been developed and evaluated for petroleum field development 

planning.  
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1.CHAPTER 1: INTRODUCTION  

1.1 MOTIVATION 

Global energy consumption has been on the rise to sustain the growth in technological advancement 

and development, and fossil fuel supplies over 80% of this energy [1]. For several more years, fossil 

fuels, comprising coal, oil and natural gas [1-4], will continue to be relevant in the global energy mix, 

especially natural gas [3, 4]. Natural gas is used in electric power generation, for heating residential and 

commercial buildings, for transportation, and industrially as a raw material for hydrogen production 

as well as in fertilizer and petrochemical industries [3-5]. According to bp [4] and the EIA in 2020 [3], 

natural gas currently constitutes 24.2% [6] of the global energy mix and it is expected to be used more 

in the next decade, despite the current transition away from fossil fuels, Figure 1.1. 

 

 
Figure 1.1: Global energy mix and forecast according to bp’s rapid scenario [4]. 

 

The energy transition towards low carbon sources is important to combat the rise in global 

temperatures and climate change. Natural gas is a significant part of this transition [3, 4] since it has 

lower carbon emissions than coal and oil, Figure 1.2 [2]. According to bp [4], even if there is a “rapid” 

transition towards lowering the carbon emissions from fossil fuels, such as through targeted policies 

and carbon price measures, the place of gas in the global energy mix should still experience some 

increase for up to 15 years before it starts to decline, Figure 1.1.  
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Figure 1.2: Global CO2 emissions by fuel type per year since 1900 [2]. Gas emits less CO2 than Oil and Coal in billion 

tonnes. 

 

It is also interesting to notice that except for 2008/2009, global gas production and consumption have 

been increasing continuously every year for the past twenty years, Figure 1.3 [3, 4]. In the US (the largest 

consumer of natural gas), gas consumption has even defied prior forecasts by Harrison et al. (2006) 

and EIA (Figure 1.4) [1, 3, 7, 8]. Therefore, it is worthwhile to pay attention to studies that facilitate the 

improvement of gas exploration and production, for the next decade.  

 

 
Figure 1.3: Gas consumption and production from 1999 to 2019. There is a consistent annual increase in the production 

and consumption of gas, except for 2009 [3, 6]. 
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Figure 1.4: Comparison of gas consumption in the US since 2010 with the actual consumption during that period. In 

agreement with Harrison et al, the actual gas consumption according to EIA and bp exceeded EIA’s 2003 forecast. But 
based on polynomial trend line projections, the actual current gas consumption is likely to exceed Harrison’s generous 

forecast by 2020 [1, 3, 7, 8]. 

 

Similar to exploration for oil, gas exploration and development starts with appraising the presence 

and amount of gas that can be produced from an asset, based on proved technical and commercial 

considerations, the gas reserves [9, 10]. This information is critical to deciding if the reservoir or field is 

economically worth exploring, in addition to planning its development and production strategies [10]. 

In most cases, gas reservoirs are only produced when there is a contractual agreement between sellers 

and buyer(s), where there is the prospect of selling the gas with minimal storage time and cost [5]. Gas 

contracts typically cover the lifecycle of gas reservoirs, 15 to 25 years. Therefore information on gas 

reserves as well as potential gas supply rates is required in advance of drawing up the terms of gas 

contracts or commencing actual production. This prior information on the potential gas supply is 

typically anticipated based on field development planning which involves understanding the impact 

of geological uncertainty and other risks on the different range of production outcomes. After all, not 

adhering to the agreed amounts of gas supply in a contract can attract penalties. In addition, 

production scenarios from field development plans should be indicative of the economic recovery 

factors, with possibilities for improved recovery to meet up with daily and annual contractual 

quantities, despite unforeseen technological, commercial or policy changes that could occur while the 

contract is in place, or indeed weather [5, 11]. 

The dynamics of gas reservoirs are quite different from those of oil, although like oil, its production 

behaviour depends on factors like drive mechanism, reservoir pressure and heterogeneities. Gas is 

highly compressible so gas reservoirs are usually produced by pressure depletion and water influx as 

a consequence of the pressure depletion can reduce production [11, 12]. When gas reservoirs have no 

associated aquifers, gas production is less complicated and straightforward and there is a likelihood 

of high gas recovery from pressure depletion drive. Some gas properties are also pressure-dependent 
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and change substantially as the reservoir’s pressure varies. Predicting gas production from water drive 

reservoirs is more complicated as it is more sensitive to geological heterogeneity and requires 

additional data for simulation such as relative permeabilities and the size and properties of the aquifer. 

In heterogeneous reservoirs, non-uniform gas drainage can be further aggravated by the water influx, 

causing gas to be trapped in the parts of the reservoir that are invaded by water, and thereby 

decreasing gas recovery [13]. In some cases, gas recovery can be optimised by strategically producing 

the gas at varying rates to suit the prevailing reservoir conditions. For example, a gas reservoir with 

an associated aquifer can be initially produced at high rates before the less mobile water begins to 

encroach into the reservoir, after which the gas is produced at lower rates to manage the rate of water 

influx and gas bypassing [11, 14].  

Traditionally gas reservoir performance was predicted using material balance methods, but material 

balance methods do not provide information on rates versus time, neither do they provide spatial 

information on water and pressure distributions in the reservoir or allow optimisation of field 

performance by changing well rates. Numerical simulation can provide this information which is 

necessary to interpret the flow mechanisms within a reservoir and for informing further development 

decisions such as the location of drilling development or infill wells to improve recovery [10, 15, 16]. 

Reservoir simulation is core to integrated petroleum field modelling and involves evaluating and 

planning development and operating strategies in terms of their impact on a project’s robustness and 

economics. Field development planning entails running several simulations, first to build a dynamic 

model that is consistent with the observed field’s geology and (production) history and later to 

evaluate the sensitivity of the field’s performance to alternative project decisions such as the number 

and location of wells. In addition field development planning involves evaluating the impact of 

different uncertainties and other risks that could accompany the field’s future performance [17]. 

Conventional simulation (based on discretising and solving the PDEs) to describe the flow of fluids in 

actual reservoirs may take a few hours to several days to complete [10, 17, 18]. Reservoir simulation can 

be very time-intensive for reservoirs with complex structures and behaviours, such as oil and gas 

reservoirs with dual porosity and/or permeability and unconventional reservoirs as well as during 

certain investigations such as for improved recovery, sensitivity and uncertainty analysis [10, 13, 18-20]. As 

timing is key to the profitability of a petroleum asset and a large chunk of project time is spent on 

reservoir simulation [10, 17], the need for fast approximate simulations cannot be over-emphasized.  

Computational speed challenges exist in other areas/ fields of study e.g. physical and biological 

sciences [21-25], as well as engineering [26-29] and some techniques from unrelated fields have found 

applications in petroleum engineering e.g. reduced order modelling, machine learning, parallel and 

cloud computing  [13, 29-31]. Some of these methods need to be linked to the source code of the 
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simulators that generate their data (i.e. intrusive models), [21, 32-35] while others are independent 

techniques [36-38] and are preferable in petroleum engineering since commercial reservoir simulation 

companies do not allow users access to their source codes. 

In petroleum engineering, most of the fast computational approaches have been tested for predicting 

production performance, they provide little application to the distribution of pressure and fluid 

saturations within the reservoir since this spatial information is more extensive and time-consuming 

to train [13, 32, 33, 36-41]. Likewise, the focus of optimising the speed of computational solutions in 

petroleum engineering research has been inclined towards oil-water displacements such as in 

waterflooding [36, 39, 42, 43] and EOR [16, 20, 44], while also neglecting to predict time-varying production or 

mixed boundary conditions (BHP or rate production control). Given the increasing importance of 

global gas production and consumption, there is a need to develop simulation methods that are 

suitable for practical gas reservoir production. 

 

1.2 AIM AND OBJECTIVES 

1.2.1 AIM  

This research aimed to develop a fast, yet straightforward and accurate non-intrusive reduced order 

model (NIROM) for gas reservoir modelling based on the output of a conventional black oil simulator 

and to evaluate the NIROM’s usefulness for gas field modelling. A non-intrusive model is more relevant 

to practising petroleum engineers and straightforward to use since it does not require access to the 

simulator’s proprietary codes.  

 

1.2.2 OBJECTIVES 

• To review the literature on Non-Intrusive Reduced Order Modelling (NIROM) and evaluate its 

application to integrated gas field development, with emphasis on the estimation of the 

spatial distribution of saturation and pressure over time. 

• To develop NIROM for modelling gas reservoir performance/ behaviour based on a full physics 

commercial reservoir simulation software (Schlumberger ECLIPSE). 

• To build a conventional model of a typical gas field to be used to test the applicability of 

NIROM. 

• To validate NIROM and identify decisions that it can support. 

• To develop theory and workflow to enable NIROM to be created by non-specialist engineers, 

with minimum training runs and simple to use. 

• To evaluate NIROM on real field cases in comparison to the conventional approach. 

• To explore machine learning methods for gas field modelling in comparison to NIROM. 
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1.3 CONTRIBUTIONS 

The main contribution of this work is that it presents a method of implementing the NIROM that suits 

the prediction of time varying parameter systems and demonstrates this for estimating the 

performance of  gas reservoirs with time varying production. Time-varying scenarios are an important 

consideration for seasonally varying gas production. The following are the novel contributions of this 

work: 

1. Developed two (2) frameworks/ workflows that suffice for the fast modelling of pressure, 

saturation and production performance in gas reservoirs: 

a. Proper Orthogonal Decomposition (POD) - Radial Basis Function (RBF) NIROM, 

b. POD - Autoencoder (AE) machine learning framework. 

2. Showed the application of both methods for modelling different cases of gas field production 

developments with constant and time-varying production scenarios: 

a. training and prediction (unseen) cases, 

b. production rate and pressure limit controls, 

c. homogeneous, heterogeneous and real gas fields/ reservoirs, 

d. reservoirs with and without aquifer pressure support. 

3. Demonstrated the extent of accuracy, simplicity and speed-up that is obtainable from both POD 

based methods for gas reservoir modelling. 

4. Demonstrated different methods of normalising reduced data in hyperspace and their practicality 

for gas field modelling. 

5. Demonstrated for the first time an application of machine learning for modelling gas reservoir 

performance as a regression problem. 

6. Demonstrated that although POD-AE is a suitable machine learning method for gas field 

modelling, the best implementation of autoencoders for gas field modelling is case dependent. 

7. Comparative analysis of NIROM and machine learning for accuracy and speed of forecasting gas 

reservoir simulation results from a commercial reservoir simulator. 

 

1.4 OVERVIEW OF THESIS 

The objectives of this thesis are addressed as follows: 

Chapter 2 reviews the current knowledge and gaps in conventional methods for modelling gas 

reservoirs in addition to fast modelling methods, with emphasis on reduced order models and 

machine learning. In chapter 3, the theory and workflow for the 2 POD based fast modelling 

frameworks that have been adopted for this work are described. In chapter 4, four gas reservoir 

models are described, comprising their geometry, geological and production properties, as well as the 

different production controls and scenarios for which they are evaluated in the result chapters of this 
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work. Chapters 5 to 8 contain results and discussions of the results from the two proposed POD- 

models as well as how they have been evaluated and validated for gas reservoir modelling. These 

chapters also showcase the range of decisions that NIROM can support in gas field development and 

production.  

Chapter 5 shows the initial implementation of POD-RBF NIROM and the choice of hyper-parameters 

that are applicable for gas reservoir modelling. The choice of RBF that best suits gas reservoir 

modelling is validated for a synthetic gas reservoir and a heterogeneous gas field, in addition to the 

number of POD basis functions to be used for gas reservoir modelling. NIROM was evaluated for 

reproducing its training runs. 

In chapter 6, POD-RBF NIROM is fine-tuned for predicting cases that it has not been trained on, hence 

the introduction of parameterisation. Prediction cases require several training runs and 

parameterisation is a means of identifying individual training and prediction runs based on their 

specific production conditions. In this chapter, the POD-RBF NIROM is evaluated for predicting unseen 

cases of four reservoirs that are evaluated for constant production controls: synthetic, heterogeneous, 

water coning and real gas reservoirs.  

The POD-RBF NIROM is then explored and evaluated for modelling the performance of 3 reservoirs 

with time-varying production controls: synthetic, heterogeneous and a real gas field. In the test cases 

in chapter 7, the NIROM is evaluated for modelling unseen cases with more practical production 

scenarios such as mixed production controls and well shut-in conditions, alongside the time-varying 

production controls. In chapter 8 the POD-AE is evaluated for modelling the heterogeneous gas field 

with varying production controls and boundary (shut-in) conditions in unseen/ prediction cases. The 

performance of the POD-AE is also compared to that of POD-RBF on their suitability for gas reservoir 

modelling. 

The conclusions from this work and some recommendations for research and industry are discussed 

in chapter 9. 



Chapter 2: Literature Review 

40 
 

2.CHAPTER 2: LITERATURE REVIEW  

This chapter provides some background into the conventional approaches for modelling gas 

reservoirs. The applications and limitations of these approaches are reviewed, leading up to reservoir 

simulation. Thereafter, some fast methods for modelling petroleum reservoir performance are 

reviewed, based on reservoir simulation as well as their research and knowledge gaps.  

 

2.1 MODELLING GAS RESERVOIR PERFORMANCE 

Several methods are used for estimating and forecasting the initial gas in place, recoverable reserves, 

and gas reservoir performance, including analogue, experimental and mathematical methods. Each 

method has its limitations and scope of application [18]. Analogue methods involve comparing a 

reservoir to other reservoirs with similar characteristics or properties while experimental methods are 

mostly applied for reservoir characterisation [18, 19, 45, 46]. Mathematical methods include the 

volumetric, material balance and decline curve analysis approaches [18]. The volumetric method relies 

on the static geological and petrophysical reservoir data to estimate the original hydrocarbon/ gas in 

place, GIIP [18, 46, 47]. The volumetric method does not provide any dynamic information about the 

reservoir’s performance and is mainly used during the asset’s appraisal stage, because information 

about GIIP becomes increasingly certain as production advances and more data is available [11, 12, 46-48]. 

Gas is highly compressible but has a low viscosity such that a product of its compressibility and 

viscosity is typically of the order of magnitude of 10-6cp/psi (in field units). The low viscosity means 

that gas reservoirs have a high hydraulic diffusivity constant (k/𝜙𝜇c), where k is permeability, 𝜙 is 

porosity, 𝜇 is viscosity and c is compressibility. For this reason, gas reservoirs achieve pressure 

equilibrium quite rapidly and can often be treated as a tank model, if their permeability is greater than 

1mD. This is a condition for the material balance approach and means that material balance methods 

are particularly applicable to gas reservoir modelling [10, 11, 49].  

Material balance methods confirm estimates of the GIIP and help to confirm the drive mechanism of 

the reservoir by assuming that the reservoir has a uniform pressure and is homogenous. It is 

independent of the reservoir’s size, geometry, varying rock and fluid properties such as fluid 

saturations and relative permeability [10, 11, 18]. There are 2 main material balance methods: the 

Havlena-Odeh approach and the p/Z plots [11]. In terms of reservoir volumes, the production, 

expansion and influx of a reservoir are captured in the material balance equation as:  
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Gas & water 
Production 

= Gas expansion + 
Water expansion/ 
rock compaction 

+ 
Water 
influx 

2.1 

GpBg + WpBw = G(Bg - Bgi) + GBgi 
𝒄𝒘𝑺𝒘𝒄+𝒄𝒇

𝟏−𝑺𝒘𝒄
∆𝑝 + WeBw 

where     the subscripts p, g, i, and w refer to produced, gas, initial and water respectively; 
G is the volume of Gas, W is the volume of water, B is the formation volume 
factor, c is compressibility, Swc is the connate water saturation, We is water influx 
and ∆𝑝 is the total pressure drop in the reservoir. 

 

By adopting Havlena and Odeh’s nomenclature where: 

 F = GpBg + WpBw ;    Eg = Bg - Bgi and Efw = Bgi 
𝑐𝑤𝑆𝑤𝑐+𝑐𝑓

1−𝑆𝑤𝑐
∆𝑝  

2.1 can be rewritten as: 

F = G(Eg + Efw) + WeBw   2.2 

Practically, gas expansion is much greater than the expansion of water or the reservoir formation, 

i.e.  Eg >> Efw, so 2.2 becomes: 

F = GEg + WeBw 2.3 

Rearranging 2.3 further gives, 

 

𝐹

𝐸𝑔
= 𝐺 +

𝑊𝑒𝐵𝑤

𝐸𝑔
 

2.4 

 

Havlena and Odeh's approach involves plotting 
𝑭

𝑬𝒈
 versus Gp from 2.4 to obtain a curve that looks like 

one of the curves in Figure 2.1. Figure 2.1 is a diagnostic plot of the Havlena and Odeh approach for 

determining the GIIP and drive mechanism of the reservoir [11]. The Havlena and Odeh approach is 

sensitive to the presence of water influx in gas reservoirs and is a better tool for establishing a 

reservoir’s drive mechanism. 
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Figure 2.1: Havlena and Odeh’s diagnostic material balance plot for determining the initial gas in place and the drive 

mechanism of a gas reservoir. The shape of the curve is an indication of the aquifer strength [11]. 

 

The other way of expressing the material balance approach is the p/Z plot. The p/Z plot approach 

relies on the equation of state (EOS) below: 

𝑝𝑉 = 𝑍𝑛𝑅𝑇 
which can be 
rearranged to 𝑉 =

𝑍𝑛𝑅𝑇

𝑝
 

2.5 

where  P is pressure; V is the gas volume; Z is the dimensionless gas compressibility 

factor (Z factor); n is the amount of gas in moles; R is the gas constant and 

T is temperature. 

 

For hydrocarbons, the gas expansion factor (E) relates the reservoir volume to the surface volume, 

and it can be expressed in terms of the EOS in 2.5: 

 

𝐸 =
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑉𝑜𝑙𝑢𝑚𝑒
=

𝑉𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑉𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟
 

2.6 

𝐸 =

(
𝑍𝑛𝑅𝑇

𝑝 )
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

(
𝑍𝑛𝑅𝑇

𝑝 )
𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟

⁄ =

𝑛 (
𝑍𝑅𝑇
𝑝 )

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑛 (
𝑍𝑅𝑇
𝑝 )

𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟

⁄  
2.7 

In field units (scf/rcf),  𝐸 = 35.37 (
𝑝

𝑍𝑅𝑇
)
𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟

 2.8 

The material balance equation for gas in a gas reservoir with no water influx (volumetric depletion 

drive), can thus be written as: 

 

Gas produced = Gas initially in place - Gas remaining in the reservoir 
2.9 

Gp = G - 
𝑮

𝑬𝒊
𝑬 
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2.9 can be rewritten as: 

 

where E is the gas expansion factor and 
𝐺

𝐸𝑖
 is the original or initial gas in the reservoir. At a constant 

reservoir temperature, 2.10 can be written in terms of the definition of the gas expansion factor in 2.8 

to give: 

𝒑

𝒁
= (

𝒑

𝒁
)

𝒊
(𝟏 −

𝑮𝒑

𝑮
) 

2.11 

 

So if a gas reservoir is in fact undergoing volumetric depletion, then a plot of p/Z versus the cumulative 

gas production (Gp) should be linear such that when p/Z = 0, then the cumulative gas production (Gp) 

should be equivalent to the original volume of gas that was in the reservoir, GIIP [11, 12]. If the plot of 

p/Z versus Gp is not linear, then the reservoir is undergoing water influx or some other mechanism 

such as compaction, extra gas being removed by a competitor or leakage from an adjacent 

compartment. The extent of deviation of the plot from linearity is an indication of the strength of the 

water influx/ aquifer, if other mechanisms are eliminated. In some cases, the p/Z plot needs to be 

extrapolated to determine the GIIP. The challenge with this approach is that if the plot is erroneously 

extrapolated due to a deviation from linearity in the plot that is not noticeable by inspection, then the 

reservoir could be assumed to be behaving as if it were volumetric and/or the GIIP can be 

overestimated [11, 48]. Furthermore, Dake 2001 [11] indicates that if a volumetric depletion reservoir is 

produced at varying production rates and conditions to the extent that the linearity of its p/Z plot is 

altered, the gas reservoir could be incorrectly interpreted to be a water drive reservoir. Figure 2.2 

shows examples where the linearity of the p/Z plot is altered by high or low production rates or 

seasonal production. 

 

𝑬 = 𝑬𝒊 (𝟏 −
𝑮𝒑

𝑮
) 

2.10 
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Figure 2.2. The linearity of p/Z plots affected by varying production rates a) in high and low production rate cases b) in a 

seasonally varying production case [11]. 

 

From the above review, it can be seen that the material balance equations make simplifying 

assumptions to satisfy volumetric conditions that may not always be valid. The material balance 

approach is sensitive to changes in the reservoir conditions such as water influx, gas expansion, 

multiphase flow in the reservoir, or varying production performance. This means that it can be used 

for quick assessments to see if there are other important mechanisms than just gas expansion in a gas 

reservoir. However the equations for the material balance approaches have also been modified to 

make them better adapted to different practical gas reservoir conditions [10, 12, 51]. These material 

balance methods also do not have consideration or reference to time.  

Meanwhile, the decline curve analysis approach relies on the production data from a reservoir and 

does not take into account the reservoir’s properties or geometry, neither does it give or provide 

information on the distribution of pressure and saturation in a reservoir. Decline curve analysis is 

based on the assumption that the trend of decline in a reservoir’s production rate is constant, i.e. the 

reservoir’s production rate would continue to decline in the future as it was in the past. However some 

reservoir operations such as well workovers and changes in production controls or drive mechanisms 

are sometimes unavoidable. Such changes can alter a reservoir’s production decline pattern and make 

decline curve analysis impractical for managing the dynamic strategies of field development planning 

[10, 15, 18, 46, 52].  

What is common to all the above traditional analytical methods of evaluating reservoir performance 

is that they are limited in the range of reservoir performance that they explore and they are not useful 

throughout a reservoir’s lifecycle. These models do not account for the heterogeneity in real reservoirs 

and do not allow for understanding a gas reservoir’s performance from changes in the distribution of 

pressure or gas across different parts of a reservoir [10, 18, 46]. All of these methods have underlying 

assumptions that simplify the complexity of their underlying equations, allowing quick solutions with 
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minimum computational requirements. They individually do not provide all the details that can be 

obtained from reservoir simulation, or the capacity to use different sources of information to solve 

and build dynamic reservoir models [10, 11, 18, 46].  

Reservoir simulation is more computationally intensive than all the conventional methods for 

reservoir modelling. It involves solving the material balance equation in addition to the partial 

differential equations of Darcy’s law that describe flow in porous media whilst including various 

physical behaviour such as phase behaviours [18, 46, 53]. Reservoir simulation requires engineers to 

combine reservoir data from different sources into a dynamic model that represents an actual 

reservoir. These dynamic models are made up of many grid cells that together represent the physical 

description of the actual reservoir. In reservoir simulation, each grid cell of a dynamic reservoir model 

is representative of a specific location in the actual reservoir, with its characteristic rock and fluid 

properties such as thickness, porosity, permeability, transmissibility, pressure and saturations. It can 

be difficult for engineers to get sufficient information about every location of a reservoir, besides the 

scale of measurement of some of the available reservoir data may not match the scale of the dynamic 

model. In such cases and based on the available data, different realizations of a reservoir’s properties 

are acquired from geostatistical software. To deal with the uncertainty in these processes and 

techniques, dynamic models are calibrated by performing multiple simulations and fine-tuning the 

dynamic model until its performance matches those of the actual reservoir’s production history. This 

is particularly important since the resultant dynamic simulation models are expected to be able to 

predict the actual reservoir’s future performance, although dynamic models may not always give 

correct predictions even if they were well history matched [11, 18, 46, 53, 54].  

Reservoir simulation is a versatile method for reservoir performance prediction and a realistic tool for 

field development planning. It can be updated as more data becomes available from the reservoir’s 

operation and can be used to monitor a reservoir’s performance throughout its lifecycle. Reservoir 

simulation models can provide information on the spatial distribution of reservoir properties at 

different time intervals, as well as other information that can help an engineer infer a reservoir’s drive 

mechanisms, factors limiting recovery rates, the efficiencies of different production scenarios, in 

addition to sensitivities to uncertainty and operational risks [10, 11, 46, 53, 54]. During the life of a reservoir, 

reservoir simulation serves as a predictive tool for understanding the possible consequence of 

different development strategies on the reservoir, including when and where to perform well 

workover, drill infill wells, commence EOR and plan for abandonment. Information from reservoir 

simulation is also helpful to support decisions on gas deliverability, gas sweep, surface facilities design 

and the net present value of an asset [10, 11, 15, 18, 46, 54]. It gives engineers an idea of what could be 
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expected from a field during its production life and hence the opportunity to prepare and plan in 

advance [15, 17]. 

Nevertheless, reservoir simulation is a time-consuming technique to set up and run [10, 13, 17-20, 55]. 

Reservoir simulation takes into account the many grid cells of a reservoir’s dynamic model in addition 

to the wells and field-wide performance, so depending on a reservoir’s complexity and the type of 

information that a model is built to study, reservoir simulation can be time-consuming. This is 

particularly significant when many simulation runs are required during history matching, sensitivity 

and uncertainty analysis as well as for production optimization [32, 33, 35, 36, 43, 53, 56, 57]. For instance, 

models that represent reservoirs with multiphase flow, enhanced oil recovery, retrograde gas, natural 

fractures and unconventional reservoirs typically require more computational resources (time and 

memory) [13, 16, 18, 21, 46, 55, 58]. 

Technological advancements as well as new exploration frontiers such as CO2 sequestration and 

emerging technologies for cleaner hydrocarbon extraction continue to promote the role of reservoir 

simulation. In fact the technological advancements in computing capacity mean that more 

sophisticated reservoir models can be considered [53]. Given the benefits of reservoir simulation in 

executing elaborate field development plans along with its accompanying computational challenges, 

it is worthwhile to investigate complementary methods for speeding up its runtime. These 

complementary methods should ideally improve the time spent in building and running dynamic 

models. This way, engineers can spend more time reviewing the practicality of the dynamic models as 

well as the development strategies that are considered based on the dynamic model’s solutions of the 

reservoir’s performance [17].  

 

2.2 FAST MODELLING METHODS 

Reservoir simulation solves the equations of flow in porous media in the many grid cells that represent 

a reservoir [49, 53]. The number of grid cells that are used to build a reservoir model and describe the 

reservoir in space is determined by the reservoir complexity and heterogeneities in addition to the 

size of computer and time required for simulation. Since reservoir simulation solves the equations of 

flow in porous media in each grid cell, then the more cells there are in a reservoir model, the more 

the simulation will be computationally demanding [32, 33, 35, 36, 43, 49, 56, 57]. Hence in the petroleum 

industry, as in many other fields of science and engineering, various methods are applied to creating 

approximate models that represent complex systems. These approximate models are subsequently 

used to forecast the system’s performance in less time and with less computational capacity. 
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Some of the methods that have been applied to improve the computational speed of solving complex 

problems include using coarser simulation grids/ upscaling [55, 59-61], developing alternative methods 

for solving the equations of flow, such as streamline simulation [61-63], manipulating the iterative solver 

methods employed in reservoir simulators [64, 65], incorporating GPU technologies  [57, 66, 67], projection-

based reduction techniques [33, 40, 68-70], neural networks or proxy models [21, 46, 71, 72] and cloud sourcing/ 

computing [31, 73, 74]. 

The use of coarse grids without upscaling can lead to significant numerical dispersion and optimistic 

predictions of sweep due to homogenization of the geological heterogeneity [17]. Upscaling approaches 

can overcome these difficulties but rely on further fine-scale (and hence time-consuming) simulations, 

besides, they are often complex to apply and solutions are specific to particular initial and boundary 

conditions [40, 59, 61, 75]. Streamline simulations are only accurate for applications with limited pressure 

depletion and so are not so suitable for gas reservoir simulation. GPUs perform better than CPUs in 

terms of computational time, but they require associated algorithms that are better implemented in 

high-level languages and data-parallel structures in addition to in-depth technical expertise to harness 

their implementation to the fullest [57, 66]. 

Projection-based reduced order models (ROMs) project large scale problems into lower-dimensional 

subspaces that approximate conventional simulators [39-41, 76, 77]. ROMs have been applied in 

aerodynamics and aerospace [26, 28, 29, 78, 79], physical and computational sciences [22, 23, 25, 27, 80-87], 

engineering [88, 89], medicine and the health sector [24, 90] for fast, flexible and less expensive 

computations. In the last couple of years, ROM has been explored in the petroleum industry. Most 

applications of ROM in petroleum engineering have been for water flooding in oil reservoirs [33, 43], 

multiphase flow in porous media [91, 92], history matching [36, 41, 56, 77] and production optimization [33, 76, 

93].  

Recently projection based reduced order models have been developed based on proper orthogonal 

decomposition (POD) which transform high dimensional data into a lower-dimensional space. In 2011, 

Chaturantabut and Sorensen [69] applied a POD based discrete empirical interpolation method (DEIM) 

for modelling viscous fingering in a 2D system with 15000 full order dimensions. They used POD to 

reduce the dimension of their system to 40 and applied DEIM for approximating the non-linear 

function of their system. Chaturantabut and Sorensen (2011) found that POD-DEIM was efficient in 

capturing the dynamics of viscous fingering with a computational speedup of up to 3 orders of 

magnitude. He and Durlofsky (2014) [32] applied a POD based trajectory piecewise linearization (TPWL) 

technique for compositional simulation of a 2 phase oil and gas system i.e. gas injection into oil and 

gas reservoirs. To minimise the amount of storage space required to implement their POD-TPWL, He 

and Durlofsky (2014) applied an intrusive approach that requires modifying the conventional 
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simulator from which they obtained their training simulations/ snapshots. They also highlighted the 

complexity of specifying practical well controls, such as time varying BHPs, in reduced order modelling 

and propose that the range of controls applied to training cases should be similar to those for the 

prediction runs. Their intrusive POD-TPWL method gave speedups of over 500 times compared with 

the Stanford General Purpose Research simulator (GPRS) (Figure 2.3) and was also applied for a 

production optimization problem.  

 

 
Figure 2.3: Forecasts of oil production rate in a test case of He and Durlofsky et al. (2014) using the POD-TPWL 

method. Their POD-TPWL is an intrusive ROM that relies on some modification of the reservoir simulator [32]. 

 

In 2016, Ghasemi and Gildin [94] noted that POD models suffer from computationally expensive back-

projection especially when evaluating nonlinear systems with large data. They also mentioned that 

POD-DEIM may require a large number of basis functions with no guarantee of a stable system, while 

TPWL is computationally expensive in terms of the space required to store its data. So Ghasemi and 

Gildin (2016) proposed a quadratic bilinear formulation for modelling the saturation equation of a 2-

phase flow oil-water model undergoing waterflooding. Their approach was applied to nonlinear 

systems without any approximations like in DEIM, it initially increases the dimension of the problem 
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before reducing the system with POD. They believed that this technique improved the POD basis 

function selection and the prospects of capturing the dynamics of nonlinear systems while preserving 

some properties of the system like its stability. However, their approach depends on the governing 

equations of a system, which they transform into a new quadratic bilinear form. Jiang and Durlofsky 

(2019) [35] have also modelled oil-water subsurface flow with a POD based Gauss-Newton with 

approximated tensors (GNAT) method. GNAT approximates the non-linear terms of a system like 

DEIM, but GNAT allows for the number of interpolation points to be different from the number of 

basis functions used for its approximation. Jiang and Durlofsky (2019) [35] found that POD-GNAT was 

more accurate than POD-TPWL in predicting the production rates of oil and water (Figure 2.4), but it 

gives larger errors as the non-linearity in the system increases and it is not as fast as POD-TPWL. They 

also suggested that the GNAT stage of their method can inherit the inaccuracy of the POD stage.  

 

 
Figure 2.4:  Jiang & Durlofsky (2019) [35] box plots comparing the errors obtained from POD-TPWL, POD-Only and 

POD-GNAT for 495 original test schedules (∆u) of their test case and cases with large perturbation schedules (3∆u), 
showing that GNAT gave better results than TPWL for predictions of oil and water rates. 

 

In all the above cases, except for Chaturantabut and Sorensen‘s method [69], the ROMs either relied 

on the governing equations of the reservoir or the conventional simulator had to be modified to 

accommodate the ROM formulation, these are called intrusive ROMs. However most commercial 

reservoir simulators that are widely used in the industry do not allow access to the source code or the 

algorithms for their simulators, for proprietary reasons. Some other simulators have models that 

might not be easily changed or altered to accommodate intrusive ROMs [21, 36]. Such restrictions in 

commercial simulation software limit the use of intrusive ROM techniques for simulation speedup. 

Besides intrusive ROMs are not always stable or computationally efficient when producing solutions 

for nonlinear problems involving the inversion of a large matrix such as the spatial distribution of 

reservoir properties. 
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There are however some non-intrusive (data-driven) reduced order models (NIROMs) that do not 

need the governing equations of a system and do not require any changes to the commercial simulator 

that produces their training runs. NIROMs are standalone programs that are “trained” using physical 

and numerical data including output solutions of commercial simulators [36-38]. They can be used in 

conjunction with any commercial simulators, making them readily available to practising engineers 

irrespective of their preferred simulation software.  

In 2013, Klie [36] highlighted that since NIROMs do not depend on the proprietary codes of commercial 

simulators, their predictability is dependent on the amount of training data that is available for them 

to learn the system’s dynamics, i.e. NIROM needs more training data than intrusive ROMs. Klie (2013) 

proposed a NIROM based on POD, DEIM and radial basis functions (RBFs), where POD or DEIM was 

used to reduce the size of the training data (for the linear and nonlinear terms of the system 

respectively) allowing for a compact RBF approximation. He emphasised that RBFs exploit data locality 

when they approximate the relationship between data input and output, and RBFs have lower 

sensitivity to noisy data as well as lower training speed compared to artificial neural networks (ANN). 

Using the Gaussian basis function, Klie (2013) applied his NIROM for predicting the gas and oil 

production rates from two “simple” multiphase reservoirs as well as their pressure and oil saturation 

field with a maximum of 3% approximation error. In the same year, Chen et al. [56] also proposed a 

black-box stencil interpolation method (BSIM). Similar to Klie 2013 [36], their training data was reduced 

with POD or DEIM but their interpolation was done with an ANN that had 50 nodes in its hidden layer. 

Their BSIM takes advantage of the discretisation approach applied in most simulators where the flow 

dynamics in any given grid cell has local support from its surrounding grid cells in all directions, stencil 

locality (Figure 2.5). The local relationship between grid cells is by far less complex than the flow 

dynamics in the entire reservoir, therefore Chen et al. (2013) [56] used stencil samples from their POD 

or DEIM reduced dataset as input data for their ANN. They tested their model on oil-water and oil-gas 

cases with errors of around 10%, which they likened to what is obtainable from intrusive ROMs. Their 

test cases were oil reservoirs with few grid cells or short production durations, i.e. reservoirs with 

10000, 300 and 13200 grid cells, evaluated for 500days, 12years and 50days, respectively.  
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Figure 2.5: Finite difference stencil for Chen and Klie (2013) black-box stencil interpolation method [56]. Their BSIM 

exploits a similar discretisation approach as most simulators but was not tested for sufficient simulation scenarios (size 
and duration). 

 

From 2015 to 2017, Xiao et al. [38, 91, 92, 95, 96] proposed three NIROM methods, based on POD. These 

methods are the POD-second order Taylor series expansion approach, POD-Smolyak sparse grid 

interpolation method, and POD-Radial Basis Function (POD-RBF) method. They proposed that the 

POD-RBF technique was a method of choice in speeding up simulations without sacrificing the 

accuracy of modelling results. Their POD-RBF NIROM models a time-dependent solution and they 

showed its application to solving problems in unstructured grids, i.e. the Navier-Stokes equations in a 

3D non-hydrostatic system and for multiphase flow in porous media with the Imperial College Finite 

Element Reservoir Simulator [97]. They considered multiphase (oil-water) flow simulations undergoing 

water flooding, which were also simplified to have homogeneous porosity, two permeability regions 

and with no gravity considered. Xiao et al.’s test cases had 984, 1386 and 31776 dimensionless data 

points (grid cells) and they showed that using more than 9 POD basis functions (18 or 36 at the most) 

improved the accuracy of their solutions by more than 50% while adequately capturing the flooding 

saturation shock front (Figure 2.6). Although they had speed ups of 3 orders of magnitude, their model 

was built using output from a research simulator that is not commonly used by practising engineers. 

Also, their test cases did not consider practical aspects of field development planning such as 

production from heterogeneous reservoirs with real PVT properties or the application of NIROM for 

modelling different production scenarios with different production controls [38, 91, 92, 95, 96].  
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t = 0.01 t = 0.02 

  
(a) full model 

  
(b) POD-RBF 6 POD bases 

  
(c) POD-RBF 12 POD bases 

  
(d) POD-RBF 18 POD bases 

Figure 2.6: Xiao 2016 [38] POD-RBF estimation of the saturation in a two-material layers case showing solutions with 6, 
12 and 18 POD bases functions.  

 

In 2019, Kostorz et al. [37] extended the application of POD-RBF to modelling new or unseen simulation 

cases, in addition to designing the POD-RBF NIROM to accommodate being trained with multiple 

simulation parameters (parameterisation) simultaneously. Their NIROM was applied to a 2D oil 

reservoir undergoing gas injection and they proposed the use of RBF and polyharmonic splines as good 

interpolation methods. They further highlighted that other alternative interpolation methods like 

machine learning and kriging require more computational time and process optimisation to give 

similar results as RBF or polyharmonic spline methods. On the relevance of parameterization, they 

noted the importance of “renormalizing” the training data so that even though the multiple 

parameters being considered for the same system have different magnitudes, renormalisation 

enables all the parameters to be brought to a similar regularly spaced structure. Kostorz et al.’s 

parameterisation approach however caters for only constant, time-invariant parameters i.e. multiple 

simulations with different constant parameters like oil-gas density ratios, directional permeability, 

reservoir dip, or a single production rate throughout the production lifecycle. Their parameterisation 

design did not consider simulation cases with multiple time-varying parameters (forced or varying 

parameters) and how to appropriately renormalize these for NIROM interpolation. This is particularly 

relevant in the petroleum industry where for instance a reservoir can be produced at several different 

production rates during its production lifecycle. For swift experimentation and development, Kostorz 
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et al.’s NIROM was implemented for a simple reservoir with 1000 grid cells, and with an in-house finite 

difference implicit pressure explicit saturation porous media flow simulator [98]. They highlighted that 

the NIROM does not adequately model complex physical behaviours like displacement problems with 

a shock front. The NIROM’s accuracy did not improve when the number of training runs was doubled 

(Figure 2.7 and Figure 2.8).  

 

  
Figure 2.7: Kostorz et al.’s (2019) [37] breakthrough time (BT) PDFs generated from their simulator (Exact) and NIROM. 
Note that in both cases above, the NIROM’s prediction of the peak BT PDFs are different, the case with fewer training 

runs is closer to the exact solution. 

 

 

 

 

 

 

 
Figure 2.8: Kostorz et al.’s (2019) [37] NIROM approximations of a simple reservoir’s P10 saturation distribution. Kostorz 

et al. showed that having larger numbers of training runs does not guarantee having better NIROM approximations.  

 

All the above applications of NIROM did not consider gas-water (that is with aquifer support) or gas-

only (that is with very weak or no aquifer support) reservoirs, and they all applied their NIROMs to 

simple (homogeneous and impractical) or small (less than 11×103acre-ft) reservoirs. In some cases, 

the proposed NIROMs have been used to replicate their training runs [38] and not new unseen 

prediction cases. And in other cases [37, 99, 100], the test reservoir simulators are not commercially 

available to practising engineers. None of the above authors provided a NIROM framework that is easy 



Chapter 2: Literature Review 

54 
 

to implement, neither did they consider realistic well controls for their test cases. They did not provide 

insight into how they came about their choice of RBF or compare the speed-up of their NIROM to their 

simulators (in relatable time). Nevertheless from the above works, the POD-RBF has repeatedly been 

shown to have potential for fast approximation of petroleum reservoir simulations, POD-RBF is the 

main NIROM that is considered in this work. 

 

2.3 MACHINE LEARNING METHODS 

Machine learning (ML) is an application of artificial intelligence [101, 102]. Like most statistical methods, 

machine learning techniques identify the underlying patterns in data and approximate these patterns 

in new instances and on a larger scale [19, 103]. ML approaches work well with data that exhibit the non-

linearity and complex behaviours that are characteristic of petroleum reservoirs, for instance time-

varying well controls [13, 104]. They also work well for problems with noisy and incomplete data such as 

in image reconstruction [13, 20, 42, 54, 104, 105]. Artificial neural networks (ANN) are a type of algorithm in 

deep learning, which is a subdivision of machine learning. Precisely, any ANN with more than 3 layers 

(an input, output and hidden layer) is a deep neural network [101, 102, 106]. The idea of neural networks 

is similar to RBFs since they both involve a network of layer(s) interconnected with interpolation or 

activation function(s). In supervised learning schemes, neural networks can learn the behaviour of the 

initially given data in a cause and effect manner and can eventually be used as a prediction tool, for 

making forecasts [20, 42, 54, 105]. Other artificial intelligence models include capacitance-resistance models 

[42], fuzzy logic systems [42, 105, 107], genetic algorithms [42, 105, 107] and support vector models [42, 105, 107].  

There are two common types of problems that NNs are applied to, classification and regression 

problems. In classification problems, prediction outputs are grouped into predefined categories based 

on whether or not they meet or pass certain quotas e.g. binary or multiclass classification problems 

where final prediction outputs are often probabilities that sum up to unity or percentages. Regression 

problems have individual or subjective outputs [105, 106]. Since the problem in this work requires outputs 

for individual grid cells and/or at different time instances, it is a regression problem. It is important to 

be aware of the problem type in order to make informed decisions when designing a neural network 

(NN). For instance, the problem type influences the choice of activation functions, loss functions and 

error metrics [105, 106, 108]. Sigmoid, softmax and hyperbolic tangent activation functions are often used 

for classification problems while rectified linear unit (ReLu) and its associated functions such as Leaky 

ReLu and exponential linear unit (ELU) are applied to regression problems. The sigmoid function 

always gives outputs between 0 and 1, softmax outputs always add up to unity and the hyperbolic 

tangent function gives outputs between -1 and 1 [21, 106, 109]. 
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Hyper-parameters are also an important part of neural network models. Hyper-parameters are design 

components/ configurations that make up the NN, they are predefined before training the model. 

These include the optimiser algorithm, batch size, epoch, dropout, activation function(s), number of 

hidden layers, and number of nodes in each hidden layer. The epoch is the total number of times that 

the full training data is passed through during training, the batch size refers to the size of a subset of 

the full data that is considered at every instance during training, while the optimiser is the method by 

which the NN’s weights are improved/ updated during iterations [109-111]. The topology or architecture 

of the NN (number of hidden layers and number of nodes or units per hidden layer) also needs to be 

set up in advance of training the model. The effect of the number of hidden layers on a NN’s 

generalisation is shown in Figure 2.9 [111]. The most suitable choice of hyper-parameters for NNs are 

often arrived at by trial and error to minimise their prediction error [20, 105, 106, 111].  

Whilst the hyper-parameters of NN models are tuned to obtain the most suitable model, the standard 

ML practice is to also provide the model with validation data. This validation dataset is different from 

the data that is used to train the model as well as the “test” data that the NN model would later be 

used to forecast. During the NN’s training process, the validation data is used to gauge the NN’s 

predictive capacity and for continuously adapting the NN to be able to generalise on “new” data until 

a robust predictive model with minimised estimation error is obtained [19, 58, 105, 111].  

 

 
Figure 2.9: Effect of a hyper-parameter (number of hidden layers) on a NN’s generalisation [111]. 

 

Recently ML techniques are increasingly being applied to solving computational tasks in the petroleum 

industry. While significant achievements have been made in applying ML in the petroleum industry 
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since the 1990s, these applications have been limited to certain aspects of petroleum engineering [45, 

105, 112, 113]. For instance, ML has been applied to modelling enhanced oil recovery (such as water, gas 

or steam flooding) [13, 42, 44, 46], estimating the flow rate of gas [114] and identification of flow types and 

pressure gradients in multiphase flow situations [109]. When coupled with optimisation techniques, ML 

has also been used to model the optimum net present value of petroleum exploration and production 

projects [16, 54, 73]. 

Significantly, because there is a large amount of output data in the petroleum industry, this has 

fostered the application of machine learning in the industry. But despite several works that show that 

ML is useful in the petroleum industry, more still needs to be done to optimize and integrate these 

techniques into mainstream field development operations [103]. Also, only a handful of these 

applications have considered the prediction of reservoir dynamics in terms of pressure and fluid 

saturation distributions in entire reservoirs or fields. Similar to reduced order models, there have been 

even fewer works that have considered production dynamics in gas reservoirs, to help engineers 

reduce the time it takes to arrive at quality decisions for developing hydrocarbon reservoir assets, well 

placements or sensitivity of field development strategies to production rates and wellhead pressures 

[36, 45, 115]. What is common to most of these ML applications in petroleum engineering is that they have 

been tested on problems for oil-water or multiphase reservoirs. Some notable ML applications are 

discussed below, especially applications to gas reservoirs and some applications that provide more 

insight into some challenges of ML. 

In 2014, Al-Dhamen [116] used ANN to predict gas rates in a 2 phase condensate reservoir. Their focus 

was on creating a tool that can better estimate gas rates for a wide range of condensate gas ratio 

values. Their model was trained with data from well tests such as choke sizes, upstream and 

downstream pressures as well as condensate gas ratios. Al-Dhamen’s model had a 10.2% error and 

was better than analogous correlations, but their work did not delve into the 3D dynamics of the gas 

reservoirs or forecasting reservoir property distribution. Ersahin et al. (2019) [20] applied ANNs to 

forecasting the oil production profiles and oil viscosity of cyclic steam injection operations in a dual-

porosity reservoir. They highlighted that in building the architecture for neural networks there is no 

rule of thumb for determining the number of neutrons per hidden layer (HL) and the heuristic process 

is relied on for fine-tuning models to give better results. They evaluated their models’ performance 

on a reservoir with a single well and radial grid geometry, after training the model with 1428 training 

cases.  

Gas rate is typically not measured for each well in field settings, it is often evaluated from surface 

multiphase flowmeters and other less direct methods such as well test analysis. So in 2019, Kalam et 

al. [114] developed and evaluated 3 artificial intelligence methods for confirming gas rate calculations 
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from correlations and well tests. Kalam et al. (2019) [114] used the tan-sigmoid activation function for 

the HL of their feedforward neural network (FFNN) and linear function for the output layer. Their 

artificial neural network model had 17097 data points for training and 4846 data points for testing as 

well as 19 neutrons in the only hidden layer. Although they achieved above 90% accuracy from the 

model and worked with over 20000 data points, their methods’ evaluation was for estimating gas 

rates and does not convey other engineering implications for decision making or development 

strategies that accompany the dynamics of the dry gas field. Wood (2020) [117] investigated the 

transparent open box data matching algorithm to predict the effective permeability, effective porosity 

and water saturation in a giant Algerian gas reservoir, from the well log data. Their model gave useful 

insight into the lithology of a 100m reservoir and was considered to be fit-for-purpose in the 

petrophysical metric prediction. They addressed a reservoir characterisation problem that does not 

have direct implication for the reservoir’s future performance. 

Probably the most relevant application of NNs to this work is the work of Temirchev et al. (2020) [13]. 

Temirchev et al. (2020) developed a deep learning technique called a metamodel, which is based on 

a convolutional variational autoencoder and a recurrent neural network (RNN) with gated recurrent 

units (GRU). The metamodel was applied to single-phase oil and gas reservoirs as well as a multiphase 

production case with and without water injection. Their reservoir cases had a single well and they 

were horizontally homogenous with vertically varying permeability. Most interesting is that they went 

beyond predicting the reservoirs’ cumulative hydrocarbon production for 30 years, to applying the 

metamodel to predicting the 3D pressure and saturation dynamics within these reservoir cases. They 

also did a comparative analysis of 2 main dimension reduction techniques, proper orthogonal 

decomposition (also known as principal components analysis - PCA) with 120 and 150 basis functions 

and autoencoders (Figure 2.10).  

 

 
Figure 2.10: Temirchev et al.’s (2020) [13] comparison of different metamodels’ prediction of the average values of the 

spatial pore pressure and oil saturation for a scenario of their test case. In this example, GRU means Gated Recurrent 
Unit, PCA means Principal Components Analysis, VAE means Variational Autoencoder, LIN means Linear Regression 

and LSTM means Long Short Term Memory. 
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The convolutional neural network part of the metamodel was used to compress their input data into 

a lower-dimensional vector structure while the RNN part was used to implement the actual 

interpolation of the reservoir’s dynamics through time. The metamodel’s input data consisted of grid 

distributions of pressure and fluid saturations within the reservoir as well as production bottom hole 

pressure and water injection rate. To mitigate the high computational time spent in inverting latent 

space predictions to full space, they only recovered the full-order metamodel predictions at time steps 

of interest. They had promising results from their work and showed that using GPUs made their 

predictions 12 times faster as opposed to 7 times speedup with an ordinary CPU. They did not specify 

if this speed up was from their technique or solely due to their hardware. In addition, they indicated 

the need to scale up and adapt the metamodel for real field cases that are fully heterogeneous, with 

more complex fluid systems and PVT representations, as well as for injection of other fluid types in 

addition to low permeability reservoirs. 

From the ML applications seen so far, it is quite obvious that some of the downsides of machine 

learning include understanding the hyper-parameters (pre-defined model configuration parameters) 

as well as how to effectively fine-tune them and striking a balance between having abundant data for 

training a model without overfitting the model. There is also the issue of dealing with high 

dimensionality data (the curse of dimensionality) and getting stuck at a local minima as opposed to 

the global minima when training the model. The most significant challenge with ML is the 

computational capacity required to run these models since standard RAM and CPUs do not always 

suffice for running deep networks. Some of these ML issues are mitigated by creating hybrid models 

of machine learning with optimisation or feature selection techniques, applying stochastic gradient 

descent methods, introducing model reduction techniques, adding regularization parameters to 

models and increasing computational capacity via GPUs, parallel and/ or cloud computing [19, 55, 105]. 

 

SUMMARY 

This chapter has shown that natural gas production and exploration constitutes an important/ integral 

part of the global energy mix and reservoir simulation is the most widely used and general tool for 

solving the dynamics of gas reservoir’s nonlinear flow equations, even though it is time-consuming. 

For industrial applications, the POD-RBF NIROM and machine learning interpolation techniques 

constitute a scope of practical solutions for creating fast approximations of reservoir simulation 

solutions. The POD-RBF NIROM can be used by practising engineers irrespective of their preferred 

simulation software and it can be implemented for multiple parameter scenarios. Machine learning 

interpolations can also be applied to the time-varying production scenarios that are practised in the 

petroleum industry. Specifically, the rest of this work focuses on applying POD-RBF NIROM and POD 
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coupled with Autoencoder to different practical aspects of gas reservoir simulation and management 

in real gas reservoirs, especially the spatial distribution of pressure and saturation in the reservoirs.  



Chapter 3: Theory and Implementation of NIROM 

60 
 

3.CHAPTER 3: THEORY AND IMPLEMENTATION OF NIROM  

This chapter describes the theory and workflow for implementing the NIROMs considered in this work, 

the proper orthogonal decomposition radial basis function (POD-RBF) and the proper orthogonal 

decomposition autoencoder (POD-AE) methods. In both frameworks, POD is used to project the 

reservoir simulation data into a lower-dimensional hyperspace and RBF or AE is used to interpolate or 

approximate the dynamics of the data in hyperspace. Subsequently, POD is applied to transform the 

data back to the full space where it can be compared with the commercial simulator.  

The NIROM workflow that is applied in this work is based on the approach that was developed by 

Kostorz et al. (2021) [100] but with a “renormalisation” that this work finds to be suitable for time-

varying (forced) parameters. Kostorz et al.’s (2021) [100] “renormalisation” method is better suited to 

constant parameter cases. The POD part of the workflow is the same for both NIROMs and is fully 

implemented in MATLAB [118] while the RBF interpolation is implemented in MATLAB and the AE 

interpolation is implemented in Python, Jupyter Notebook [119]. Hence, the code that is used for this 

work is written in MATLAB and Python, which are interpreted programming languages [118, 120]. These 

codes are available in Appendix C. 

Different production scenarios have been considered in this work, such as constant and time-varying 

(forced) production parameters in addition to different well controls (boundary conditions). The 

impact of these parameters on the implementation of the NIROMs is shown in the following sections. 

Two types of simulation solution data have also been considered, the spatial distribution of pressure 

and saturation in reservoirs as well as the production performance data for the reservoirs. The NIROM 

workflow is explained for both data types.  

 

3.1 OVERVIEW OF APPROACH 

For any given test case or gas field example, the first step is to define the key parameters that will be 

varied during the study and the ranges over which these parameters will be varied, in addition to the 

output variables that will be estimated by the proxy models. Input parameters may be associated with 

the reservoir characteristics such as porosity, permeability and fault distributions or with the 

development strategy and operation of the field such as well placement(s) and well controls. In this 

work the following parameters are considered: gas production rate, well bottom hole pressure (BHP), 

tubing head pressure (THP) and reservoir porosity. The output variables (outputs) will typically be 

pressure and saturation distribution over time and the production data (gas rate, water rate, gas-

water ratio and/or BHP). The pressure and saturation distributions will be estimated in each grid cell 

that constitutes the gas reservoir’s dynamic model. The engineer also needs to specify the time 
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intervals at which output variables are written out by the conventional simulator (time steps or report 

steps), these can equally spaced in time. 

The next step is to build the base reservoir model as required for the conventional reservoir simulator 

of choice. Solutions to flow in porous media from the conventional reservoir simulator are taken as 

the true/ original representation of the actual reservoirs. In this work, a finite difference based 

commercial simulation software, Schlumberger’s ECLIPSE black oil simulator (ECLIPSE) [121], is used to 

build the dynamic models of the gas reservoirs. The proxy model (NIROM) is expected to learn the 

base reservoir model’s dynamics from scenarios of ECLIPSE simulation output and subsequently be 

used to make predictions. 

In this work, the NIROM is implemented as a coupled model (NIROM and conventional simulator 

together), so the approximate model/ NIROM is set-up to call and run ECLIPSE from within the 

programming language of choice, thereby generating the training data. Depending on the user’s 

preference, the approximate model can be configured to write INCLUDE files (ECLIPSE text files) with 

the adjustable parameters (such as production profiles) and report step intervals for ECLIPSE, before 

each ECLIPSE simulation run. Other fixed simulation parameters/ information are built into the base 

reservoir model in advance. In this work, the entire POD-RBF NIROM is built and implemented in 

MATLAB while most of the pre- and post-processed data for the autoencoder (AE) model is done in 

MATLAB. This was to facilitate rapid development and testing. If NIROM were to be used for real 

applications, then it would be more efficient to write the code in a compiled language such as C++. 

The autoencoder model itself is built, trained and used for predictions in Python’s Jupyter Notebook 

[118-120]. 

In the implementation of the NIROM in this work, the next step is for the approximate model to select 

the value(s) of the adjustable parameters from the range of values that the user has provided, then it 

calls the conventional simulator (Schlumberger ECLIPSE) to run the reservoir simulation case with the 

chosen parameter. The approximate model in turn reads the simulator’s output solutions and saves 

them within its memory space and moves on to the next parameter to repeat the same process. When 

all parameter cases have been run for the total number of training runs specified in the approximate 

model, the model couples the output data from all the training cases together to form what is 

hereafter referred to as the approximate model’s training dataset. 

The next step is to train the fast approximate model (NIROM) with the training runs data that was 

extracted and saved in its memory space. The extracted training data is normalised by mean extraction 

and projected into a lower-dimensional hyperspace with proper orthogonal decomposition (POD). 

Proper orthogonal decomposition projects the data into a lower dimensional space but it is expected 
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that the reservoir’s dynamics is retained within the reduced training data in the new hyperspace. This 

reduced data is then interpolated in hyperspace using radial basis functions (RBFs) or autoencoders 

(AE), to learn the reservoir’s dynamics as interpolation weights. These weights are used for the 

prediction of new unseen simulation cases. For the new unseen cases, only the initial condition data 

(data at the first time instance) of the new unseen simulation cases as well as the parameters for the 

new simulation case serve as the input data for RBF or AE predictions. All these steps are executed 

within the coupled NIROM-ECLIPSE model. 

The next step is to run predictions. In this work, the prediction steps are implemented as a continuous 

step after training the NIROM, so within the coupled set up new sets of parameters are chosen and 

ECLIPSE is called to run simulations for the new parameters. The difference with the training cases is 

that only the ECLIPSE’s output data of the first report step (initial condition) would be saved and used 

for prediction. This initial condition data is the starting data for NIROM prediction and it is propagated 

through time with NIROM for the expected production duration with RBFs or AE. After the RBF or AE 

prediction in hyperspace, the NIROM predicted simulation data is projected back into the full space to 

be compared with the full ECLIPSE simulation of the new unseen case. The accuracy and the speed of 

the fast models/ NIROMs are then analysed. The above workflow is discussed in details in the following 

sections. 

 

3.2 TRAINING, VALIDATION AND TEST DATA 

The training data is used to learn the dynamics of the gas reservoir from its simulation solutions, while 

the validation and test data are new, unique and different simulation data. The validation data is only 

provided for the AE interpolation, to facilitate the process of fine-tuning the AE to generalise well on 

new unseen data. This is best practise in machine learning. The test data represents the simulation 

cases that are later predicted with the trained NIROM and compared with ECLIPSE’s solutions, i.e. 

accuracy and speed analysis. What differentiates each data set is the blend of parameter(s) that are 

used to create its simulation case. This work has considered constant properties (such as permeability 

or porosity) or time-varying sink properties (such as production rates or pressure limits) as simulation 

parameters. Since NIROM is data-driven, it has a similar implementation for constant or varying 

(forced) parameters. The original theory for the NIROM implementation that is applied in this work 

was designed by Kostorz et al. (2019-2021) [37, 99, 100] for constant parameter cases. However, their 

implementation is not suitable for time-varying parameter. Therefore, this work provides a 

modification of this implementation that makes it applicable to varying parameter cases.  

To generate the data for the constant parameter scenarios, in this work, the maximum and minimum 

allowable values are chosen for any of the listed parameters and 5 to 50 training runs are generated, 
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equally spaced between the extreme parameter values. The parameters used to generate the training 

runs are the training parameters. The validation and test data are then selected at random intervals 

between the training parameter values, ensuring that no validation or test parameter is the same 

value as any of the training parameter values. For the test data, it is also ensured that two of the 

parameters fall outside the maximum and minimum training parameter values, to test the NIROM’s 

capacity to make predictions of scenarios outside its range of training parameters (extrapolation). For 

example, consider a gas development project that requires that a reservoir is produced at a production 

rate between 50MMscf/day and 60MMscf/day. In this illustration, the adjustable parameter is the gas 

production rate. So in the constant parameter case, the NIROM can be trained with 5 training 

parameters i.e. 50, 52.5, 55, 57.5, and 60MMscf/day (Figure 3.1a). The rationale here is that after the 

NIROM has been trained with ECLIPSE solutions at the 5 production rates above, the NIROM will be 

expected to subsequently predict the reservoir’s production performance at other production rates 

(test/ prediction parameters). These prediction parameters are different from the training parameter 

values listed above, for instance at 56.5 or 59MMscf/day. This constant parameter case is common in 

different fields of science, hence Kostorz et al. (2019-2021) [37, 99, 100] originally implemented the NIROM 

for such scenarios. 

 

  
(a) (b) 

Figure 3.1: Difference between (a) constant parameter distribution and (b) forced parameter distribution in the temporal 
resolution (x-axis). The x-axes (report steps) are in 300days interval. For constant parameters, production rates remain 

the same value in the temporal resolution while for forced parameters, the production rates vary in the temporal 
resolution.  

 

However, for hydrocarbon production in the petroleum industry, it is more common for production 

rates and/ or pressures to vary at different production intervals due to increasing or decreasing 

demand. For the same gas reservoir example considered above, instead of producing the reservoir at 

a constant gas rate between 50 to 60MMscf/day, gas production might commence at 50Mscf/day and 

2.5 years later the production rate is raised to 57MMscf/day for 3.5 years. Next, the demand for gas 
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might be lower and the production is cut back to 40MMscf/day for 1.5 years and finally, the reservoir 

may be produced at 55Mscf/day for its remaining lifecycle. In this later production scenario, the 

simulation parameters have been adjusted on 4 different occasions, even though the changes in 

production rate could have occurred more or less frequently throughout the production regime of the 

reservoir. This is an example of a time-varying parameter case (Figure 3.1b), sometimes referred to as 

forced parameter case [99, 100]. In this work, the varying parameter cases have been generated as a 

combination of production parameter values (such as rates), within an acceptable range of values, 

that change or take on different values after short and random time intervals. 

To adapt the varying production rate cases to the concept of gas supply contracts in which production 

rates vary seasonally, this work has developed and considered production profiles in which production 

rates change up to four times every year. These seasonally varying profiles have a higher gas 

production during winter, a lower production during autumn and spring and the least production 

during summer. Another practical production scenario that has been considered in this work is when 

wells that fail to meet minimum THP or BHP constraints are shut-in even before the end of the 

reservoir’s production lifecycle or when there are well control switches during the production life of a 

reservoir, to accommodate predetermined pressure limits.  

These varying or forced parameter scenarios are important in the petroleum industry as they are 

designed to allow for changing boundary conditions from rate to BHP control. Varying or forced 

parameter cases are mathematically different boundary conditions from the constant parameter 

cases and hence could prove difficult for the fast models to capture correctly. In 2020, Samuel and 

Muggeridge showed that Kostorz et al.’s (2019)[37] normalisation techniques for constant parameter 

cases do not suffice for forced parameter cases, so different normalisation techniques are required to 

implement the POD-RBF NIROM for varying or forced parameter cases. Although they presented 3 

methods for normalising these cases, they showed that those methods were not satisfactory for the 

varying parameter cases. Their 3 normalisation methods involved normalisation in a second 

hyperspace, normalisation based on a proxy parameter such as cumulative production and changing 

the temporal axis of the NIROM to a proxy parameter. These methods are discussed in Appendix A. 

Hence, this work presents a NIROM implementation that accommodates varying parameter cases for 

both POD-RBF and POD-AE (see section the later paragraphs of section 3.3 and section3.4). The 

outcome of this different NIROM implementation is illustrated in the result sections of this work 

(chapters 7 and 8).  

Two types of simulation solutions are considered in this work, grid distributed reservoir properties 

and production profiles. Pressure and saturation distribution solutions from each simulation run are 

saved within the approximate model interface (MATLAB) in addition to their corresponding time series 



Chapter 3: Theory and Implementation of NIROM 

65 
 

production profiles/ data. In this work, two ECLIPSE output data files have been read to obtain these 

simulation results, the “.UNRST” and the “.RSM” files. These unformatted ECLIPSE output files are read 

into MATLAB with the aid of existing computer programs [122, 123], which were modified to suit the grid 

refinement test examples that are considered in this work. Other measures that are taken when 

generating training and prediction data include ensuring that the report time intervals for ECLIPSE 

output results are equally spaced, for instance 300days intervals between report steps. This measure 

simplified the NIROM code/ set up since a simulation’s time instance can be easily inferred by 

multiplying a specific report step by 300days, for example. Furthermore, Kostorz et al. (2020) [99] 

suggested that having shorter/ smaller time intervals between training runs can lead to more accurate 

interpolation of a system’s underlying dynamics. Their suggestion was employed in this work, as well 

as ensuring that the range of input parameters for training runs spanned the expected range of 

prediction parameters to be investigated.  

As mentioned earlier, the NIROM implementation in this work was trained with 5 to 50 training runs. 

This was because the most suitable number of training runs for each test case is not known in advance 

of implementing and evaluating the NIROM. Hence this provided the opportunity for investigating the 

ideal number of training runs for the different production scenarios that are considered in this work. 

The specific number of training runs that were used to implement the NIROM for each test case are 

stated in the results chapters (chapters 5 to 8). The result chapters also provide some insight on the 

relationship between NIROM’s performance and the number of runs it was trained on. 

 

3.3 PROCESSING OF TRAINING DATA USING POD 

When the training data is obtained from ECLIPSE, they are pre-processed as follows. For each training 

run, the output solution from ECLIPSE is extracted into a 2-dimensional (nx × nt) matrix array Us, with 

nx corresponding to the spatial dimension and nt corresponding to the frequency at which data is 

output/ requested from ECLIPSE (total number of report steps or snapshots). nx is the total number 

of active grid cells in the reservoir or the total number of production data variables being monitored 

in the simulation (nx should be the same value in every training run), while the subscript s refers to a 

particular simulation run/ snapshot. For instance, if we want to train a proxy model to predict the 

pressure distribution in a reservoir of NX×NY×NZ active grid cells, then nx = NX×NY×NZ or if we 

intend to monitor the production data (for example well BHP, gas rate and water-gas ratio from 2 

wells in the reservoir), then nx = 6. Also, suppose that production from the 2 wells is at different rates 

which change every month for 20 years with a fixed THP of 120bars, then in this example the number 

of parameters, np = 3 (two production rates and one THP limit). 
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After all the ns training runs have been completed, and their simulation solutions have been extracted 

and saved, the entire training data (U1 to Uns), i.e. all the individual matrices containing each 

simulation solution are concatenated into a single dataset, U.  

𝑼 = [𝑼𝟏;  𝑼𝟐;  𝑼𝟑;… ; 𝑼𝒏𝒔]  3.1 

 
Then the temporal mean, �̅�, of the full training dataset is computed (Equation 3.2) and subtracted 

from individual training data, Us (Equation 3.3). The temporal mean of the reservoir property of 

interest, for instance pressure, is the average pressure in each grid cell of the reservoir throughout 

the production lifecycle and for all training snapshots that are considered. 

�̅� =
𝟏

𝒏𝒔 × 𝒏𝒕
∑ 𝑼

𝒏𝒔×𝒏𝒕

𝒕=𝟏

 
 

 3.2 

�̃�𝒔 = 𝑼𝒔 − �̅�   3.3 

 
This step standardises the training data to have zero mean and ensures that only the changes in the 

reservoir performance are being modelled in the NIROM. After this, the training dataset is ready to be 

reduced or projected into a lower-dimensional space with proper orthogonal decomposition (POD).  

POD is mostly used as a dimensionality reduction technique to improve the efficiency of working with 

high dimensional data. POD involves the singular value decomposition of high dimensional data. Here 

POD is used to project the training data into a lower-dimensional space as shown in Equations 3.4 to  

3.7.  

 
After decomposing the training dataset into its corresponding singular values and singular vectors, the 

largest singular values, which are usually in an ordered sequence, and their corresponding singular 

vectors are filtered from the full left singular matrix, V. These largest singular values and their 

corresponding vectors represent the optimal number of POD basis functions that can describe the full 

dataset, �̃�, in its linear subspace. The criteria for determining the cut-off for the optimal singular 

values is referred to as the energy criteria. Depending on the threshold or energy criteria for truncating 

the singular values, most of the information in the high dimensional data is preserved with minimal 

truncation error when the projected data is transformed back to its original dimension [21, 32, 36, 55, 94, 99, 

�̃� = 𝑽𝝀𝑾  3.4 

where 𝑽 is the left singular vectors’ matrix,  

𝑾 is the right singular vectors’ matrix, 

λ contains the singular values of the matrix �̃�, and 

𝝀𝟐 corresponds to the eigenvalues (𝜮) of �̃�𝑻�̃� or �̃��̃�𝑻. 
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100, 124]. In this work the POD energy threshold/ criterion of at least 99.9% of the full training dataset 

has been applied as shown in Equation 3.5. Using an optimal amount of POD basis functions ensures 

that the proxy model approximations are faster and retains the most significant dynamics of the gas 

reservoir’s performance.  

∑ 𝝀𝒕
𝟐𝒕=𝒅

𝒕=𝟏

∑ 𝝀𝒕
𝟐𝒕=𝒏𝒔×𝒏𝒕

𝒕=𝟏

≥ 99.9% ≈ 100% 

 3.5 

 where 𝝀𝒕 is the tth singular value, λ1 ≥ λ2 ≥,…, ≥ λd, d ≤ ns×nt, and 

            𝝀𝒕
𝟐 is an element-wise product of each singular value with itself.  

 

Based on the optimal number of POD basis functions evaluated from Equation 3.5 (an equivalent of 

99.9% of the singular values of the zero-mean representation of the training data (�̃�) from Equation 

3.3), the optimal singular values or the POD transform matrix, Vd, is obtained from Equation 3.4 and 

Equation 3.5 as:  

𝑽𝒅 = [𝒗𝟏, 𝒗𝟐, 𝒗𝟑, …𝒗𝒅]  3.6 

 where v are column vectors of V, which is the left singular vectors’ matrix from 

Equation 3.4 and d is evaluated from the energy criterion in Equation 3.5 

 

Next, the transpose of the optimal POD transform matrix from Equation 3.6 is multiplied with 

individual training snapshot data,�̃�𝒔, to obtain the individual reduced training snapshot data, 𝜶𝒔. 

𝜶𝒔 = 𝑽𝒅
𝑻�̃�𝒔  3.7 

Therefore each training snapshots’ matrix, 𝑼𝒔, is projected into a reduced space, 𝜶𝒔 , defined by the 

transpose of the left singular vectors of the full training data. 

𝑅𝑁 ∈  𝑼𝒔 → 𝜶𝒔 = 𝑽𝒅
𝑻(𝑼𝒔 − �̅�) ∈  𝑅𝑑  3.8 

where N = nx  nt ns and d ≤ ns×nt  

 

After the training snapshot data have been reduced with the optimal POD transform matrix, they are 

normalised within a uniform range before they are interpolated with RBF or AE. Normalisation helps 

to bring the entire training data into a consistent range of values where smaller values do not lose 

their significance in the data set. There are different possible methods for normalising data during the 

pre-interpolation stage. Some of these methods include scaling the dataset into a range of values from 

0 to 1, -1 to 1 or from a small value to 1. The standardization approach involves mean extraction and 

division by the data’s standard deviation, and large values are sometimes pre-processed into a 

logarithmic scale [58, 111].  
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In simulations with more than one training run, Kostorz et al. (2020) [99] emphasised the importance 

of linking individual training runs with their corresponding parameters and proposed an efficient 

normalisation method that accounts for the communication between the training data and 

parameters. Their normalisation approached (referred to here as renormalisation) involves scaling the 

data based on a division by the average Euclidean (L2 norm) or pairwise distance of the training data 

or parameter, to obtain equal spacing of unity between training runs. Their approach works well for 

constant parameter (time-invariant) cases but it was not designed for varying parameter cases where 

simulation output are based on non-uniform time-varying controls [125]. This is further discussed in the 

parameterisation section below. Kostorz et al.’s (2020) [99] renormalisation approach for constant 

parameter cases proposes that each training run data, 𝛂𝒔, be normalised to 𝛂𝒔′ as follows:  

 

𝜶𝑠
′ =

𝜶𝒔

 Δ𝛼
 

 3.9 

where 
Δ𝛼 =

∑ (∑ ‖𝜶𝑠
𝑡 − 𝜶𝑠

𝑡−1‖𝑛𝑡−1
𝑡=1 )

𝑛𝑠
𝑠=1

∑ (𝑛𝑡 − 1)𝑛𝑠
𝑠=1

 
 

 
For forced parameter cases this work proposes that the dataset should be normalised based on the 

maximum value of the data (spatial property or parameter), to obtain unit values between -1 and 1. 

This is achieved by dividing each of the reduced training snapshot data, 𝛂𝒔, by the maximum absolute 

value of the full reduced training data set, |𝜶𝑚𝑎𝑥|, to obtain 𝜶�̃�.  

𝜶�̃� =
𝜶𝑠

|𝛂𝑚𝑎𝑥|
  3.10 

   where 𝜶𝒎𝒂𝒙 = maximum ([𝜶𝟏 , 𝜶𝟐 , 𝜶𝟑 , … , 𝜶𝒏𝒔 ]
𝟏:𝒏𝒕) 

 
The NIROM workflow described so far is similar for both POD-RBF and POD-AE, except that for the 

POD-AE, the full rank of the POD transform matrix is used to project the training data into hyperspace, 

i.e. energy criterion =100%. 

 

3.4 PARAMETERISATION 

In the previous section, the process of normalising the training data was highlighted. Likewise, when 

NIROM is used for making predictions, it is important to include simulation parameters into the 

training dataset before interpolation. The parameters serve as unique identifiers for individual 

simulation runs. The output simulation data and input parameter(s) may have different units as well 



Chapter 3: Theory and Implementation of NIROM 

69 
 

as be in different orders of magnitude. For example when the pressure distribution (in thousands of 

psi or hundreds of bars) in a reservoir is being modelled and the production rates (in hundreds of 

thousands of Mscf or m3) and THP (in thousands of psi or hundreds of bars) are the input parameters, 

then there are at least 2 different units to work with and the data spans at least 2 different orders of 

magnitude. So each simulation run needs to be identifiable by its unique set of parameter(s) and each 

set of simulation runs and parameter(s) needs to be normalised into a consistent range of values that 

captures their corresponding significance. Parameterisation is the process of normalising the 

simulation parameters to be consistent with the simulation data and to represent the combined data 

in a form that ensures that the significance of the parameters is reflected in the simulation dataset [36, 

58, 99, 100].  

According to Kostorz et al. (2020 & 2021) [99, 100], parametrization inculcates the dependence and 

communication between individual simulation runs and their parameters into the simulation data in 

preparation for the interpolation step. The parameterisation approach of Kostorz et al. (2020 & 2021) 

works well for constant parameter cases (e.g. Figure 3.1a). Their approach is achieved by 

renormalizing the training data as well as their parameters with the mean magnitude of their pairwise 

distances apart. This method leads to a spacing of unity between individual training runs or their 

parameters. So if the corresponding training parameters for the training dataset 𝜶𝟏 to 𝜶𝒏𝒔  are 

 
𝒑 = [𝒑𝟏, 𝒑𝟐, 𝒑𝟑, …𝒑𝒏𝒔]  3.11 

 where ps is the constant parameter for the sth training run, 

 
then the renormalisation factor for simulation parameters will be: 

Δ𝑝 =
∑ ‖𝐩𝒔+𝟏 − 𝐩𝒔‖

𝑛𝑠
𝑠=1

𝑛𝑠
  3.12 

 
And the parameterisation is achieved by dividing each training parameter by the parameter scaling 

factor: 

  𝐩s′ =
𝐩𝐬

Δ𝑝
   3.13 

 

In this work, Kostorz et al.’s (2020 & 2021) approach has been used for the constant parameter 

prediction results that are discussed later in Chapter 6. However in the varying parameter case, for 

example in the varying production profile example in Figure 3.1b, each simulation snapshot has 

several parameter values at different report times (time-varying). So it would be difficult to distinguish 

between different training runs and assign them with unique parameters. In theory,  ‖𝐩𝒔+𝟏 − 𝐩𝒔‖ 
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cannot be computed since there is no single representative value for each varying parameter run. An 

attempt to compute the parameter scaling factor at the report step level so that ‖𝐩𝒔+𝟏 − 𝐩𝒔‖ in 

Equation 3.12 is replaced with ‖𝒑𝑠
𝑡 − 𝒑𝑠

𝑡−1‖ will yield a scaling factor that does not produce unit (or 

uniform) spacing between report steps. The continuous random rise and fall in varying parameter 

values during each run will lead to a resultant Euclidean distance that is impacted by exaggerated 

effects of the non-uniform rises and falls of the varying parameters and hence lead to 

unrepresentative dependence of training runs on their corresponding varying parameter.  

Therefore figuring out how to appropriately normalise the varying parameter scenarios was a major 

challenge in this work. This chapter is focused on the methods that were most suitable for the NIROM 

predictions described in this work. So the most suitable method for normalizing simulation parameters 

is described here and other approaches that were evaluated are described in Appendix A. This work 

proposes an approach where each varying parameter data is normalized to unit values by dividing 

through each parameter occurrence with the maximum parameter value encountered during the 

entire training run (Equation 3.14). So 𝒑𝒔 is normalised to 𝒑�̃� for each simulation run and 𝒑�̃� holds the 

combination of varying parameters for the sth simulation run. 

 

𝒑�̃� =
𝑝𝑠

|𝒑𝒎𝒂𝒙|
 

 3.14 

where 𝒑𝒎𝒂𝒙 = maximum ([𝒑𝟏 , 𝒑𝟐 , 𝒑𝟑 , … , 𝒑𝒏𝒔 ]
𝟏:𝒏𝒕)  

 

The next normalization step, before simulation data is fed into RBF, AE or any other interpolation 

approach, is to concatenate the normalised training data with their corresponding normalized 

parameters to get As in Equation 3.15.  

 

𝑨𝒔 = [𝜶�̃� ;  𝒑�̃�]  3.15 

 
The final step in pre-processing the training data involves separating the data into sample and 

response arrays. This is a requirement for supervised learning algorithms where data is initially given 

to the approximate model in a cause and effect manner, to learn the dynamics of the data and 

eventually serve as a prediction tool. This concept is actually in line with the principle/ process by 

which conventional reservoir simulators predict reservoir performance, in that a reservoir’s 

performance or property distribution at any given time interval is a function of its performance or 

description in the preceding time interval. So the normalised training data, As, is separated into 2 

matrix arrays where each column of training data in the sample array corresponds to the preceding 

training data in the same column of the response array.  For example if the training data matrix is 
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𝑨𝒔 = [𝑨𝒔
𝟏, 𝑨𝒔

𝟐, 𝑨𝒔
𝟑, 𝑨𝒔

𝟒, … , 𝑨𝒔
𝒏𝒕], then the sample matrix array will be 𝑨𝒔

𝒕 = [𝑨𝒔
𝟏, 𝑨𝒔

𝟐, 𝑨𝒔
𝟑, 𝑨𝒔

𝟒, … 𝑨𝒔
𝒏𝒕−𝟏] and 

the response matrix array will be 𝑨𝒔
𝒕+𝟏 = [𝑨𝒔

𝟐, 𝑨𝒔
𝟑, 𝑨𝒔

𝟒, 𝑨𝒔
𝟓, …𝑨𝒔

𝒏𝒕]. 

 

3.5 MODELLING DYNAMICS 

Recall from chapter 2 that the accuracy and predictive capacity of POD based models are improved by 

introducing interpolation or approximation techniques such as DEIM, TPWL, GNAT, RBF and machine 

learning methods. In this work, the RBF and/ or Autoencoder (a machine learning technique) have 

been chosen for modelling the dynamics (interpolation) of the NIROM.  

In 2021, Kostorz et al. [100] described the relationship between training and prediction runs in a 

parameterised hyperspace with the schematic in Figure 3.2. In Figure 3.2a, three training runs are 

stacked within the same hyperspace, covering a range of constant parameter(s), and the intermediate 

regions between the training runs are interpolated in Figure 3.2b, as prediction cases with the same 

model dynamics as the training runs in Figure 3.2a. This work applies a similar approach for modelling 

the dynamics of both POD-RBF and POD-AE NIROMs. 

 

 
(a) 

 
(b) 

Figure 3.2: A representation of training and prediction data stacked together according to their parameters in 
hyperspace. a) A set of training runs (in cyan, green and red colour) (b) a set of training runs and prediction runs (in 

magenta and black colour) which have been interpolated between the training runs [100]. 

 
As in Kostorz et al. 2020 [99], a gas reservoir’s production dynamics in hyperspace can be represented 

as: 

𝑨𝒔
𝒕+𝟏 = 𝑨𝒔

𝒕 + 𝒇(𝑨𝒔
𝒕) 

 3.16 
 
Where the matrix 𝑨𝒔 = 𝒇(𝜶�̃� ;  𝒑�̃�) from Equation 3.15, 𝑨𝒔

𝒕  is the matrix describing the projection of 

the training solution in hyperspace at time instance t and f is an unknown function that will be 

reconstructed by interpolation of the reduced training data in hyperspace, using RBF or AE. After the 
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system’s dynamics have been interpolated with RBF or AE, the NIROM can be used to propagate the 

prediction of the initial condition of new unseen cases, one time step at a time (as represented in 

Equation  3.16) until a full prediction is obtained like in Figure 3.2b. 

For the prediction step, initial condition prediction data (the first report step of the prediction data) is 

reduced and normalised with the same values (�̅�, 𝑽𝑻, |𝜶𝒎𝒂𝒙| and |𝒑𝒎𝒂𝒙|) that were used to reduced 

and normalise the training data to zero mean, lower-dimensional hyperspace and unit value form. This 

is achieved by following the same processes as in Equations 3.3,  3.7,  3.10,  3.13 and  3.15. The AE or 

RBF model is then used to make forecasts of the full prediction data from the normalised initial 

condition prediction data. 

Once a suitable interpolation method has been used to obtain satisfactory outputs for the full 

prediction duration or production lifecycle of the reservoir, the forecasted output, 𝜶�̃�  is un-

normalised and projected back to the original high dimensional space from before POD reduction, and 

the mean that was initially extracted is added back to the forecasted results, as shown in Equation 

3.17. These are the prediction results that are analysed for accuracy and speed in comparison to the 

commercial simulator’s (ECLIPSE) solutions. Note that the POD transform matrix is used for back 

projection as opposed to its transpose matrix. 

𝑼𝒔 ≅ 𝑼𝒔 = {𝑽 ( 𝜶�̃� × |𝜶𝒎𝒂𝒙|) } + �̅�  3.17 

 

3.5.1 RADIAL BASIS FUNCTIONS (RBFS) 

Radial basis functions are universal approximation functions that facilitate accurate interpolation of 

un-sampled parameters between locations of known data, the kind of scenarios that reservoir 

engineers are faced with in estimating reservoir properties and behaviour at un-sampled locations. 

RBFs are a simple type of neural network (NN) that is robust for modelling noisy data without 

overfitting. RBFs are characterised by a continuous spread, decreasing or increasing from or about a 

centre, and determining the coefficients needed to perform their interpolation for a given system is 

relatively fast. In theory, they are a summation of the linear multiplication of weighting coefficients 

and their corresponding interpolation function coefficient matrix [36, 38, 71, 105, 126]. Therefore, a function, 

y = f(x) can be written as:  

𝒇(𝒙) = ∑𝝎𝒊

𝑵

𝒊=𝟏

× 𝝋(‖𝒙 − �̂�𝒊‖)  3.18 

where f(𝒙)  is the response from the interpolation function, 

N is the number of column vectors in the dataset being interpolated 

𝝎𝒊 is a weighting coefficient matrix of interpolation weights, 
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𝝋 is a radial basis interpolation function, 

�̂�𝒊 represents the known data point or centre point for the RBF, 

(‖𝒙 − �̂�𝒊‖) is the Euclidean distance between individual data points and the 

centre points, and 

𝝋(‖𝒙 − �̂�𝒊‖) is the only hidden layer in the interpolation and is a function 

of the input sample data, x. 

 

The accuracy of NIROM depends on factors such as the choice of interpolation function, ϕ, and the 

smoothness of the interpolation function [36, 37, 72, 92, 96, 107, 126]. Klie (2013) [36] used Gaussian radial basis 

functions, Xiao et al. (2016) [38] used Gaussian and multi-quadratic radial basis functions, and Kostorz 

et al. (2020) [99] used a linear basis function. Neither Klie (2013) nor Xiao et al. (2016) provided any 

justification for their choice of RBF. Kostorz et al. (2020) stated that they found that linear basis 

functions worked best for the problem they investigated (waterflooding of oil reservoirs) but did not 

present any results demonstrating this. In this work, we have evaluated seven different RBFs: 

1) Linear function: 𝝋(𝑟) = 𝒓1 

2) Inverse multi-quadratic function: 𝝋(𝒓) =
𝟏

√𝟏+𝒓2
 

3) Modified thin-plate spline function:𝝋(𝒓) = 𝑟𝟐 ln(𝒓 + 1) 

4) Inverse quadratic function: 𝝋(𝒓) =
𝟏

𝟏+𝒓2   

5) Gaussian function: 𝝋(𝒓) = exp (−𝒓2) 

6) Cubic function: 𝝋(𝒓) = 𝒓3 

7) Multi-quadratic function: 𝝋(𝒓) = √1 + 𝒓𝟐           where r =‖𝒙 − �̂�𝒊‖. 

 

During RBF construction, Equations 3.16 and 3.18 can be combined and written as:  

𝑨𝒔
𝒕+𝟏 = 𝒇(𝑨𝒔

𝒕) = ∑ 𝝎𝒕𝝋(‖𝑨𝒔
𝒕‖)

𝑛𝑡−1

𝑡=1

 
 3.19 

where ϕ denotes one of the seven radial basis functions listed above, 

𝐴𝑠
𝑡+1 and 𝐴𝑠

𝑡  are the response and sample matrix arrays from section 3.4  

 

In the RBF construction in Equation 3.19, the weighting coefficient matrix (interpolation weights), ωt 

is the only unknown when training the NIROM, since 𝑨𝒔
𝒕+𝟏 is the response array and 𝑨𝒔

𝒕  is the sample 

array. So by substituting the respective interpolation function, in addition to the sample and response 

training data arrays into a rearranged Equation 3.19, ωt is evaluated. 

For NIROM prediction simulations, the computed weighting coefficients, ωt, and the initial condition 

prediction data (the new 𝑨𝒔
𝟏) are now substituted into the right-hand side of Equation 3.19 to 

interpolate the reservoir’s behaviour for prediction cases, one report step at a time.  The idea is that 
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with the first column of prediction data (initial condition data) and the weighting coefficients, NIROM 

makes a forecast of the prediction case at the second report step. Following NIROM’s prediction of 

what the reservoir’s performance should be at the second step, NIROM makes a forecast for the third 

time interval and so on for the number of time intervals that NIROM has been set to make forecasts. 

Kostorz et al. (2021) [100] have however noted that with this NIROM interpolation/ approximation, 

there is the likelihood that any prediction errors in one time interval are propagated and accumulate 

from that time interval to the following time intervals.  This type of problem will be more severe with 

certain interpolation functions, like the Gaussian and polynomial type of functions. 

 

3.5.2 AUTOENCODER 

For this work, the best ML technique was found to be the autoencoder (AE), other machine learning 

techniques including Feedforward NN (FF), Long Short Term Memory (LSTM) and convolutional NNs 

were evaluated and are discussed in Appendix B. Nevertheless, the general idea behind ML techniques 

is similar to that of RBFs described earlier, except that ML techniques can have several layers where 

interpolation weights are being computed and optimised with different sophisticated algorithms. 

An autoencoder is a supervised machine learning algorithm for non-linear data reduction. AEs can 

automatically learn from training data, by compressing input data into a lower-dimensional latent 

space with encoder layers and subsequently decompressing the data with decoder layers. Training 

data is reduced by minimising the loss functions, after which they are projected back to their initial 

dimension before they were reduced by the encoder layers. Decoder layers are usually similar in 

architecture to their encoder layers but in reversed order [106, 110].  

In this work, autoencoders with 1 to 5 fully connected encoder layers are considered. Fully connected 

(dense) layers mean that all the nodes from a previous layer are applied to generating the weights for 

the next layer. Fully connected (dense) NNs have longer training times than NNs without dense layers 

(models with dropout layers), but AEs with less dense layers were found to be unsuitable for this work 

(as shown in Appendix B.2). Also, the full hyperspace representation of the training data, an energy 

criterion of 100%, was used for AE modelling to minimise the training data loss, i.e. from Section 3.2, 

it ensured that the full-rank (un-truncated) POD training data was used for training the autoencoder. 

The innermost layer of the encoder was set to have 10 nodes, irrespective of the number of hidden 

layers in the model, this is the starting dimension for the decoder layer which projects the output of 

the encoder layers back to the same dimension as the original full-rank POD reduced data, As. The 

number of nodes in the innermost hidden layer of the autoencoder was determined based on the 

work of Teoh et al. (2006) and Cai et al. (2019), who showed that the optimal rank of POD can serve 
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as a pruning criterion for determining the number of nodes in the hidden layer of a neural network. 

The 10 nodes in the innermost layer of the autoencoder models used in this work represent an average 

number of POD basis functions that make up the optimal rank of POD basis functions.  

The other hyper-parameters applied to this work are the Exponential Linear Unit (ELU) activation 

function, the Adam optimiser (a stochastic gradient descent method) and 1000 epochs with 200 batch 

sizes [110, 127]. ELU was chosen because it gave the best results in comparison to ReLU and Leaky ReLU 

functions. The Adam optimiser was suggested in Kanin et al. (2019) and Temirchev et al. (2020), and 

was found to be suitable for the test cases in this work. Sensitivity analysis on the learning rate of the 

Adam optimiser showed that 0.001, the default value, was best suited to this work. The network’s 

learning rate is an indication of the speed at which the optimizer’s weights are updated during 

interpolation. Activation functions in ML are synonymous with RBF interpolation functions, but in ML 

the different network layers can be interpolated with different functions. In this work, the ELU was 

chosen after comparative analysis with ReLu and Leaky ReLu, these are all functions that penalise the 

negative values of a function, however ELU penalises negative values as a smooth exponential function 

as shown in Table 3.1 below.  

 
Table 3.1: Equations and schematics of ELU, ReLU and Leaky ReLU activation functions. 

ELU 𝑓(𝑥) = {
𝑥

𝛼. (𝑒𝑥 − 1)  
𝑖𝑓
𝑖𝑓

   
𝑥 ≥ 0
𝑥 < 0

 

 

ReLU    𝑓(𝑥) = {
𝑥
0
         

𝑖𝑓
𝑖𝑓

   
𝑥 ≥ 0
𝑥 < 0

 

Leaky ReLU    𝑓(𝑥) = {
𝑥

𝛼𝑥)         
𝑖𝑓
𝑖𝑓

   
𝑥 ≥ 0
𝑥 < 0

 

 

The choice of epoch and batch size means that the POD-AE model processes 200 data samples per 

batch until it has passed through the entire training dataset and this process is repeated 1000 times. 

Since this work is based on a regression-type gas reservoir dataset, the mean square error loss function 

was used to compare the sample versus response array data after every batch’s observation, in 

addition to the mean absolute error metrics. Besides the sample and response training data arrays 

that are used to train the AE, another dataset is provided solely for validation of the AE model during 

its training process. Table 3.2 shows a summary of the hyper-parameters used in the autoencoder 

model. Figure 3.3 is a schematic summary of the AE workflow. In this work, the AE model was built 

with NN modules from the Keras TensorFlow Python library [110].  
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Table 3.2: Summary of the hyper-parameters used in the autoencoder model. 

Number of encoder layers 1 to 5 

Number of decoder layers 1 to 5 

Number of nodes in the innermost hidden layers 10 

Number of epochs 1000 

Batch size 200 

Optimiser Algorithm Adam optimiser 

Activation Function Exponential Linear Unit 

Loss Function Mean Square Error 

Error Metrics Mean Absolute Error 

 

 

Normalised input data 

from the commercial 

simulator 

• Reservoir property 

distributed in the 

reservoir’s grid cells, 

or 

• Production data 

       Hidden layers (HLs) 
• 1 to 5 encoder layers 

• 1 to 5 decoder layers 

• Innermost HLs = 10 nodes 

• Adam Optimiser, learning rate = 1e-3 

• ELU activation function 

• 1000 epochs, 200 batch size  

Output data from the AE 

model 

• Reservoir property 

distribution based on the 

simulator’s grid cells, or 

• Production data 

Figure 3.3: Summary of POD-AE model workflow showing the hyperparameters applied to the model. The first and last 
steps are based on proper orthogonal decomposition projection and back-projection, while the middle steps are the 

autoencoder model with 5 layers for the most satisfactory cases. 

3.6 SIMPLE EXAMPLE OF NIROM WORKFLOW 

In this section, the implementation of the POD-RBF NIROM is presented from 2 training runs/ snapshots 

of a 1D reservoir with 5 grid cells. Let the first snapshot be U1 and the second snapshot is U2. In this 

example, the pressure distribution in the 5 grid cells of the 1D reservoir is modelled in 4 report steps 

i.e. nt = 4, nx = 5 and ns = 2. The 1D reservoir is also assumed to have one production well producing 

at different rates during the 4 report steps, these production rates are saved in row vectors as P1 and 

P2, for the two training runs. Therefore if 

 

𝑈1 =  

[
 
 
 
 
251 242 209 
251 200 151
292  201 155

    
123 
127 
130 

279 268  231
292 251  244

    
217
211 ]

 
 
 
 

 and 𝑈2 =

[
 
 
 
 
284 263 223
286 252 206
266 256 251

    
115 
170 
170 

287 217 176
274 250 233

    
139 
162]
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then according to Equation 3.1, 𝑈 = [𝑈1;  𝑈2;  𝑈3; … ; 𝑈𝑛𝑠] as shown below and �̅� (from Equation 3.2) 

is obtained as the mean pressure value in each grid cell across all time steps and snapshots.  

U =  

 

And �̅� = 

[
 
 
 
 
213.75 
205.38 
215.13
226.75
239.63]

 
 
 
 

 

Next �̃�1 and �̃�2 are computed from �̃�𝒔 = 𝑼𝒔 − �̅� (Equation 3.3) as shown below: 
 

�̃�1 = 

[
 
 
 
 

37.25  28.25   -4.75  
45.63  -5.38  -54.38 
76.88  -14.13  -60.13 

    
-90.75 
-78.38 
-85.13 

52.25    41.25    4.25
52.38    11.38    4.38 

      
-9.75 

-28.63 ]
 
 
 
 

 and �̃�2 =

[
 
 
 
 
70.25 49.25 9.25 
80.63 46.63 0.63 
50.88 40.88 35.88 

 
 
 
 

  98.75
   -35.38 
    -45.13 

60.25  -9.75 -50.75 
34.38 10.38 -6.63 

    
-87.75 
-77.63 ]

 
 
 
 

 

�̃�1 and �̃�2 are then concatenated to obtain �̃�, which is decomposed into its singular values and vectors 

as shown in Equation 3.4, i.e.  �̃� = 𝑽𝝀𝑾. This decomposition was implemented with the svd(�̃�) MATLAB 

library as shown in the POD-RBF model in Appendix C.2. 

Therefore, 

𝑽 = 

, 

an 5 × 5 matrix 

𝝀 = Contains the singular values of �̃�, i.e 286.80,123.40, 56.24, 46.59, and 11.32, 

 

𝑾 = 

, 

a 8× 8 matrix 

Next the optimal singular values are computed based on Equation 3.5, with the energy criterion of 

≥99.9%. 𝝀𝒕
2 is an element-wise product of each singular value with itself, as shown below:  

 

𝝀𝒕
2 % Cumulative % 

82256.83 79.90 79.90 

15226.88 14.79 94.69 

3163.11 3.07 97.77 

2170.72 2.11 99.88 

128.08 0.12 100.00 

Cum: 102945.62 100 
 

 

 
 

 

For the 99.9% energy criterion, d = 5, i.e. the fifth singular value and hence the full set of left singular 

vectors, 𝑉𝑑 = [𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5] = 𝑉. 

Each training run is then reduced into hyperspace with the transpose of the full singular vectors’ matrix, 

VT to obtain 𝛼1 and 𝛼2 as shown in Equation 3.7 (i.e. 𝛼𝑠 = 𝑉𝑑
𝑇�̃�𝑠). Hence, 
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𝛼1 =  

 

  and 𝛼2 =  

 . 

𝛼1 and 𝛼2 are then concatenated as shown below to obtain 𝛼 and 𝛼𝑚𝑎𝑥. 

𝛼 =  

 

and |𝜶𝑚𝑎𝑥| = 149.73 

 𝛼1 𝛼2  

According to Equation 3.10, 𝜶�̃� =
𝜶𝑠

|𝛂𝑚𝑎𝑥|
, hence 𝛼 is normalised to �̃�, values between -1 and 1. 

�̃� =     

 
  𝛼1̃ 𝛼2̃  

These are the normalised pressure values for each grid cell of the simple 1D gas reservoir with 5 grid cells, 

across 4 report steps. Next, the production rates (parameters) from the well are normalised for the 2 

training runs to values between 1 and -1. The production parameters for the well for both training runs 

are: 

P1 =   and P2 =  

The maximum parameter in both training runs is |𝑝𝑚𝑎𝑥| = 4470860, hence as shown in Equation 3.14, 

dividing each parameter by the maximum parameter value yields the normalised parameter values: 

𝑝1̃ =   and    𝑝2̃ =    

According to Equation 3.15, the normalised pressure values and the normalised parameter values are now 

combined into a single matrix, 𝐴𝑠, as shown below: 

[
 
 
 

 
 
�̃� 
. .
�̃�]
 
 
 

 =        

 
 𝐴1 𝐴2  

These values are then separated into a sample and a response array (𝑨𝒔
𝒕  and 𝑨𝒔

𝒕+𝟏), in a cause and effect 

manner described in the last paragraph of section 3.4. These arrays are used during the interpolation 

stage. 
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𝑨𝒕 𝑨𝒕+𝟏 

 
In the RBF interpolation stage, the first step is to compute the interpolation weight in Equation 3.19 by 

rearranging Equation 3.19 i.e. 𝝎𝒕 =
𝑨𝒔

𝒕+𝟏

𝝋(‖𝑨𝒔
𝒕‖)

. For this simple example with 2 training runs and with the 

linear interpolation function (𝜑),  

 𝜔𝑡   = 

 
These are the interpolation weights that are used to predict future pressure values and propagate the 

pressure distribution in the 5 grid cells of the 1D reservoir through the remaining 3 report steps/ time. 

In the prediction phases, for example, with a new initial condition data (Unew at report step = 1): 

𝑈𝑛𝑒𝑤
1 = 

 

,   𝛼𝑛𝑒𝑤
1 = 

 

,     �̃�𝑛𝑒𝑤
1 = 

 

Pnew =  

and 

𝑝𝑛𝑒𝑤 =  

i.e. �̃�𝑛𝑒𝑤
1

= 𝑈𝑛𝑒𝑤
1 − �̅� ; 𝛼𝑛𝑒𝑤

1 = 𝑉𝑇 �̃�𝑛𝑒𝑤
1
;        �̃�𝑛𝑒𝑤

1 =
𝛼𝑛𝑒𝑤

1 

|𝛼𝑚𝑎𝑥 |
 and �̃�𝑛𝑒𝑤 =

𝑃𝑛𝑒𝑤 

|𝑃𝑚𝑎𝑥 |
 . 

Therefore, 𝐴𝑛𝑒𝑤
1 =

[
 
 
 
 

 
 

�̃�𝑛𝑒𝑤
1

 
 

�̃�𝑛𝑒𝑤
1
]
 
 
 
 

= 

 

. 

Next, 𝐴𝑛𝑒𝑤
2  is computed using Equation 3.19 and 𝜔𝑡, which was computed earlier. 𝐴𝑛𝑒𝑤

3  is computed using 

𝐴𝑛𝑒𝑤
2  and 𝜔𝑡 , then 𝐴𝑛𝑒𝑤

4  is computed using 𝐴𝑛𝑒𝑤
3  and 𝜔𝑡 to obtain the full 𝐴𝑛𝑒𝑤 (i.e. propagated across 

3 more report steps). 

For the autoencoder interpolation, 𝐴𝑡 and 𝐴𝑡+1 are fed into the autoencoder as the training data along 

with an extra set of validation data, 𝐴𝑠+1
𝑡  and 𝐴𝑠+1

𝑡+1 . The autoencoder parameters (weights and prediction 

algorithm) are computed using the hyperparameters that are specified in section 3.5.2. Theses weights 

and prediction model are then used to propagate new cases such as 𝐴𝑛𝑒𝑤
1  through time (3 report steps). 

The prediction values from both models are then back projected to full space using Equation 3.17 and 

they can be compared to the solutions fron the conventional simulator. 
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3.7 PERFORMANCE MEASURES 

To evaluate the performance of NIROM to ECLIPSE (the commercial reservoir simulator), identical 

prediction cases were compared. Simulation output from identical POD-RBF, POD-AE and ECLIPSE 

cases were compared for the spatial distribution of reservoir properties (pressure and gas saturation) 

as well as the reservoir production performance (production rates and ratios).  

Comparative analysis of the difference between ECLIPSE and the two NIROM estimations have been 

carried out throughout this work, this difference is simply called “Error”. In cases where NIROM 

prediction errors have negative values, such as for production output data like gas and water rates, it 

is not visually appealing for these plots to have a negative axis, so the absolute errors between NIROM 

and ECLIPSE are computed. In the cases where both NIROMs were applied to the same production 

scenario, other measures of analysis have been adopted including Mean Absolute Error, Root Mean 

Square Error (RMSE), visual inspection and engineering judgement. These are the main measures that 

have been used to analyse the accuracy of predictions from the two proposed NIROMs (POD-RBF and 

POD-AE).   

In this work, absolute error refers to the absolute value of the difference between the ECLIPSE and 

NIROM solutions, while mean absolute error is the average of the absolute error for all the prediction 

runs in a particular test case or scenario. For instance, the average RMSE or mean absolute error can 

be computed as a single value for 6 different prediction cases of the water coning reservoir produced 

at constant BHP. RMSE is better illustrated with Equation 3.20 below. For all these error measures, 

smaller values are preferable [58]. 

 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑(𝑬𝒄𝒍𝒊𝒑𝒔𝒆 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 − 𝑵𝑰𝑹𝑶𝑴 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏)𝟐

𝒏

𝒊=𝟏

  3.20 

where n is the number of data samples over which the RMSE is being evaluated 
 

Other performance measures that have been applied in this work include a framework developed by 

Kostorz et al. 2021 [100] for estimating the potential of using NIROM for gas reservoir modelling as well 

as the generalisation criteria used to evaluate when a NN starts to exhibit overfitting tendencies i.e. 

when the prediction error starts to build up after each epoch [111]. Kostorz et al.’s (2021) [100] framework 

analyses the behaviour of simulation data in hyperspace based on 2 criteria: the extent to which the 

simulation data experiences changes in direction between successive temporal resolutions (sharpness 

of turn correlation) and the amount of steadiness or explosion that the data experiences at every time 

interval when a new parameter is introduced into the system (boost). The detailed theory for the 
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sharpness of turn correlation and boost approaches can be found in Kostorz et al. (2021)   [100], while 

a comparison of the performance of constant and varying parameter examples are considered and 

discussed in Appendix A.  

 

3.8 SUMMARY 

In this chapter, the workflow for implementing 2 NIROMs are discussed alongside the theory behind 

their application. The process begins with deciding on the boundary conditions and production 

parameters of interest, followed by generating training data from the conventional simulator, ECLIPSE. 

The conventional simulation output data of the gas field’s dynamics is projected into a lower-

dimensional space based on proper orthogonal decomposition and normalised to zero mean and unit 

values for consistency. This data is then used to train the predictive models which are 1) Autoencoder 

- a supervised machine learning technique for non-linear problems or 2) RBF - an interpolation 

technique. These trained models are subsequently used as tools for forecasting the reservoir’s 

performance in new unseen prediction cases, which are compared to the conventional simulator’s 

solution for those same prediction cases. Figure 3.4 is a summary of this workflow. 

 
Figure 3.4: Overview of the model workflow for POD-RBF and POD-AE NIROM presented in this work.  The workflow 
components in blue colour are common to both models, while POD-RBF only related components are in orange colour 

and POD-AE only related components are in green colour. 
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4.CHAPTER 4:  NUMERICAL EXAMPLES/ TEST CASES 

The base gas reservoir models that have been investigated for the application of POD-RBF and POD-

AE to modelling gas reservoirs are discussed in this chapter. The reservoir geometry, adjustable 

parameters as well as aquifer descriptions, where applicable, are provided in the respective sections.  

The following models are considered in this chapter: a synthetic gas reservoir with homogenous 

geological properties, a heterogeneous model based on the real Norne oil field model (adapted to gas 

as the reservoir fluid) [128, 129], a water coning gas reservoir model [130] and a sector model of an actual 

gas field (Field X). Except for the water coning model which was built using a radial grid, all the other 

models were built with Cartesian grid. These dynamic gas reservoir models were all built for 

Schlumberger’s ECLIPSE simulator (ECLIPSE) [121]. The approximate models of choice (POD-RBF and 

POD-AE) were initially trained with simple gas reservoirs and boundary conditions (homogenous 

reservoirs with constant parameters). Subsequently, more complex cases were considered i.e. the 

heterogeneous reservoir models with varying parameters. The base case reservoir models used in this 

work are available in Appendix C, with more details about the gas reservoirs such as their relative 

permeability values/ curves. 

Some of the adjustable parameters considered in this work include porosity, production rates, bottom 

hole pressures (BHPs) and tubing head pressures (THPs). Specific information on these adjustable 

parameters is provided in the respective sections for each reservoir. Some of the parameter values 

that were used for comparing the prediction cases against ECLIPSE’s solutions, were chosen to be 

outside the range of training parameters. This is to evaluate the accuracy of the NIROM when 

predicting reservoir performance outside of the range of parameters for which it is trained. There is 

also a case where the NIROM was made to make predictions for longer durations than it was trained 

for. The range of training and prediction parameters for each case is provided in the subsequent 

sections. 

 

4.1 SYNTHETIC GAS RESERVOIR MODEL 

The synthetic dry gas reservoir represents a sector of a homogenous dry gas reservoir with uniform 

properties throughout. It has similar dimensions and properties to an average North Sea dry gas 

reservoir [131-137], with a GIIP of 62BCF and reservoir thickness of 330ft. The model is represented by a 

uniform Cartesian grid of 19×21×6 grid blocks each with dimensions 105ft × 105ft × 55ft, making a 

total of  2394 active grid cells or data points, i.e. when modelling any grid property distribution in the 

reservoir nx = 2394. The reservoir’s rock physics and fluid models were built with Schlumberger’s 

PETREL pre-set models for a dry gas reservoir with sandstone petrophysics [138]. Other properties of 



Chapter 4:  Numerical Examples/ Test Cases 

83 
 

the reservoir are given in Table 4.1. This gas reservoir is produced from one well in its centre, grid 

location (10, 11). 

 

Table 4.1: Summary of reservoir rock and fluid properties of the synthetic dry gas reservoir. 

Property Value 

Porosity 0.2 

Horizontal permeability (mD) 50 

Vertical permeability (mD) 5 

Initial pressure (psi) 4200 

Reservoir depth/ top (ft) 8095 

Gas-water contact (ft) 325 below the top of the reservoir 

Gas density (lb/ft3) 0.047 

Gas viscosity (cP) 0.2 

Initial gas saturation 0.88 

Water density (lb/ft3) 71.4 

Water formation volume factor 1.02 

Water viscosity (cP) 0.56 

Rock compressibility (psi-1) 3 × 10-5 

Well diameter (ft) 0.5 

Production lifecycle (days) 7500 

 

For this homogeneous gas reservoir, POD-RBF NIROM was used to reproduce the same ECLIPSE 

simulation runs that were used to train the NIROM. Two types of production control parameters were 

considered, gas production rate and well BHP. The NIROM was evaluated at a constant production 

rate of 6.77MMscf/day or a constant BHP limit of 1000psi. For the BHP controlled production, there 

was an initial surge in gas production that is neither practical nor long-lasting, but this was allowed to 

investigate the NIROM’s ability to estimate the reservoir’s behaviour for different simple well controls. 

Cases with water influx from an aquifer were also investigated. With the aquifer providing pressure 

support to the reservoir, the reservoir was produced for the full production lifecycle of 7500 days with 

BHP limit control. Three different ECLIPSE aquifer models were considered; a numerical aquifer and 2 

analytic aquifer models (Carter Tracy and Fetkovich) [121]. In each case, the aquifer is modelled as a 

bottom water drive aquifer in the lowest layer of the reservoir, with a porosity of 0.2 and a 

permeability of 200mD. The aquifer dimensions were as follows, respectively: cross-sectional area of 

9×109ft2 and length of 200ft; a thickness of 500ft and inner radius of 5000ft; as well as a productivity 

index of 500STB/day/psi with an initial volume of 1×1010STB. 

The NIROM was also evaluated for its rigour in reproducing ECLIPSE’s simulation of the synthetic gas 

model with grid refinement. Reservoir models are often evaluated with finer grid cells near locations 

of interest such as at well locations and these simulations are usually time-consuming. This was 

because it was important to ascertain if NIROM was capable of reproducing such simulations and also 
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to determine the impact of grid refinement on the time taken to build the NIROM and the speed with 

which the NIROM ran. This was also done to investigate the ability of the NIROM to capture the rapidly 

changing pressures in the near well region. In the local grid refinement simulation case, finer local 

grids were introduced into the grid blocks where the producer was located, (location 10, 11, 1:6). Each 

of the 6 grid cells was refined to have local dimensions of 5×5×12, a total of 300 additional data points. 

A “tartan” grid refinement was also investigated. Here the dynamic model maintained the same 

number of grid cells as the base case, but the size of the horizontal grid cells was increased 

logarithmically away from the production well. In both instances, the reservoir was produced with gas 

rate control. 

 

  
(a) Local Grid Refinement (b) Tartan grid 

Figure 4.1: Grid refinement cases for the synthetic gas reservoir. (a) Local grid refinement in the producer’s grid cells 
and (b) Tartan grid in the horizontal layers of the reservoir. 

 

The next instance where the synthetic gas reservoir was evaluated was for forecasting the reservoir’s 

behaviour in cases that it was not trained on, unseen or prediction cases. Here the homogeneous gas 

reservoir was evaluated for different unseen porosity, gas production rate and well BHP values. 

Simulation parameters for the constant parameter cases are summarised in Table 4.2, including a 

constant parameter case where the reservoir was initialised by enumeration (from a history restart 

file) rather than equilibration. For the varying (forced) parameter case, gas production rate and well 

BHP were investigated as parameters. Different unique production rates from Table 4.3 with unique 

durations (in multiples of 30 or 100 days) were combined to form the varying rate production profiles, 

each profile being distinct. Simulation parameters for the varying parameter cases are summarised in 

Table 4.3. In the unseen or prediction cases, NIROM is usually trained with between 5 and 20 training 

runs, to show the effect of the number of training runs on NIROM’s performance and to determine 

the ideal number of training runs that were most suitable for each production scenario. As the speed 

of POD reduction is dependent on the size of the training data,  the more training runs, the more time 

is taken to decompose the data into hyperspace [125]. All simulations are run for 7500 days with 
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simulation outputs being written every 300days (25 report steps) for constant parameter cases and 

every 30 or 100 days for varying parameter cases, except where it is mentioned otherwise. 

 

Table 4.2: Summary of simulation parameters investigated in the constant parameter cases of the 
synthetic gas model. Training runs are spaced equally between the ranges of values specified. 

Parameter Training Values Prediction Values 
Production Rate (MMscf/day) 3.8 – 7.4 3.54, 4.34, 5.14, 5.94, 6.74, 7.54 

Production Bottom Hole Pressure (psi) 450 – 1250 400, 586, 773, 959, 1145, 1330 

Porosity 0.135 – 0.3 0.12, 0.163, 0.207, 0.25, 0.293, 0.336 

Enumeration Case Same values as for production rate control 

 

Table 4.3: Summary of simulation parameters used to generate forced parameter production profiles for 
the synthetic gas reservoir. Parameters are selected from the list at random for the rate controlled 
production cases and these values are multiplied by distinct factors to generate varying profiles. 

Parameters Values 

Production Rate (MMscf/day) 3.54, 4.34, 5.14, 5.94, 6.74, 7.54 

Fixed BHP Limit (psi) 500 

 

4.2 HETEROGENEOUS GAS RESERVOIR 

 
Figure 4.2: Gas saturation distribution in the modified Norne Gas field with strong aquifer support and 3 producers. 

 

This is a geologically and structurally realistic model of a gas field based on the heterogeneous Norne 

oil field (Figure 4.2) [128, 129]. The gas reservoir is located at a depth of 2580m with a gas-water contact 

(GWC) at 2618m. The reservoir has 3 producers and no injector. The reservoir’s dynamic model 

consists of 46 cells in the x-direction, 112 cells in the y-direction and 22 cells in the z-direction, 

although only 44,927 of these grid cells are active. Only the active grid cells are considered for NIROM 

evaluation. This means that the spatial resolution of the NIROM model was nx = 44927 for each 

snapshot of pressure and gas saturation distribution or nx = 18 for each production data snapshot 

(including gas and water production rates and cumulative rates, BHPs and gas-water ratios). A 

summary of the reservoir’s properties is provided in Table 4.4 below. 
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Table 4.4: Reservoir properties of the modified Norne gas field. 

Property Values 

Porosity 0.09 – 0.35 

Horizontal permeability (mD) 0.08 – 999 

Vertical permeability (mD) 0.004 – 1 

Initial pressure (bars) 271.96 

Initial Gas in Place (sm3) 2.714×1010 

Gas density (kg/m3) 0.991 

Water density (kg/m 3) 1022 

Rock compressibility (bar-1) 5.3 × 10-5 

Water formation volume factor 1.03 

Production lifecycle (days) 7500 

 

The first case where this modified Norne gas field was evaluated was for reproducing its training runs 

during BHP limit controlled production. In this case, there were no injection wells and the 3 production 

wells in the field were produced at 200, 220, and 200bars respectively (similar to the original Norne 

field model). Due to the initial surge in production and subsequent abrupt shut-in of a well, aquifer 

pressure support was introduced into the reservoir model to maintain its production for 7500 days. 

Schlumberger’s ECLIPSE was set to give simulation output data at the start of each year, so a total of 

21 report steps in the field’s 7500 days lifecycle. 

The reservoir was also examined for unseen predictions with NIROM. In the constant parameter cases, 

the modified Norne gas reservoir was again evaluated for predictions with aquifer pressure support. 

The strong bottom drive aquifer has an area of 1×1014m2, length of 200m and 200mD permeability. 

Another highlight of evaluating the NIROM with constant parameters is that NIROM was tested on its 

ability to make predictions beyond the production duration that it was trained for. The training data 

had a duration of 7500days lifecycle but field performance was predicted for 9000days, an 

extrapolation of 1500days or four report steps. A summary of the production parameters for the 

training and prediction runs in the constant parameter cases are given in Table 4.5. To ensure that 

there was gas production during the extra 1500 days that the NIROM was evaluated for, the gas 

production rate from the 3 producers were set to a ratio of 1.1: 1.5: 0.3, and during the BHP limit 

controlled production, wells 1 and 3 were produced at the production BHP specified in Table 4.5. Well 

2 was produced at a BHP of 10bars higher than the other two wells, i.e. 10bars lower than in the first 

case (reproducing training runs) to accommodate the extra 1500 days of production that the NIROM 

was evaluated for. 
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Table 4.5: Summary of constant parameters that were evaluated for the modified Norne gas field. Training 
runs are spaced equally between the range of training values while prediction runs are distributed within 

and outside the range of values for training the NIROM. 

Parameters Training Values Prediction Values 

Production Rate (Sm3/day) ×105 2.0 – 5.2 1.85,   2.6,   3.3,   4.1,   4.8,  5.5 

Production BHP (bars) 140 – 250 255,  231,  207,  183,  159,  135 

 

For the varying parameter cases, the modified Norne gas field was investigated for 7500 days of 

production, and two types of production profiles were considered. When building the varying 

production profiles, more than 25 report steps were introduced into the profile to mimic a reasonable 

occurrence of gas rate changes during the production lifecycle. One of the production profiles had 75 

report steps, where the gas production rate changed every two to three years (Figure 4.3) and there 

was another production profile that varied seasonally (summer, autumn, winter, spring), with at least 

240 report steps (Figure 4.4). Moreover, in these cases, all the wells were initially set to rate controlled 

production with a BHP limit. In other words, the wells were produced by gas rate control that switches 

to BHP control when ECLIPSE estimates that a well is unable to meet up with the intended production 

rate. The production rates in Table 4.6 were provided for NIROM to create the production profiles for 

the wells, while the BHP limit was fixed at 60bars. The varying production profiles were formed by 

combining different sequences of rates, chosen from the values in Table 4.6, and durations for the 

rates. Another highlight of these varying parameter cases is that production wells can be shut-in during 

the production lifecycle of the field, and NIROM was evaluated for predicting their performance. 

Training and prediction runs should ideally have similar production profile scenarios, but the 

combination of rates and durations for each run was unique. The seasonally varying parameter cases 

of this heterogeneous gas reservoir have been evaluated with both POD-RBF and POD-AE, both results 

are compared in Chapter 8. These prediction cases were investigated for gas recovery factors of over 

70%, and an average field pressure drop of 200bars during the 20years of production.   

 

Table 4.6: Summary of production rates and BHP limit used to create the time-varying production profiles 
for the varying parameter cases of the modified Norne gas field. Production rates were multiplied by 

different unique factors to create distinct production profiles. 

Parameters Values 

Production Rate (sm3/day) ×105 18,  17,  16,  15,  14,  13,  12,  11,  10,  9,  8 

Fixed Production BHP limit (bars) 60 
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Figure 4.3: An example of the intended versus actual production profiles for training the modified Norne gas field where 
production rates vary after at least 1000 days. The intended production profile stipulates the production rate profiles that 
are generated from MATLAB (a combination of unique rates and durations), and the conventional simulator (ECLIPSE) 
is expected to follow for two wells over their entire production lifecycle. However due to the well BHP limit, ECLIPSE is 

unable to maintain the intended production profile, and has switched to BHP production control during the wells’ 
production life. BHP controlled production commences at about the 45th and 18th report steps for wells 1 & 2 

respectively (yellow and purple circle lines). The production profile that ECLIPSE eventually used for the simulation is 
the actual production profile. 

 

 
Figure 4.4: An example of the intended and actual production profiles for training the modified Norne gas field where 

production rates are varied every quarter of the year. Well controls switch from gas rate to BHP when ECLIPSE cannot 
maintain the intended production rate that was created in MATLAB. Eclipse actual production profile shows that well 3 

was shut-in after the 230th report step (light blue circle-line). 

 

4.3 WATER CONING RESERVOIR 

Water influx in gas reservoirs may impact negatively on their production performance. When water 

breaks through a gas reservoir, it can lead to gas being trapped in the reservoir thereby partially or 

totally retarding gas production [11, 13]. To investigate NIROM’s capacity for modelling this practical gas 

reservoir problem, a gas reservoir with significant water coning is considered. This model is based on 

the water coning model of Armenta (2003) [130] where a radial grid pattern is used to illustrate the 
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water coning mechanism in the gas reservoir. This water coning gas reservoir is located at a depth of 

5000ft, with a thickness of 640ft and GWC at 5050ft. The reservoir has a single producer well that is 

completed just above the GWC. The reservoir’s dynamic model is made up of 26×4×128 grid cells in 

the r-, 𝜃- and z-directions respectively. Figure 4.5 shows the gas saturation in the reservoir and the 

extent of water encroachment into the gas zone (cone height) at the end of the production life of the 

well. Table 4.7 provides a summary of some other properties of the water coning gas reservoir. Other 

information on the reservoir model are available in Appendix C. 

 
 

 

 
Figure 4.5: Gas saturation distribution in a gas reservoir model with significant water coning, where blue is low gas 

saturation and red is high gas saturation. The reservoir has one producer, completed at the end of the gas zone of the 
reservoir and just before the water (deep blue) zone of the reservoir.  

 

Table 4.7: Some reservoir and production properties of the water coning gas reservoir. 

Property Value 

Porosity 0.25 

Permeability (mD) kr = 10, k𝜃 = 100, kz = 5 

Initial pressure (psi) 1501 

Number of active grid cells 12,192 

Initial Gas in Place (BCF) 58.6 

Gas density (lb/ft3) 0.046 

Water viscosity (cP) 0.68 

Water density (lb/ft3) 64 

Rock compressibility (psi-1) 10×10-6 

Well inner radius (ft) 0.333 

Production lifecycle (days) 7296 (30.4days × 240) 

5000ft 
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This water coning gas reservoir’s performance has been explored for unseen constant parameter 

predictions and Table 4.8 shows the range of parameters that are investigated. The 20 years 

production performance data of the reservoir is outputted in 20 report steps (annually) and NIROM 

was trained with a maximum of 20 training runs.  

 
Table 4.8: Training and prediction simulation parameters for a gas reservoir model with significant water 

coning. 

Case Parameters 
Training 
Values 

Prediction Values 

1 Production Rate (MMscf/day) 1.00 – 1.45 0.9,  1.02,  1.14,  1.26,  1.38,  1.5 

2 Production Bottom Hole Pressure (kpsi) 0.65 – 1.40 0.6,  0.77,  0.94,  1.11,  1.28,  1.45 

 

4.4 FIELD X 

The Field X model is a sector model of a real gas field that was provided by the project sponsor, 

Woodside Petroleum. It is located between a depth of 2916.2m and 3194.4m. The model was built 

using a 116×202×41 Cartesian grid with 127,945 active grid cells. The gas production is from a single 

well that is supported by a Carter Tracy aquifer model with an inner radius of 10000m and 5m 

thickness. Other properties of Field X are summarised in Table 4.9 and shown in Figure 4.6 and Figure 

4.7. In this work, Field X has been produced with the seasonal production rate profiles with a fixed 

pressure limit of 120bars for BHP or 100bars for THP. In some instances, the well is shut in some 

months to the end of its production life. This field has a production lifecycle of 7560days and its 

performance data is outputted from ECLIPSE in 252 report steps (30 days interval). POD-RBF and POD-

AE were both evaluated for modelling the performance of Field X, for 5 to 50 training runs, and their 

performances are compared in Chapter 8. 

 

Table 4.9: Some reservoir properties of Field X 

Property Value (metric unit) 

Porosity 0.27 – 0.3 

Permeability (mD) 27.5 - 2700 

Initial pressure (bars) 326.9 

Gas density (kg/m3) 0.80081 

Water density (kg/m3) 1014.2       

Rock compressibility (bar-1) 2.3206×10-5 

Water formation volume factor 1.0252 

Well diameter (m) 0.2159 

Initial Gas in Place (sm3) 14.57×109 

Production lifecycle (days) 7560 
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Porosity Horizontal Permeability (mD) 

Figure 4.6: The distribution of (a) porosity and (b) permeability in the horizontal direction of Field X. It is not clear why 
the relationship between the porosity and horizontal permeability in Field X is not directly proportional as most literature/ 

correlations show, i.e. the zones with the highest porosity have median permeability and the zones with the lowest 
porosity have the highest permeability values. Overall the porosity and permeability of Field X are generally high. 

 

 
Figure 4.7: Gas saturation distribution in gas Field X produced with strong aquifer support. 

 

In chapter 7, NIROM is analysed for modelling the performance of Field X for both constant and varying 

parameter cases. The constant parameter prediction cases that are evaluated with NIROM are shown 

in Table 4.10 while the parameters used for evaluating the varying parameter cases are in Table 4.11. 

The constant parameter cases were analysed for rate controlled production while the varying 

parameter cases were evaluated for seasonally varying production rates with BHP or THP limit 

production controls. The seasonally varying parameters were multiplied with random factors to 

generate the intended varying production profiles. Field X was evaluated with NIROM for 5, 10 and 20 
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training runs for 7500 days of production that were reported at the start of every year (21 years or 

report steps). 

 

Table 4.10: Summary of constant parameters that were evaluated for Field X. Training runs are spaced 
equally between the range of training values while prediction runs are distributed within and outside the 

range of values for training the NIROM. 

Parameters Training Values Prediction Values 

Production Rate (sm3/day) ×105 9 – 20 8,  10.6,  13.2,  15.8,  18.4,  21 

 

Table 4.11: Summary of production rates and pressure limit used to create the varying production profiles 
for the varying parameter cases of Field X. Production rates were multiplied by different unique factors to 

create distinct production profiles. 

Parameters Values 

Production Rate (sm3/day) ×105 27,  25.5,  24,  22.5,  21,  19.5,  18,  16.5,  15,  13.5,  12 

Fixed Production BHP limit (bars) 100 

Fixed Production THP limit (bars) 120 

 



Chapter 5: Training Model Results and Discussion 

93 
 

5.CHAPTER 5: TRAINING MODEL RESULTS AND DISCUSSION  

In this work, the process of developing a NIROM that can model gas reservoir performance in unseen 

scenarios started with using very simple synthetic models and then adding complexity and realism to 

the models. The NIROM results discussed in this chapter are the first attempt at coupling a NIROM 

built in MATLAB to the ECLIPSE simulator. This chapter is considered to be the proof of concept stage 

of this research, to ascertain that NIROM can be implemented for fast gas reservoir performance 

estimation from a commercial simulator. The initial emphasis here was to find out which hyper-

parameters were most suitable for modelling the performance of gas reservoirs. The first objective 

was to determine which RBF(s) are most suitable for modelling different gas production scenarios and 

also to determine if the energy criterion of 99.9% from  3.5 (suggested by Xiao et al. [38]) is sufficient 

for gas reservoir modelling. To determine the most suitable RBF(s), the NIROM was applied to 

reproducing the training runs for which it was trained, with 7 different radial basis interpolation 

functions, i.e. linear, inverse multi-quadratic, modified thin-plate spline, inverse quadratic, Gaussian, 

cubic and multi-quadratic functions. NIROM estimates were obtained by modelling the dynamics of 

the reservoir based on the initial condition training data at t = 0 for each test case. These estimates 

were then compared to the actual solutions from ECLIPSE. 

The variables that were estimated include the pressure distribution in the reservoir, and if there was 

aquifer influx, the gas saturation distribution. For production data, either well BHP or gas production 

rate (depending on the chosen well control), cumulative gas production and, if there was an aquifer, 

the producing water-gas ratios were estimated. Variables were estimated at time intervals of 300 days 

and all simulations ran for 7500 days (about 20 years), with one exception which is discussed later. 

Initially, an energy criterion of 99.9% ( 3.5) was used to determine the number of POD basis functions 

needed to project the simulations into hyperspace, although in some cases more POD basis functions 

were needed to obtain an acceptable NIROM solution. To better visualise the pressure or saturation 

distribution in the reservoirs, especially for the reservoirs with more than 2400 grid cells, the average 

value of the pressure or saturation across the reservoir is plotted at every report step instead of their 

values in each of the grid cells. These results are discussed in the following sections. 

 

5.1 SYNTHETIC GAS RESERVOIR 

This is a homogeneous gas reservoir with 19×21×6 = 2394 active grid cells. It has been set to produce 

and generate pressure and saturation distribution output data every 300 days for 25 report steps, a 

total of 7500 days. All pressure units are in psi. 
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5.1.1  PRODUCTION CONTROLS 

5.1.1.1 GAS RATE CONTROL 

In this case, the average reservoir pressure declined continuously throughout the 20 years of 

production and there was a pressure drop of over 20psi across the reservoir at each report time. Figure 

5.1 shows the pressure distribution predicted by ECLIPSE and the POD-RBF NIROM in each layer of the 

synthetic model at the 6th report step (1800days), together with the difference between the two 

solutions. Figure 5.2 further highlights that the NIROM correctly captures both the simulated pressure 

distribution in each of the six layers and the overall pressure depletion from the well location to the 

boundaries of the reservoir.  

   

 

 
Figure 5.1: Pressure distribution across each layer of the synthetic gas reservoir at t = 1800days. This reservoir has 

one well which is drained from the centre of the reservoir at a constant production rate of 6.77MMscf/day. The reservoir 
pressure is depleted the most at the well location and then radially outwards to other grid cells in the reservoir. Pressure 
depletion in the reservoir is also from top to bottom, such that lower layers are less depleted and have higher pressure 
than the top layers. The NIROM (using any of the 7 RBFs) can reproduce the radial and downward pressure depletion 

pattern seen in the synthetic gas reservoir with negligible errors in the NIROM results compared to ECLIPSE. 
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Figure 5.2: Pressure distribution in the first layer of the synthetic gas reservoir at t = 1800days (in psi). NIROM 

adequately captures the radial and outward pressure depletion in the synthetic gas reservoir. 

 

Figure 5.4 compares the actual reservoir pressure in each grid cell to the values calculated by the 

NIROM. Each column shows the reservoir pressure in all grid cells at a given report time, normalised 

to the average pressure in the reservoir, with the leftmost column showing the initial normalised 

pressure distribution and the columns to the right showing the pressure distribution as time increases. 

The pressure in all the reservoir grid cells are arranged by natural ordering. The error in these results 

are negligible and they were obtained using 1 POD basis function, as suggested from using the energy 

criterion of 99.9% in  3.5. The results presented here were obtained with the linear radial basis 

function, but similar results were obtained using the other 6 basis functions. 

For brevity in the subsequent results, the average of the pressure distribution (and the gas saturation 

distribution if there is an aquifer) is reported for each reporting time. 

 

  
Figure 5.3: The average of the reservoir pressure distribution estimated by the NIROM at each report time in the 

synthetic gas reservoir at constant production rate control. The NIROM gives a satisfactory match to ECLIPSE with 
negligible errors. The same result is obtained with all 7 RBFs using 1 POD basis function (as suggested by the energy 

criterion). 
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Figure 5.4: Pressure distribution in all grid cells of the synthetic gas reservoir, normalised to zero mean and using 1 

POD basis function (as suggested by the energy criterion). The normalised pressure in all 2394 grid cells of the 
reservoir are plotted as vectors for each of the 25 report steps. The vectors are obtained by a natural ordering of the 
pressure in all the active grid cells, such that every 399 cells represent a single layer of the reservoir and the well is 
located in the middle of every 399 cells. Similar results were obtained from all 7 RBFs, showing that the reservoir 

pressure decreases during constant production rate control. The most errors were experienced in the reservoir layers 
hosting the production well, as seen by the darker streaks in the middle of each layer. 

 

Figure 5.3 shows the average pressure distribution at each report time of the simulation. NIROM 

captures the pressure depletion in the reservoir over time as was originally predicted by ECLIPSE.  

The ability of the NIROM to estimate the production behaviour of this synthetic reservoir is further 

illustrated in Figure 5.5 and Figure 5.6. NIROM estimated BHP and cumulative production agree well 

with the original values obtained from ECLIPSE simulation. Using a minimum energy criterion of 99.9% 

( 3.5) suggested only 1 POD basis function was required for this estimation. However, Figure 5.6 shows 

that better results, with negligible errors, can be obtained from using more POD basis functions. The 

solutions shown in this case are similar for all 7 RBF interpolation functions explored. 

 

    
Figure 5.5: Bottom hole pressure and cumulative gas production profiles estimated by the POD-RBF NIROM in 

comparison to ECLIPSE using 1 POD basis function, as suggested by the 99.9% energy criterion (a & b). Errors in the 
estimation of the c) well bottom hole pressure were less than 80psi, while errors in the d) cumulative gas production 

were less than 6MMscf (0.01%) for all 7 RBFs.  
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Figure 5.6: Bottom hole pressure and cumulative gas production profiles estimated by the NIROM and predicted by 

ECLIPSE using 2 POD basis functions (a & b). Adding an extra basis function to the number of basis functions 
suggested by using the energy criterion gave negligible errors in c & d, for both the decline in bottom hole pressure and 

the increase in the cumulative gas production. Similar results were obtained with all 7 RBFs. 

 

5.1.1.2 BHP CONTROL 

In this case, the average reservoir pressure fell to the BHP of 1000psi after 5 report steps (1500 days). 

Gas production was practically negligible afterwards and the well shut-in at 3300days. Nevertheless, 

NIROM RBFs 1 and 5 gave accurate estimates of the reservoir pressure distribution (errors less than 

4e-4), while RBFs 2, 3, 4, 7 and 6 gave maximum absolute errors of 7, 13, 5, 4 and 8E17 psi respectively 

(Figure 5.7). This test case was used to evaluate the capability of the NIROM to deal with systems in 

which there was initially a sudden change in behaviour followed by small changes. Previous analysis 

by Kostorz et al., (2019)[37] indicated that the NIROM would not provide good estimates in such cases.  

For this case, it was observed that since each grid cell of the reservoir has pressure values, even though 

they were at the constant pressure limit in the neighbourhood of 1000psi, NIROM was able to estimate 

the grid cell pressure distributions. However, for the production data which are dependent on gas 

production (for instance gas and water production rates, cumulative productions and well pressures), 

NIROM could not reproduce any meaningful results when there was no production data available for 

it to work with (after 3300 days). Hence the snapshot matrix for training the NIROM, as well as NIROM 
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simulations were truncated for this case to contain only the first 11 report times (3300 days) before 

the well was shut-in.  

 

  
Figure 5.7: The average of the synthetic gas reservoir pressure distribution estimated by the NIROM at each report time 
when the well was produced by BHP control. These results were obtained using 1 POD basis function (as predicted by 

the energy criterion). All RBFs (except RBF 6) gave consistent results with ECLIPSE, RBFs 1 and 5 gave the most 
accurate results.  

 

After truncating the training runs matrix to 3300 days, RBFs 1, 3, 5, 6 and 7 were able to reproduce 

the sharp changes in production data that occurred over the first 11 report steps using 1 basis function 

(as suggested by the 99.9% energy criterion). RBFs 2 and 4 gave good estimates up to the 8th report 

time and then started over predicting (Figure 5.8). Increasing the number of POD basis functions by 

one gave slightly better NIROM estimates for RBFs 2 and 4 but then RBF 6 developed worse results 

(Figure 5.9). Hence increasing the number of POD basis functions used in NIROM predictions can be 

useful for obtaining better results as well as exposing which RBFs are unstable/ inconsistent in their 

interpolation behaviour.  

 

   
Figure 5.8: Reservoir production data estimated using 1 POD basis function (as suggested by the energy criterion). The 

NIROM results from RBFs 1, 3, 5, 6 and 7 are consistent with those of ECLIPSE for the production duration of 3300 
days (11 report steps) at constant production BHP limit while RBFs 2 and 4 gave satisfactory results for only the first 

2400 days. 
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Figure 5.9: Reservoir production data estimated using 2 POD basis functions. By adding an extra basis function, 

NIROM results are slightly improved for all RBFs except RBF 6 which explodes, with overestimation. RBFs 2 and 4 still 
give satisfactory results up to 2400 days after which they over-predict the gas production rate and under predict the 

cumulative gas production.  

 

5.1.2 AQUIFER MODELS 

Here, the NIROM is investigated for its ability to capture the water saturation distribution, pressure 

distribution and the additional production responses that are obtained when there is aquifer influx. 

For these aquifer cases, the following aquifer production variables are estimated with NIROM: the 

aquifer influx rate (stb/day), cumulative aquifer influx (stb) and aquifer pressure (psi). For the 

production well, the water production rate (stb/day), cumulative water production (stb) and water-

gas ratio (Mscf/stb) are investigated. This makes a total of 8 production variables that are being 

estimated with NIROM, i.e. nx = 8 for each production profile snapshot. 

 

5.1.2.1 NUMERICAL AQUIFER MODEL 

Introducing numerical aquifer support into the synthetic reservoir’s base case with BHP limit 

controlled production allowed the producer to remain open for the 20 years lifecycle that was 

simulated, with water breaking through in the well. Figure 5.10 and Figure 5.11 show the average of 

the pressure distribution and the average of the saturation distribution at each report time. The 
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NIROM correctly estimated the pressure and saturation distribution in the reservoir’s grid cells for all 

the RBFs using 1 and 3 POD basis functions respectively, as suggested by the energy criterion of 99.9%. 

Figure 5.12 shows the gas saturation distribution in the first layer of the reservoir at 6300 days while 

Figure 5.13 shows the gas saturation distribution in the entire reservoir with each column representing 

the gas distribution at each report step. Recall that in these BHP limit controlled production examples 

of the synthetic gas reservoir model, most of the gas in the reservoir is produced in the first 1500 days 

of production. Hence by 6300 days (shown in Figure 5.13), the gas saturation in the last 5 layers of the 

reservoir is negligible.  

 

  
Figure 5.10: The average of the reservoir pressure distribution estimated by the NIROM at each report time, obtained 

using 1 POD basis function (as estimated by the energy criterion) in a BHP controlled gas well, supported by a 
numerical aquifer. Aquifer support maintained the average reservoir pressure above the 1000psi BHP limit, resulting in 

continued gas production for 7500 days. All RBFs gave the same estimates of pressure distribution. 

 

  
Figure 5.11: The variation over time of the average gas saturation distribution in the synthetic gas reservoir, predicted 
by NIROM using 3 POD basis functions (the predicted energy criterion). The reservoir is produced at a BHP limit of 

1000psi with numerical aquifer support. All 7 RBFs give satisfactory match of the gas saturation decline. 
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Figure 5.12: Gas Saturation distribution in the first layer of the synthetic gas reservoir at t = 6300days. NIROM 

adequately captured the pattern of gas depletion in the synthetic gas reservoir with a numerical aquifer. 

 

   
Figure 5.13: Gas saturation distribution in all grid cells of the synthetic gas reservoir with a numerical aquifer. The error 

in NIROM estimates were less than 1% of the original solutions from ECLIPSE. Although most of the reservoir was 
already depleted by 6300 days, NIROM adequately captured the saturation distribution across the 6 layers of the 

synthetic gas reservoir. 

 

For the production data, 3 POD basis functions (the suggested energy criterion) were needed to obtain 

good NIROM estimations (Figure 5.14), the error profiles are in Figure 5.15. Four (4) POD basis 

functions can be used to obtain more accurate results as reflected in the error plot of Figure 5.16. And 

to satisfactorily estimate the water-gas ratio for this numerical aquifer case, 7 POD basis functions 

were required (Figure 5.17). NIROM results from all RBFs (except RBF 6) gave similar results. RBF 6 

overestimated the production data and has not been included in the error plots of Figure 5.15, Figure 

5.16, and Figure 5.17b.  
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Figure 5.14: Production profiles using 3 POD basis functions (the energy criterion) for the synthetic gas reservoir 

supported by a numerical aquifer. All RBFs except RBF 6 give satisfactory NIROM estimates of (a) gas production rate 
(b) cumulative gas production (c) water production rate (d) cumulative water production (f) aquifer influx rate (g) 

cumulative aquifer influx and (h) aquifer pressure. None of the RBFs gave an accurate estimate of (e) the water gas 
ratio in the reservoir.  
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Figure 5.15: Error plot of production data from RBFs 1 - 5 and 7 using 3 POD basis functions. All RBFs give errors that 
are at least an order of magnitude lower than the actual data for all production profiles, except the water-gas ratio with 

almost 50% error.  
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Figure 5.16: Error plot of production data from all RBFs using 4 POD basis functions (energy criterion = 3 POD basis 

functions). RBFs 1 - 5 and 7 give lower error values by adding an extra basis function to the NIROM simulation. 
Estimation of the water-gas ratio still shows the most significant error.  

 

 
Figure 5.17: NIROM’s satisfactory estimation of water gas ratio using 7 POD basis functions (energy criterion = 3 POD 

basis functions). RBFs 1 - 5 and 7 give the same result. 

 

5.1.2.2 ANALYTICAL AQUIFER MODELS  

The Carter Tracy aquifer model provided significant pressure support to the reservoir to maintain 

production at pressures above 3600psi throughout the production life cycle. All NIROM RBF models 

satisfactory estimated the average pressure decline in the reservoir with similar results (Figure 5.18). 

As for the gas saturation distribution in the reservoir, only RBFs 1, 3 and 6 consistently gave meaningful 
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and satisfactory estimates (Figure 5.20). For pressure and saturation distribution in the reservoir, 2 

POD basis functions gave good results (Figure 5.18 to Figure 5.20). Figure 5.19 shows that NIROM 

satisfactorily estimated the pressure distribution in all the grid cells of the reservoir.  

 

  
Figure 5.18: Average of the reservoir pressure distribution at each report step of the synthetic gas reservoir with a 
Carter Tracy aquifer for all RBFs when using 2 POD basis functions (the energy criterion). This analytical aquifer 

supports reservoir pressure with less than100 psi pressure depletion throughout production.  

 

 
Figure 5.19: Pressure distribution in all grid cells of the synthetic gas reservoir with a Carter Tracy aquifer. Reservoir 

pressure values were normalised to zero mean and the NIROM was implemented with 2 POD basis functions (as 
suggested by the energy criterion). The most visible errors in the NIROM predictions were experienced in the reservoir 

layers hosting the production well, as seen in the darker streak lines in the middle of each layer. 

 

For the production data, Figure 5.21 shows only the results for NIROM’s estimate of the parameters 

that needed the most POD basis functions. NIROM required 6 POD basis functions to give accurate 

estimates of the cumulative gas production, water production rate and water-gas ratio (mostly water-

related data). With 3 POD basis functions (99.9% energy criterion), all the other production data were 

estimated with satisfactory results. Only RBF 6 gave unsatisfactory results and this is not included in 

Figure 5.21. 
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Figure 5.20: Average of the gas saturation distribution at each report time, obtained from the NIROM using 2 POD basis 
functions for the synthetic reservoir with a Carter Tracy aquifer. Only RBFs 1, 3 and 6 gave reasonable estimates of the 

gas depletion in the reservoir. 

                                   

   
(d) (e) (f) 

   
Figure 5.21: Estimated reservoir production profiles using (a & b) 4 POD basis functions and (c) 5 POD basis functions 

(the energy criterion suggested 3 POD basis functions would be sufficient), for all 7 RBFs. These production data 
required the most number of POD basis functions to obtain reasonable NIROM estimates. Two of these three 

production data are water-related. 
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In the Fetkovich aquifer, pressure decline is similar to that of the numerical aquifer, the reservoir 

pressure is maintained at just above the well bottom hole pressure limit and production is sustained 

throughout the 7500days. All RBFs gave good estimates of the average reservoir pressure and the 

individual grid cell pressure in the reservoir with negligible error (Figure 5.22 and Figure 5.23) while 

RBFs 1 – 6 gave the best results for the saturation distribution (Figure 5.24).  1 and 3 POD basis 

functions were used to obtain the results in Figure 5.22 and Figure 5.24 respectively. Similar to the 

numerical aquifer case, estimating the water gas ratio required the most number of basis functions, 7 

basis functions were required instead of the 3 suggested from the energy criterion. For the production 

data estimation, only the results for NIROM’s estimation of water gas ratio with 7 POD basis functions 

is shown in Figure 5.25. This result is the same for RBFs 1 -5 and 7 while RBF 6 gave a different result 

to the other RBFs. 

 

  
Figure 5.22: Average reservoir pressure distribution in the synthetic gas reservoir with a Fetkovich aquifer using 1 POD 

basis function (99.9% energy criterion). All 7 RBFs gave similar satisfactory estimates with negligible error. 

 

 
Figure 5.23: Pressure distribution in all grid cells of the synthetic gas reservoir with a Fetkovich aquifer. Reservoir 
pressure values were normalised to zero mean and the NIROM was implemented with 1 POD basis function (as 

suggested by the energy criterion). 
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Figure 5.24: Average gas saturation distribution in the synthetic gas reservoir with a Fetkovich aquifer using 3 POD  
basis functions (99.9% energy criterion). RBFs 1 - 6 give better results than RBF 7 especially after 22 report steps, 

where RBF 7 gives haphazard results. 

 

 
Figure 5.25: NIROM estimate of the water gas ratio of the synthetic gas reservoir with a Fetkovich aquifer using 7 POD 

basis functions (energy criterion suggested that 3 POD basis functions were required). 

 

5.1.3 GRID REFINEMENT 

In these cases, the synthetic gas reservoir is produced by gas rate control for 25 report steps in 300 

days intervals. The results shown below are from the linear RBF but similar results were obtained from 

the other 6 RBFs from section 3.4.  

 

5.1.3.1 LOCAL GRID REFINEMENT (LGR) 

Here, local grid refinement has been introduced into the grid cells where the well is located, (10×11× 

1:6). These grid cells were refined to have a local dimension of 5×5×12. Figure 5.26a shows the 

pressure distribution in the reservoir’s global grid cells, while the pressure distribution in the local 

grids is shown in Figure 5.26b. In Figure 5.26c as in Figure 5.26a & b, NIROM adequately mimics 

ECLIPSE in estimating the pressure depletion in both the global and local grid cells in the first layer of 

the synthetic gas reservoir. Similar results were obtained from all seven RBFs that were considered. 
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Figure 5.27 shows the pressure distribution in the global and local grid cells of the reservoir in all 6 

layers. 

 

   
a) Global grid cells 

   
b) Local grid cells 

   
c) Global and local grid cells 

Figure 5.26: Pressure distribution in the first layer of the synthetic gas reservoir at 1800 days, using 1 POD basis 
function.  Pressure distribution in a) the global grid cells only, b) the local grid cells only and c) the global as well as 

local grid cells. The local grid cells emphasise the pressure distribution in the well’s location. 
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Figure 5.27: Pressure distribution in the global and local grid cells of the synthetic gas reservoir at 1800 days, using 1 

POD basis function and across all six layers. NIROM satisfactorily mimics ECLIPSE’s solutions for local grid 
refinement.  

 

5.1.3.2 TARTAN GRID 

Figure 5.28 shows that NIROM also does well in estimating the synthetic reservoir’s pressure 

distribution in tartan grid cases. In the six layers of the reservoir, NIROM satisfactorily estimates the 

reservoir’s pressure with errors in the vicinity of zero psi. NIROM also satisfactorily captures the 

pattern of pressure depletion from the well location outwards towards the boundaries of the 

homogeneous reservoir. 
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Figure 5.28: Pressure distribution across the six layers in the synthetic gas reservoir with the tartan grid at 1800 days, 

using 1 POD basis function. NIROM satisfactorily mimics ECLIPSE’s solutions from the tartan grid. 

 

5.2 MODIFIED NORNE FIELD 

Here, the capability of the NIROM has been demonstrated through the comparison of its simulation 

with that of ECLIPSE for the modified Norne field model [129]. This realistic field case comprises 44927 

active grid cells, so the NIROM pressure and saturation predictions in this example are for the 44927 

active grid for 7500 days production lifecycle.  The reservoir has 3 producers, all produced by BHP limit 

control, with aquifer pressure support. Figure 5.29 shows the average of the ECLIPSE simulated and 

NIROM estimated pressure distributions at different times, together with the errors between the 

NIROM estimates and ECLIPSE results. Figure 5.30 shows the average of the gas saturation distribution 

estimated by the NIROM and ECLIPSE, together with a graph of the NIROM’s errors. In both Figure 
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5.29 and Figure 5.30, RBFs 3 and 6 do not give satisfactory results when compared to ECLIPSE 

solutions. Also, 6 and 7 POD basis functions were required to obtain the results in Figure 5.29 and 

Figure 5.30. Figure 5.31 and Figure 5.32 are the pressure and saturation distributions in all the grids 

of the heterogeneous gas field throughout its entire production lifecycle (using the linear RBF, RBF 1).  

 

  
Figure 5.29: The average of the estimated pressure distribution at different report times in the Norne gas field as 

predicted by the POD-RBF NIROM and ECLIPSE simulation. The NIROM used 6 POD basis functions (as indicated by 
the energy criterion). RBFs 1, 2, 4, 5 and 7 mimic ECLIPSE with negligible error.  

 

  
Figure 5.30: The average of the gas saturation distribution at different report times obtained by NIROM using 7 POD 
basis functions (as suggested by the energy criterion). Compared with ECPLISE’s results, the NIROM satisfactorily 

matches the gas saturation depletion pattern in the heterogeneous modified Norne field for RBFs 1, 2, 4, 5 and 7. RBFs 
3 and 6 deviated from ECLIPSE’s results after less than 1000 days. 
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Figure 5.31: Pressure distribution in all grid cells of the modified Norne gas field with pressure values normalised to 

zero mean. These results were obtained using 6 POD basis functions (the energy criterion) and the linear RBF (RBF 1). 
NIROM estimations have negligible error. 

 

 
Figure 5.32: Gas saturation distribution in all grid cells of the modified Norne gas field using 7 POD basis functions (the 

energy criterion) and the linear RBF (RBF 1). The error in NIROM estimates was mostly negligible. 

 

Figure 5.33 to Figure 5.37 show the various production data estimated by the NIROM, with RBFs 1, 3, 

5, and 7, together with the ECLIPSE simulation results as well as the associated error plots. The NIROM 

needs the most POD basis functions to estimate the production water-gas ratio (14 out of a possible 

17), however, the other production data (e.g. the total gas production, cumulative field production 

rate and well production rates from wells 1 and 2) could be estimated to within 1.85e-5%, 1.06%, 

7.87% and 0.34% absolute errors respectively using only 4 POD basis functions (Figure 5.35 and Figure 

5.36). Adding one more POD basis function to this number decreases these error values to less than 

1.310-3% (Figure 5.37). RBFs 1, 3, 5, and 7 gave similar results while RBFs 2, 4 and 6 over or 

underestimate the results and have not been included here. 
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Figure 5.33: NIROM estimates of water gas ratio in each of the 3 wells in the Norne gas field from RBFs 1, 3, 5, and 7. 
These were obtained using 14 POD basis functions. These water-related variables required the most number of POD 

basis functions for satisfactory NIROM results. 

 

   
Figure 5.34: Error plot for NIROM estimations of water gas ratios from the 3 wells in the Norne gas field using RBFs 1, 
3, 5, and 7. Fourteen (14) POD basis functions were used to obtain these results. Errors are negligible when using a 

large number of basis functions. 

 

    
Figure 5.35: Total field gas production rate (far left), cumulative field gas production and gas production rates from wells 

1 and 2 in the Norne gas field model as predicted by ECLIPSE and the NIROM. The NIROM used 4 POD basis 
functions (99.9% energy criterion). RBFs 1, 3, 5, & 7 gave identical satisfactory results. 
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Figure 5.36: Error plots of NIROM’s estimation of the production data of the Norne gas field in Figure 5.35, predicted 

with 4 POD basis functions (99.9% energy criterion). Errors are mostly less than 1% for RBFs 1, 3, 5, & 7. 

 

    
Figure 5.37: Error plots of NIROM’s estimation of production data of the Norne gas field when estimated using 5 POD 
basis functions rather than 4 (99.9% energy criterion). Errors fall to less than 1.41e-3% when an additional POD basis 

function is included in the NIROM. 

 

5.3 INTERPOLATION FUNCTION ANALYSIS AND ERROR MEASURES 

In this chapter, seven (7) interpolation functions have been used for the different training model 

scenarios considered. Table 5.1 shows an analysis of the 7 RBFs, which was generated by assigning 

weights to the RBFs based on their efficiency in each case of estimating the gas reservoir simulations 

from ECLIPSE. The numbers assigned to RBFs are in the same order as they were listed in chapter 3 

(and at the start of this chapter). From Table 5.1, the preferred RBFs have been recommended based 

on their suitability for each simulation case considered. RBFs 1, 2, 4, 5 and 7 work best for pressure 

distribution predictions, RBFs 1, 2, 4 and 5 give better estimates for saturation distribution predictions, 

and for reservoir production variables all the RBFs equally give satisfactory results except for RBFs 2, 

4 and 6 which have episodes of instability. Therefore, different RBFs are best suited for different 

aspects of gas reservoir simulations with NIROM. 
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On a general note, the recommended RBFs are RBF 1 (linear), RBF 3 (modified thin-plate spline), RBF 

5 (Gaussian) and 7 (multi-quadratic), with the linear function being the most consistent and stable RBF 

for gas reservoir simulation. These recommendations are further confirmed in Table 5.2 and Figure 

5.38 where the RMSEs from NIROM estimation of the different production scenarios are shown. From 

Table 5.2, cases with outlier estimations (overestimation or when NIROM was unable to provide 

reasonable estimations) are written in red colour. Only RBFs 1 and 2 did not have any red values in 

Table 5.2, but for Norne field production data estimation, RBF 2 was unstable, so this further confirms 

that RBF 1 (linear function) is the most preferred RBF for gas reservoir modelling with NIROM. 

 

Table 5.1: Summary of result on best-fit interpolation function(s) for various simulation cases 

Case Interpolation Functions (numbers are consistent with chapter 3) 

Synthetic model Norne Model Recommended RBF 

Pressure 1, 2, 3, 4, 5, 6, 7 1, 2, 4, 5, 7 1, 2, 4, 5, 7 

Gas Saturation 1, 2, 3, 4, 5, 6 1, 2, 4, 5, 7 1, 2, 4, 5 

Production Data 1, 2, 3, 4, 5, 7 1, 3, 5, 7 1,  3,  5, 7 

Recommended RBF 1, 2, 3, 4, 5  1, 5, 7 1, 5, 7 

 

Table 5.2: Average RMSE for pressure and saturation distribution estimations with NIROM for all 7 RBFs 
considered in this work. RBF 1 is the most consistently stable RBF with the least RMSE. The values in red 

colour are the outliers where NIROM overestimated its simulation or it could not give reasonable 
estimations. 

RBFs 1 2 3 4 5 6 7 

Synthetic Gas Reservoir 

Gas Rate 
Control 

Pressure (psi) 0.17 0.17 0.17 0.17 0.17 0.17 0.17 
Production 

Data 
8.7×10-11 3.2×10-12 9.8×10-9 2.6×10-12 2.1×10-12 6.5×10-8 4.9×10-10 

BHP Control Pressure 0.005 0.005 0.005 0.005 0.005 0.005 0.006 

Numerical 
Aquifer 

Pressure 2.14 2.14 2.14 2.14 2.14 2.14 2.14 
Gas 

Saturation 
0.0002 0.06 1.25×107 0.02 1.37 0.0002 7.40× 105 

Carter Tracy 
Aquifer 

Pressure 0.66 0.66 0.66 0.66 0.66 0.66 0.66 

Gas 
Saturation 

0.0001 0.36 0.0001 6.41 3.37 0.0001 1.81×1044 

Fetkovich 
Aquifer 

Pressure 2.16 2.16 2.16 2.16 2.16 2.16 2.16 
Gas 

Saturation 
0.0001 0.0001 0.0001 0.0001 0.0003 0.0001 0.0218 

Grid 
Refinement 

Local grid 
(pressure) 

0.84 0.84 0.84 0.84 0.84 0.84 0.84 

Global grid 
(pressure) 

0.58 0.58 0.58 0.58 0.58 0.58 0.58 

Tartan grid 
(pressure) 

0.57 0.57 0.57 0.57 0.57 0.57 0.57 

Modified Norne Reservoir with Numerical Aquifer 

Pressure (bars) 0.03 0.03 - 0.03 0.03 - 0.03 

Gas Saturation 0.003 0.003 - 0.003 0.003 - 0.003 
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Figure 5.38: Average RMSE for pressure and saturation distribution estimations with NIROM for all 7 RBFs considered 

in this chapter. NIROM simulations with outliers have not been added to this figure. 

 

5.4 TIME ANALYSIS 

Here, the CPU time taken to create and then run the NIROM simulations is compared with the time 

taken to run the same simulations in ECLIPSE. In this section, the unit of time is seconds as summarised 

in Table 5.3. This work was executed on a workstation with 40 logical processors, 2.4 GHz base speed 

and 128GB RAM. The production duration was 7500 days for all the cases except the synthetic gas 

reservoir case that was produced at constant BHP and no aquifer (it produced for 3300 days). The 

NIROM gave speedups of between 12 and 60 times ECLIPSE runtime (including the time taken for pre-

processing the training data and POD reduction). The actual NIROM simulation times (discounting pre-

processing and POD reduction) were between an order of magnitude (for the Norne field case) and 3 

orders of magnitude times faster than ECLIPSE. These timings for building and running the NIROM 

were obtained using an interpreted language (MATLAB) whereas ECLIPSE has been written in a 

compiled language and carefully optimised over many years of development. So the NIROM should 

be at least two orders of magnitude faster than ECLIPSE if it was also implemented in a compiled 

language (as previously found by Kostorz et al. (2019) [37]. 
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Table 5.3: Simulation runtime (in seconds) and average speed ups from NIROM versus ECLIPSE for 
different gas production cases. Comparison of the cumulative computational time shows up to 60 times 

simulation speed up with NIROM. 

Model Process 

Simulation Cases 

Synthetic Gas Reservoir Modified 
Norne Gas 

Field 
Gas Rate 
Control 

BHP 
Control 

Numerical 
Aquifer 

Carter 
Tracy 

Aquifer 

Fetkovich 
Aquifer 

LGR 
Tartan 

grid 

NIROM 
Runtime 

Pre-Processing 
Data 

0.12 0.06 0.14 0.15 0.19 0.30 0.17 10.4 

POD Reduction 0.01 0.005 0.01 0.01 0.01 0.23 0.01 0.19 

Simulation 0.02 0.02 0.01 0.02 0.02 0.002 0.02 0.33 

Total 0.15 0.08 0.16 0.18 0.22 0.54 0.19 10.9 

ECLIPSE Runtime 5.34 5.06 8.04 6.98 7.51 18.4 6.28 134.5 

Average speed up 36.4 60.1 51.4 39.7 33.7 34.3 33.1 12.3 

 

SUMMARY 

In this chapter, the POD-RBF NIROM has been used to provide rapid estimations of both pressure and 

saturation distributions in 2 different gas reservoir models undergoing depletion, together with their 

associated production data. The homogeneous synthetic gas reservoir and the heterogeneous 

modified Norne gas reservoir models have been examined with and without aquifer influx, for 

different production controls and grid refinement techniques. The accuracy of the NIROM has been 

compared using different RBFs to estimate the reservoir dynamics in hyperspace, while also assessing 

the usefulness of the energy criterion advocated by Xiao et al. (2016) [38] for estimating the number of 

POD basis functions required to describe that hyperspace. The NIROM estimates in this chapter were 

for the same ECLIPSE simulation runs that were used to train the NIROM. However the goal of this 

work is to test NIROM’s performance for new (prediction) cases. Applications of NIROM to gas field 

modelling of prediction cases are considered in the next three chapters. 

From the results that have been discussed in this chapter, it is shown that POD-RBF NIROM can provide 

good estimates of gas reservoir behaviour over time, both in terms of production data and in terms of 

estimating pressure and saturation distributions in reservoir models. NIROM’s satisfactory 

performance in modelling the different production scenarios that were considered in this chapter 

(such as cases with and without aquifer pressure support as well as with different production controls 

and grid refinements) reflect its usefulness to engineers in practical gas field development planning. 

For subsequent POD-RBF implementations, the linear radial basis function is the recommended RBF, 

since it produced reasonable estimates of reservoir behaviour in all the cases that were tested. All the 

other RBFs resulted in poorer estimates in one or more cases. The 99.9% energy criterion provides a 

reasonable estimate of the number of POD basis functions required to properly describe the solution 

of gas reservoir dynamics in hyperspace in many, but not all cases. More POD basis functions are likely 
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to be required when estimating production data, especially when there is water influx into the 

reservoir resulting in water being produced.  

Furthermore, the NIROM was implemented using an interpreted language (MATLAB), but it is between 

12 and 60 times faster than ECLIPSE. The NIROM is likely to provide even greater speed-ups if 

implemented in a compiled language and especially when the POD reduction is discounted, as would 

be the case when performing predictions of reservoir behaviour after training the NIROM.  

The cases considered in this chapter are summarised in Table 5.4. The linear RBF is used for the rest 

of the analysis in this work, for predicting new unseen cases that the NIROM is not trained on. 

 

Table 5.4: A summary of the cases that were considered in this chapter and the key findings. 

Cases Considered Summary of Findings 

• Replicating specific examples 

• Evaluated 2 gas reservoirs, including a real 
field: 
o homogeneous synthetic gas reservoir 
o modified heterogeneous Norne gas 

field 

• Parameters evaluated: 
o Production rate 
o BHP limit 
o Aquifer models 

▪ One Numerical 
▪ Two Analytical 

o Grid refinement 
▪ Local grid refinement 
▪ Tartan grid 

Key Findings 

• Sensitivity analysis on the most suitable radial 
basis function(s) for NIROM’s interpolation – 
linear RBF was most consistently satisfactory 

• Sensitivity analysis on the number of POD basis 
functions that are required to implement 
NIROM – 99.9% energy criterion may suffice for 
grid distributed property estimations but not 
for production variables’ estimation  

General Findings 

• Developed NIROM for gas field modelling with 
ECLIPSE simulation data 

• Showed that the NIROM is capable of modelling 
different production dynamics such as sudden 
changes in pressure, presence of aquifer and 
different grid refinements  

• NIROM can satisfactorily reproduce ECLIPSE 
simulation results with speed-up of at least an 
order of magnitude.  
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6.CHAPTER 6: CONSTANT PARAMETER PREDICTIONS - RESULTS AND DISCUSSION 

In this chapter, the POD-RBF NIROM is used to predict the production data and 3D distribution of 

reservoir pressure and saturations for unseen inputs, using 4 different gas reservoir models. These 

reservoir models are a homogeneous synthetic single well model, a realistic heterogeneous gas field 

with 3 wells, a water coning gas reservoir with one producer and a real gas field, Field X. The properties 

of these reservoirs as well as their simulation parameters were given in Chapter 4. The application of 

POD-RBF NIROM in this chapter covers the forecasting of the reservoir simulation results for the above 

listed gas reservoirs, with and without aquifers or shut-in wells, for constant parameter scenarios. The 

linear RBF was used to learn the reservoirs’ dynamics and performance as well as interpolate the 

reservoirs’ performance in prediction cases that the NIROM was not trained on. NIROM prediction 

cases are within and outside the range of training parameter values and training duration. This chapter 

also examines the accuracy and speed of the NIROM predictions by comparing them with the results 

obtained from Schlumberger’s ECLIPSE reservoir simulator. 

Except for the synthetic gas model, all the other models have more than 10000 grid cells. So to better 

illustrate the simulation results for pressure and saturation distribution across the grid cells, the 

average of the reservoir properties at each report step have been plotted for both the NIROM and 

ECLIPSE. Error plots show the difference between NIROM predictions and ECLIPSE simulations. 

‘Original’ simulation results from ECLIPSE are plotted as small circles while NIROM predictions 

(‘Prediction Q’, where Q is the index for that prediction’s parameter from the corresponding Tables in 

Chapter 4) are in dashed lines with the same colour as their corresponding ‘Original’ result. The range 

of training runs for each prediction case has been highlighted within greyed backgrounds. For 

production data, blue solid lines represent results from ECLIPSE (Original), red dashed lines are NIROM 

prediction results and green dashed lines are plots of the absolute error between ECLIPSE’s results 

and NIROM results. 

Furthermore, all simulation cases have been investigated by training NIROM with 5, 10, 15 and/ or 20 

training runs between the ranges of training parameters. All the results shown in the following 

sections are based on 99.9% energy criterion, unless mentioned otherwise.  

 

6.1 SYNTHETIC GAS MODEL 

In this section, NIROM has been implemented and tested for four production scenarios (production 

rate, BHP, porosity and enumeration). Since the synthetic gas reservoir is homogeneous and simple, 

it presented a suitable example for quickly testing and validating NIROM for the four production 
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scenarios. Also, the synthetic reservoir’s pressure and saturation behaviours are similar, so only the 

results for pressure distribution are shown here for brevity. 

 

6.1.1 RATE CONTROLLED PRODUCTION 

The reservoir pressure experiences a steady decline during constant rate production and the higher 

the production rates, the steeper the pressure depletion, as expected. The results in Figure 6.1 show 

NIROM’s prediction of the synthetic reservoir’s average pressure distribution when the NIROM was 

trained with 5, 10, 15 and 20 training runs. NIROM predictions of the average reservoir pressure 

satisfactorily match those of ECLIPSE for predictions within the range of training parameters 

(predictions 2 to 5), while predictions outside the range of training parameters (predictions 1 and 6) 

are less accurate. NIROM prediction errors are less than 0.5% within the range of training parameters 

(predictions 2 to 5). Figure 6.1 also shows that for predictions within the range of training parameters, 

NIROM’s prediction errors are lower as the number of training runs increases, while for predictions 1 

and 6, which are outside the range of training runs, NIROM prediction errors increase as the number 

of training runs increase.  

Comparing both predictions outside the range of training runs, NIROM’s estimation for prediction 6 

are generally better than those for prediction 1, NIROM consistently under-predicted prediction 1. 

This prediction behaviour for parameters outside the range of training parameters can be attributed 

to the closeness of a particular prediction case to the range of training parameters. For instance, by 

visual inspection of Figure 6.1, prediction 6 is closer to the range of training parameters (greyed 

region) than prediction 1.  

 

 
 

a) 5 training runs 
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b) 10 training runs 

  

c) 15 training runs 

  

d) 20 training runs 
Figure 6.1: NIROM predictions of the average pressure in the synthetic gas reservoir during constant rate production. 

NIROM predictions 2 to 5 give satisfactory results, while predictions 1 and 6 are worse. Predictions 1 and 6 are outside 
the range of parameters used in training the NIROM, although NIROM’s prediction 6 has less error than prediction 1. 

These results were obtained using 5, 10, 15 and 20 equally spaced training runs and in most cases, NIROM errors are 
less than 10psi. 
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Figure 6.2 shows NIROM predictions of the cumulative gas production and the field pressure from 

production data. In all the six predictions, the field pressure was more accurately forecasted than the 

cumulative gas production, but NIROM adequately mimics the patterns of both production variables. 

NIROM predictions 2 to 5 (within the range of training runs) were better than those outside the range 

of training runs (predictions 1 and 6). Figure 6.2 shows the results of some of the NIROM predictions 

when NIROM was trained with 5, 10, 15, and 20 training runs.  

 

    
i) 5 training runs; Prediction 2 ii) 10 training runs; Prediction 2 

    

iii) 15 training runs;  Prediction 2 iv) 20 training runs; Prediction 3 
Figure 6.2: NIROM predictions of the cumulative gas production and the reservoir pressure for the synthetic gas 

reservoir using 1 POD basis function (energy criterion). In these results, the best case was chosen in as an example 
and NIROM adequately predicts the pattern of pressure depletion and gas production from the reservoir. The NIROM 
can give better results with an additional POD basis function. Similar results were obtained for predictions within the 

range of training runs, with less accurate results from predictions 1 and 6. NIROM predictions of the reservoir pressure 
are more accurate than those of the cumulative gas production. 

 

In the rest of section 6.1, it is shown that NIROM has similar behaviours of 1) predictions within the 

range of training runs were better than those outside the range of training runs and 2) increasing the 

number of training runs gave better results for predictions within the range of training runs but worse 

results for predictions outside the range of training runs. The first point above is in agreement with 

the work of Kostorz et al (2020)[99]. In section 6.6 it would be shown that implementing NIROM with 

more training runs takes longer computational time. This suggests that the choice of the number of 
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training runs for NIROM implementation involves striking a balance between accuracy and 

computational speed. 

 

6.1.2 BHP CONTROLLED PRODUCTION 

In this section, the NIROM has been trained with BHP values between 450 and 1250psi, with a weak 

numerical aquifer for pressure support. Here also the best NIROM predictions are for predictions 

within the range of training parameters, and prediction 6 is better than prediction 1 (Figure 6.3). 

Nevertheless, there is less than 6% average absolute error from NIROM predictions of the reservoir’s 

pressure distribution, both within and outside the range of training runs. Within the range of training 

runs, NIROM predictions were estimated with less than 0.4% (Figure 6.3) error. Figure 6.4 shows that 

NIROM performance was similar for predictions of the production data (cumulative gas production 

and field pressure). The results in Figure 6.3 and Figure 6.4 were obtained from training NIROM with 

5, 10, 15 and 20 training runs. 

 

  

i) 5 training runs 

  
ii) 10 training runs 
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iii) 15 training runs 

  
iv) 20 training runs 

Figure 6.3: NIROM predictions of the average reservoir pressure in the synthetic gas reservoir for BHP controlled 
production. All 6 predictions were reproduced by the NIROM with absolute errors of less than 6%, even for prediction 

cases outside the range of training parameters. 

 

In chapter 5 it was shown that producing the synthetic gas reservoir at 1000psi BHP limit meant that 

most of its GIIP was produced in the first 5 report steps (1500days). It was also shown that with aquifer 

pressure support, gas production could continue until the end of 20 years but at less than 10% of the 

starting production rate. This behaviour is also seen in Figure 6.4b where the initial production rate of 

the synthetic gas reservoir was more than 1000MMscf but the rate reduced to less than 10MMscf 

before 1000 days, with a gradual decline to less than 100Mscf at the end of 20 years. As was seen in 

chapter 5, Figure 6.4 also shows that NIROM trained with the optimal number of training runs (99.9% 

energy criterion) could not accurately predict the reservoir’s production data beyond the first few 

report steps (less than 500days). The change in both variables (cumulative production and production 

rate), i.e. their “simulator” values, were negligible after the initial 500 days, and the POD-RBF NIROM 

was unable to accurately predict the low/ “negligible” values. This was resolved in chapter 5 by adding 

extra POD basis functions to the NIROM.  
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i) 5 training runs ii) 10 training runs 

    

iii) 15 training runs iv) 20 training runs 
Figure 6.4: NIROM’s prediction 3 of the cumulative gas production and the reservoir pressure for the synthetic gas 

reservoir produced by BHP limit control. NIROM adequately predicts the pattern of pressure depletion and gas 
production from the reservoir and can give better results with an additional POD basis function. Similar results were 

obtained for predictions 1, 2, 4 to 6, although predictions 1 and 6 were the least accurate. 

 

6.1.3 UNCERTAIN CONSTANT POROSITY CASE 

In this section, the POD-RBF NIROM was evaluated for predicting simulation solutions for the synthetic 

gas reservoir with different constant porosity values from Table 4.2. Overall, NIROM prediction of 

cases within the range of training runs were better than those outside the range of training runs 

(Figure 6.5 and Figure 6.6). From Figure 6.5, prediction 6 gave worse results than prediction 1, even 

though they were both outside the range of training runs. NIROM’s prediction 1 satisfactorily 

mimicked the pattern of ECLIPSE simulation for the low porosity case (0.2 porosity), since the lower 

boundary of the training runs had a similar pressure decline behaviour in its later time. The errors for 

NIROM’s predictions 2 to 5 were mostly less than 0.2% (Figure 6.5). As for the earlier synthetic gas 

reservoir scenarios, increasing the number of training runs gave better results for predictions 2 to 5 

but worse results for predictions 1 and 6 (Figure 6.5). Figure 6.6 shows the best NIROM predictions of 

cumulative gas production and the reservoir pressure using 99.9% energy criterion. NIROM 

adequately mimics the patterns of ECLIPSE simulation results. 
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a) 5 training runs 

  
b) 10 training runs 

  
c) 15 training runs 

  
d) 20 training runs 

Figure 6.5: NIROM predictions of the average reservoir pressure in the synthetic gas reservoir with different porosity 
values. Predictions 2 to 5 were satisfactorily reproduced by the NIROM while the predictions outside the range of 
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training parameters (predictions 1 and 6) were less satisfactory. Despite the low porosity value in prediction 1 NIROM 
adequately predicted the pattern of pressure depletion in the reservoir.  

 
 

    
5 training runs 10 training runs 

    
15 training runs 20 training runs 

Figure 6.6: NIROM’s prediction 3 of the cumulative gas production and the reservoir pressure for the synthetic gas 
reservoir with different constant porosity values. NIROM adequately predicts the pattern of pressure depletion and 

cumulative production from the reservoir. 

 

6.1.4 INITIALIZATION BY ENUMERATION 

This case is similar to the constant production rate case, except that the synthetic gas reservoir has 

been initialised from a restart file (enumeration) rather than the typical initialisation by equilibration. 

After a reservoir’s dynamic model has been built and history matched, subsequent predictions of the 

reservoir’s performance are carried out based on the history matched dynamic model. But instead of 

running the full history of the reservoir’s performance before commencing each prediction run, 

engineers save some time by initialising the prediction simulations from a restart file of the reservoir’s 

production history, a process called enumeration. It was important to test NIROM on these cases to 

determine if NIROM can tolerate predictions that depend on information from restart files. 

In this section, the same prediction parameters as in the rate controlled production (section 6.1.1) 

were used for NIROM predictions. The base case reservoir was run to obtain restart files for 6 report 

steps so that the predictions by enumeration commenced from the end of the 5th report step to the 

25th report step (1501 days to 7500 days). The results in Figure 6.7 and Figure 6.8 are similar to those 
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established from the other results of the synthetic gas reservoir, i.e. better results within the range of 

training parameters that get better with more training runs and worse results outside the range of 

training runs that get worse with more training runs. Here also NIROM satisfactory predicts the 

distribution of pressure as well as the production data. Prediction 6 which is closer to the range of 

training runs has less error than prediction 1 (Figure 6.7).  

 

  
i) 5 training runs 

  
ii) 10 training runs 

  
iii) 15 training runs 
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iv) 20 training runs 

Figure 6.7: NIROM predictions of the average pressure in the synthetic gas reservoir during constant rate production 
that was initialised by enumeration. NIROM gives satisfactory predictions of cases within the range of training 

parameters using 5, 10, 15 and 20 equally spaced training runs. Predictions outside the range of training parameters 
are less accurate. 

 

    
i) 5 training runs ii) 10 training runs 

    
iii) 15 training runs iv) 20 training runs 

Figure 6.8: NIROM predictions of the cumulative gas production and the reservoir pressure for the synthetic gas 
reservoir when initialised by enumeration. NIROM adequately predicts the reservoir pressure and cumulative gas 

production from the reservoir. The best NIROM prediction (prediction 2) for 5, 10, 15, and 20 training run cases are 
shown in (i) to (iv) above. Similar results were obtained for other predictions within the range of training runs and less 

accurate results from predictions 1 and 6.  

 

The general deduction from all the cases that were considered in this section (6.1) is that the NIROM 

satisfactorily predicts gas reservoir performance of unseen constant parameters scenarios, and it 

performs better during interpolation of unseen cases than during extrapolation. 
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6.2 HETEROGENEOUS GAS RESERVOIR (MODIFIED NORNE FIELD) 

In this modified Norne gas field case, NIROM predictions have been investigated outside of the range 

of training parameters and training duration. Given that the reservoir is heterogeneous, NIROM 

predictions of both pressure and saturation distribution in the reservoir are shown below, as averages 

at every report step (annually).  

 

6.2.1 RATE CONTROLLED PRODUCTION 

For the prediction of the average reservoir pressure and saturation distribution in Figure 6.9 and 

Figure 6.10 respectively, predictions 1 and 6 (outside of the range of training runs) have values that 

are quite close to the boundaries of the training parameters, hence the minimal error in their 

predictions (less than 0.2bar). However in the 4 extra report steps (1500 days) that NIROM was not 

trained for, there is an increase in prediction errors, especially for prediction 6. This demonstrates that 

the most satisfactory application of NIROM for predicting reservoir performance is not only restricted 

to being within the range of training parameters but similar restrictions apply to the prediction 

durations. NIROM works best for predictions of the same or shorter durations as the training runs. 

This experience is similar to the pressure and saturation distribution results of the Norne field with a 

constant rate or BHP production control (Figure 6.9 to Figure 6.12). 

 

  
Figure 6.9: NIROM predictions of the average reservoir pressure across all the grid cells of the Norne gas reservoir. 

NIROM reproduces the average reservoir pressure in the reservoir with errors of less than 0.5bars, although predictions 
are less accurate in the last 4 report steps that NIROM was not trained on. Prediction 6 gives the highest error of all 6 

prediction cases, as it is the farthest from the range of training runs. 

 

For the average pressure distribution results in Figure 6.9, 5 POD basis functions (energy criterion) 

were needed to construct the NIROM and in Figure 6.10, the average gas saturation plot across the 

reservoir, 13 POD basis functions (energy criterion) were needed to construct the NIROM. Since more 

POD basis functions were required to capture the gas saturation distribution behaviour, this suggests 
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that capturing the changes in the gas saturation distribution in the reservoir is more complex than 

capturing the pressure distribution changes. The NIROM was trained with 10 training runs. 

  

  
Figure 6.10: NIROM gives satisfactory predictions of the gas saturation distribution in the Norne gas field for predictions 

of similar production duration and range of training parameters. Outside the training runs’ duration and range of 
parameters, NIROM predictions are less accurate. Prediction 6 has the most error in prediction and especially after the 

initial 21 report steps, because it is the most extreme prediction case.  

 

6.2.2 BHP CONTROLLED PRODUCTION 

  
Figure 6.11: Average reservoir pressure distribution at different report steps of the NIROM trained on 10 equally spaced 
training runs. Prediction 1, the farthest from the range of training runs, has the highest prediction error during the time 
interval for which the model was trained, and the least error deviation outside of the training duration of the NIROM. All 

the other errors are negligible, mostly less than 0.5%. 

 

Figure 6.11 and Figure 6.12 are plots of the average pressure and saturation distributions in the 

modified Norne field produced at constant BHP limits, respectively. In both figures, prediction 6 is 

close to the lower boundary of the training parameters while prediction 1 is not close to the upper 

boundary of the training data. It was noticed that although both NIROM predictions are satisfactory 

(less than 0.6bar absolute error), yet prediction 1 which is farther from the range of training 

parameters, exhibits more error than prediction 6. This reinforces what was indicated in prior results 
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that NIROM gives better prediction results for parameters outside but within close proximity to the 

range of training runs, than in predictions for parameters father away from the range of training runs. 

Seven (7) POD basis functions (99.9% energy criterion) were required to obtain the NIROM results in 

Figure 6.11 (for pressure distribution) while 16 POD basis functions (99.9% energy criterion) were 

required for Figure 6.12 (for gas saturation distribution). In Figure 6.12 it was observed that NIROM 

predictions were least accurate during the 4 extra report steps that NIROM was required to predict. 

Otherwise, NIROM predictions were mostly less than 0.1bar for pressure distribution and less than 

0.005 for saturation distribution.  

 

  
 Figure 6.12: Average gas saturation in the Norne field model produced by constant BHP control with 10 training runs. 

Prediction errors are negligible, especially in the duration for which the NIROM has been trained. 

 

Eighteen (18) other production performance data were predicted with NIROM. These production data 

include individual well and cumulative reservoir BHPs as well as gas and water production rates and 

ratios (Figure 6.13). These data are not reported for specific grid cells but are a continuous array of 

values across the reservoir or well(s). 9 POD basis functions were required to attain satisfactory 

predictions of these data, even though the energy criteria discussed in section 3.3 anticipated that 

NIROM should require 3 POD basis functions. The most difficult production variables to predict with 

NIROM were the water-related variables especially the water-gas ratios, Figure 6.13 (even though 

their values are small in comparison to other production data). For those production variables, NIROM 

predictions got better as more POD basis functions were used to train the NIROM (Figure 6.14). This 

is in agreement with Xiao (2016) [38], who proposed that better NIROM results can be obtained by 

increasing its number of POD basis functions.  
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Figure 6.13: NIROM predictions of well and field gas and water production rates as well as BHP for prediction 5 of the 

modified Norne Field. Satisfactory results were obtained with NIROM trained on 10 training runs and 9 POD basis 
functions (energy criterion = 3 POD basis function). Similar results were obtained for predictions 2, 3 and 4, which are 

within the range of training runs and relatively less accurate results from predictions 1 and 6.  
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Figure 6.14: NIROM predictions of water gas ratios in all 3 wells and field gas production for prediction 5. These 

predictions were mostly for water-related production variables and do not adequately match those of ECLIPSE. This 
result is based on 9 POD basis functions, (energy criterion = 3 POD basis function). 

 

From the water-related production data results in Figure 6.14c - f in addition to the production data 

results seen earlier in Figure 6.4b, it was observed that NIROM’s inability to satisfactory predict these 

production data could be linked to the magnitude of these production data, which are negligibly small 

compared with the other production data. This suggests that the NIROM is unable to cope with 

prediction cases where there is very small change in data over time. 

 

6.3 WATER CONING GAS RESERVOIR 

6.3.1 RATE CONTROLLED PRODUCTION 

From Figure 6.15 and Figure 6.16, it is shown that NIROM’s predictions within the range of training 

parameters are satisfactory, with errors of less than 3psia for pressure and 0.003 for saturation. 

Outside the range of training parameters, predictions are not satisfactory. NIROM was trained with 10 

training runs for these predictions. For the pressure distribution predictions (Figure 6.15), 2 POD basis 

functions (99.9% energy criterion) were required and for gas saturation distribution predictions, 88 

POD basis functions (99.9% energy criterion) were required. The high number of POD basis functions 

required to predict the reservoir’s gas saturation distribution is linked to the water influx and water 

coning activities in the vicinity of the well. Commercial simulators typically require more 
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computational time to simulate the intricate dynamics of water-related scenarios (such as water 

flooding or water coning into the production well) hence similar challenges are attributed to NIROM’s 

need for more basis functions in predicting the gas saturation across the reservoir. 

 

  
Figure 6.15: Average reservoir pressure predictions from NIROM match those from ECLIPSE, with negligible error for 

predictions 2 to 5 that are within the range of training parameters, while predictions outside the range of training 
parameters have larger errors. NIROM was trained with 10 training runs and 2 POD basis functions. 

 

 
 

Figure 6.16: Average gas saturation distribution in the water coning model shows negligible error for predictions within 
the range of training parameters (predictions 2 to 5), and more errors outside the range of training parameters 

(predictions 1 and 6). NIROM errors are mostly less than 10% in comparison to ECLIPSE. NIROM adequately captured 
the non-linear decrease of gas saturation distribution in the reservoir with 88 POD basis functions. 

 

Figure 6.17 and Figure 6.18 are plots of the gas saturation and pressure distribution in the water 

coning gas reservoir respectively, for prediction 3. Each column of both plots shows the distribution 

of the reservoir property across over 12000 grid cells of the reservoir at the beginning of every year. 

Figure 6.17 shows that the error in NIROM’s prediction of the gas saturation distribution is mostly 

negligible while Figure 6.18 shows that the error in NIROM’s prediction of the pressure distribution in 
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the reservoir was less than 1%. In both cases, it can be seen that NIROM satisfactory mimics ECLIPSE’s 

simulation. 

 

   
Figure 6.17: Gas saturation distribution in all grid cells of the water coning gas reservoir when produced by constant 

rate control. The error in this NIROM prediction (prediction 3) was generally negligible. 

 

   
Figure 6.18: Pressure distribution in all grid cells of the water coning gas reservoir, normalised to zero mean and using 
2 POD basis functions (as suggested by the energy criterion). The error in this NIROM prediction 3 was less than 1% of 

the original solutions from ECLIPSE. 

 
For the other production performance data that NIROM was used to predict, 4 POD basis functions 

were required to obtain satisfactory NIROM predictions (Figure 6.20). This is in contrast to the number 

of basis functions computed by the 99.9% energy criterion (1 POD basis function). Nevertheless, both 

the satisfactory results (Figure 6.20) and those from using the energy criterion (Figure 6.19) are 

included below. A comparison of the improvements from Figure 6.19 to Figure 6.20 further 

demonstrates the possible benefit of increasing the number of basis functions used in NIROM 

simulations.  
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Figure 6.19: NIROM’s prediction 4 of different reservoir production data using 1 POD basis function (99.9% energy 

criterion) and 10 training runs. NIROM predictions of cumulative gas production and average reservoir pressure are the 
most accurate followed by those of gas production rate, water gas ratio, well BHP and water production rate, which 
were less satisfactory. Prediction of the cumulative water production was the least accurate. Adding 2 more POD 

functions gave a satisfactory prediction of all the production variables (Figure 6.20). 
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 Figure 6.20: NIROM’s prediction 4 of different reservoir production data with a satisfactory match. These results were 
obtained using 4 POD basis functions (99.9% energy criterion = 1 POD basis function) and 10 training runs. Adding 2 

more POD functions gave accurate estimates of all the water and gas production variables. 

 

6.3.2 BHP CONTROLLED PRODUCTION 

Here, as in other cases, predictions within the range of training parameters have the least errors while 

those outside the range of training parameters have the highest error values (Figure 6.21 and Figure 

6.22). From the average gas saturation predictions of  Figure 6.22, it is again seen that prediction 6 

which is much further out of the range of training parameters exhibits more prediction errors in 

comparison to prediction 1. Furthermore, it was observed that 2 POD basis functions (the energy 

criterion)were required to obtain satisfactory predictions of the average pressure distribution in the 

reservoir while 133 POD basis functions (the energy criterion) were required to satisfactorily predict 

the gas saturation distribution in the reservoir. The NIROM results in Figure 6.21 and Figure 6.22 were 

trained with 10 runs.  

 

 
 

Figure 6.21: NIROM predictions of average pressure distribution in a water coning model produced at constant BHP, 
using 2 POD basis functions. Predictions within the range of training parameters have lower error margins than those 

outside the range of training parameters. However, errors are mostly less than 1% from ECLIPSE’s solution.  
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 Figure 6.22: Average gas saturation predictions for the water coning gas reservoir model using 133 POD basis 

functions. Here the reservoir was produced by BHP control, and unlike for the rate controlled production example where 
both extrapolation predictions (1 and 6) were least accurate, prediction 6 was least accurate in this example. Prediction 

6 had a much larger error margin than the other predictions cases that had less than 10% prediction error and were 
comparatively more accurate. 

 

6.4 FIELD X 

In these examples, the NIROM was trained with the constant production values/ parameters in Table 

4.10 (page 92). Figure 6.23 shows that NIROM predictions within the range of training runs are better 

than those outside the range of training runs. The predictions within the range of training runs also 

improved as the number of training runs increased from 5 to 20 while the predictions outside the 

range of training parameters got worse as the number of training runs increased. This is in agreement 

with all the constant parameter examples in previous sections of this chapter. This behaviour is the 

same for the average of the saturation distribution in Figure 6.24.  

NIROM satisfactorily predicted most of Field X’s production data with the optimal number of POD 

basis functions i.e. energy criterion = 3 (Figure 6.25). Four of the five least accurately predicted 

production variables are water-related (water production and aquifer influx rates and their totals). A 

similar behaviour was observed for the water coning and Norne gas field, suggesting that the NIROM 

finds it more challenging to predict water-related production variables. This behaviour could be 

because of the relatively lower rate of change of water production compared to the change in other 

variables over time, or  perhaps this behaviour is in agreement with the work of Kostorz et al. (2020) 

[99] where the NIROM could not accurately capture the onset of water influx/ the shock front in their 

water flooding scenario. The least accurate NIROM predictions can however be improved by adding 

more POD basis functions to their implementation. Figure 6.25 shows NIROM predictions of prediction 

2 trained with 5 runs. Training NIROM with 5 runs gave the best result for the production variables, 

even though this was not the case for the pressure and gas saturation distribution predictions shown 

in Figure 6.23 and Figure 6.24. 
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a) 5 training runs 

  
b) 10 training runs 

  
c) 20 training runs 

Figure 6.23: NIROM’s prediction of the average pressure distribution in Field X when it was produced at different 
constant production rate values. Predictions 2 to 5 were always more accurate than predictions 1 and 6 (which were 
outside the range of training parameters). NIROM’s predictions of cases 2 to 5 which are within the range of training 

parameters improved  as the number of training runs increased, while NIROM’s prediction of cases 1 and 6 got worse 
as the number of training runs increased from 5 to 20. 
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a) 5 training runs 

  
b) 10 training runs 

  
c) 20 training runs 

Figure 6.24: NIROM’s predictions of the average gas saturation distribution in Field X at every report step. In these 
cases, Field X was produced at different constant production rate values. Here also, predictions 2 to 5 (the interpolation 
cases) are more accurate than predictions 1 and 6 (the extrapolation cases). However, the prediction cases that were 

within the range of training parameters get better as the number of training runs increased while the extrapolation cases 
got worse as the number of training runs increased. 
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Figure 6.25: NIROM’s prediction 2 of Field X’s production variables using 5 training runs. The water production and 

aquifer influx variables were the least accurately predicted variables. Otherwise, most of the other NIROM predictions 
were satisfactory.  

 

From the NIROM prediction results that have been shown in this chapter, it can be seen that 

implementing the NIROM based on the 99.9% energy criterion of  3.5 (optimum number of basis 

functions) gives satisfactory predictions for the grid distributed properties. However for the 

production variables, more basis functions were required to obtain satisfactory results than were 

suggested by the energy criterion, especially when the progressive change in a production variable 

has small values with increasing production time. Also recall from chapter 3 that the training data for 

the time series production variables are typically less than those of the grid distributed reservoir 

properties. For instance for the modified Norne gas field that was discussed in section 6.2, each report 

step had over 44000 data points (grid cells) for the grid distributed properties and it had 18 data points 

for the 18 production variables that were modelled. However these fewer data points come from 

different variables with different units and range of values. The data is normalised to unit values, 

nonetheless, the wide range of variation in the production dataset may still be contributing to why 

the NIROM requires more POD basis functions to accurately predict some of the production variables. 

Hence it is proposed that the NIROM be implemented with the full POD basis functions for the 

production data. This would have minimal impact on the NIROM’s total runtime, particularly during 

POD projection and back-projection, since they have fewer data points and the NIROM would give 
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more accurate results. Besides, the NIROM implementation framework always computes the full and 

optimal number of POD basis functions that are required for predicting each property that is modelled 

with the NIROM (grid property or production data), whether or not they are eventually used for 

implementing the NIROM. Thus it is proposed that the POD-RBF NIROM can be suitably implemented 

with the optimal number of POD basis functions for predictions of the grid distributed properties and 

the full rank POD basis functions can be used for predicting the production variables. 

 

6.5 ERROR ANALYSIS  

In this section, the average percentage RMSEs (based on Equation 3.20) in all 6 predictions of each 

simulation case that has been considered (both within and outside the range of training runs) are 

provided for comparative analysis. This analysis highlights NIROM’s suitability for different production 

scenarios as well as the most suitable number of training runs for each case. Figure 6.26 shows the 

average RMSEs in the 4 constant parameter prediction cases of section 6.1 and Figure 6.27 shows the 

average percentage RMSEs for the constant parameter predictions in sections 6.2 to 6.4 (modified 

Norne field, water coning model and Field X). The RMSEs shown in this section are also based on 

implementing NIROM predictions with the optimal number of POD basis functions. Although the gas 

saturation distribution in the synthetic gas reservoir was not shown in section 6.1, their average 

percentage RMSEs are shown below. 

From Figure 6.26 and Figure 6.27, it can be seen that 5 training runs can suffice for satisfactory NIROM 

predictions. However a few exceptions, especially the production data predictions, show that training 

NIROM with few training runs does not always lead to the best overall predictions. Some of these 

exceptions are in the prediction of the production data in the constant production rate case and gas 

saturation distribution in the constant BHP limit case. A possible reason for these exceptions could be 

the extent of over- or under-predictions that occur in predictions outside the range of training 

parameters (predictions 1 and 6). It was earlier highlighted that with an increasing number of training 

runs, predictions within the range of training parameters get better, while predictions outside the 

range of training runs get worse. This means that for any given number of training runs, if the errors 

in NIROM’s predictions 1 and 6 are significantly more than the improvement in predictions 2 to 5 

(within the range of training runs), then the average RMSE for that case will be worse. For instance in 

Figure 6.1, whereas the maximum error from the 5 training runs case was less than 100psi, the 

maximum error from the 20 training runs case was more than 200psi. The exaggerated errors in 

predictions 1 and 6 of the 20 training runs case therefore led to a higher average RMSE for that case. 

Nevertheless, these results still show that NIROM can give satisfactory predictions of the grid 

distributed reservoir properties with a minimal number of training runs.  
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Figure 6.26: Average percentage RMSEs of all predictions in each constant parameter case of the synthetic gas 

reservoir model. NIROM predictions of grid distributed pressure and gas saturation give smaller errors than those of the 
production data that require more than the optimum number of POD basis functions to obtain satisfactory results. 

 
The average percentage RMSEs for the prediction of pressure distributions in all 4 reservoir models 

are less than 4% (Figure 6.26 and Figure 6.27), reflecting that NIROM works well for forecasting the 

grid distribution of pressure in different types of gas reservoirs produced with constant parameters. 

For the production data, there are higher NIROM errors since a single average value is computed 

across several production variables (including water-related variables that have larger errors). This is 

in addition to the compounded errors for predictions outside the range of training runs and 

considering that the RMSEs in Figure 6.26 and Figure 6.27 were estimated based on the optimum 

number of POD basis functions required to implement NIROM. Recall that in previous sections (6.1.2 

and 6.1.3) it was shown that accurate predictions of production data required more POD basis 

functions than were computed from the energy criterion. With 10 training runs, the average 

percentage RMSE in the prediction of the gas saturation can be kept below 10%. 
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Figure 6.27: Average of the percentage RMSE for NIROM predictions for the modified Norne field and water coning 
reservoir models. NIROM predictions of the pressure distribution in the reservoirs had lower errors than those for the 

gas saturation distribution. NIROM implemented with 5 training runs consistently gave the least RMSEs. 

 

Table 6.1: Number of POD basis functions required for NIROM predictions. The listed values represent the 
energy criterion except where it is mentioned otherwise. 

Reservoir Model Cases Number of POD basis functions 
required versus energy criterion 

 Production Control Production Rate  BHP Limit  

Modified Norne Field Pressure in grid 5 7  
Gas Saturation in grid 13 16  

Production data 9    (energy criterion = 3) 

Water Coning Reservoir Pressure in grid 2 2  
Gas Saturation in grid 88 133  

Production data 4    (energy criterion = 1) 

Field X Pressure in grid                    2  
Gas Saturation in grid 85   

Production data 3    (energy criterion = 1) 

 
For the synthetic gas reservoir, one POD basis function was sufficient for making all the NIROM 

predictions, i.e. pressure and saturation distribution in all grid cells in addition to production variables.  

Table 6.1 shows the number of POD basis functions that were required to make NIROM predictions 

for the other 3 reservoirs that were considered in this work. In the cases shown in Table 6.1, NIROM 

required the highest number of POD basis functions for implementing predictions of the gas saturation 

distribution in the respective reservoirs and fewer POD basis functions to learn the underlying 

pressure depletion mechanism. This could be likened to the work of Kostorz et al. (2019) [37] where it 

was shown that increasing the number of POD basis functions used for implementing the NIROM may 

improve the accuracy of predicting complex production scenarios like the water saturation 

distribution of a propagating shock front. 
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Nonetheless, the average number of training runs used in this work are fewer than those that were 

used in Kostorz et al. (2019) [37]. Kostorz et al. (2019) [37] used between 200 and 600 training runs for 

their test case which was a 2D oil reservoir undergoing gas flooding. The different reservoir dynamics 

that are considered in their work and this work (pressure depletion gas reservoirs), in addition to the 

different scales of magnitude of the test cases in both works is a possible reason for such a difference 

in the number of training runs required for the NIROM to learn the systems’ dynamics and make 

satisfactory predictions. Further investigation is required to establish this. 

 

6.6 TIME ANALYSIS 

Having seen that NIROM gives satisfactory predictions of reservoir performance in different reservoir 

models, analysing the speed at which NIROM produces these predictions is the other crucial aspect of 

this work. It is particularly important to evaluate NIROM’s speedup for practical simulation cases with 

a large number of simulation grid cells and/ or for reservoirs with complex dynamics such as the 

heterogeneous reservoirs and the water coning model. In this section, the average time spent in 

running simulations with NIROM and ECLIPSE is compared in tables (Table 6.2 to Table 6.4) and with 

stacked column charts (Figure 6.28 to Figure 6.34). ECLIPSE gives a single value for its runtime, but this 

section provides the breakdown of the time that was spent in executing the different aspects of 

NIROM’s simulation (Figure 6.28 to Figure 6.34). CPU time has a unit of seconds in this work, which 

was executed on a workstation with 40 logical processors, 2.4 GHz base speed and 128GB RAM.  

 

6.6.1 SYNTHETIC GAS RESERVOIR 

From Table 6.2, NIROM simulations are between 8 and 17 times faster than ECLIPSE simulations of the 

homogeneous synthetic gas reservoir, depending on the number of training runs used to train the 

NIROM. Table 6.2 along with Figure 6.28 and Figure 6.29 show that most of the time spent in running 

the NIROM was in the pre-processing steps, when extracting training or prediction data from ECLIPSE 

output files into the NIROM’s programming interface. The next step that accounts for the most NIROM 

simulation time was during POD reduction. POD involves matrix inversion, which is computationally 

intensive for large data. So, the more data is used to train the NIROM (in terms of model size/ number 

of grid cells and/ or the number of training runs and report steps) the more time is spent in the POD 

reduction step. Figure 6.28 and Figure 6.29 show a progressive increment in POD reduction time as 

the number of training runs increased. The computation of interpolation weights is also dependant on 

the amount of data available for training the NIROM (number of the training runs). Hence the 

progressive increase in time taken to compute the interpolation weights as the number of training 
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runs increased. The main time spent for NIROM interpolation of new cases is significantly smaller than 

the total NIROM runtime, an average of 0.01 second. 

 

Table 6.2: Summary of time taken to implement the constant production controlled (rate and BHP limit) 
cases of the synthetic gas reservoir. These values correspond to the plots in Figure 6.28 and Figure 6.29. 

Production Control Rate BHP limit 

Number of Training Runs 5 10 15 20 5 10 15 20 

Extracting Training Data 0.15 0.14 0.15 0.12 0.16 0.13 0.16 0.15 

Mean Extraction 0.03 0.04 0.06 0.07 0.02 0.03 0.06 0.07 

POD Reduction 0.05 0.10 0.17 0.25 0.05 0.10 0.17 0.22 

Parameterisation & Normalization 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Computing Interpolation weights 0.03 0.03 0.04 0.07 0.02 0.05 0.09 0.13 

Total NIROM Training Time 0.27 0.32 0.43 0.51 0.26 0.32 0.49 0.57 

Extracting Prediction Data 0.15 0.15 0.14 0.15 0.15 0.15 0.16 0.15 

Normalising Initial Condition Data 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

NIROM Interpolation 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Total NIROM Time 0.42 0.47 0.58 0.67 0.43 0.49 0.66 0.74 

Total ECLIPSE Time 5.51 5.51 5.51 5.51 7.41 7.41 7.41 7.41 

Speed-up (Ratio) 13.1 11.7 9.53 8.19 17.4 15.2 11.2 10.0 

 

 
Figure 6.28: Summary of the time taken to implement the constant production rate cases of the synthetic gas reservoir. 

NIROM speedups of between 8 and 13 times the speed of ECLIPSE are achievable. 
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Figure 6.29: Summary of the time taken to implement the constant BHP cases of the synthetic gas reservoir. NIROM 

speedups of between 10 and 17 times the speed of ECLIPSE are achievable. 

 

Table 6.3: Summary of the time taken to implement the constant porosity and initialisation by enumeration 
for constant production rate cases of the synthetic gas reservoir. These values correspond to Figure 6.30 

and Figure 6.31. 

Production Control Porosity Enumeration (Rate) 

Number of Training Runs 5 10 15 20 5 10 15 20 

Extracting Training Data 0.14 0.13 0.13 0.13 0.1 0.1 0.12 0.12 

Mean Extraction 0.02 0.03 0.05 0.07 0.02 0.03 0.04 0.07 

POD Reduction 0.04 0.09 0.17 0.24 0.03 0.07 0.12 0.19 

Parameterisation and Normalization 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Computing Interpolation Weights 0.02 0.03 0.04 0.06 0.02 0.02 0.03 0.05 

Total NIROM Training Time 0.24 0.29 0.4 0.51 0.17 0.23 0.33 0.44 

Extracting Prediction Data 0.14 0.14 0.13 0.14 0.1 0.11 0.11 0.11 

Normalising Initial Condition Data 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 

NIROM Interpolation 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Total NIROM Time 0.39 0.44 0.54 0.67 0.28 0.35 0.44 0.55 

Total ECLIPSE Time 5.76 5.76 5.76 5.76 5.18 5.18 5.18 5.18 

Speed-up (Ratio) 14.7 13.1 10.6 8.65 18.4 14.9 11.8 9.42 
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Figure 6.30: Summary of the time taken to implement the constant porosity cases of the synthetic gas reservoir. NIROM 

speedup of between 8 and 14 times ECLIPSE are achievable. 

 

 
Figure 6.31: Summary of the time taken to implement initialisation by enumeration for constant production rate cases of 

the synthetic gas reservoir. NIROM speedups of between 9 and 18 times ECLIPSE are achievable. 

 

6.6.2 MODIFIED NORNE GAS FIELD AND WATER CONING GAS RESERVOIR 

From Table 6.4, NIROM is 16 to 30 times faster than ECLIPSE for the heterogeneous Norne field model 

and up to 2 orders of magnitude faster for the water coning model. The breakdown of the time that 

NIROM spent in executing simulations for these models also confirms that the time required for POD 

reduction increases as the number of training runs increases. The time spent in POD reduction 
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represented the most significant individual factor influencing the speedup that is obtainable with the 

NIROM. Besides the time spent for POD reduction, most of the time used in NIROM simulations were 

spent in extracting training data from ECLIPSE into the NIROM framework and also in extracting 

prediction data into the NIROM (Figure 6.32 and Figure 6.33). For the modified Norne field the actual 

time spent on NIROM’s interpolation is 0.03 second, while NIROM interpolates the water coning 

model simulations in 0.05 to 0.07 second. This means that apart from the time spent on training the 

NIROM, up to 4 orders of magnitude speedup is possible with NIROM.  

 

Table 6.4: Breakdown of the average time taken to implement constant parameter simulations of the 
modified Norne field and the water coning reservoir model. POD reduction time increases as the number of 

training runs increase. NIROM achieves at least an order of magnitude speedup for both models. 

Reservoir Model Modified Norne Field Water Coning Reservoir 

Number of Training Runs 5 10 20 5 10 20 

Extracting Training Data 0.89 0.97 0.94 0.18 0.18 0.19 

Mean Extraction 0.35 0.66 1.21 0.11 0.21 0.35 

POD Reduction 1.12 1.79 3.52 0.21 0.45 0.70 

Parameterisation and Normalization 0.02 0.03 0.06 0.01 0.02 0.03 

Computing Interpolation Weights 0.02 0.04 0.08 0.12 0.47 1.09 

Total NIROM Training Time 2.40 3.48 5.81 0.63 1.33 2.36 

Extracting Prediction Data 1.18 1.24 1.16 0.22 0.18 0.18 

Normalising Initial Condition Data 0.003 0.003 0.003 0.003 0.004 0.003 

NIROM Interpolation 0.03 0.03 0.03 0.05 0.07 0.07 

Total NIROM Time 3.62 4.76 7.0 0.90 1.58 2.61 

Total ECLIPSE Time 111.4 111.4 111.4 254 254 254 

Speed-up (Ratio) 30.8 23.4 15.9 281.4 160.4 97.2 

 

 
Figure 6.32: A breakdown of the average time taken to implement NIROM simulations of the modified Norne field. Time 
spent on POD reduction is proportional to the number of training runs. NIROM is 15 to 30 times faster than ECLIPSE. 
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Figure 6.33: Breakdown of the average time taken to implement NIROM for the water coning reservoir. Time spent in 

actual NIROM prediction/ interpolation is negligible, leading to significant speedups of between 97 and 281 times 
ECLIPSE’s run time. 

 

6.6.3 FIELD X 

 
Figure 6.34: The breakdown of the average time spent during NIROM predictions of constant rate cases of Field X. 

NIROM is between 160 and 290 times faster than ECLIPSE in simulating this real gas reservoir case. 

 

Figure 6.34 shows the breakdown of the time taken to run NIROM for the constant production rate 

cases of Field X. From Figure 6.34, it is seen that whereas it takes ECLIPSE over 30 minutes to complete 

a full simulation run of Field X, NIROM predictions can be implemented in under 15 seconds for the 



Chapter 6: Constant Parameter Predictions - Results and Discussion 

154 
 

constant rate predictions. Consistent with the findings for the other reservoirs that were evaluated, 

most of the time spent in implementing NIROM is spent on POD decomposition, followed by data 

extraction from ECLIPSE output files.  

 

6.6.4. ANALYSIS OF SIMULATION SPEEDUP 

Table 6.5 shows a summary of NIROM’s speed-up in all the reservoir cases that were considered in 

this chapter. From Table 6.5 it can be seen that NIROM had higher speed-ups for the predictions in all 

the other gas reservoirs than the synthetic gas reservoir. These other gas reservoirs have more realistic 

and complex production scenarios such as being heterogeneous or experiencing water coning, 

scenarios that are often time-consuming to model in ECLIPSE. Therefore with an average NIROM 

runtime for these more complex reservoir models, the overall NIROM simulation speedup will be 

higher because the corresponding ECLIPSE runtime is higher than average. 

 

Table 6.5: NIROM’s simulation speed-up for the constant parameter test cases considered in this chapter. 

Reservoir Model Synthetic Gas Reservoir 

Production Control Rate Controlled Production  BHP Limit Controlled Production 

Number of Training Runs 5 10 15 20  5 10 15 20 

Speed-up (Ratio) 13.1 11.7 9.53 8.19  17.4 15.2 11.2 10 

Production Control Porosity  Enumeration (Rate) 

Number of Training Runs 5 10 15 20  5 10 15 20 

Speed-up (Ratio) 14.7 13.1 10.6 8.65  18.4 14.9 11.8 9.42 

Reservoir Model Modified Norne Field Water Coning Reservoir Field X 

Number of Training Runs 5 10 20 5 10 20 5 10 20 

Speed-up (Ratio) 30.8 23.4 15.9 281.4 160.4 97.2 291.0 222.8 159.8 

 

Another factor that affects NIROM’s speed-up is the amount of data that was available for training/ 

building the NIROM. For the three gas reservoirs, besides the synthetic reservoir, (Table 6.4 and Figure 

6.34), as well as in other cases that would be seen in chapters 7 and 8, it is observed that NIROM’s 

total runtime increased as the amount of simulation data in the reservoir model increased. The 

amount of data that is available for training the NIROM is in turn dependent on the number of grid 

cells in the reservoir model as well as the frequency at which the reservoir’s simulation solution is 

outputted from the conventional simulator (report steps). In chapter 3, it was shown that the total 

amount of data available for training the NIROM is a product of the number of grid cells, number of 

report steps and number of training runs (nx  nt ns), Equation 3.8. Hence NIROM’s total training 

time for Field X with 125000 grid cells was 5 seconds while its total training time for the Norne field 

and the water coning field (with 44000 and 12000 grid cells respectively) were 2.4 and 0.63 seconds 

for the cases with 5 training runs respectively. 
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NIROM is written in an interpreted language whereas ECLIPSE is in a compiled language and has been 

improved through several iterations since its inception. Hence NIROM has room for more 

computational speed up if it is implemented in a compiled language and when its training time is 

discounted from its total runtime. Other specialised techniques for speeding up the NIROM could 

include, implementing NIROM with hardware (or cloud resources) that offer greater computational 

capacity such as GPUs in addition to investigating other methods for fast data reduction or matrix 

inversion. Some less specialised approaches to speeding up NIROM is to build it with the least number 

of report steps that are sufficient for executing a particular study/ project and with only the active grid 

cells (data points) of a reservoir. If possible, NIROM can be implemented for smaller portions of 

interest in a gas reservoir model (sector models), this would be faster to implement than when NIROM 

is implemented for the full reservoir model.  

The optimum NIROM implementation would require that the engineer strikes a balance between the 

amount of data that goes into the NIROM (this affects simulation runtime) and the NIROM’s accuracy, 

since this depends on the number of training runs for constant parameters cases. 

 

SUMMARY 

In this chapter, the POD-RBF NIROM approach has been investigated for the simulation of grid 

distributed reservoir properties (pressure and saturation) and other well or field specific production 

data, for constant parameter prediction cases. The accuracy of NIROM predictions was compared to 

similar simulation runs from ECLIPSE for 4 gas reservoir models: a homogeneous synthetic gas 

reservoir, a heterogeneous gas reservoir that is similar to the Norne oil field in geology and structure, 

a water coning gas reservoir and a real gas Field X from Woodside Petroleum. NIROM was evaluated 

for predicting the performance of these reservoirs for various scenarios of different production rates, 

BHP limits, porosity values, production by enumeration and equilibration. This chapter also provided 

insight into the extent of computational speedup that is achievable with NIROM for predictions of the 

mentioned gas reservoirs’ performances. 

Through the different examples that have been evaluated in this chapter, it has been shown that 

NIROM is at least an order of magnitude faster than ECLIPSE for constant parameter predictions. It 

was also shown that NIROM gives reasonable accuracy for gas reservoir predictions of unseen or new 

simulation cases, provided that NIROM has been trained within the range of parameters and duration 

that bounds the prediction runs. Simulation accuracy of more than 99% is obtainable with a 

computational speedup of up to 2 orders of magnitude than ECLIPSE. It was further shown that NIROM 

can be constructed with satisfactory accuracy with as few as 5 training runs. Increasing the number of 
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training runs could improve NIROM’s predictions, but this comes at the expense of the simulation 

speedup. For predicting the production variables of the gas reservoirs that were considered, it was 

seen that the number of POD basis functions used to construct the NIROM is crucial to obtaining 

accurate predictions. Predicting individual well or field specific production data such as production 

rates and cumulative productions, especially for production data that experience negligible change 

with time, required the most number of POD basis functions for satisfactory results. Nonetheless, the 

full rank number of POD basis functions can be used NIROM’s simulation of the production data since 

they are fewer than the grid distributed data and would have less impact on NIROM’s overall 

computational time, especially for the realistic reservoirs. 

Table 6.6 is a summary of the cases that have been evaluated in this chapter, as well as the relevant 

findings. 

 

Table 6.6: A summary of the prediction cases and key findings in this chapter. 

Cases Considered Findings 

• Constant Parameter Prediction 
Examples 

• 4 gas reservoirs were evaluated, 
including 2 real fields 
o homogeneous synthetic gas 

reservoir 
o modified heterogeneous 

Norne gas field 
o homogeneous water coning 

gas reservoir 
o Real gas field X from Woodside 

• Parameters evaluated 
o production rate 
o BHP limit 
o Porosity 
o Enumeration 

Key Findings 

• NIROM performs best when the training runs are within a 
similar range of parameters and production duration as 
the prediction runs 

• With increasing number of training runs, NIROM gives 
better predictions within the range of training runs and 
worse predictions outside the range of training runs 

• 10 training runs is a good balance between accuracy and 
speed of NIROM performance 

General  Findings 

• Demonstrated the NIROM’s predictive capacity for gas 
field modelling, based on different constant production 
constraints 

• 99.9% energy criterion is sufficient for determining the 
number of POD basis functions that are needed for 
NIROM predictions of spatially distributed reservoir 
properties 

• NIROM with the full rank POD basis functions should be 
used for predicting time series production data for the 
best results  

• NIROM gives up to 2 orders of magnitude speed-up for 
gas performance modelling  

• NIROM does not cope well with simulation cases that 
experience little to no property changes over time 
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7.CHAPTER 7: VARYING PARAMETER PREDICTIONS - RESULTS AND DISCUSSION 

In this chapter, the POD-RBF NIROM has been applied to modelling the performance of more realistic 

time-varying production scenarios. All production wells were initially set to rate controlled production 

with a bottom hole pressure (BHP) or tubing head pressure (THP) limit. In other words, rate controlled 

production switches to BHP or THP control when ECLIPSE estimates that a well is unable to meet the 

intended production rate. 

 However, both the well production rates and well pressure limit are assigned as the parameters for 

training and prediction runs for the entire production lifecycle. Two types of varying production 

profiles are considered for the 20 years production lifecycle of the test gas fields (synthetic gas 

reservoir, modified Norne gas field and Field X). One production profile has seasonally varying rates, 

these are divided into at least 240 report steps (30 days intervals). The other varying production profile 

has less variability and is designed to have 75 report steps (100 day interval), with the production rate 

changing after at least 1000 days, approximately triennially. The production profiles for the prediction 

and training runs of all test examples are provided accordingly. 

POD-RBF NIROM was used to model the pressure and gas saturation distribution in all the active grid 

cells of the three gas reservoirs, up to 125,000 grid cells for Field X, as well as the corresponding 

production variables, i.e. gas and water production rates, cumulative production and ratios. For ease 

and brevity of showing the results of NIROM predictions of the grid distributed reservoir properties 

(pressure and gas saturation), the average of the property value across all grid cells of the reservoir 

have been plotted at each report step. The optimal number of POD basis functions (the equivalent of 

99.9% energy criterion,  3.5) have been used to generate all the examples shown in this chapter and 

the linear RBF was used to learn and interpolate the NIROM’s predictions. NIROM’s performance for 

predicting new unseen cases was then compared against similar simulation solutions from ECLIPSE, 

for both accuracy (errors, absolute errors or % errors and RMSEs) and speed. 

 

7.1 SYNTHETIC GAS RESERVOIR MODEL  

7.1.1 SEASONALLY VARYING PRODUCTION PROFILE 

This example consists of mixed production control cases. For instance in Figure 7.1, two of the six 

predictions (predictions 1 and 2) have experienced a switch in their production control before the end 

of the simulation lifecycle. The other 4 prediction cases are produced by varying only their production 

rates throughout the simulation lifecycle. This case has 252 report steps at intervals of 30 days and 

NIROM simulations have been implemented with 5, 10, and 20 training runs (Figure 7.4).  
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Figure 7.1: A seasonally varying production profile with mixed production control. In this example, predictions 1 and 2 

switched to BHP limit control before the end of the production lifecycle. The other predictions are on varying rate control 
throughout the production duration. NIROM simulations of this case are shown in Figure 7.2 and Figure 7.7, below. The 

corresponding training runs for this prediction example are in Figure 7.4. 

 

The results in Figure 7.2 show that NIROM can satisfactorily predict the pattern of pressure 

distribution in the synthetic gas reservoir with a varying production profile and mixed production 

controls (Figure 7.1). The NIROM trained with 5, 10 and 20 training runs (Figure 7.4) gives varying 

degree of accuracy of predictions. Cases with mixed production controls generally experienced the 

most prediction errors, especially at the time interval where the production control was switched (i.e. 

predictions 1 and 2 in Figure 7.2). Nevertheless, NIROM gives satisfactory predictions with most errors 

lying within the vicinity of ±10%. NIROM predictions with 10 training runs gave more accurate 

predictions than when NIROM was trained with 5 or 20 training runs. It is suspected that the accuracy 

of the NIROM’s performance in these cases is linked to how much of the varying prediction profiles 

were captured within the range of training runs’ profiles. This was checked by generating another set 

of training runs with non-mixed production controls (Figure 7.5), i.e. varying production rates only, 

and using them to predict the cases in Figure 7.1 (with mixed controls). In this case, the resulting 

predictions are shown in Figure 7.6. The NIROM predictions in Figure 7.6 exhibit significantly larger 

errors than those in Figure 7.2, since they were trained with non-mixed controls and did not learn the 

behaviour of the mixed control systems of the prediction production profiles. This emphasises the 

need for training NIROM with the range of parameters and similar scenarios that would be considered 

during its prediction runs. 

Creating the right range of training parameters or scenarios can be tricky to achieve in the varying 

parameter cases since their production profiles are generated based on different multipliers with a 

random combination of rates and durations. Nevertheless, care should be taken to ensure that NIROM 

is trained on the most suitable and closest range of training runs, for satisfactory predictions.  
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i) 5 training runs 

  
ii) 10 training runs 

  
iii) 20 training runs 

Figure 7.2: Average pressure distribution in the synthetic gas reservoir when produced with the varying seasonally 
production profile in Figure 7.1. Prediction with 10 training runs gives the least prediction errors overall. Nevertheless, 
NIROM prediction errors are mostly less than 10%. The corresponding training runs for these predictions are in Figure 

7.4. NIROM’s predictions 1 and 2 are the least accurate because they have mixed production controls. The error in 
these two cases were especially worse during the interval when their production control changed from gas rate to BHP 

limit. 
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Figure 7.3 shows NIROM’s prediction of the normalised pressure distribution in all the grid cells of the 

synthetic gas reservoir for predictions 2 and 4 and confirms that NIROM’s predictions are satisfactory. 

NIROM’s prediction error is less than 2% even for prediction 2 that had mixed production controls. 

 

   
a) 10 runs, prediction 4 

   
b) 10 runs, prediction 2 

Figure 7.3: NIROM’s predictions 2 and 4 of the pressure distribution in all the grid cells of the synthetic gas reservoir 
when produced by the seasonally varying production profile and mixed production controls of Figure 7.1. These 

pressure values have been normalised to zero mean. The error in these NIROM predictions is mostly negligible even 
for prediction 2 after its production control switched to BHP limit control. 

 

  
i) 5 training runs ii) 10 training runs 
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iii) 20 training runs 

Figure 7.4: Production profiles for 5, 10 and 20 training runs corresponding to the results in Figure 7.2. Each of these 
training runs has at least one case of mixed production control, hence their suitability for the prediction cases in Figure 

7.1, as seen in the results in Figure 7.2 and Figure 7.3. 

 

  
a) 5 training runs b) 10 training runs 

 
c) 20 training runs 

Figure 7.5: Production profiles of 5, 10 and 20 training runs corresponding to the results in Figure 7.6. These training 
runs are all varying production rates with no mixed production control, hence their erroneous predictions (Figure 7.6) of 

predictions 1 and 2 of Figure 7.1. 
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a) 5 training runs 

  
b) 10 training runs 

  
c) 20 training runs 

Figure 7.6: NIROM prediction of the average pressure distribution in the synthetic gas reservoir when NIROM was 
trained with non-mixed production controls (Figure 7.5), whereas the prediction cases have mixed production controls 
(Figure 7.1). Hence the NIROM has significantly over-predicted the average reservoir pressure during the BHP limit 

controlled durations of predictions 1 and 2. This emphasises the need for training the NIROM within similar conditions 
to the cases it is required to make predictions for. 

 

With the minimum number of POD basis function (1 POD), NIROM gives satisfactory predictions of the 

production variables that are investigated for the synthetic gas reservoir (Figure 7.7). Figure 7.7 shows 

the results of NIROM’s prediction 1 trained with 5, 10 and 20 training runs. In Figure 7.7, there is 

almost no difference in NIROM predictions with 5, 10 or 20training runs.  



Chapter 7: Varying Parameter Predictions - Results and Discussion 

163 
 

 

  
i) 5 training runs 

  
ii) 10 training runs - prediction 5 

  
iii) 20 training runs 

Figure 7.7: NIROM prediction of the production data (cumulative production and reservoir pressure) for prediction 1. 
Using the optimum number of POD basis functions (1 POD basis function), NIROM satisfactorily identifies the intervals 
when the production control switched to the BHP limit. Increasing the number of training runs did not have a significant 

effect on the accuracy of NIROM’s prediction. 
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7.1.2 TRIENNIALLY VARYING PRODUCTION PROFILE 

Here the production profile is also time-varying like in the seasonally varying production profile, 

however, there are fewer variations in the production parameters within the 20 years production 

lifecycle. This example demonstrates NIROM’s capability for modelling a different variant of the 

varying parameter production scenario. Figure 7.8 shows the production profiles for the NIROM 

predictions in Figure 7.9. The 5, 10 and 20 training runs used to train NIROM for the predictions in 

Figure 7.9 are shown in Figure 7.10. NIROM predictions in Figure 7.9 have errors of less than 10% for 

all predictions except prediction 1. From Figure 7.8, it can be seen that the production profile for 

prediction 1 has production rates that are above the range of the production rates of the other 

predictions. For instance for the 10th and 25th report steps and after the 40th report step, prediction 

1 was produced at or above 7500Mscf/day whereas the other prediction cases were below 

7000Mscf/day throughout. In comparison to the production profiles for the training runs (Figure 7.10), 

it can also be seen that not many of the training runs had their production rates above 7500Mscf/day. 

Since the range of training production profiles was mostly below 7500Mscf/day, the high errors in 

prediction 1 can be linked to its production profile being, for the most part, outside the range of 

training parameter values. This reiterates the necessity of training the NIROM within the range of the 

prediction runs. 

 

 
Figure 7.8: Production profile for the triennially varying parameter case of the synthetic gas reservoir. The frequency at 

which the production rates vary is after 1000 – 1500 days (10 - 15 report steps) interval.  

 

Furthermore, in this triennially varying parameter example, training NIROM with 10 training runs gave 

the best results for predictions 2 to 6 (Figure 7.9ii). This is probably more associated with the even 

spread of the training data of the 10 training runs case, than with the number of training runs. Figure 

7.9 also shows that NIROM recognized the intervals when there were changes in production rate, 

NIROM reflected these changes by satisfactorily mimicking the pattern of the solutions from ECLIPSE.  
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i) 5 training runs 

  
ii) 10 training runs 

  
iii) 20 training runs 

Figure 7.9: NIROM predictions of the average pressure distribution in the synthetic gas reservoir produced with a 
triennially varying production profile. NIROM predictions have less than ±10% error (mostly less than ±5%) for all 

predictions except prediction 1.  
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i) 5 training runs ii) 10 training runs 

 

 

iii) 20 training runs 
Figure 7.10: Production profiles of the simulation runs used to train NIROM for the triennially varying production rate 

cases. The training runs are spread between 2000 and 8000Mscf/day. 

 

Having noted that NIROM gave better prediction results for predictions 2 to 6, Figure 7.11 evaluates 

NIROM prediction 1’s performance for the production variables that were modelled for the synthetic 

gas reservoir cases, the cumulative gas production and reservoir pressure are presented. In Figure 

7.11, NIROM starts off giving good predictions of the reservoir’s performance before the first change 

in production rate (around 1 to 1300 days), but afterwards NIROM predictions are not accurate. 

Although the NIROM tends to identify the intervals when there was a change in production rate and 

tries to mimic the pattern of the reservoir’s performance at the intervals when the rates varied. 

NIROM’s predictions did not improve as the number of training runs increased.  
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i) 5 training runs 

  
ii) 10 training runs 

  
iii) 20 training runs 

Figure 7.11: NIROM prediction of the cumulative gas production and reservoir pressure for the triennially varying 
prediction 1. NIROM was able to mimic the pattern of the reservoir’s performance and had the most errors when it was 

trained with 5 training runs. 

 

7.2 MODIFIED NORNE GAS FIELD 

Given that the seasonally varying production profile is similar and more representative to the 

production profiles that are seen in the petroleum industry, the Norne field is evaluated for only the 

seasonally varying mixed production control scenarios. Figure 7.12 shows the seasonally varying 

production profiles of the prediction cases that were considered for evaluating the NIROM for the 

heterogeneous Norne field.  
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Figure 7.12: Production profiles of the 3 wells in the modified Norne field that are used to test NIROM’s prediction of 

varying production profiles with mixed boundary conditions. In all 3 wells, production control (boundary condition) was 
switched to BHP limit control after some period of being produced at varying production rates. 

 

  
i) 5 training runs ii) 10 training runs 

 

 

iii) 20 training runs 
Figure 7.13: Production profiles for the training runs used to train NIROM for the results in Figure 7.14 to Figure 7.16. 

These training runs have mixed production profiles like the prediction runs in Figure 7.12. 
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i) 5 training runs 

 

 

ii) 10 training runs 

 
 

iii) 20 training runs 
Figure 7.14: NIROM predictions of the average pressure in the modified Norne gas field for the seasonally varying 

production rate and mixed production control scenarios of Figure 7.12. 

 

NIROM predictions of the average pressure distribution in the reservoir are satisfactory (Figure 7.14), 

as in all the other cases that have been seen in this chapter. Figure 7.15 and Figure 7.16 show NIROM’s 

satisfactory prediction of the pressure and gas saturation distribution in all the grid cells of the gas 
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field. Figure 7.14 and Figure 7.15a, both show that NIROM’s prediction 1 was least accurate between 

the 100th and 130th report steps. Generally, Figure 7.14 shows that NIROM predictions of predictions 

2 to 5 are the most accurate with errors within the range of ±5%, while those of predictions 1 and 6 

are as high as ±10%. For this example, the POD-RBF NIROM was implemented with the training runs 

in Figure 7.13. Figure 7.16 shows that NIROM’s prediction of the gas saturation distribution in all the 

grid cells of the gas field has errors that are mostly in the vicinity of zero. 

 

   
a) 5 runs, prediction 1 

 
b) 5 runs, prediction 4 

Figure 7.15: Pressure distribution in all grid cells of the modified Norne gas field, normalised to zero mean (predictions 
1 and 4). In both cases, the NIROM’s predictions show the most errors between the 100th and 130th report step 
corresponding to the region with the highest error in Figure 7.14, i.e. the time interval when the production control 

changed. Nevertheless, NIROM’s prediction of the pressure across the reservoir is satisfactory.  
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a) 5 runs, prediction 1 

 
b) 5 runs, prediction 4 

Figure 7.16: NIROM’s prediction 1 and 4 of the gas saturation distribution in all the grid cells of the modified Norne gas 
field. NIROM satisfactorily captured the pattern of gas saturation distribution in the gas field, with negligible error. The 

interval when production control changed to BHP limit is not noticeable in these images.  

 

For brevity, Figure 7.17 only contains results of NIROM predictions of the production variables of the 

Norne field when NIROM was trained with 20 training runs. Similar results were obtained from using 

5 or 10 training runs, which were all obtained by using 9 POD basis functions (energy criteria = 1 POD 

basis function). Figure 7.17 shows that NIROM gives satisfactorily predictions of most of the 

production variables and adequately captures the pattern of varying production rates (gas and water) 

in the 3 wells and the entire field (Figure 7.17 – a, c, j-o). 

Like in the constant parameter cases, it is also seen here that NIROM predictions of the production 

variables required more POD basis functions than were suggested by the 99.9% energy criterion. A 

quick solution for determining the number of POD basis functions that would suit this particular gas 

field when making predictions of production variables would be to train the NIROM with the full POD 

basis functions. This was mentioned in chapter 6, where it was discussed that the total amount of data 

that is used for predictions of production variables is significantly less than the amount of data that is 

used for predictions of the spatial distribution of reservoir properties, hence making production data 

prediction with the full basis functions will have a negligible effect on NIROM’s total runtime.  
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iv) 20 training runs 

Figure 7.17: NIROM prediction 4 of production variables of the modified Norne gas field trained with 20 runs and 9 POD 
basis functions (energy criterion = 1 POD basis function). NIROM adequately predicts most of the production variables 

and satisfactorily captured their performance pattern. 

 

7.3 FIELD X 

7.3.1 BHP LIMIT 

Figure 7.18 shows that the prediction runs that were evaluated in this case were evenly spread, with 

the maximum rate being around 2.25sm3/day for predictions 2 to 6. Prediction 1 had higher 

production rates than the other 5 predictions in most instances, but Figure 7.19 and Figure 7.20 show 

that NIROM gave good predictions of this case, as well as the others. This was expected since the 

production profiles of the training runs in Figure 7.22 shows that the training runs had similar patterns 

and covered a similar range of values. For the average pressure distribution results in Figure 7.19 and 

the average gas saturation distribution in Figure 7.20, the NIROM with 10 training runs gave the most 

accurate predictions. In Figure 7.19, the maximum error in NIROM predictions was just over 6%, 5% 

and 4% for the cases with 5, 20 and 10 training runs, respectively.  

 

 

 

Figure 7.18: Production profiles for the prediction runs of the seasonally varying parameter example of Field X, based 
on a BHP limit of 100bars. All 6 production profiles show that the field switched to BHP control during its production 

lifecycle, with instances of the producer shutting in after 230 report steps. 
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a) 5 training runs 

 

 

b) 10 training runs 

 

 

c) 20 training runs 
Figure 7.19: NIROM’s prediction of the average pressure distribution in Field X produced with a seasonally varying 

production profile and BHP limit. Predictions with 10 training runs were the most accurate with a maximum error of just 
over 4%. Predictions with 5 and 20 training runs have a maximum error of just over 6%. 
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a) 5 training runs 

 

 

b) 10 training runs 

 

 

c) 20 training runs 
Figure 7.20: NIROM’s prediction of the average saturation distribution in Field X produced with a seasonally varying 

production profile and BHP limit of 100bars. Predictions with 10 training runs were the most accurate, but no case had 
errors greater than 0.001.  
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Figure 7.21: NIROM’s prediction 2 of the gas saturation distribution in all grid cells of Field X trained with 5 runs. 

NIROM satisfactorily captured the pattern of gas saturation distribution in the gas field, with negligible error. 

 

  
a) 5 training runs b) 10 training runs 

 

 

c) 20 training runs 
Figure 7.22: Production profiles used to train the NIROM for the prediction runs in Figure 7.18. The training runs span a 
similar range of parameters as the prediction runs, with some values being as high as prediction 1 of Figure 7.18. Given 
that these training runs cover the range of prediction runs, NIROM predictions in Figure 7.19 to Figure 7.21 and Figure 

7.23 are satisfactory. 

 

In Figure 7.20, the range of values for the average gas saturation distribution in Field X is just slightly 

greater than 0.215, which can be considered to be a small change for a practical gas reservoir. 

However, Figure 7.21 shows the gas saturation distribution across all the grid cells of Field X at any 

given report step, for prediction 2 of this mixed production control example. From Figure 7.21, it can 
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be seen that the gas saturation distribution in Field X is such that there are extreme gas saturation 

values of close to 0 and 1. Hence the low range of saturation values in Figure 7.20 is because Figure 

7.20 only shows the average gas saturation distribution across the reservoir at every report step. The 

full gas saturation distribution plot in Figure 7.21 confirms NIROM’s satisfactory prediction of the 

reservoir property in each grid cell of Field X and complements Figure 7.20. 

NIROM’s prediction of some of the production data for Field X is shown in Figure 7.23. NIROM 

satisfactorily predicted most of the production variables (pressure in the different regions of Field X 

and cumulative production), but found it challenging to predict the varying production rates (of gas, 

water and the aquifer influx). The results in Figure 7.23 were obtained using the optimum number of 

POD basis functions, but as shown in the Norne field example (Figure 7.17), better results can be 

obtained by adding more (or the full) POD basis functions to the NIROM’s implementation. This is 

further illustrated in section 7.3.2. 
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Figure 7.23: NIROM’s prediction 4 of Field X’s production variables using 5 training runs. With the optimum number of 
POD basis functions, NIROM did not accurately predict the time-varying production rates of Field X. However, NIROM 

satisfactorily predicts more than half of the production variables that were considered. 
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7.3.2 THP LIMIT 

 
Figure 7.24: Production profile for the prediction runs of the seasonally varying parameter cases of Field X with THP 

limit. From the 150th report step, the production profiles for Field X were switching between THP limit control and 
episodes of shut-in due to a water gas ratio limit imposed on the reservoir. 

 

  
a) 5 training runs b) 10 training runs 

 

 

c) 20 training runs 
Figure 7.25: Production profiles of the training runs used for the NIROM predictions in Figure 7.24. These training runs 
have a similar shut-in and re-opening behaviour as the prediction runs in Figure 7.24, hence the satisfactory prediction 

results for these training cases as shown in Figure 7.26 to Figure 7.28.  
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a) 5 training runs 

 

 

b) 10 training runs 

 

 

c) 20 training runs 
Figure 7.26: NIROM predictions of the average pressure distribution in Field X for the seasonally varying production 

profiles with THP limit control in Figure 7.24. NIROM predictions with 5, 10 and 20 training runs are satisfactory with at 
most 4% error. 
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a) 5 training runs 

 

 

 

b) 10 training runs 

 

 

c) 20 training runs 
Figure 7.27: NIROM’s satisfactory predictions of the average gas saturation distribution in Field X when it was produced 

by a seasonally varying production profile with THP limit. Training NIROM with 20 runs gave the best results. 
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Figure 7.28: NIROM’s prediction 4 of the production variables of Field X when trained with 20 runs. NIROM 

satisfactorily predicted most of the production variables with the optimum number of training runs but found it 
challenging to capture the pattern of the varying production rates, and especially after the production control began to 

switch. 

 

The results for this case were based on the production profile of Figure 7.24. From Figure 7.24 it can 

be seen that once the production control of the field switched to THP limit, the production profile was 

characterised by episodes of well shut-in and restart until the end of the production lifecycle. The 

producer was persistently being shut-in because, in addition to all the other properties of the reservoir 

that were discussed in chapter 4, the reservoir had a water gas ratio limit of 5.61× 10−6sm3/sm3. The 

producer was however set to be re-opened if future well tests showed lower water gas ratios in Field 

X. Perhaps this intermittent production behaviour of the Field X model could have been minimised by 

using shorter report times or tweaking some ECLIPSE parameters that affect its numerical instability. 

Nevertheless, NIROM is only as good as the simulation results from which it is trained so if the 

simulation results have numerical errors in them (as may be the case in this example), then so will the 

NIROM predictions. Notwithstanding, NIROM was able to satisfactory forecast the field’s performance 

as shown in (Figure 7.26 to Figure 7.28) since it was trained with runs that had similar shut-in and 

restart production profiles (Figure 7.25).  

In Figure 7.26 the error in NIROM predictions of the average reservoir pressure per report step was a 

maximum of 4% and in Figure 7.27 the error in NIROM predictions of the average gas saturation 



Chapter 7: Varying Parameter Predictions - Results and Discussion 

184 
 

distribution was mostly less than 10× 10−4. In Figure 7.26 and Figure 7.27, the best NIROM results 

were obtained with 20 training runs. In Figure 7.26, it was also observed that the NIROM did not 

always accurately capture the time when the production control switched to THP limit. NIROM’s 

highest prediction errors occurred during the periods when the production control was switched. For 

example in the 20 training runs cases, the NIROM suggested that the switch in production control 

occurred 7 days in advance for prediction 6 (which had the highest absolute error), while in prediction 

1 (with the next highest error) the NIROM suggested that the switch occurred 5 days after ECLIPSE. 

This shows that even though the NIROM generally gives satisfactory predictions in the varying 

production case with THP limit, the NIROM is sensitive to the change in production control and care 

should be taken to ensure that simulation errors are within acceptable limits.  

 

  

  

  
Figure 7.29: NIROM’s prediction 4 of some production variables of Field X using the full POD basis functions. NIROM 

better predicts the varying production rates and BHP when more POD basis functions were added to its 
implementation. 
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For the production data predictions in Figure 7.28, NIROM gave satisfactory predictions of most of the 

production variables except the production rates (gas, water and aquifer) and well BHP. Adding more 

POD basis functions to the prediction gave better results as shown in Figure 7.29. Figure 7.29 shows 

that with the full set of POD basis functions, NIROM satisfactorily captures the pattern of the varying 

production rates and well BHP. 

NIROM’s prediction of the production data in Figure 7.11, Figure 7.23 and Figure 7.28 were either 

satisfactory or within the same order of magnitude as the values from ECLIPSE results. These results 

showed that even when NIROM predictions were not accurate, NIROM was able to mimic the pattern 

of ECLIPSE’s results, although in most cases adding more POD basis functions gave better NIROM 

predictions. Overall, NIROM’s best prediction of production variables is obtained when the NIROM is 

implemented with the full POD basis functions of the training data, which has a negligible effect on 

NIROM’s overall runtime. And even when NIROM’s results are not accurate, the different practical 

examples that have been considered in this chapter show that they can still give engineers an idea of 

a reservoir’s behaviour and the order of magnitude of values that can be expected from the reservoir’s 

production performance.  

 

7.4 ERROR ANALYSIS 

 
Figure 7.30: Average percentage RMSEs of NIROM when implemented for predicting the performance of the synthetic 

gas reservoir and the Norne gas field, produced with varying production profiles and mixed boundary conditions. 
NIROM prediction of grid distributed pressure and saturations have lower RMSEs than its prediction of production 

variables, based on the optimal number of POD basis functions. There is also no consistent correlation between the 
number of training runs and the accuracy of NIROM predictions. 
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Figure 7.30 shows the average percentage RMSEs (Equation 3.20) for all the NIROM predictions of the 

synthetic gas reservoir and Norne field when produced with time-varying production profiles. These 

errors were computed based on the optimal number of POD basis functions required to generate 

NIROM predictions. For the synthetic gas reservoir, the average RMSEs for both the seasonally varying 

and the triennially varying profiles are shown below. A comparison of all RMSE values in Figure 7.30 

shows that NIROM had lower errors when predicting the distribution of pressure or saturation in the 

reservoirs than for the production variables. However as has been highlighted in previous sections, 

NIROM predictions of production variables can be improved by increasing the number of POD basis 

functions applied to those predictions. It is recommended that the full POD basis functions are used 

to implement the NIROM for predicting production variables. 

From Figure 7.30, it can also be seen that NIROM’s accuracy does not always improve when the 

number of training runs is increased. It was earlier shown that having a more evenly spread range of 

training runs, that cover the range of prediction parameters, has a better impact on the quality/ 

accuracy of NIROM predictions than having more training runs. Overall, NIROM predictions of varying 

parameter production cases based on the optimal number of POD basis functions has RMSEs that are 

predominantly less than 5% for the synthetic gas reservoir and less than 2% for the heterogeneous 

Norne field. 

NIROM predictions of the reservoir property distribution in the real gas reservoir (Field X) have less 

than 3% average RMSEs, despite being produced with varying production profiles and mixed 

production controls (Figure 7.31). 3% error is within an acceptable error margin in industry 

applications, therefore NIROM is a suitable tool for gas reservoir performance modelling. The average 

RMSEs in Figure 7.31 also show no clear relationship between the number of training runs used to 

train NIROM and NIROM’s accuracy. As explained before, the accuracy of NIROM’s predictions is more 

attributed to the extent of spread of the training runs rather than their quantity. If the number of 

training runs covers a similar interval or range as the prediction runs, then NIROM predictions will be 

satisfactory with 5 or 20 (fewer or more) training runs.  
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Figure 7.31: Average RMSEs for NIROM predictions of the pressure and saturation distribution in all grid cells of Field X 

for a) constant parameter cases b) seasonally varying parameter cases with BHP limit and c) seasonally varying 
production profile with THP limit. 

 

For the 3 gas reservoirs that were considered in this varying parameter chapter, it has been shown 

that the best NIROM prediction results are obtained when the NIROM is used for predicting 

production scenarios that are similar to the production scenarios that it was trained with. This 

behaviour was consistent for the different practical production scenarios that were evaluated in this 

chapter (even for the real gas field – Field X) and for the ranges of parameters that were evaluated. 

This shows that NIROM would replicate this same behaviour for other ranges of parameters or 

production scenarios that an engineer might be interested in considering during field development 

planning, i.e. as long as the NIROM is trained with similar production scenarios as the prediction cases, 

then the NIROM would give satisfactory results. 

This chapter showed the satisfactory performance of the POD-RBF NIROM for time-varying production 

scenarios with mixed production controls. Some examples of NIROM’s prediction of the full spatial 

distribution of pressure and saturation in the gas reservoirs were shown in Figure 7.3, Figure 7.15, 

Figure 7.16, Figure 7.21, which complemented their respective average pressure and saturation 

distribution results. NIROM’s satisfactory prediction in these cases highlight its relevance for fast 

prediction of spatially distributed reservoir properties in real gas reservoirs and for real production 

cases that engineers consider during field development planning. These results also highlight NIROM’s 

advantage over the other conventional reservoir modelling approaches such as the material balance 

equations which are spatially unaware and unable to provide information about the pressure 

distribution in heterogeneous reservoirs, at different production times. 
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7.5 TIME ANALYSIS 

7.5.1 SYNTHETIC GAS RESERVOIR 

Figure 7.32 and Figure 7.33 show the breakdown of the time spent in generating the NIROM results 

for the seasonally and triennially varying production cases of the synthetic gas reservoir. Table 7.1 

shows the values from which Figure 7.32 and Figure 7.33 were generated. Consistent with the 

constant parameter cases, most of the time take to implement the NIROM is spent on extracting data 

(training and prediction data) as well as during POD reduction. For the seasonally varying production 

profile (Figure 7.32), a significant amount of NIROM time was also spent in normalising the data for 

the case with 20 training runs and in computing the interpolation weights. Besides, when the NIROM 

was trained with 10 or 20 runs, NIROM was slower than ECLIPSE. This lack of speed up in NIROM 

predictions trained with 10 or 20 seasonally varying training runs is attributed to the increased number 

of reports steps in these cases. Whereas NIROM was implemented with a maximum of 25 report steps 

in the constant parameter cases, 3 to 10 times more report steps are required to create representative 

time-varying parameter cases (especially in the seasonally varying case). This equates to 3 to 10 times 

more data and therefore longer time spent extracting the data and implementing POD reduction. 

However, if the time spent in these supplementary steps are discounted, the actual time spent in 

NIROM interpolation/ prediction is negligible (less than 0.2 seconds).  

 

Table 7.1: Breakdown of the time take to run the varying parameter cases of the synthetic gas reservoir 
model, in seconds. These results are plotted in Figure 7.32 and Figure 7.33. 

Production Profile Seasonally Varying Triennially Varying 

Number of Training Runs 5 10 20 5 10 20 

Extracting Training Data 7.27 8.83 9.21 0.95 1.00 0.90 

Mean Extraction 0.10 0.20 0.42 0.04 0.07 0.11 

POD Reduction 1.25 6.48 7.29 0.49 0.55 1.82 

Normalization and Computing 
Interpolation Weights 

0.37 1.33 6.54 0.24 0.18 0.51 

Total NIROM Training Time 8.98 16.84 23.45 1.72 1.80 3.34 

Extracting Prediction Data 6.67 8.11 8.46 0.92 0.92 0.92 

NIROM Interpolation 0.06 0.09 0.15 0.02 0.02 0.02 

Total NIROM Time 15.7 25.0 32.1 2.66 2.74 4.29 

Total ECLIPSE Time 23.6 23.6 23.6 9.47 9.47 9.47 

Speed-up (Ratio) 1.50 0.94 0.74 3.56 3.45 2.21 
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Figure 7.32: The breakdown of time taken to train NIROM for the seasonally varying production profile of the synthetic 
gas reservoir, as well as the speed up from NIROM predictions. Significantly more time is taken during POD reduction 
for the cases with 10 and 20 training runs than with 5 training runs. The NIROM built with 10 or 20 training runs were 

slower than ECLIPSE. 

 

 
Figure 7.33: Breakdown of the average time taken to implement NIROM for the triennially varying production profile of 

the synthetic gas reservoir. NIROM is 2 to 3.5 times faster than ECLIPSE for these cases. Training NIROM with 20 runs 
gives the least speed-up since it involves more data. The time spent in the actual NIROM interpolation/ prediction is 

negligible compared to the time spent in building the NIROM and if the NIROM is built in a compiled language it would 
be even faster. 
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In the seasonally varying case (Figure 7.32), NIROM is a maximum of 1.5 times faster than ECLIPSE 

when trained with 5 training runs. In the triennially varying case, NIROM has speedups of 2 to 3.5 

times the ECLIPSE run time (Figure 7.33). Since the triennially varying cases have fewer report steps 

and therefore less data than the seasonally varying case, they have higher NIROM speedups as shown 

in Table 7.1. This shows that similar to constant parameter cases, NIROM’s implementation speed is 

dependent on the amount of data it is trained on, which has also been shown to depend on the 

number of report steps in the conventional simulator’s output data. Hence reiterating the importance 

of building NIROM with the least amount of report steps (training data) that is sufficient for the 

particular reservoir simulation study. 

 

7.5.2 MODIFIED NORNE GAS FIELD 

Table 7.2 and Figure 7.34 further emphasise the observations in the previous section, that with more 

simulation data NIROM’s speed becomes slower. The Norne field has over 44000 grid cells and 

therefore requires more time for extracting simulation data from ECLIPSE into NIROM and also for 

POD reduction. Table 7.2 shows that the time required for POD reduction when the NIROM was 

trained with 20 runs was more than four times the time required for POD reduction of the case with 

10 training runs. Nevertheless, NIROM was found to be slightly faster than ECLIPSE when it was trained 

with 20 runs (1.2 times faster). This further reiterates the computational time cost of training NIROM 

with several runs.  

 

Table 7.2: Average time taken to implement NIROM for the seasonally varying production profile of the 
modified Norne gas field. NIROM is a maximum of 2 times faster than ECLIPSE. 

Number of Training Runs 5 10 20 

Extracting Training Data 84.8 82.4 83.4 

Mean Extraction 2.05 4.28 7.65 

POD Reduction 8.49 26.33 114.00 

Normalization & Computing Interpolation Weights 0.29 1.27 4.08 

Total NIROM Training Time 95.6 114.3 209.1 

Extracting Prediction Data 85.14 86.94 88.77 

NIROM Interpolation 0.21 0.26 0.34 

Total NIROM Time 180.9 201.5 298.2 

Total ECLIPSE Time 362.2 362.2 362.2 

Speed-up (Ratio) 2.00 1.80 1.21 
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Figure 7.34: Breakdown of the average time taken to implement NIROM predictions for the seasonally varying 

production parameter cases of the modified Norne field with mixed production controls. Less than 0.2% of the NIROM 
implementation time is spent on the actual NIROM predictions/ interpolation. 

 

7.5.3 FIELD X - TIME ANALYSIS 

 
Figure 7.35: The breakdown of the average time taken for NIROM predictions of the seasonally varying cases of Field 
X. NIROM is between 2 and 4 times faster than ECLIPSE, although less than 1 second is spent on the actual NIROM 
interpolation step. This shows that NIROM has room for significantly more speedup if it is implemented in a compiled 

language like ECLIPSE. 
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Figure 7.35 shows the breakdown of the time taken to implement NIROM for the varying parameter 

cases of Field X. From Figure 7.35 it is seen that whereas it takes ECLIPSE over 30 minutes to complete 

a full simulation run of Field X, NIROM predictions can be implemented in about 11.5 minutes for the 

seasonally varying cases. NIROM implementation takes more time for Field X than for the Norne field, 

in the seasonally varying cases, since Field X has about 3 times more grid cells/ data than the Norne 

field. Nevertheless, NIROM is at least 3 times faster than ECLIPSE for this real gas reservoir example. 

Here also, a significant amount of the time spent in implementing NIROM is spent on POD reduction 

and when training or prediction data were extracted from ECLIPSE output files into the NIROM 

framework. Figure 7.35 also shows that the time spent in the POD reduction is more than doubled as 

the number of training runs increased from 5 to 10 to 20. The amount of time spent in generating 

interpolation weights also significantly increased as the number of training runs increased. 

From Table 7.1, Table 7.2 and Figure 7.35, it can be seen that NIROM’s total simulation runtime 

increased as the reservoir model size increased, i.e. NIROM is slower in the seasonally varying case 

than in the triennially varying production case of the synthetic gas reservoir, as well as with increasing 

number of training runs. This again highlights the dependence of NIROM’s speed on the size of the 

dynamic model (number of grid cells, report steps and training runs).  

 

7.5.4. ANALYSIS OF SIMULATION SPEEDUP 

NIROM’s speed-up for the three gas reservoirs that were considered in this chapter are shown in Table 

7.3. Comparing the seasonally varying cases of the 3 reservoirs, it is seen that the more practical 

(heterogeneous) reservoir models had higher speedups than the homogeneous synthetic reservoir 

since they would normally be time consuming to simulate in ECLIPSE. A similar performance was 

observed in chapter 6, where NIROM’s speedups for the water coning reservoir were an order of 

magnitude higher than for the heterogeneous gas reservoir. So NIROM is significantly faster than 

ECLIPSE for simulating complex/ realistic gas reservoirs and scenarios. 

 

Table 7.3: NIROM’s simulation speed-up for the varying parameter test cases considered in this chapter. 
NIROM’s speed-up depends on the amount of data that was used to train the NIROM (model size) as well 

as the complexity of the reservoir model (homogenous or heterogeneous). 

Reservoir Model Synthetic Gas Reservoir 

Production Profile Seasonally Varying Triennially Varying 

Number of Training Runs 5 10 20 10 20 20 

Speed-up (Ratio) 1.50 0.94 0.74 3.56 3.45 2.21 

Reservoir Model Modified Norne Field Field X 

Production Profile Seasonally Varying 

Number of Training Runs 5 10 20 5 10 20 

Speed-up (Ratio) 2.00 1.80 1.21 4.44 3.98 2.87 
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SUMMARY 

In this chapter, NIROM has been evaluated for modelling the performance of 3 gas reservoirs: a 

homogeneous synthetic gas reservoir, a heterogeneous gas reservoir and Field X which is a real gas 

field provided by Woodside Petroleum. NIROM was implemented for predicting these reservoirs’ 

performance for time-varying production profiles, each case was evaluated with 5, 10 and 20 training 

runs. Triennial and seasonally varying production profiles were considered, with BHP or THP 

production control limit. NIROM was applied to predicting the special distribution of pressure and gas 

saturation in these gas reservoirs, as well as some of their production variables.  

NIROM gives better predictions of the pressure distribution in the reservoirs than it does for the gas 

saturation distribution. For the production variables, NIROM requires more than the optimal number 

of POD basis functions to give a satisfactory prediction of the varying production rates (for gas, water 

and the aquifer). NIROM’s satisfactory predictions are associated with how much of the range of 

prediction scenarios are covered by the scenarios of training runs with which the NIROM is 

implemented, i.e. a NIROM trained without mixed production controls will not satisfactorily predict a 

reservoir’s performance for scenarios with mixed production controls. 

The seasonally varying production profile is more representative of industry gas production profiles 

and its simulations are time-consuming since they involve more report steps/ simulation data. For 

these cases, NIROM gives satisfactory predictions with less than 3% average RMSE and speed-ups of 

1.2 to 4 times ECLIPSE runtime for the 2 heterogeneous reservoir models. The triennially varying 

production profile cases are faster than the seasonally varying cases (since they have less data) but 

they are less representative of industry scenarios. However, recall that NIROM is written in an 

interpreted language whereas ECLIPSE is written in a compiled language and has been improved 

through several iterations since its inception. Hence NIROM has room for more computational speed 

up if it is implemented in a compiled language and when its training time is discounted. Error! R

eference source not found. is a summary of the cases that have been evaluated in this chapter, as 

well as the key findings. 
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Table 7.4: A summary of the prediction cases and key findings in this chapter 

Cases Considered Summary and Findings 

1) Time-Varying Parameter Examples 
a. Seasonally varying production profiles 
b. Triennially varying production profiles 

2) Mixed production controls: production 
rate with BHP or THP limit 

3) 3 gas reservoirs were evaluated, 
including 2 real fields 
a. homogeneous synthetic gas reservoir 
b. modified heterogeneous Norne gas 

field 
c. Real gas Field X from Woodside 

Key Findings 

1) Demonstrated NIROM’s predictive capacity for gas 
field modelling, based on different time-varying 
production constraints 

2) The size and properties of a dynamic model affect 
the extent of NIROM speed-up that can be 
obtained for the model, including the number of 
grid cells and report steps in the model, as well as 
the complexity of the reservoir model 
(homogeneous or heterogeneous) and how many 
training runs are used to implement the NIROM.  

General Findings 

3) NIROM performs best when the training runs are of 
similar production scenarios as the prediction runs 

4) The number of training runs used to train the 
NIROM is not as important as point 3 above 

5) NIROM gives speed-up of at least 1.2 times 
ECLIPSE’s runtime and still has room for speed 
improvement 
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8.CHAPTER 8: POD-AE RESULTS AND DISCUSSION 

In this chapter, POD-AE is applied to modelling the grid pressure distribution in the modified Norne 

gas field. The gas saturation distribution and production data, such as production rates or cumulative 

production, are not considered since the main goal in this chapter was to analyse the performance of 

POD-AE for gas field modelling. Also, the more practical varying production profile scenarios are 

evaluated, for cases with and without shut-in wells and with BHP production control limit. Both the 

triennially and seasonally varying production profiles are considered. The accuracy of predictions from 

POD-AE was then compared to POD-RBF, in addition to the breakdown of their runtime and speedup. 

The time analysis in this chapter only accounts for the time spent in training the models and using 

them for forecasts (interpolation), i.e. it does not account for the time spent during data extraction 

from ECLIPSE (training and prediction runs), mean extraction and POD reduction. 

In contrast to previous chapters, the examples in this chapter have been trained with 50 training runs 

(both POD-AE and POD-RBF examples). Trial and error showed that 50 training runs were needed to 

allow the autoencoder to learn the field’s dynamics. Fortunately, the ECLIPSE runtime for the Norne 

gas field is just over six minutes, making it suitable for quick analysis and validation with 50 training 

runs. The POD-AE model was validated with an additional new dataset (one of the 6 prediction runs) 

and the other 5 prediction runs were later forecasted with POD-AE and POD-RBF. For consistency, the 

same training and prediction data are used for both POD-AE and POD-RBF. Some results from training 

the Norne field with less than 50 training runs are available in Appendix B. 

In this chapter also, the average of the reservoir pressure as computed from the pressure distribution 

in all active grid cells of the gas field are shown per report step. An example of the full pressure field 

prediction is also shown to give some perspective of both models’ ability to predict grid distributed 

dynamic data (Figure 8.11). In all the results in this chapter, simulation results from ECLIPSE are in 

circles, while predictions from POD-AE and POD-RBF models are in solid, dashed, dashed-dot or dotted 

lines. Lines representing the same prediction cases have similar colours for clarity. The POD-AE was 

tested for models with 1 to 5 encoder layers and a similar number of decoder layers, but for brevity, 

only the most satisfactory results are presented in this chapter. For the POD-RBF NIROM, predictions 

from using the full rank POD basis functions as well as those from the optimal number of POD basis 

functions are also compared. 
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8.1 CASES WITH SHUT-IN WELLS 

In these cases, one or 2 wells were shut-in when production could not be continued at the set BHP 

limit of 60bars. POD-AE  and POD-RBF predictions of the reservoir’s pressure depletion are given in 

Figure 8.2 and Figure 8.4, while their corresponding production profiles are given in Figure 8.1a & b. 

The line colours for the 5 predictions in Figure 8.2 and Figure 8.4 correspond to the same predictions 

in Figure 8.1. Figure 8.1a shows the production profiles for the seasonally varying example and Figure 

8.1b is the production profile for the example with triennially varying production profiles.  

 

  
(a) (b) 

Figure 8.1: Production profiles for the (a) seasonal and (b) triennially varying prediction cases of the modified Norne gas 
field with shut-in wells. These production profiles are for the prediction results in Figure 8.2 & Figure 8.4 respectively, 

with matching line colours. 

 

Figure 8.2 and Figure 8.4 show that both POD-AE and POD RBF models give satisfactory predictions 

and capture the pattern of the reservoir’s pressure distribution. This is emphasised in Figure 8.3, 

where the percentage error in the predictions from both models were in most cases less than 10%. 

POD-RBF predictions from the full rank and optimal rank POD basis functions (Figure 8.2b) are similar, 

with overlapping results, and they gave better estimates than the POD-AE results in (Figure 8.2a).  

POD-RBF results are also consistent in performance throughout the production lifecycle.  

In Figure 8.2a, the POD-AE model with 2 hidden layers (HLs) was initially unstable, especially for 

predictions 4 and 5, but gave better predictions after 75 report steps. This period of unstable 

prediction is shown in the yellow rectangle in Figure 8.2a. In Figure 8.4a, the POD-AE models with 2 

and 5 hidden layers also show some unstable predictions, especially for predictions 4 & 5, however, 

they give a reasonable estimate of the pattern of pressure depletion in the reservoir. Figure 8.2a and 

Figure 8.4a show results from the POD-AE model with 2 and 5 hidden layers but similar results were 
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obtained for models with 3 and 4 hidden layers, as they also satisfactorily captured the pattern of 

pressure depletion in the reservoir with slightly less accurate estimates. 

 

 
 (a) POD-AE predictions of the average pressure distribution in the Norne field 

 
(b) POD-RBF predictions of the average pressure distribution in the Norne field 

Figure 8.2: Predictions of the average pressure distribution in all grid cells of the modified Norne field when trained with 
seasonally varying production rates and (a) the POD-AE model with 2 HLs or (b) POD-RBF models with the full and 

optimal number of POD basis functions. Predictions from both POD-AE and POD-RBF are generally satisfactory with 
minute errors and especially for predictions 1 to 3. In (a), the POD-AE with 2HLs gave unstable predictions for the 4th 
and 5th predictions in the first 75 report steps encircled with a yellow rectangle. Also, predictions with both POD-RBF, 

i.e. (b), look identical, overlapping each other in most cases, and they give more consistent and stable predictions 
throughout the production lifecycle than the POD-AE prediction in (a). 
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Figure 8.3: Error plot for the predictions of the pressure distribution in the modified Norne gas field using POD-AE 
model with 2 HLs as well as POD-RBF models with full and optimal (99.9% energy criterion) number of POD basis 
functions. The POD-AE model has the highest errors, especially for predictions 4 and 5, while the errors from both 

POD-RBF models have less variance and lower values. The full rank POD-RBF model has similar or lower errors than 
the optimal POD-RBF model. 

 

 
(a) POD-AE predictions of the average pressure distribution in the Norne field 
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(b) POD-RBF predictions of the average pressure distribution in the Norne field 

Figure 8.4: Predictions of average pressure distribution in all grid cells of the modified Norne gas field when trained with 
the triennially varying production profile. Predictions from (a) POD-AE and (b) POD-RBF models satisfactorily match 

those from ECLIPSE. The POD-RBF solutions, i.e. (b) are more consistent and accurate than the results in Figure 8.4a. 
Figure 8.4b also shows that the results from both POD-RBF models are identical.  

 

  
(a)  

Figure 8.5: Percentage error in the predictions of the average pressure distribution in all grid cells of the Norne gas field 
when trained with a triennially varying production profile (Figure 8.1b). Both POD-RBF and POD-AE models give 

satisfactory predictions with less than 10% error. The POD-RBF solutions are more consistent and accurate (mostly 
less than 2% error). Results from the full and optimal rank POD-RBF models are mostly identical. 

 

As earlier mentioned, most of the POD-AE predictions in Figure 8.2 and Figure 8.4 were unstable at 

some point during the 20 years production period that was modelled. This can also be seen in the 

wider range of error values for the POD-AE model in Figure 8.5 (up to 10% error). The reason for these 

over and under-predictions of the POD-AE models is not clear from the cases that were considered 

and given this project’s timeframe, it is an area for further research. Nonetheless, the POD-AE model 
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can provide engineers with a reasonable idea of the pattern of the reservoir’s pressure performance. 

However, the error in the POD-RBF models is less than 2% in most cases. These results highlight the 

superiority of the POD-RBF over the POD-AE for gas field modelling, since the results from the POD-

RBF are more consistent and accurate than those of the POD-AE models. The POD-RBF is also less 

complicated for non-specialist engineers to implement and troubleshoot for sources of error, since it 

does not have several hyper-parameters or require fine-tuning of the hyper-parameters like most 

machine learning methods. 

 

8.2 CASES WITHOUT SHUT-IN WELLS  

In these examples, the production profiles have been generated such that no well gets shut-in during 

the production lifecycle. For the case with the triennially varying production profile, this meant that 

the reservoir was produced from only 2 of the 3 wells (Figure 8.6b) since the location of the third well 

made it prone to shutting in. Here also, the colour map for the prediction example in Figure 8.6 is the 

same as those used in Figure 8.8 to Figure 8.11. 

 

  
(a) (b) 

Figure 8.6: Production profiles for prediction runs of (a) seasonal and (b) triennially varying cases with no shut-in wells. 
These are the production profiles for the results in Figure 8.8 to Figure 8.11, with matching line colours. The seasonal 

profile is for production from 3 wells while the triennial profile is for production from 2 wells. 

 

Figure 8.7 shows an example of the pressure data for all the active grid cells of the modified Norne 

gas field. These are the prediction 3 results from the POD-AE with 2 and 5 hidden layers as well as 

POD-RBF with optimal and full POD basis functions of Figure 8.6a. Figure 8.7 shows satisfactory 

predictions from all 4 POD-based models at the individual grid cell level. Figure 8.7 also highlights the 

improvement in the accuracy of the POD-RBF predictions with the full versus optimal rank of the POD 

basis functions. This difference is not very obvious when the average of these values are shown in 

Figure 8.9. Comparing the result in Figure 8.7a & b to those in Figure 8.8 also show that the POD-AE 
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predictions of Figure 8.8 were most accurate after the 150th and 170th report steps for the model 

with 2 and 5 hidden layers respectively. 

 

    

    
(a) (b) (c) (d) 

Figure 8.7: Predictions of the pressure distribution in all grid cells of the modified Norne gas field for prediction 3 of the 
seasonally varying production profile with no shut-in wells. All the models (POD-AE with 2 and 5HLs as well as POD-
RBF with optimal and full POD basis functions) gave satisfactory predictions of the reservoir pressure distribution in 
over 44000 active grid cells. Predictions from the POD-RBF models (c & d) were better than those from the POD-AE 
models (a & b). The improvement in predictions with the full rank POD-RBF model is also obvious in these results.  

 

Figure 8.8 and Figure 8.9 show results from POD-AE and POD-RBF predictions of the modified Norne 

field simulation cases with the seasonally varying production profile of Figure 8.6a. They have been 

plotted separately for clarity. In Figure 8.8, the POD-AE models with 2 and 5 hidden layers gave 

predictions that were not always accurate but matched or captured the pattern of pressure depletion 

in the reservoir. Predictions from the POD-AE model with 5 hidden layers mostly under-predicted the 

pressure distribution in the reservoir but evenly, while predictions from the POD-AE with 2 hidden 

layers were slightly unstable in the initial 80 report steps, especially for predictions 4 and 5. The POD-

RBF predictions in Figure 8.9 show more stable and satisfactory predictions from the full and optimal 

rank POD-RBF, their results are similar and are only distinguishable from Figure 8.7c & d. Figure 8.10 
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shows the percentage error in these predictions and confirms that the POD-RBF models with less than 

10% average error are better than the POD-AE model with more than 10% errors. 

 

 
Figure 8.8: Predictions of the average pressure distribution in all grid cells of the modified Norne gas field when trained 
with seasonally varying production rates and POD-AE models with 2 and 5 HLs. The POD-AE models gave predictions 
that satisfactory matched the pattern of pressure depletion in the reservoir, with some over- and under-predictions for 2 

and 5 HLs respectively. 

 

 
Figure 8.9: POD-RBF predictions of the average pressure distribution in all grid cells of the modified Norne gas field 

when trained with seasonally varying production rates. The results from the full and optimal rank POD-RBF models are 
similar and consistent throughout the prediction duration. 
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Figure 8.10: Percentage error in the predictions of the average pressure distribution in all grid cells of the Norne gas 
field when trained with seasonally varying production profiles for POD-AE models with 2 and 5 HLs as well as the full 

and optimal POD-RBF models. The POD-AE models with 2 and 5 HLs over and under predict the field’s pressure 
distribution, respectively. The full and optimal rank POD models give similar results with lower prediction errors. 

 

 
Figure 8.11: Predictions of average pressure distribution in the modified Norne gas field with production rates varying 

after at least 2.5 years. The POD-AE models are trained with 3 and 5 HLs and satisfactorily capture the pattern of 
pressure depletion in the gas field while predictions from the POD-RBF models are more accurate, with similar results 

from the full and optimal rank POD basis function POD-RBF NIROMs. 

 

Figure 8.11 shows results from both POD-AE and POD-RBF models for the triennially varying 

production profile of Figure 8.6b. The POD-RBF results were more consistent than the results from the 
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POD-AE models. Similar to the other cases seen so far, both POD-RBF results are also identical and 

more accurate than the results from the POD-AE models. The percentage errors for the predictions in 

Figure 8.11 are shown in Figure 8.12 where it can be seen that both POD-RBF models have less than 

2% errors for all predictions except prediction 1, while the POD-AE models had higher errors up to 

|23%|. Figure 8.12 also shows that the POD-RBF models were more stable, with a consistent error 

band than the POD-AE models which had a more inconsistent spread of errors. The consistency and 

accuracy of the POD-RBF method make it a better technique for gas field modelling than the POD-AE 

model. 

 

 
Figure 8.12: Percentage errors in the predictions of the pressure distribution in the modified Norne gas field using POD-
AE models with 3 and 5 HLs as well as POD-RBF models with full and optimal (99.9% energy criterion) number of POD 
basis functions. POD-AE models have the highest errors while the errors from both POD-RBF models are less than 2%, 

except for prediction 1. The full rank POD-RBF model has almost the same or slightly lower errors than the optimal 
POD-RBF model. 

 

8.3 ERROR ANALYSIS 

In this section, the accuracy of predictions from both POD-AE and POD-RBF NIROMs are compared 

with the metrics: average error in pressure predictions and average RMSE of predictions (Equation 

3.20). NIROM predictions are compared to the results of the same simulation cases in ECLIPSE. The 

results shown in this section are an average for the 5 prediction examples that were evaluated for 

each case. Where a model over- or under-predicts different prediction examples of the same case, the 

average error is not a true reflection of the model’s performance since negative and positive values 

cancel out. The RMSE is a better and more consistent assessment of the errors than the average error.  

This is shown in Figure 142 and Table 28, where for example the POD-AE 2 hidden layers model that 

visibly shows the highest errors in Figure 8.2 of the seasonally varying case with shut-in wells shows 
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the lowest average error value of 0.77bars and the highest RMSE value of 5.03bars. For this reason, 

the prediction cases in Table 28 are compared based on their RMSE values. 

 

Table 8.1: Average errors and RMSEs for pressure prediction cases (in bars). POD-RBF models show 
lower RMSEs than POD-AE models. And POD-RBF cases without shut-in wells have lower RMSEs (are 

more accurate) than cases with shut-in wells. 

 

 
Figure 8.13: Average absolute errors and RMSEs for predictions of the pressure distribution in the modified Norne field 
using POD-AE and POD-RBF NIROMs. Prediction cases with shut-in wells are less accurate than those without shut-in 

wells. POD-RBF predictions are more accurate than POD-AE predictions. 

 

The results in Table 8.1 agree with and further highlight the results shown in the earlier sections, i.e. 

the RMSEs for the POD-AE models are always higher than those for the POD-RBF models. In all the 

cases that were evaluated, POD-RBF models have less than 5bars average RMSE while the POD-AE 

models have as high as 11.8bars average RMSE. The RMSE values in Table 8.1 also show the slim 

margin of error between POD-RBF predictions with the full rank POD data and using the truncated/ 

 
Cases with shut-in wells 

Seasonally varied  Non-seasonally varied 

Model POD-
AE 2HL 

Full 
NIROM 

Optimal 
NIROM 

POD-
AE 2HL 

POD-
AE 5HL 

Full 
NIROM 

Optimal 
NIROM 

Average Error 0.77 2.52 2.72 1.28 -0.32 1.27 1.27 

Average RMSE 5.03 3.77 4.14 5.83 4.66 3.18 3.36 

 Cases without shut-in wells 

Seasonally varied Non-seasonally varied 

Model POD-
AE 2HL 

POD-
AE 5HL 

Full 
NIROM 

Optimal 
NIROM 

POD-
AE 3HL 

POD-
AE 5HL 

Full 
NIROM 

Optimal 
NIROM 

Average Error -0.74 1.19 -0.07 0.05 1.96 -6.73 -0.17 -0.21 

Average RMSE 5.05 11.81 2.25 2.90 10.06 9.25 1.88 2.86 
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optimal POD basis functions. The POD-RBF with full basis functions was always more accurate than 

the POD-RBF with the optimal number of POD basis functions. The POD-RBF models also gave better 

predictions in the cases without shut-in wells than in the cases with shut-in wells, as seen in their 

lower RMSEs. This shows that although the POD-RBF models could approximate the behaviour in the 

(more complicated) shut-in conditions they did not accurately predict this performance. The chart in 

Figure 8.13 shows the absolute values of the average errors and average RMSEs of the result in Table 

8.1, where it is shown that the POD-RBF models are consistently lower than those of the POD-AE. 

Figure 8.13 also shows that in the cases with shut-in wells, the errors in POD-AE predictions are almost 

double or more than the errors from POD-RBF predictions. This further reflects the superior accuracy 

of the POD-RBF models in comparison to those of the POD-AE models. 

 

8.4 TIME ANALYSIS 

From Table 8.2 and Figure 8.14, it is seen that implementing gas field simulations with the POD-RBF 

models is faster than with POD-AE models. The POD-RBF implementation for the triennially varying 

production profiles was at least an order of magnitude faster than for the data-intensive seasonally 

varying production profile cases. This was expected as the seasonally varying production profile has 3 

times more data than the triennially varying profile dataset. Also from Table 8.2 and Figure 8.14, it is 

shown that the full rank POD-RBF model has the slowest implementation time for the actual 

predictions of the unseen cases. Nevertheless, the shorter time taken to train the full rank POD-RBF 

model makes its entire implementation time significantly faster than that of the POD-AE models. In 

other words, it takes hours to train the POD-AE model as opposed to the minutes taken to implement 

the full rank POD-RBF model.  

 

Table 8.2: Overview of the time taken to implement POD-RBF and POD-AE models for gas field 
simulations in comparison to ECLIPSE. POD-RBF models are faster than POD-AE models, but the optimal 

POD-RBF is the only model that is faster than ECLIPSE for the seasonally varying production profile 
cases. 

Model 
(time unit is seconds) 

Seasonally varied profile Triennially varied profile 

POD-AE Full 
POD-RBF 

Optimal 
POD-RBF 

POD-AE Full 
POD-RBF 

Optimal 
POD-RBF 

Time to train model  13523 235 12.8 1346 6.94 0.99 

Time for predictions 25.8 220 0.11 3.89 5.63 0.02 

Total model time 13549 455 12.9 1350 12.7 1.01 

ECLIPSE runtime 303 303 303 303 303 303 

Speed-up 0.02 0.67 23.5 0.22 24.1 300  
 

The optimal rank POD-RBF model was the fastest model considered in this chapter, with speed-ups of 

1 and 2 orders of magnitude for the seasonal and triennially varying production profiles respectively. 
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Given that the prediction examples in this chapter were based on 50 training runs, which is quite high 

from a POD-RBF NIROM perspective, the full rank POD-RBF NIROM did not yield any speed-up in the 

simulation of the seasonally varying production scenarios. However as shown in chapters 6 and 7, also 

in Samuel and Muggeridge (2020) [125], NIROM predictions with fewer training runs, and fewer report 

steps/ temporal resolutions, are significantly faster and give adequate predictions of gas reservoir 

performance. This is linked to the amount of time required for POD reduction since the matrix 

inversion of smaller datasets is less time-consuming. So as expected, predictions from the smaller 

dataset of the triennially varying production profiles are the fastest for both POD-AE and POD-RBF 

models. 

 

 
Figure 8.14: The breakdown of the time taken to train the POD-AE and POD RBF models that were implemented for 

predicting the pressure distribution in the modified Norne gas field, trained with 50 training runs. POD-AE is slower than 
ECLIPSE for both the seasonal and the triennially varying production profiles, while the full POD-RBF model is only 

faster than ECLIPSE for the triennially varying production profile cases. 

 

SUMMARY 

This is the first time that the POD-AE approaches have been applied to full field simulation, including 

pressure and saturation distribution prediction. In this chapter, POD-AE and POD-RBF models were 

analysed for modelling the performance of the heterogeneous Norne gas field for seasonal and 

triennially varying production profiles, with and without shut-in wells. Both models were applied to 

forecasting the pressure distribution in all the active grid cells of the Norne gas field. In both cases, 

the models were trained with 50 training runs. The POD-AE model was analysed for the prediction of 

5 new cases with 1 to 5 dense encoders and the same number of decoder layers, and the POD-RBF 
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models were analysed for the same predictions but with a full and an optimal rank of POD basis 

functions.  

For the POD-AE model, it was shown that models with different numbers of hidden layers are suited 

to making predictions for different production cases, as such no one autoencoder model suffices for 

forecasting different reservoir scenarios, i.e. production cases with or without shut-in or with seasonal 

or triennially varying production profiles or well controls. However, in this work, POD-AE models with 

2 and 5 hidden layers were the most consistent models for obtaining satisfactory predictions of the 

Norne field’s spatial pressure distribution for the cases with and without shut-in wells. Hence POD-AE 

is a potential NIROM for gas field modelling if its training time can be reduced. 

In comparison, the POD-RBF models give better prediction results than the POD-AE models, with lower 

root mean square error values as well as stable predictions throughout the simulation lifecycle. The 

POD-RBF models were also significantly faster than the POD-AE models. It took over 3 hours to train 

the POD-AE models for the seasonally varying production profile, and less than ten minutes for the 

same cases with the POD-RBF models. In most cases, the optimal rank POD-RBF models (from data 

that represents 99.9% of the full POD basis functions) gave results with similar accuracy as the 

predictions with the full rank POD-RBF model but with a speed-up of an extra order of magnitude. 

POD-RBF predictions with the full rank POD basis functions were slightly more accurate than those 

from the optimal POD-RBF model, but this is only noticeable when the pressure in each grid cell is 

plotted side by side. Overall the training time for the POD-AE and the full rank POD-RBF models were 

prolonged because of the size of the training data, up to 4 orders of magnitude seconds for POD-AE. 

This again confirms the benefit of implementing NIROMs with the least sufficient amount of data 

(fewer numbers of training runs and/ or report steps), to obtain fast and equally accurate predictions. 

Table 8.3 is an overview of the key findings in this chapter. 

From the cases considered in this work, POD-RBF NIROM is easier to set up, computationally faster 

and more accurate for gas field modelling than POD-AE and other machine learning based NIROMs.  

Machine learning based methods require lengthier training time and the process of coming up with a 

model with the most suitable combination of hyper-parameters that suit different production 

scenarios relies on several trials and errors. For a reservoir engineer without ML expertise or who is 

very busy, developing a satisfactory POD-AE model for field development planning may not be worth 

the effort and time. The POD-RBF NIROM would give more accurate and consistent results in a shorter 

time. 
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Table 8.3: A summary of the prediction cases and key findings in this chapter. 

Cases Considered Summary and Findings 

• 2 NIROM methods were evaluated: 
o POD-RBF with full and optimal 

number of POD basis functions 
o POD-AE with 1 to 5 hidden layers 

• Time-varying prediction examples: 
o Seasonal production profiles 
o Triennial production profiles 
o Cases with shut-in wells and 
o Cases without shut-in wells 

• Mixed production controls: 
o Production rate with BHP or THP 

limit 

• 1 real gas reservoir evaluated: 
o Modified heterogeneous Norne gas 

field with 50 training runs 

Key Findings 

• Demonstrated the POD-AE’s predictive capacity for 
gas field modelling, based on different time-varying 
production constraints 

• No single POD-AE model is sufficient for modelling 
different production constraints 

• The prolonged time required to train POD-AE 
models makes their speed inefficient for gas field 
modelling 

• POD-RBF models give more consistent predictions 
than POD-AE models, and they are easier to build 

General Findings 

• Compared the performance of POD-AE to POD-RBF 

• POD-RBF is faster and more accurate than POD-AE 

• Pressure distribution predictions with the optimal 
POD-RBF are similar to those with the full rank 
model, and they are at least one order of 
magnitude faster. 
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9.CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The aim of this research was to come up with a fast, straightforward and accurate non-intrusive 

reduced order model for gas reservoir modelling, benchmarked with a commercial black oil simulator, 

and then to evaluate the usefulness of the non-intrusive reduced order model. The non-intrusive 

reduced order model was intended to estimate the changing pressure distribution (and saturation 

distribution if appropriate) over time as well as the production rates at the wells. Therefore, a proper 

orthogonal decomposition-radial basis function non-intrusive reduced order model was implemented 

based on Xiao et al. (2016) [38] and Kostorz et al.’s  (2019 to 2021) [37, 99, 100] implementations but for 

ECLIPSE’s simulation results of gas reservoirs. Given that the previous implementation of the non-

intrusive reduced order model was for constant parameter cases, that model has been improved upon 

in this work to accommodate varying parameter scenarios. A proper orthogonal decomposition-

autoencoder non-intrusive reduced order model was also designed and implemented for modelling 

gas reservoir performance in time-varying production scenarios. 

The performance of the two non-intrusive reduced order models were subsequently evaluated with 

four (4) gas reservoir models (including 2 real field cases) and for various production dynamics, with 

data of up to eight orders of magnitude. The four gas reservoirs are a homogeneous synthetic single 

well model; a heterogeneous gas reservoir with similar properties to the Norne field, with 3 wells; a 

water coning gas reservoir with one producer; and a sector model of a real gas reservoir (Field X), 

provided by Woodside Petroleum. The gas production scenarios that were modelled with both non-

intrusive reduced order models, included constant and varying production rates and pressure limits, 

with different aquifer types and mixed production controls. With different combinations of the listed 

gas fields and production scenarios or dynamics, both non-intrusive reduced order models were 

evaluated for forecasting the gas fields’ pressure and gas saturation distribution as well as more than 

20 different production variables such as gas and water production, aquifer influx rates and 

cumulative production, in addition to the fields’ and wells’ pressure at different time intervals. Each 

production scenario or dynamics was evaluated for at least 20 years production lifecycle.  

The evaluation of the non-intrusive reduced order models was implemented in three stages of 

complexity: estimating specific simulation cases, predicting new unseen simulation cases that had 

constant underlying production dynamics and predicting new unseen simulation cases that had time-

varying and mixed underlying production dynamics as shown in Figure 9.1 below. The first stage was 

a proof of concept that the non-intrusive reduced order model can be implemented and is applicable 

for gas reservoir modelling. This stage also involved determining the most suitable radial basis 

function(s) for gas reservoir modelling as well as understanding if and how the number of proper 
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orthogonal decomposition basis functions affect the non-intrusive reduced order model’s 

performance. In the second stage of evaluating the non-intrusive reduced order model(s), the model’s 

predictive capacity was evaluated for new unseen simulation cases that had constant underlying 

production. The ideal number of simulation runs for training the proper orthogonal decomposition-

radial basis function model was also analysed. In the last phase of this work, the non-intrusive reduced 

order model’s predictive capacity was evaluated for practical time-varying production rates with 

mixed production controls and shut-in behaviours. 

The findings from this work are discussed in the following sections. 

 
Figure 9.1: Summary of the 3 stages that the non-intrusive reduced order model was evaluated for, a) estimating 

specific simulation cases, and predicting new simulation cases with b) constant parameters c) time-varying and mixed 
control parameters. 

 

9.1 SPECIFIC FINDINGS 

In the first stage of this work, it was shown that the non-intrusive reduced order model can estimate 

the evolution of grid distributed properties (pressure and saturation) using 99.9% of the full set of 

proper orthogonal decomposition basis functions, determined with the energy criterion proposed by 

Xiao et al. (2016) [38]. The estimation of time series production variables require more proper 

orthogonal decomposition basis functions. This was initially shown in chapter 5 but was also indicated 

in the results in chapters 6 and 7.  It was shown that the non-intrusive reduced order model required 

the most number of basis functions to satisfactorily model production variables with negligible change 

in magnitude over time and time-varying production profiles.  

Furthermore, the linear radial basis function was found to be the most consistent and suitable 

interpolation function for modelling gas reservoirs. This was also highlighted in chapter 5, after 

analysing 7 different interpolation functions. Hence, subsequent applications of the proper orthogonal 

decomposition – radial basis function method in the other two phases of this work were based on the 

linear radial basis function. 

From the results of the constant parameter prediction cases in chapter 6, it was highlighted that 10 

training runs is a good balance between accuracy and speed of the non-intrusive reduced order 

Estimating specific cases 
with a commercial 

simulator
Constant parameters Time-varying and mixed 

control parameters

Predicting new unseen simulation cases 
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model’s performance. It was demonstrated that the non-intrusive reduced order model can be 

adequately trained with as few as 5 training runs, although increasing the number of training runs 

could give better predictions that were more time consuming to implement. In addition, it was shown 

that as the number of training runs used to implement the non-intrusive reduced order model 

increases, only those predictions that were within similar range of parameters as the training runs 

were improved. Predictions outside the range of training runs (cases of extrapolation) only got worse 

as the number of training runs increased. 

Furthermore, it was established that the accuracy of the non-intrusive reduced order model 

predictions was generally better during interpolation and worse during extrapolation. When the 

proper orthogonal decomposition – radial basis function model was applied to predicting reservoir 

performance for cases with parameters or simulation duration outside the range that it was trained 

on, it gave worse predictions. This performance of the non-intrusive reduced order model was 

consistent in all the chapters where the NIROM was applied to predicting reservoir performance, 

including during the time –varying production cases. 

In chapter 8, the satisfactory predictive capacity of the non-intrusive reduced order models for 

practical time-varying production rates cases, with mixed production controls and shut-in well 

behaviours, was demonstrated as achieved with the new renormalisation method that is proposed in 

this work. This renormalisation approach aided the predictive capacity of both the proper orthogonal 

decomposition-radial basis function model and the proper orthogonal decomposition-autoencoder 

model for gas reservoir performance modelling. These improved non-intrusive reduced order models 

were therefore evaluated for modelling gas reservoir performance with two types of time-varying 

production profiles including the seasonally varying profile that is more typical of industry patterns. 

In comparison to the proper orthogonal decomposition-autoencoder model, the proper orthogonal 

decomposition-radial basis function model gives more accurate and consistent results, and it is easier 

to implement. The proper orthogonal decomposition-autoencoder can be applied to modelling the 

performance of gas fields with acceptable accuracy, but its training time was more than 40 times the 

time taken to run the simulation with the commercial simulator. Having tested the autoencoder model 

with one to five encoder and decoder layers, it was also found that no one autoencoder model was 

sufficient to model the different production dynamics that were considered, even though the proper 

orthogonal decomposition-autoencoder with 2 and 5 hidden layers were the more consistent models. 

The autoencoder, like other machine learning techniques, relies on several hyperparameters that are 

tuned to achieve the best model set-up. These hyperparameters include the activation functions for 

each hidden layer, number of hidden layers, epoch, batch size, error metrics, loss function, optimiser, 
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optimiser learning rate as well as provision of validation data. Each hyperparameter value can vary 

when training the autoencoder for different production scenarios. However, for the proper 

orthogonal decomposition radial basis function method, the only parameters that need to be tuned/ 

defined in advance are the number of proper orthogonal decomposition basis functions and the type 

of interpolation function, for only one hidden layer. Once set up, the proper orthogonal 

decomposition-radial basis function model can be used for modelling different scenarios of the same 

or different reservoirs (or dynamic systems) as a standalone program that needs little or no re-tuning 

every time.  

 

9.2 GENERAL FINDINGS 

For the time varying parameter cases, which constitute the main novelty of this work, it was shown 

that the range of parameters for training versus prediction simulation runs was more important than 

the number of training runs used to implement the non-intrusive reduced order model. The proper 

orthogonal decomposition-radial basis function model predictions were more accurate when it was 

trained with a similar range of production parameters/ scenarios as the training runs, i.e. 

interpolation. During the prediction of mixed production profile cases, the non-intrusive reduced 

order model may not accurately show the onset of changing production controls, but overall it gives 

satisfactory predictions with over 97% accuracy.  

A comparison of the full and optimal rank proper orthogonal decomposition-radial basis function 

models showed that the full rank model is more accurate than the optimal rank model, although the 

difference between both models is almost negligible. In addition, the optimal rank proper orthogonal 

decomposition-radial basis function model is an order of magnitude faster than the full rank model. 

Therefore the optimal rank proper orthogonal decomposition-radial basis function model is 

recommended as a suitable non-intrusive reduced order model for swiftly modelling gas reservoirs, 

since they give similar accuracy as the full rank non-intrusive reduced order model but with increased 

speed-up. The non-intrusive reduced order model was up to 4.4 times faster than ECLIPSE. 

Overall, this work highlighted that the extent of speed-up that can be achieved with the non-intrusive 

reduced order model is dependent on the size and properties of the dynamic reservoir model. The 

reservoir size is reflected in the number of grid cells that the reservoir model is built with, as well as 

the frequency of report steps that the dynamic reservoir model is required to output simulation 

solutions, and the number of training runs that are used to implement the non-intrusive reduced order 

model. The other reservoir properties that affect the speed of the non-intrusive reduced order model 

include the complexity of the reservoir model (in terms of its degree of homogeneity or heterogeneity) 
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and the presence or absence of grid refinement, aquifer, shut-in wells or mixed production controls.  

In chapters 5 to 7 it is shown that less than 1% of the time taken to implement the non-intrusive 

reduced order models was spent on the actual non-intrusive reduced order model forecast. The 

majority of the remaining time is spent on extracting simulation solutions from the commercial 

simulator, and for proper orthogonal decomposition reduction of the training data or back projection 

of the model’s solutions. This further reiterates the earlier recommendation that training the model 

with 10 runs is a reasonable balance between accuracy and speed of forecasts.  

Having evaluated two non-intrusive reduced order models for different gas production scenarios, this 

work shows that the proper orthogonal decomposition-radial basis function model is suitable for gas 

reservoir modelling and can support engineers in implementing quick field performance estimates 

during field development planning and asset management. This work shows that proper orthogonal 

decomposition-radial basis function non-intrusive reduced order model can support engineers in 

predicting the following aspects of gas reservoir performance:  

• pressure and gas saturation distribution in gas reservoirs; 

• production variables, such as gas, water production and aquifer influx rates, cumulative 

production and pressures; 

• production by gas rate and well control limits such as BHP and THP; 

• constant or time-varying production controls; 

• mixed production controls, with and without shut-in wells; 

• in the presence of numerical and analytical aquifer influx; 

• in the presence of water coning ; 

• low porosity reservoirs (as low as 0.12 porosity); 

• reservoir models built with Cartesian and radial grid as well as with local grid refinement or 

tartan grids; and 

• initialisation by equilibration or enumeration. 

 

9.3 NON-INTRUSIVE REDUCED ORDER MODEL WORKFLOW 

The workflow for implementing non-intrusive reduced order model in this work is summarized below: 

Generating and processing training data using proper orthogonal decomposition 

Step 1: Define the key simulation study parameters and their range of values of interest for the 

study. Examples include gas production rate, well bottom hole pressure, tubing head 

pressure, reservoir porosity and permeability. 
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Step 2: Define output variables to be monitored and predicted in the simulation study such as 

pressure and saturation distribution or production variables like gas and water rates, gas-

water ratio and well pressures. 

Step 3: Define time intervals for the output of simulation results as well as the number of training 

runs for training the non-intrusive reduced order model. We have shown that 10 runs are 

a good balance between speed and accuracy for constant parameter cases. 

Step 4: Build the base case reservoir model for the study or use an existing reservoir model. 

Step 5: Run simulation model based on all the parameters defined in step 1 and extract output 

results defined in step 2, within the programming interface. These are the training data. 

Step 6: Perform mean extraction on the training data, as in Equations 3.2 and 3.3 

Step 7: Perform proper orthogonal decomposition reduction on the data from step 6 above to 

obtain the left singular vectors matrix (Equation 3.4). 

Step 8: Implement energy criterion on left singular vectors matrix using Equations 3.5 and 3.6, to 

estimate the optimum number of proper orthogonal decomposition basis functions for 

implementing non-intrusive reduced order model predictions of the spatial distribution 

of the reservoir properties of interest. 

Step 9: Translate individual training runs data into hyperspace using the optimal left singular 

vector matrix and recombine/ concatenate them into a single matrix, i.e. the reduced 

training data matrix. 

Step 10: Re-normalise the reduced training data using the scaling factor in Equation 3.9 (for 

constant parameter scenarios) or Equation 3.10 (for varying parameter scenarios). Also, 

renormalize training parameters (parameterisation) with their corresponding scaling 

factors as in Equation 3.12 or 3.14. 

Step 11: Concatenate individual reduced and re-normalised training data with their corresponding 

re-normalised parameters as in Equation 3.15 

Step 12: Generate sample and response arrays from the reduced training data in a cause and 

effect manner i.e. in a similar manner as in the last paragraph of section 3.4. 

Step 13: Generate initial condition data for prediction cases to be evaluated with non-intrusive 

reduced order model, reduce and normalise the data via the same steps used to reduce 

and normalise training data (steps 6 to 11). 

 

Interpolate using a) Radial Basis Functions or b) Autoencoder 

a) Radial basis function interpolation 

Step 14: Generate pairwise distance matrix between successive columns of normalised and 

reduced sample training data from step 12. 

Step 15: Generate weighting coefficient matrix using the pairwise distance data from step 14 and 

a suitable radial basis interpolation function (Equation 3.19). The linear radial basis 

interpolation function is recommended for gas reservoir modelling. 
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Step 16: Execute non-intrusive reduced order model simulation with weighting coefficients from 

step 15 as well as initial condition data for the prediction cases from step 13. 

b) Autoencoder interpolation 

* use full rank left singular values matrix from step 7 rather than optimal rank data from step 8, to 

generate their training data. 

Step 14: Generate additional simulation run(s) for validation data, reduce and normalise the 

validation data via the same steps used to reduce and normalise training data (steps 6 to 

11). 

Step 15: Define hyperparameters for autoencoder, train autoencoder with the defined 

hyperparameters and training data from steps 12 and 14. The data from step 12 is for 

training the autoencoder and the data from step 14 is for validating the autoencoder. 

Step 16: Execute autoencoder simulation, to obtain prediction results for the data in step 13. 

  

Back-project results from interpolation and compare results 

Step 17: Un-normalise radial basis function and/ or autoencoder prediction results and translate 

them into full space using Equation 3.17. 

Step 18: Compare results from step 17 to the full simulation outputs of the same production cases 

with the conventional simulator, using plots and/ or metrics. 

 

9.4 LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORK 

9.4.1 LIMITATIONS 

Having highlighted the strengths and usefulness of the proper orthogonal decomposition-radial basis 

function non-intrusive reduced order model in gas field modelling, it is also important to recap its 

other realities. Nonetheless, the views mentioned below are more cautionary than constraints for the 

application of non-intrusive reduced order model for fast modelling of practical aspects of gas field 

development planning such as during history matching and sensitivity analysis. 

First, the non-intrusive reduced order model is at best a complementary tool to standard reservoir 

simulation, it depends on conventional simulation results for the data with which it learns a system’s 

dynamics. Likewise, the proper orthogonal decomposition-radial basis function model does not give 

the exact same results as ECLIPSE. So for production scenarios that rely on high modelling accuracy/ 

precision (such as during enhanced oil recovery studies – which have not been evaluated in this work), 

an approved commercial simulator remains the best simulation tool. 

In this work also, it has been shown that for simple simulation cases like the base case of the synthetic 

gas reservoir, the proper orthogonal decomposition-radial basis function model did not give as 

significant speedup as for the heterogeneous reservoirs or more complex production scenarios such 
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as grid refinement, water coning or presence of aquifer influx. So for sensitivity analysis of simple 

simulations cases, it is probably more beneficial to use the direct results of a conventional simulator, 

rather than build a non-intrusive reduced order model. 

Lastly, proper orthogonal decomposition-based non-intrusive reduced order models are not ideal for 

simulation cases with large amounts of data because of the time requirement for back projection. For 

instance in chapter 8 it was shown that in the seasonally varying production profile case with 50 

training runs and the full rank proper orthogonal decomposition basis functions, the non-intrusive 

reduced order model was slower than ECLIPSE. Back projection constitutes one of the different 

sources of uncertainty in this work. Although it has not been evaluated, it is expected to have a small 

consequence on the results that were discussed. 

 

9.4.2 RECOMMENDATIONS 

Although this work has considered and evaluated several aspects of gas reservoir modelling, several 

other production scenarios exist that could be evaluated with proper orthogonal decomposition-radial 

basis function non-intrusive reduced order model or other modelling techniques. For instance, this 

work only considered reservoirs with vertical and deviated (in Field X) producers, however further 

work could focus on applying the proper orthogonal decomposition-radial basis function to reservoir 

systems with injectors and more complicated well configurations. The non-intrusive reduced order 

model could also be applied to modelling more complex reservoir scenarios such as naturally fractured 

carbonates or sandstone reservoirs. This work was also focussed on conventional gas reservoir 

modelling but proper orthogonal decomposition-radial basis function could be applied to modelling 

the performance of unconventional shale gas reservoirs, condensate gas reservoirs or CO2 

sequestration in depleted hydrocarbon reservoirs or aquifers, especially based on the renormalisation 

approach for time-varying parameters that is presented in this work. This should be feasible, since the 

non-intrusive reduced order model approaches are data driven and independent of the physics of the 

reservoir systems. The non-intrusive reduced order model could also be evaluated for modelling the 

performance of enhanced recovery strategies, for instance chemical, thermal and immiscible 

displacement. It could also be expanded to simulate other aspects of the energy and other industries 

that rely on big data and simulations such as healthcare, telecommunications and studies on natural 

events and disasters. 

In addition to the above recommendations, other machine learning techniques can be investigated 

for gas reservoir modelling, especially those with faster training time than the proper orthogonal 

decomposition-autoencoder method presented in this work. These could include other machine 



Chapter 9: Conclusions and Recommendations for Future Work 

218 
 

learning data reduction techniques like convolutional neural networks with graphics processing units 

and hybrid modelling that incorporates machine learning techniques with optimisation techniques. 

The hyperparameters and architectures applied to these machine learning techniques can also be 

further investigated to determine suitable combinations that could improve the fast modelling of gas 

reservoirs. 

From an industry perspective, it would be good to collaborate with software/ programming experts 

to implement the proper orthogonal decomposition-radial basis function non-intrusive reduced order 

model in an efficient compiled programming language. Possibly, a software or commercial product 

can be developed that incorporates all the aspects of gas reservoir modelling that have been evaluated 

in this work, as well as other aspects of field development planning that may be considered in future. 

A proper orthogonal decomposition-radial basis function non-intrusive reduced order model tool 

would benefit even more from being applied in the daily activities of practising engineers who can 

highlight areas for development and improvement of the tool. This would further assist in fine-tuning 

the non-intrusive reduced order model’s usefulness and application to suit specific industry purposes. 
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NOMENCLATURE 

A (d+1 × nt) array of reduced training data and parameters 

AE Autoencoder 

AI  Artificial Intelligence 

ANN Artificial neural network 

B formation volume factor 

BCF billion cubic feet 

BHP Bottom Hole Pressure 

bp British Petroleum 

c compressibility 

CNN convolutional neural network 

cP centipoise 

d number of POD basis functions that represent 99.9% energy criterion 

DEIM discrete empirical interpolation method 

EIA  US Energy Information Administration 

ELU Exponential Linear Unit  

f  a function 

FFNN feedforward neural network  

ft feet 

g gram 

G volume of Gas 

GIP Gas in Place 

GNAT Gauss-Newton with approximated tensors 

GPU  graphics processing unit 

GRU gated recurrent units 

GWC Gas Water Contact 

HL Hidden Layer 

I energy criterion 

K permeability 

kg kilogram 

lb pound 

LGR Local Grid Refinement 

LSTM  Long Short Term Memory 

m meter 
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mD milliDarcy 

Mscf thousand standard cubic feet 

ML  Machine Learning 

MMscf million standard cubic feet 

NIROM Non-Intrusive Reduced Order Model 

NN  Neural Networks 

np total number of parameters 

ns total number of simulation snapshots 

nt total number of dimensions in the temporal resolution 

nx total number of dimensions in the spatial resolution 

NX number of grid cells/blocks in the x-direction 

NY  number of grid cells/blocks in the y-direction 

NZ  number of grid cells/blocks in the z-direction 

p parameter 

PCA  principal components analysis 

PDE Partial Differential Equation 

POD Proper Orthogonal Decomposition 

psi pound square inch 

p/Z pressure (P) divided by gas deviation factor (Z) 

∆𝑝 total pressure drop  

R rank 

RBF Radial Basis Function 

ReLU rectified linear unit  

RMSE  Root Mean Square Error  

RNN recurrent neural network 

ROM Reduced Order Model 

s index for the number of training runs 

sm standard meter 

Swc connate water saturation 

t index for temporal resolution, tth time instance/snapshot 

T superscript denoting transpose 

THP  tubing head pressure  

TPWL trajectory piecewise linearization 

U columns of the training data 
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V left singular vectors’ matrix of a POD 

VT transpose of the left singular vectors or eigenvectors of a POD 

w weighting coefficient for linear RBF 

W right singular vectors’ matrix of a POD 

We water influx 

 

Greek symbols 

 vectors describing the projection of the training solution in hyperspace 

λ  singular values 

μ viscosity 

Σ = λ2 eigenvalues 

𝜙 porosity 

ϕ radial basis interpolation function 

ω weighting coefficient matrix 

 

Subscripts 

 p produced 

g gas 

i initial 

w water 
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APPENDICES 

10.APPENDIX A: OTHER RENORMALISATION METHODS 

In chapter 3, two methods for parameterisation/ renormalising the data for NIROM predictions were 

described, i.e. the Euclidean distance approach developed by Kostorz et al (2020) [99] which is suitable 

for constant parameter cases; and the maximum reduced data approach that was proposed by this 

work, which is suitable for varying parameter cases. Recall that the renormalisation approach of 

Kostorz et al (2020) [99] entails computation of equally spaced Euclidean distances between the 

different parameters of each dataset. But for varying/ forced parameter cases where parameters can 

increase, reduce or stay the same haphazardly, this is not feasible. Hence the 3 renormalisation 

methods discussed in this section are the other techniques that were contemplated and evaluated for 

varying parameter cases, before arriving at the maximum reduced data method that was described in 

chapter 3. 

These 3 renormalisation methods are based on Kostorz et al. (2020) [99] Euclidean distance 

renormalisation method for constant parameter cases. They include a modified renormalisation 

method, using proxy parameters (which are related to the actual parameters but have an ordered 

sequence of progression with time) and constraining the NIROM’s temporal resolution based on the 

production recovery efficiency rather than chronological time. Each method was initially examined for 

correctness by applying them to constant parameter cases and establishing their accuracy before they 

were evaluated for varying parameter examples. 

 

A.1 MODIFIED NORMALIZATION METHOD 

For this method, the reduced training data (𝜶𝒔 from Equation 3.7) and their corresponding parameters 

(𝒑𝒔 from Equation 3.11) are combined into a single dataset before they are normalised. In other words, 

after the training runs are reduced into (d × nt) arrays, the reduced training data are merged with 

their corresponding un-normalised varying parameters to obtain a (d+np × nt) array of data.  

 

𝜶�̈�
́ = [𝜶𝑠 ;  𝒑𝑠] Equation 10.1 

  where 𝜶𝒔 = 𝑽𝒅
𝑻�̃�𝒔  ;  s= 1, 2, ,3 , …, ns  

 

Then a second mean extraction and POD are implemented on the combined data. The corresponding 

Eigenvalues, 𝜮𝟐, and vectors, W, from the second POD are then used as the renormalisation factors 

for the combined data as shown in Equation 10.2.  
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𝑨𝒔 =
𝑾𝑻(�́̈�𝒔 − �̅̈�)

𝜮𝟐
 Equation 10.2 

 where �́̈� �́̈�T
 =  𝑾𝜮𝟐𝑾

𝑻 and �̅̈� =
𝟏

𝒏𝒕 × 𝒏𝒔
∑ �́̈�𝒕

𝒏𝒕×𝒏𝒔

𝒕=𝟏

  

 

Figure 10.1 is a summary of how this method differs from the typical renormalisation approach of 

Kostorz et al (2020) [99]. 

 

 
Figure 10.1: Summary of procedure for the modified normalization approach of forced parameter scenarios. 

Parameterization is executed in hyperspace to nullify the need for sorting parameters in any order of magnitude.  

 

A.2 USING A PROXY AS PARAMETER 

In this approach, Kostorz et al.’s (2020) [99] renormalisation approach was implemented exactly for the 

varying parameter cases, but with a different production variable serving as the simulation 

parameters. Instead of the actual simulation parameter which would be the varying production rates, 

another production variable that is more stable (continuously increasing or decreasing during the 

production lifecycle) is used as a substitute parameter. For example the cumulative gas production 

can be a proxy for the production rate since it is directly related to the production rate and it would 

typically not fluctuate haphazardly during the period of production. This method seemed practical 

since Kostorz et al.’s (2020) [99] method requires that simulation parameters should increase (or 

decrease) steadily throughout the production time in consideration. 

 

A.3 CONSTRAINING THE TEMPORAL RESOLUTION WITH A PROXY PARAMETER 

This approach involved using a different type of variable as the temporal resolution of the NIROM, in 

addition to the last approach of using proxy parameters instead of varying rates. The typical NIROM is 

implemented based on the chronological time in report steps serving as the temporal resolution for 

the NIROM. However in this approach, a non-time temporal resolution such as the recovery efficiency 

of production was used to compute the regular intervals that correspond to the temporal resolution 

of the NIROM. For example, the temporal resolution was pegged on successive increments of 

cumulative recovery from the reservoir, for instance at 3, 6, 9, 12%, etc. cumulative recovery.  
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A.4 RESULTS AND DISCUSSION 

A.4.1 MODIFIED NORMALIZATION APPROACH AND CONSTRAINED TEMPORAL RESOLUTION  

 
i) Average Pressure distribution 

 

i) Average Pressure distribution 

 
ii) Production Profile 

 

ii) Production Profile 

 
a) b) 

Figure 10.2: Examples of NIROM’s attempt at predicting the average pressure distribution in 2 varying rate cases of the 
synthetic gas reservoir model. In both cases, a) modified normalization approach and b) temporal resolution 
constrained at equal intervals of cumulative production, NIROM’s predictions were not representative. The 

corresponding production profiles for both cases are the (ii) plots. 

 

None of the above 3 methods of renormalisation was suitable for the varying parameter case. Figure 

10.2 shows some results of applying the first two renormalisation methods described above. The 

erratic behaviour of NIROM predictions with these renormalisation methods was similar to those of 

transient systems described by Kostorz et al. (2021) [100]. Kostorz et al. (2021) proposed that it is more 

challenging for NIROM to describe transient systems in hyperspace and more training runs’ data are 

required for their dynamics to be adequately learnt. Besides, interpolation errors accumulate as 

NIROM predictions progress, leading to even poorer interpolations at the time intervals when new 

forced parameters are imposed on the system. 
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A.4.2 BOOST AND SHARPNESS OF TURN CORRELATION ANALYSIS 

To confirm if the NIROM’s inability to give representative predictions of the varying parameter cases 

was a fundamental issue with the gas reservoir systems or the renormalisation methods, the 

simulation data for the constant and varying parameter cases were tested with Kostorz et al.’s (2021) 

[100] validation framework. Kostorz et al.’s (2021) [100] validation framework checks the suitability of a 

dataset for POD-RBF modelling. The framework was tested on the spatial pressure distribution data 

of the synthetic gas reservoir model (Figure 10.3). 

This framework analyses the phase behaviour of simulation data based on 2 criteria: the extent to 

which the simulation data experiences change in direction between successive temporal resolutions 

(sharpness of turn or mth-order correlation) and the amount of steadiness or explosion that the data 

experiences at every interval when a new forced parameter is introduced into the system (boost). The 

sharpness of turn criteria shows how close a dataset is to being a transient system, so an ideal 

sharpness of turn plot should have a value of 1, lower values indicate that the case will be more 

difficult for NIROM to predict. The boost plot should evolve smoothly with values that are close to 

zero, it tells whether or not the effect of the varying parameters is too sudden for the NIROM to cope 

with during interpolation. 

Figure 10.3 shows a comparison of sharpness of turn and boost plots for constant and varying 

parameter examples of the synthetic gas model. In Figure 10.3 the sharpness of turn plots for constant 

and varying rate simulation data are similar, and they are close to the ideal value of 1. This implies 

that the synthetic gas model’s data does not experience a significant change in direction in the phase 

space and NIROM should be able to model its performance. This can be attributed to the pressure 

depletion mechanism of gas reservoirs and this was a good sign to show that the gas reservoir system 

can be modelled with a POD-RBF NIROM. On the other hand, the boost plot for the forced parameter 

case is much more ‘spiky’ than for the constant parameter case, with maximum values ~0.2 as opposed 

to ~0.06 for the constant rate case. This confirms that when modelling the time-varying/ forced 

parameter cases, the NIROM will find it more difficult to capture the dynamics of the reservoir’s 

pressure distribution at the time intervals of each sudden change in production rate, than in the 

constant parameter case.  
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a) Constant rate production 

  

b) Varying rate production 

  
Figure 10.3: Sharpness of turn and boost plots for the spatial pressure data of the synthetic gas reservoir. Both plots 

are compared for a) constant rate production and b) varying rate production, to evaluate the extent of instability inherent 
in the reservoir’s pressure data and to evaluate if the NIROM can cope with the data for interpolation. The sharpen of 
turn plots in both cases are satisfactory, but the spikiness of the boost plot for the varying rate case suggests that it 

would be more challenging for the NIROM to accurately interpolate. 

 

11.APPENDIX B: MORE POD-AE RESULTS AND OTHER MACHINE LEARNING METHODS  
This section considers other aspects of the POD-AE model that were evaluated for this work. It was 

earlier mentioned that the autoencoder model that was discussed in chapters 3 and 8 was evaluated 

with fewer than 50 training runs, and apart from the autoencoder, other machine learning approaches 

were evaluated and analysed. These are discussed in the following sections. A similar optimiser and 

activation function was used in these examples as for the POD-AE framework that was described in 

chapter 3, i.e. Adam optimiser and ELU activation function.  

 

B.1 POD-AE RESULTS WITH 10 AND 20 TRAINING RUNS 

The results of POD-AE modelling that were showed in chapter 8 were based on training the POD-AE 

with 50 training runs. This section provides some results on the performance of the POD-AE when it 

was trained with 10 and 20 runs. The results in Figure 11.1 and Figure 11.2 show the instability that 

was experienced while making predictions of gas reservoir performance with POD-AE. The predictions 

with 10 training runs (Figure 11.1) were more stable and accurate than those with 20 training runs 

(Figure 11.2), whereas ML techniques are expected to be more accurate as more data is provided for 

them to learn a system’s dynamics. In the case with 10 training runs (Figure 11.1), the best POD-AE 

predictions were obtained with the model with 2HL and 3HL, while in Figure 11.2 the best POD-AE 
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results were obtained from the model with 2, 4 and 5 HLs. Besides, Figure 11.2 showed the undulating 

under and over prediction of the AE model for the prediction examples of the modified Norne gas field 

with varying production profiles and shut-in well(s). The AE model was overall less stable and 

inconsistent for modelling other cases of the gas field. 

 

  
a) Production profiles for prediction runs b) Production profiles for training runs 

 
c) Predictions with POD-AE with 2 and 3 HLs 
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d) Predictions with POD-RBF with optimal and full rank POD basis functions 

 
e) Average errors in the predictions with POD-AE and POD-RBF 

Figure 11.1: Results of modelling the modified Norne gas field with 10 training runs when at least one of the wells was 
shut-in during the production lifecycle. a) The production profiles for the prediction cases tested with POD-AE and POD-

RBF b) The production profiles for the 10 training runs used in this example c) Predictions of the average pressure 
distribution in the field using POD-AE with 2 and 3 HLs d) Predictions of the average pressure distribution in the field 
using the optimal and full rank POD-RBF and e) the average error in the prediction of pressure distribution from the 4 

models in c and d. 
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a) Production profiles for prediction runs b) Production profiles for training runs 

 
c) Predictions with POD-AE with 2, 4 and 5 HLs 
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d) Average errors in the predictions with POD-AE and POD-RBF 

Figure 11.2: Results of modelling the modified Norne gas field with 20 training runs when at least one of the wells was 
shut-in during the production lifecycle. a) The production profiles for the prediction cases tested with POD-AE and POD-

RBF b) The production profiles for the 20 training runs used in this example c) Predictions of the average pressure 
distribution in the field using POD-AE with 2, 4 and 5 HLs d) The average error in the prediction of pressure distribution 

from the 3 models in (c) as well as the optimal POD-RBF model. 

 

B.2 POD-AE WITH DROPOUT LAYERS 

In section 3.5.2 the POD-AE structure that was used in this work was described as having fully 

connected/ dense layers. A neural network with dense layers has all its layers in a given layer 

connected to all the layers in the preceding layer. In some cases, to improve the generalisation/ 

predictive ability of NNs, not all the preceding layers of a NN are connected to their next layer. Such 

models are said to have dropout layers. Dropout layers randomly removing some HL connections 

during the training of ML models to minimise overfitting [106]. The decision to use dense layers in this 

work was taken because dropping out some layers of the autoencoder network yielded less 

satisfactory results. Figure 11.3 shows an example of where dropout layers have been added to the 

autoencoder for modelling a triennially varying production profile case of the modified Norne gas field. 

Figure 11.3 shows that as more layers were dropped out of the autoencoder model, its predictive 

capacity became worse. 
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a) without dropout layers (fully connected) 

  
b) with a 0.25 dropout rate c) with a 0.5 dropout rate 

Figure 11.3: Modelling a triennially varying production case of the modified Norne field case with shut-in well(s). This 
example is from the 4HLs model a) without dropout layers b) with 0.25 dropout rate and c) with 0.5 dropout rate. The 

best prediction was obtained with the fully connected model. 

 

B.3 OTHER ML MODELS CONSIDERED IN THIS WORK 

This section gives a brief overview of the other ML techniques that were considered during this work. 

For a more detailed insight into these concepts, the reader is referred to respective references. 

 

B.3.1 FEED-FORWARD NEURAL NETWORK (FFNN), 

These are the most basic and straightforward ANNs. They consist of several interconnected layers 

between their input and output layers, they are unidirectional and have no looped or feedback 

connections [105]. In this work FFNNs with one to five hidden layers were evaluated for their suitability 

for modelling gas reservoirs. Figure 11.4 is a schematic of a three-layer FFNN. 
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Figure 11.4: An example of a three-layer feedforward neural network [111]. 

 

Figure 11.5 shows an example of predictions of the average pressure distribution in the modified 

Norne gas field using FFNNs. Figure 11.5 shows unsatisfactory predictions from all the FFNNs that 

were tested, 1 to 5 HLs. The FFNNs gave the same average prediction for all 5 predictions, they were 

unable to distinguish between individual predictions. 

 

 
Figure 11.5: Predictions of the average pressure distribution in the modified Norne gas field with shut-in wells. 5 FFNNs 

were tested and they all gave averaged values for all 5 predictions, being unable to distinguish the dynamics of the 
different prediction examples. 
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B.3.2 LONG SHORT TERM MEMORY (LSTM) MODEL 

LSTMs are a type of recurrent neural network that has a looped feedback mechanism to improve their 

generalisation/ predictive ability. For LSTMs, the feedback loops help the model to learn from both 

recent layers and other layers farther backwards in the network, thereby fine-tuning their predictions 

and minimising their prediction errors [105, 106]. This makes LSTM models more time consuming to run 

than other networks without feedback loops e.g. FFNN. LSTMs also require a large computational 

capacity for storage of the extra parameters and more data that are saved for the LSTMs to look back 

to in future steps [13]. For this work, an autoencoder-LSTM was applied to modelling the gas reservoir 

system. The AE-LSTM was of a similar structure as the AE model, except that the innermost layer of 

the AE was replaced with an LSTM layer as shown in Figure 11.6. Just like in the FFNN case, the AE-

LSTM model was unable to identify the difference in individual prediction examples, for all of the AE-

LSTM models with 1 to 5 HLs Figure 11.7.  

 

 
Figure 11.6: A schematic of the AE-LSTM model that was tested for this work. The model consists of an autoencoder 

whose innermost layer is an LSTM model.  

 

 
Figure 11.7: Results of using an AE-LSTM for modelling the average pressure distribution in a modified Norne field 

example with shut-in well(s). All the AE-LSTM models gave identical predictions for all the cases (HLs) that were tested. 
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12.APPENDIX C: RESERVOIR DATA FILES AND NIROM MODELS 

Below are some of the data files and models for the gas reservoirs that were considered in this work. 

 

C.1 RESERVOIR MODELS 

C.1.1 SYNTHETIC GAS MODEL WITH FETKOVICH AQUIFER 

Figure 12.1 is the relative permeability curve for the synthetic gas reservoir model that was built using 

Schlumberger’s Petrel [138], showing the relative permeability to gas and water (Krg and Krw 

respectively). Next is ECLIPSE data file for the base case synthetic gas reservoir, including the PVT data 

and relative permeability curves data under the “PROPS” section. 

 

 

 
Figure 12.1: Relative permeability curves for the synthetic gas reservoir. 

 

-- SYNTHETIC GAS RESERVOIR MODEL 

 

RUNSPEC ================================================================ 

TITLE                                    

GAS-WATER CASE                           

                                    

DIMENS                                   

-- Nx   Ny   Nz                          

19  21  6/                       

 

WATER                                    

 

GAS                                      

 

FIELD                                    

 

EQLDIMS                                    

    1       100   10    1    1 /         
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TABDIMS                                  

    1      1     16   20    5   12 /     

 

WELLDIMS                                       

    1     100       1       1 /            

 

START                                    

  1 'JAN' 1995 /                        

 

AQUDIMS                                                                          

   30    3*    4    3000     2 /    

 

FMTIN                                

 

UNIFOUT                                  

 

UNIFIN                                   

 

GRID    ================================================================= 

DXV                                             

19*105/     

 

DYV         

21*105/    

 

DZ         

2394*55/   

            

TOPS        

399*8095/   

 

PORO 

2394*0.2/   

 

PERMX 

2394*50/    

 

PERMZ 

2394*5 / 

 

COPY 

PERMX PERMY/ 

/ 

    

PROPS    =============================================================== 

SGFN                                  -- Generated: Petrel   Corey 2            

                0.12                  0                  0                

        0.1890909091     0.006164196435                  0                

        0.2581818182      0.02465678574                  0                

        0.3272727273      0.05547776791                  0                

        0.3963636364      0.09862714295                  0                

        0.4654545455       0.1541049109                  0                

        0.5345454545       0.2219110716                  0                

        0.6036363636       0.3020456253                  0                

        0.6727272727       0.3945085718                  0                

        0.7418181818       0.4992999112                  0                

        0.8109090909       0.6164196435                  0                

                0.88       0.7458677686                  0                          

  /                                                                       

                                                                          

SWFN                                -- Generated: Petrel     Corey 4             

                0.12                  0                  0                

        0.1890909091    6.830134554E-05                  0                

        0.2581818182     0.001092821529                  0                

        0.3272727273     0.005532408988                  0                

        0.3963636364      0.01748514446                  0                

        0.4654545455      0.04268834096                  0                

        0.5345454545      0.08851854382                  0                
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        0.6036363636       0.1639915306                  0                

        0.6727272727       0.2797623113                  0                

        0.7418181818       0.4481251281                  0                

        0.8109090909       0.6830134554                  0                

                0.88                  1                  0                           

  /                                                                       

 

PVTW                                   -- Generated: Petrel                 

      4200       1.0205   2.1317E-06      0.56127            0 /           

                                                                           

RVCONSTT                               -- Generated: Petrel                

   0       1150 /                                                        

                                                                           

PVDG                                                                       

--   PGAS       BGAS        VISGAS     -- Generated: Petrel      

           1150        2.609789961      0.01464603392                                       

    1360.526316        2.186577631      0.01505977657                                       

    1571.052632        1.879732362      0.01550970561                                       

    1781.578947        1.648163466       0.0159938051                                       

    1992.105263        1.468116226      0.01650958703                                       

    2202.631579        1.324878837      0.01705405537                                       

    2413.157895        1.208833088      0.01762376274                                       

    2623.684211        1.113409707      0.01821493658                                       

    2834.210526        1.033958126      0.01882364638                                       

    3044.736842        0.967087626      0.01944598108                                       

    3255.263158       0.9102656529      0.02007820927                                       

    3465.789474       0.8615630748      0.02071690365                                       

    3676.315789       0.8194867376      0.02135902178                                       

    3886.842105       0.7828657371      0.02200194429                                       

    4097.368421       0.7507718551      0.02264347793                                       

    4307.894737       0.7224624388      0.02328183313                                       

    4518.421053       0.6973384853      0.02391558595                                       

    4728.947368       0.6749133276      0.02454363225                                       

    4939.473684        0.654788901      0.02516514021                                       

           5150       0.6366375455      0.02577950483                                       

/                                                                          

 

DENSITY                                -- Generated: Petrel                                                        

37.457       71.397     0.046568 /                                                     

 

RTEMP 

180 / 

 

ROCK 

   4000          .3E-5          / 

 

RPTPROPS 

/ 

 

SOLUTION =============================================================== 

EQUIL 

      8115   4200   8420     0     0      0      0      0       0 / 

     

RPTSOL 

'PRES' /   

 

AQUFETP                                                          

    1   8420 1*   100E8 5.6216E-6 500    3*            /      

/                                                                

 

AQUANCON                                                             

    1   1   19 1   21 1   6   K+  /   

/ 

 

SUMMARY =============================================================== 

RUNSUM 

 

EXCEL 
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FWPR 

FWPT 

FPR 

WBHP 

/ 

WGPR 

/        

WGPT 

 /       

WWGR  

/ 

ANQR                                                                                                                                                 

 /                                                                                                                                                   

ANQT                                                                                                                                                 

/                                                                                                                                                    

ANQP                                                                                                                                                 

  /                                                                                                                                                  

AAQR                                                                                                                                                 

/                                                                                                                                                    

AAQT                                                                                                                                                 

/                                                                                                                                                    

AAQP                                                                                                                                                 

/    

WPI 

/ 

SCHEDULE =============================================================== 

 

RPTSCHED 

'PRES'  'SWAT' 'SGAS' 'RS' 'RESTART=2' 'FIP=1' 'WELLS=2' 'SUMMARY=2'  

'CPU=2' 'NEWTON=2' / 

 

WELSPECS 

      'PROD'  'G'    10  11   8115 'GAS'  / 

/ 

 

COMPDAT 

      'PROD'    10  11  1  6 'OPEN'  0   -1    0.5  /     

  / 

 

WCONPROD 

  'PROD'  'OPEN'  'BHP'  5*  1000/  'GRAT'  2*  6772  2*  14.7  /           

  / 

 

TSTEP                                                                               

25*300 /                                                                            

 

END     ================================================================                                                                                      

 

C.1.2 MODIFIED NORNE GAS FIELD MODEL FOR THE SEASONALLY VARYING PRODUCTION CASE 

Below is the eclipse data file for the base case modified Norne gas field, including the PVT data and 

relative permeability curves under the “PROPS” section. The other INCLUDE files that defined the 

field’s structure and grid properties are available on Github by Rasmussen (2014) [128, 129]. 

 
-- This reservoir simulation deck is made available under the Open Database 

-- License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in 

-- individual contents of the database are licensed under the Database Contents 

-- License: http://opendatacommons.org/licenses/dbcl/1.0/ 

-- Copyright (C) 2015 Statoil 

 

-- Norne full field model for SPE ATW 2013 

RUNSPEC 
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DIMENS 

46 112 22   /  

 

GRIDOPTS 

 'YES' 0 / 

 

WATER 

 

GAS 

 

METRIC 

 

START 

 06  'NOV' 1997 / 

 

EQLDIMS 

1 / 

 

WELLDIMS 

    130  36  15  84 /   

 

TABDIMS 

   1     1     33     60   16    60 / 

 

CPR 

/ 

 

NSTACK 

 25 /     

 

UNIFIN 

UNIFOUT 

--------------------------------------------------------- 

-- Input of grid geometry 

--------------------------------------------------------- 

GRID 

 

GRIDFILE 

  2  / 

 

GRIDUNIT 

METRES  / 

 

MESSAGES 

 8*10000  20000 10000 1000 1* / 

 

NOECHO 

-------------------------------------------------------- 

--   Grid and faults 

-------------------------------------------------------- 

INCLUDE 

 'IRAP_1005.GRDECL' / 

 

INCLUDE 

  'ACTNUM_0704.prop' / 

-------------------------------------------------------- 

--   Input of grid parameters 

-------------------------------------------------------- 

 

INCLUDE 

  'PORO_0704.prop' / 

 

INCLUDE 

  'NTG_0704.prop' / 

 

INCLUDE 

  'PERM_0704.prop' / 
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COPY 

  PERMX PERMY / 

  PERMX PERMZ / 

/ 

 

-- based on same kv/kh factor 

MULTIPLY 

  'PERMX' 0.5    1 46 1 112  1  22 /                             

  'PERMY' 0.5    1 46 1 112  1  22 /                                                                             

  'PERMZ' 0.2    1 46 1 112  1  1 /    Garn  

  'PERMZ' 0.04   1 46 1 112  2  2 /    Garn  

  'PERMZ' 0.25   1 46 1 112  3  3 /    Garn  

  'PERMZ' 0.0    1 46 1 112  4  4 /    Not  (inactive anyway 

  'PERMZ' 0.13   1 46 1 112  5  5 /    Ile 2.2 

  'PERMZ' 0.13   1 46 1 112  6  6 /    Ile 2.1.3 

  'PERMZ' 0.13   1 46 1 112  7  7 /    Ile 2.1.2 

  'PERMZ' 0.13   1 46 1 112  8  8 /    Ile 2.1.1 

  'PERMZ' 0.09   1 46 1 112  9  9 /    Ile 1.3 

  'PERMZ' 0.07   1 46 1 112 10 10 /    Ile 1.2 

  'PERMZ' 0.19   1 46 1 112 11 11 /    Ile 1.1 

  'PERMZ' 0.13   1 46 1 112 12 12 /    Tofte 2.2 

  'PERMZ' 0.64   1 46 1 112 13 13 / Tofte 2.1.3                             

  'PERMZ' 0.64   1 46 1 112 14 14 / Tofte 2.1.2  

  'PERMZ' 0.64   1 46 1 112 15 15 / Tofte 2.1.1  

  'PERMZ' 0.64   1 46 1 112 16 16 / Tofte 1.2.2  

  'PERMZ' 0.64   1 46 1 112 17 17 / Tofte 1.2.1  

  'PERMZ' 0.016  1 46 1 112 18 18 / Tofte 1.1    

  'PERMZ' 0.004  1 46 1 112 19 19 / Tilje 4      

  'PERMZ' 0.004  1 46 1 112 20 20 / Tilje 3      

  'PERMZ' 01.0   1 46 1 112 21 21 / Tilje 2                    

  'PERMZ' 01.0   1 46 1 112 22 22 / Tilje 1                                  

/                                                                                      

--------------------------------------------------------                              

--      Barriers                                                                      

--------------------------------------------------------                              

-- MULTZ multiplies the transmissibility between blocks                               

-- (I, J, K) and (I, J, K+1), thus the barriers are at the                            

-- bottom of the given layer.                                                         

                                                                                      

-- Region barriers                                                                    

INCLUDE                                                                               

 'MULTZ_HM_1.INC' /                                                                   

                                                                                      

-- Field-wide barriers                                                                

EQUALS                                                                                

  'MULTZ'    1.0      1  46  1 112   1   1  / Garn3       - Garn 2                    

  'MULTZ'    0.05     1  46  1 112  15  15  / Tofte 2.1.1 - Tofte 1.2.2               

  'MULTZ'    0.001    1  46  1 112  18  18  / Tofte 1.1   - Tilje 4                   

  'MULTZ'    0.00001  1  46  1 112  20  20  / Tilje 3     - Tilje 2                   

-- The Top Tilje 2 barrier is included as MULTREGT = 0.0                              

/                                                                                     

-------------------------------------------------------------------------------- 

PROPS 

-------------------------------------------------------------------------------- 

--    Input of fluid properties and relative permeability 

--------------------------------------------------------- 

SWFN 

--Sw         Krw          Pcw                  

0.151090         0.0      400.0                  

0.151230         0.0      359.190                

0.151740         0.0      257.920                

0.152460         0.0      186.310                

0.156470         0.0      79.060                 

0.165850         0.0      40.010                 

0.178350         0.0      27.930                 

0.203350     0.000010     20.400                 

0.253350     0.000030     15.550                 
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0.350000     0.000280     11.655                 

0.352000     0.002292      8.720                 

0.354000     0.004304      5.947                 

0.356000     0.006316      3.317                 

0.358000     0.008328      1.165                 

0.360000     0.010340      0.463                 

0.364395     0.015548     -0.499                 

0.368790     0.020756     -1.139                 

0.370000     0.022190     -1.194                 

0.380000     0.035890     -1.547                 

0.400000     0.069530     -1.604                 

0.433450     0.087900     -1.710                 

0.461390     0.104910     -1.780                 

0.489320     0.123290     -1.860                 

0.517250     0.143030     -1.930                 

0.573120     0.186590     -2.070                 

0.601060     0.210380     -2.130                 

0.656930     0.261900     -2.260                 

0.712800     0.318650     -2.380                 

0.811110     0.430920     -2.600                 

0.881490     0.490000     -2.750  /              

                                                               

SGFN                             

--Sg     Krg   Pcg                  

.00      .0      0                   

.04      .0       .2                  

.1       .022     .5                  

.2       .1      1                    

.3       .24     1.5                  

.4       .34     2                   

.5       .42     2.5                 

.6       .5      3                   

.7       .8125   3.5                 

0.84891  1.      3.9  /              

                                 

PVTW                             

306.1  1.03 0.000041    0.3  0  / ( BAR RM3/SM3 1/BAR CP ) 

                                 

ROCK                             

306.1     0.000053    /        ( BAR 1/BAR ) 

                                 

DENSITY                          

  800   1022  0.9907    /      ( KG/M3 ) 

                                 

PVDG 

    30  0.04234     0.01344 

   530  0.003868    0.02935 

/ 

 

RTEMP  

1* /   

 

NOECHO 

-------------------------------------------------------------------------------- 

 

--------------------------------------------------------------------------------- 

SOLUTION 

 

EQUIL 

-- Datum    P     woc     Pc   goc    Pc  Rsvd  Rvvd 

2582.0  269.46  2618.0   0.0 2582.0  0.0   1*   0   0/   E: Garn 

 

RPTSOL 

FIP=3  / --SWAT    PRES 

 

SUMMARY 

 

RUNSUM 
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EXCEL  

 

RPTONLY  

 

FGPR          

FGPT           

FWPR          

FWPT   

FPR        

FPRGZ     

FWGR 

WBHP    

/       

WGPR    

/       

WWPR    

/       

WWGR    

/ 

ANQR 

/ 

ANQT 

/ 

ANQP 

/ 

WGPT 

/ 

-------------------------------------------------------------------------------- 

SCHEDULE 

  

RPTSCHED 

FIP=1 RESTART=6   /PRES 

 

RPTRST 

3/   

 

NOECHO 

 

WELSPECS 

    'PROD01' 'P'    8  26  1* 'GAS'   7*  / 

    'PROD02' 'P'    17 31  1* 'GAS'   7* / 

    'PROD03' 'P'    38 96  1* 'GAS'   7* / 

/ 

 

COMPDAT 

    'PROD01' 8   26   3   3   'OPEN'  1* 118.457  / 

    'PROD02' 17  31   9   9   'OPEN'  1* 36.540  / 

    'PROD03' 38  96   2   2   'OPEN'  1* 27.041  /     

/ 

 

WPIMULT 

PROD01 50 /(all connections in the well PROD1) 

PROD02 50 / 

PROD03 50 / 

/ 

 

INCLUDE 

ProdProfile.inc/ -- generated from NIROM interface based on "SeasonalProdProfile" 

function 

 

END 
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C.1.3 WATER CONING GAS RESERVOIR MODEL 

This water coning gas reservoir model is based on the work of Armenta (2003) [130], although this model 

has 4 components in the theta direction (divided into 4 quadrants) and Armenta (2003) [130] has one 

component in the theta direction.  

RUNSPEC 

TITLE 

--Comparison of Water Coning in Oil and Gas Wells After Water 

--Breakthrough 

--Gas-Water Model 

MESSAGES 

 6* 3*5000 / 

RADIAL 

DIMENS 

-- NR Theta NZ 

 26 4 127/ 

GAS 

WATER 

FIELD 

REGDIMS 

 2 / 

WELLDIMS 

 2 100 1 2 / 

START 

 1 'Jan' 2002 / 

NSTACK 

 25/ 

UNIFOUT 

CPR 

/ 

------------------------------------------------------------- 

GRID 

TOPS 

104*5000 / 

INRAD 

0.333 / 

COORDSYS                  

-- K1  K2  completed --   

   2*  'COMP' /           

DRV 

0.4170  0.3016  0.4229  0.5929  0.8313  1.166 

1.634   2.292   3.213   4.505   6.317   8.857 

12.42   17.41   24.41   34.23   48.00   67.30 

94.36   132.3   185.5   260.1   364.7   511.4 

717.0   2500 /                           

DZ 

12480*0.5 

624*5  

104*550 

/ 

EQUALS 

 'DTHETA' 90 / 

 'PERMR' 10 / 

 'PERMTHT' 100 / 

 'PERMZ' 5 / 

 'PORO' 0.25 / 

 'PORO' 0.00001  26 26 1 1 1   100 / 

 'PORO' 10       26 26 1 1 101 127/--8 / 

/ 

INIT 

------------------------------------------------------------- 

PROPS 

DENSITY 

45 64 0.046 / 
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ROCK 

2500 10E-6 / 

PVTW 

2500 1 2.6E-6 0.68 0 / 

PVZG 

-- Temperature 

 120 / 

-- Pres Z   Visc 

 100   0.989  0.0122                                

 300   0.967  0.0124 

 500   0.947  0.0126 

 700   0.927  0.0129 

 900   0.908  0.0133 

 1100  0.891  0.0137 

 1300  0.876  0.0141 

 1500  0.863  0.0146 

 1700  0.853  0.0151 

 1900  0.845  0.0157 

 2100  0.840  0.0163 

 2300  0.837  0.0167 

 2500  0.837  0.0177 

 2700  0.839  0.0184 

 3200  0.844  0.0202 

/ 

--Saturation Functions 

--Sgc = 0.20 

--Krg @ Swir = 0.9 

--Swir = 0.3 

--Sorg = 0.0 

SGFN 

--Using Honarpour Equation 71 

-- Sg Krg Pc 

 0.00  0.000  0.0 

 0.10  0.000  0.0 

 0.20  0.020  0.0 

 0.30  0.030  0.0 

 0.40  0.081  0.0 

 0.50  0.183  0.0 

 0.60  0.325  0.0 

 0.70  0.900  0.0 

/ 

SWFN 

--Using Honarpour Equation 67 

-- Sw Krw Pc 

 0.3  0.000  0.0 

 0.4  0.035  0.0 

 0.5  0.076  0.0 

 0.6  0.126  0.0 

 0.7  0.193  0.0 

 0.8  0.288  0.0 

 0.9  0.422  0.0 

 1.0  1.000  0.0 

/ 

------------------------------------------------------------- 

REGIONS 

FIPNUM 

 10400*1 

 2808*2 --2912*2 

/ 

------------------------------------------------------------- 

SOLUTION 

EQUIL 

   5000   1500   5050    0     5050     0 / 

RPTSOL 

 6* 2 2 / 

------------------------------------------------------------- 

SUMMARY 

EXCEL 
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RPTONLY       

FGPR       

FGPT       

FWPR       

FWPT       

FPR             

FWGR       

WBHP       

/                                         

WWCT       

 /            

------------------------------------------------------------- 

SCHEDULE 

RPTSCHED 

 'PRES'  'SWAT' 'SGAS' 'RS' 'RESTART=2' 'FIP=1' 'WELLS=2' 'SUMMARY=2'  

'CPU=2' 'NEWTON=2' /              --6* 2 / 

RPTRST 

 4 / restarts once a year 

TUNING 

 0.0007 30.4 0.0007 0.0007 / --1.2 / 

4* 12/-- 3* 0.00001 3* 0.0001 / 

/ 

WELSPECS 

-- WELL   GROUP LOCATION  BHP   PI     shut-in cross 

-- NAME      I  J   DEPTH DEFN    instanc flow? 

    'P'   'G'     1  1   5000 'GAS' 2* 'STOP' 'YES' / 

/ 

COMPDAT 

--WELL  -LOCATION- OPEN/ SAT CONN  well 

--NAME  I  J K1 K2 SHUT  TAB FACT  dia 

 'P'    1  1 1 100 'OPEN' 2*       0.666 / 

/ 

INCLUDE 

'WCONPROD.IN'/ 

 

TSTEP 

 6*30.4 / 

TSTEP 

 35*30.4 / 

 

TUNING                                

 0.0007 3 0.0007 0.0007 /  

/   

/         

TSTEP        

2*30.4 / 

TUNING                             

 0.0007 3 /                        

/                          

/                                  

TSTEP                              

12*30.4 /                          

TUNING                             

0.0007 3 /                         

/                          

/                                  

TSTEP                              

1*30.4 /                           

TUNING                             

0.0007 .5 /                        

/                          

/                                  

TSTEP                              

2*30.4 /                           

TUNING                             

 0.0007 3 /                        

/                       

/                                  



Appendix C: Reservoir Data files and NIROM Models 

253 
 

TSTEP                              

1*30.4 /                           

TUNING                             

 0.0007 3 /                        

/                         

/                                  

TSTEP                              

8*30.4 /                           

TUNING                             

0.0007 .1 /                        

/                                  

/                                  

TSTEP                              

1*30.4 /                           

TUNING                             

0.0007 3 /                         

/                                  

/                                  

TSTEP                              

3*30.4 /                           

TUNING                             

1 30.4 /                           

/                                  

/                                  

TSTEP                              

 48*30.4 /                         

TSTEP                              

 48*30.4 /                         

TSTEP                              

 48*30.4 /                         

TSTEP                              

 25*30.4 /                         

 

END 
 

C.2 NIROM MODELS 

C.2.1 POD-RBF MODEL WITH SEASONALLY VARYING PRODUCTION PROFILE 

Below is a POD-RBF NIROM for the seasonally varying production file case. This NIROM creates the 

time-varying production profiles (using the SeasonalProdProfile function) as well as runs ECLIPSE 

to generate training and prediction runs. The NIROM is also trained and used for predictions within 

the same interface. 

close all 

clear all 

%% Setting up data for creating seasonal rate profile 

ns = 20;                        % Number of training runs 

header = 6;                     % number of header lines in ECLIPSE .RSM file 

Parameter =  'GRAT'; % or 'BHP';% production parameter 

prod_prof = {[18e5 17e5 16E5 15e5 14e5 13e5 12e5 11e5 10e5 9e5 8E5],... 

    []}; % parameter for production profile (Table 8) 

if strcmp(Parameter,'GRAT') == 1 % setting the main production control 

    e = 1; 

else 

    e = 2; 

end 

  

%% Generating data for Training runs production profiles (combination of rates and 

duration) 

[Rate_Yr_training, Durtn_F_training, Durtn_Fsum_training] = SeasonalProdProfile(ns, 

prod_prof,e); 
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Para_intended = Rate_Yr_training; 

  

%% Simulation runs for Training NIROM 

% Initializing NIROM for training runs data  

ii=1; 

Z = cell(1,ns); PRES = cell(1,ns); GSAT = cell(1,ns); PRES_ = cell(1,ns); 

GSAT_ = cell(1,ns); ProdVar = cell(1,ns); ProdVar_ = cell(1,ns); 

TIME_DAYS1 = cell(1,ns); Para_actual = cell(1,ns); 

TEclipseTrainingData = zeros(1,ns); T_ExtractTrainingData = zeros(1,ns); 

  

tic 

for i=1:ns 

    aaa=1; 

     

    % creating production profile INCLUDE text file 

    fid1 = fopen('ProdProfile.inc', 'wt'); 

    for a=1:length(Para_intended{i}) 

  

        fprintf(fid1, '\n'); 

        fprintf(fid1, 'WCONPROD');   

        fprintf(fid1, '\n'); 

        fprintf(fid1, ['PROD01','  ','OPEN','  ','GRAT','  2*  ']); 

        fprintf(fid1,  num2str(Para_intended{i}(1,a))); 

        fprintf(fid1, ['  2*  ','60']); 

        fprintf(fid1, '/'); fprintf(fid1, '\n'); 

  

        fprintf(fid1, ['PROD02','  ','OPEN','  ','GRAT','  2*  ']); 

        fprintf(fid1,  num2str(Para_intended{i}(2,a)));  

        fprintf(fid1, ['  2*  ','60']); 

        fprintf(fid1, '/'); fprintf(fid1, '\n');  

  

        fprintf(fid1, ['PROD03','  ','OPEN','  ','GRAT','  2*  ']); 

        fprintf(fid1,  num2str(Para_intended{i}(3,a))); 

        fprintf(fid1, ['  2*  ','60']); 

  

        fprintf(fid1, '/'); fprintf(fid1, '\n');  

        fprintf(fid1, '/'); fprintf(fid1, '\n'); 

  

        fprintf(fid1, 'TSTEP'); 

        fprintf(fid1, '\n'); 

        fprintf(fid1, [num2str(Durtn_F_training{i}(a)), '*']); 

        fprintf(fid1, num2str(30)); 

        fprintf(fid1, '/'); fprintf(fid1, '\n'); 

  

        aaa=aaa+Durtn_F_training{i}(a); 

    end  

        fclose(fid1); 

  

    % Running Simulations/ Generating training data 

    disp(['Training run  #',num2str(ii)]); 

tic     

    [~,RESULTS] = system ('$eclipse NORNE_field'); 

    Problems = strfind(RESULTS,'UN-PHYSICAL VALUE'); 

TEclipseTrainingData(ii) = toc; 

tic 

    % reading simulation output files into NIROM 

      out = read_ecl('NORNE_field.UNRST'); 

  

    if ~isempty(Problems) 

        disp('UN-PHYSICAL VALUE somewhere') 

        ii=ii+0;  

        continue 

    else 

        [~,TIME_DAYS1{ii},PPTY1] = readColData('NORNE_field.RSM',10,header-1); 

        [~,~,PPTY2] = readColData('NORNE_field.RSM', 10, length(TIME_DAYS1{ii}) + 2 

*header-1); 

        [~,~,PPTY3] = readColData('NORNE_field.RSM', 6, 2*length(TIME_DAYS1{ii}) + 3 

*header+1); 
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        fclose('all'); 

  

        FGPR = PPTY1(:,2); FGPT = PPTY1(:,3); FWPR = PPTY1(:,4); 

        FWPT = PPTY1(:,5); FPR = PPTY1(:,6); FWGR = PPTY1(:,8); 

        WBHP_PROD1 = PPTY1(:,9); WBHP_PROD2 = PPTY2(:,1); 

        WBHP_PROD3 = PPTY2(:,2); WGPR_PROD1 = PPTY2(:,3); 

        WGPR_PROD2 = PPTY2(:,4); WGPR_PROD3 = PPTY2(:,5); 

        WWPR_PROD1 = PPTY2(:,6); WWPR_PROD2 = PPTY2(:,7); 

        WWPR_PROD3 = PPTY2(:,8); WWGR_PROD1 = PPTY2(:,9); 

        WWGR_PROD2 = PPTY3(:,1); WWGR_PROD3 = PPTY3(:,2); 

         

        % saving Training data into NIROM 

        Z{ii} = [FGPR FGPT.*10^6 FWPR FWPT FPR  FWGR WBHP_PROD1 ... 

        WBHP_PROD2 WBHP_PROD3 WGPR_PROD1 WGPR_PROD2 WGPR_PROD3 WWPR_PROD1 ... 

        WWPR_PROD2 WWPR_PROD3 WWGR_PROD1 WWGR_PROD2 WWGR_PROD3]; 

        g = Z{ii}(2:end,:); 

        ProdVar{ii} = g';                        % production variables training data 

  

        PRES{ii} = out.PRESSURE;                   % spatial pressure training data 

        GSAT{ii} = ones(size(out.SWAT))-out.SWAT; % spatial gas saturation training 

data        

        Para_actual{ii} = (Z{ii}(2:end,10:12))';% Actual production profile from 

WGPRs 

         

        ii=ii+1; 

    end 

     

T_ExtractTrainingData(ii) = toc; 

end 

TGeneratingTrainingData = toc; 

%% Mean Extraction 

% Initialising NIROM for mean extraction 

nx = length(PRES{1}(:,1));nt = length(PRES{1}(1,:)); 

yx = length(ProdVar{1}(:,1));yt = length(ProdVar{1}(1,:)); 

pressure_mean =  mean(cell2mat(PRES),2);    

GSAT_mean = mean(cell2mat(GSAT),2); 

ProdVar_mean = mean(cell2mat(ProdVar),2); 

rates4Para = Para_actual; 

tic 

  

% Mean Extraction 

for t = 1:ns  

     PRES_{t}(1:nx,:) =  PRES{t}(1:nx,:)-pressure_mean; 

    GSAT_{t}(1:nx,:) = GSAT{t}(1:nx,:)-GSAT_mean; 

     ProdVar_{t}(1:yx,:) =  ProdVar{t}(1:yx,:)-ProdVar_mean; 

end 

Tnirom_meanExctn=toc; 

%% POD 

disp(' POD Reduction'); 

% computing singular values and vectors 

tic 

[V,D] = svd(cell2mat(PRES_),'econ');D = diag(D).^2; 

[F,J] = svd(cell2mat(GSAT_),'econ');J = diag(J).^2; 

[W,Q] = svd(cell2mat(ProdVar_),'econ');Q = diag(Q).^2; 

  

% computing optimal number of POD basis functions              

Hmax = 0.999;            % Energy criteria                                           

d = 0; Hn = 0;  sD = sum(D);  

dd = 0; HHn = 0; sJ = sum(J); 

ddd = 0; yHn = 0; sQ = sum(Q); 

  

for j = 1:min(nx,nt*ns)   % for spatial pressure 

    h = D(j); Hn = Hn+h; H = Hn/sD; d = d + 1; 

    if H >= Hmax, break,  end  

  

end 

  

for j = 1:min(nx,nt*ns)   % for spatial pgsat 
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    h = J(j); HHn = HHn+h; HH = HHn/sJ;dd = dd + 1; 

    if HH >= Hmax, break,  end 

       

end 

% 

for j = 1:min(yx,yt*ns)   % for production variables 

    h = Q(j); yHn = yHn+h; yH = yHn/sQ; ddd = ddd + 1;     

    if yH >= Hmax, break,  end 

       

end 

  

P = V(:,1:d); PP = F(:,1:dd); PPP = W(:,1:ddd); 

  

% Training Data Reduction 

PRES_Red_ = cell(1,ns); GSAT_Red_ = cell(1,ns); ProdVar_Red_ = cell(1,ns); 

  

for tt = 1:ns 

    PRES_Red_{tt} = P'*PRES_{tt};    

    GSAT_Red_{tt} = PP'*GSAT_{tt}; 

    ProdVar_Red_{tt} = PPP'*ProdVar_{tt}; 

end 

  

Tnirom_POD_Red = toc; 

%% Sorting reduced training data into sample and response arrays 

disp(' Generating NIROM Response Array'); 

tic 

% initialising NIROM for sample and response array data 

a = nt-1; aa = length(ProdVar_{1}(1,:))-1; 

b = 1; bb = 1; nPara = length(rates4Para{1}(:,1)); 

nP = length(P(1,:));nPP = length(PP(1,:));nPPP = length(PPP(1,:)); 

  

PRES_Samp = zeros(nP+1+nPara,length(cell2mat(PRES_Red_))-ns);    

PRES_Resp = zeros(nP,length(cell2mat(PRES_Red_))-ns); 

  

GSAT_Sampl = zeros(nPP+1+nPara,length(cell2mat(GSAT_Red_))-ns);   

GSAT_Resp = zeros(nPP,length(cell2mat(GSAT_Red_))-ns); 

  

ProdVar_Samp = zeros(nPPP+1+nPara,length(cell2mat(ProdVar_Red_))-ns);%a);     

ProdVar_Resp = zeros(nPPP,length(cell2mat(ProdVar_Red_))-ns);%a) 

Yr = cell(1,ns); 

  

% computing max reduced training data for renormalisation (Equation 21 and 25) 

PRES_ScalFac = max(max(abs(cell2mat(PRES_Red_)))); 

GSAT_ScalFac = max(max(abs(cell2mat(GSAT_Red_)))); 

ProdVar_ScalFacl = max(max(abs(cell2mat(ProdVar_Red_)))); 

maxPara = max(max(cell2mat(rates4Para))); 

  

for t = 1:ns  

    % creating sample and response array with their corresponding 

    % paramaters (Equation 26) 

    PRES_Samp(:,b:b+a-1) = [PRES_Red_{t}(:,1:end-1)/PRES_ScalFac; 

rates4Para{t}(:,1:end-1)/maxPara; ones(1,a)]; 

    PRES_Resp(:,b:b+a-1) = PRES_Red_{t}(:,2:end)/PRES_ScalFac;   

    GSAT_Sampl(:,b:b+a-1) = [GSAT_Red_{t}(:,1:end-1)/GSAT_ScalFac; 

rates4Para{t}(:,1:end-1)/maxPara; ones(1,a)]; 

    GSAT_Resp(:,b:b+a-1) = GSAT_Red_{t}(:,2:end)/GSAT_ScalFac;  

    ProdVar_Samp(:,bb:bb+aa-1) = [ProdVar_Red_{t}(:,1:end-1)/ProdVar_ScalFacl; 

rates4Para{t}(:,1:end-1)/maxPara; ones(1,aa)]; 

    ProdVar_Resp(:,bb:bb+aa-1) = ProdVar_Red_{t}(:,2:end)/ProdVar_ScalFacl; 

     

    b = b+a; 

    bb = bb+aa; 

end 

  

%% Modelling Dynamics 

% computing pairwise distances between training data 

A = squareform(pdist(PRES_Samp')); 

AA = squareform(pdist(GSAT_Sampl')); 
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AAA = squareform(pdist(ProdVar_Samp')); 

  

% Radial Basis Functions (RBFs) 

rbf = @(r)r.^1;         % Linear RBF 

Coef_PRES = rbf(A)\PRES_Resp'; cc = rbf(AA)\GSAT_Resp'; 

ccc = rbf(AAA)\ProdVar_Resp'; 

  

TimeGeneratingWeight = toc; 

%% NIROM Prediction Section 

%New Initial Condition 

% Initialize storage for predictions 

ntest = 6; ParaNew = cell(1,ntest); PRES_Exact = cell(1,ntest); 

GSAT_Exact = cell(1,ntest); xExY = cell(1,ntest); ProdVar_Exact = cell(1,ntest); 

PRES_NIROM = cell(1,ntest);  GSAT_NIROM = cell(1,ntest); 

ProdVar_NIROM = cell(1,ntest);  ProdVarNIROM = cell(1,ntest); 

PRES_IC_Red = cell(1,ntest); GSAT_IC_Red = cell(1,ntest); 

ProdVar_IC_Red = cell(1,ntest); Tnirom_Interpolation = zeros(1,ntest); 

TEclipsePredData = zeros(1,ntest); T_ExtractPredData = zeros(1,ntest); 

RE_multiplier = linspace(1,.5,ntest); NT = linspace(1,nt,nt); 

TIME_DAYS = cell(1,ntest); ParaNew_actual = cell(1,ntest); 

rates4ParaNew = cell(1,ntest); 

%% Generating data for Prediction runs production profiles 

[Rate_Yr_prediction,Durtn_F_prediction, Durtn_Fsum_prediction] = SeasonalProdProfile 

(ntest,prod_prof,e); 

ParaNew_intended = Rate_Yr_prediction; 

  

%% Simulation runs for NIROM Prediction 

tic 

for kk = 1:ntest 

    aaa = 1; 

    % creating production profile text file 

    fid1 = fopen('ProdProfile.inc', 'wt'); 

    for a=1:length(ParaNew_intended{kk}) 

             

        fprintf(fid1, '\n'); 

        fprintf(fid1, 'WCONPROD');   

        fprintf(fid1, '\n'); 

        fprintf(fid1, ['PROD01','  ','OPEN','  ','GRAT','  2*  ']); 

        fprintf(fid1,  num2str(ParaNew_intended{kk}(1,a))); 

        fprintf(fid1, ['  2*  ','60']); 

        fprintf(fid1, '/'); fprintf(fid1, '\n'); 

  

        fprintf(fid1, ['PROD02','  ','OPEN','  ','GRAT','  2*  ']); 

        fprintf(fid1,  num2str(ParaNew_intended{kk}(2,a)));  

        fprintf(fid1, ['  2*  ','60']); 

        fprintf(fid1, '/'); fprintf(fid1, '\n');  

  

        fprintf(fid1, ['PROD03','  ','OPEN','  ','GRAT','  2*  ']); 

        fprintf(fid1,  num2str(ParaNew_intended{kk}(3,a))); 

        fprintf(fid1, ['  2*  ','60']); 

  

        fprintf(fid1, '/');  fprintf(fid1, '\n');  

        fprintf(fid1, '/'); fprintf(fid1, '\n'); 

  

        fprintf(fid1, 'TSTEP'); 

        fprintf(fid1, '\n'); 

        fprintf(fid1, [num2str(Durtn_F_prediction{kk}(a)), '*']); 

        fprintf(fid1, num2str(30)); 

        fprintf(fid1, '/'); fprintf(fid1, '\n'); 

         

        aaa=aaa+Durtn_F_prediction{kk}(a); 

    end    

        fclose(fid1); 

         

    % Running ECLIPSE for prediction runs 

    disp(['Prediction run  #',num2str(kk)]); 

tic 

    [~,RESULTS] = system('$eclipse NORNE_field'); 
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    Problems = strfind(RESULTS,'UN-PHYSICAL VALUE'); 

TEclipsePredData(kk) = toc;  

  

    % extracting simulation output data 

tic     

    out = read_ecl('NORNE_field.UNRST'); 

    if ~isempty(Problems) 

       disp('Un-Physical Value in Simulation') 

        %xExact{kk} = [];  

        continue 

    else 

        PRES_Exact{kk} = out.PRESSURE;%(:,1:7) ; % New simulation pressure field 

        GSAT_Exact{kk} = ones(size(out.SWAT))-out.SWAT;            

             

        [~,TIME_DAYS{kk},PPTY1] = readColData('NORNE_field.RSM',10,header-1); 

        [~,~,PPTY2] = readColData('NORNE_field.RSM', 10, length(TIME_DAYS{kk}) + 2 

*header-1); 

        [~,~,PPTY3] = readColData('NORNE_field.RSM', 6, 2*length(TIME_DAYS{kk}) + 3 

*header+1); 

         

        fclose('all'); 

  

        FGPR = PPTY1(:,2); FGPT = PPTY1(:,3); FWPR = PPTY1(:,4); 

        FWPT = PPTY1(:,5); FPR = PPTY1(:,6); FWGR = PPTY1(:,8); 

        WBHP_PROD1 = PPTY1(:,9); WBHP_PROD2 = PPTY2(:,1); 

        WBHP_PROD3 = PPTY2(:,2); WGPR_PROD1 = PPTY2(:,3); 

        WGPR_PROD2 = PPTY2(:,4); WGPR_PROD3 = PPTY2(:,5); 

        WWPR_PROD1 = PPTY2(:,6); WWPR_PROD2 = PPTY2(:,7); 

        WWPR_PROD3 = PPTY2(:,8); WWGR_PROD1 = PPTY2(:,9); 

        WWGR_PROD2 = PPTY3(:,1); WWGR_PROD3 = PPTY3(:,2); 

  

        xExY{kk} = [FGPR FGPT.*10^6 FWPR FWPT FPR  FWGR WBHP_PROD1 ... 

            WBHP_PROD2 WBHP_PROD3 WGPR_PROD1 WGPR_PROD2 WGPR_PROD3 WWPR_PROD1 ... 

            WWPR_PROD2 WWPR_PROD3 WWGR_PROD1 WWGR_PROD2 WWGR_PROD3]; 

        g = xExY{kk}(2:end,:); 

        ProdVar_Exact{kk} = g'; 

         

    end 

     

    ParaNew_actual{kk} = (xExY{kk}(2:end,10:12))';%9:10))';%--% 

    rates4ParaNew{kk} = ParaNew_actual{kk}; 

T_ExtractPredData(kk) = toc; 

     

    % Initializing NIROM simulation from Initial condition data 

tic 

    PRES_IC_Red{kk}(:,1) = [(P'*(PRES_Exact{kk}(:,1)-pressure_mean))/PRES_ScalFac; 

rates4ParaNew{kk}(:,1)/maxPara; ones(1,1)]; 

    GSAT_IC_Red{kk}(:,1) = [(PP'*(GSAT_Exact{kk}(:,1)-GSAT_mean))/GSAT_ScalFac; 

rates4ParaNew{kk}(:,1)/maxPara; ones(1,1)]; 

    ProdVar_IC_Red{kk}(:,1) = [(PPP'*(ProdVar_Exact{kk}(:,1)-

ProdVar_mean))/ProdVar_ScalFacl; rates4ParaNew{kk}(:,1)/maxPara; ones(1,1)]; 

     

    % Propagating New IC for NIROM nt-1 report steps - PRES_Exact and GSAT_Exact 

        disp(['Propagating New IC #',num2str(kk)]); 

        for n = 2:length(PRES_Exact{kk}(1,:))%nt 

            r = rbf(sqrt(sum((PRES_Samp-[PRES_IC_Red{kk}(1:nP,n-1); 

rates4ParaNew{kk}(:,n-1)/maxPara; ones(1,1)]).^2,1)))'; 

            PRES_IC_Red{kk}(1:nP,n) = Coef_PRES'*r; 

            rr = rbf(sqrt(sum((GSAT_Sampl-[GSAT_IC_Red{kk}(1:nPP,n-1); 

rates4ParaNew{kk}(:,n-1)/maxPara; ones(1,1)]).^2,1)))'; 

            GSAT_IC_Red{kk}(1:nPP,n) = cc'*rr; 

        end 

    % Propagating New IC for NIROM nt-1 report steps - ProdVar_Exact 

        for nn = 2:length(TIME_DAYS1{1})-1% 

            rrr = rbf(sqrt(sum((ProdVar_Samp-[ProdVar_IC_Red{kk}(1:nPPP,nn-1); 

rates4ParaNew{kk}(:,nn-1)/maxPara; ones(1,1)]).^2,1)))'; 

            ProdVar_IC_Red{kk}(1:nPPP,nn) = ccc'*rrr; 

        end 
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    % Un-normalising and Back projection of NIROM predictions 

    PRES_NIROM{kk} = (P*(PRES_IC_Red{kk}(1:nP,:)*PRES_ScalFac))+pressure_mean; 

    GSAT_NIROM{kk} = (PP*(GSAT_IC_Red{kk}(1:nPP,:)*GSAT_ScalFac))+GSAT_mean; 

    ProdVarNIROM{kk} = (PPP * (ProdVar_IC_Red{kk}(1:nPPP,:) * ProdVar_ScalFacl)) + 

ProdVar_mean; 

    ProdVar_NIROM{kk} = [xExY{kk}(1,:); ProdVarNIROM{kk}']; 

    ProdVar_Exact{kk} = [xExY{kk}(1,:); ProdVar_Exact{kk}']; 

Tnirom_Interpolation(kk)=toc; 

end 

TNIROMPred = toc; 

%% Comparing and Plotting Results ... 

  

%% Error Analysis ... 

  

%% Time/durations ... 

  

%% Function to create seasonal production profiles 

function [Rate_Yr, Durtn_F, Durtn_Fsum,len_Durtn_F] = SeasonalProdProfile(ns, 

prod_prof,e) 

    ii=1; 

    durtn = cell(1,4); %4 seasons starting from november: autumn, winter, spring, 

summer 

    durtn_F = cell(1,4); Durtn_F = cell(1,ns); Durtn_Fsum = zeros(1,ns); 

    Durtn = cell(1,4); % stores the varying rates within seasons 

    rate_yr = cell(1,ns); rate_Yr = cell(1,ns); Rate_Yr = cell(1,ns); 

    RE_multiplier = linspace(1,.5,ns); 

     

    for i=1:ns 

        disp(['ProdProfile  #',num2str(ii)]); 

         

        aa = 1; 

        prod_prof_ = prod_prof; 

        for jj= 1:20 

            prod_prof_{e} = prod_prof_{e}.*aa; 

            for j=1:4 

                durtn{j} = randi([1 3],1,3); 

                Durtn{j} = cumsum(durtn{j})'; 

  

                k=find(Durtn{j}>=3,1); 

                if Durtn{j}(k)>3 

                    durtn{j} = [durtn{j}(1:k-1) 3-sum(Durtn{j}(k-1))]; 

                elseif Durtn{j}(k)==3 

                    durtn{j} = durtn{j}(1:k); 

                elseif isempty(k) 

                    durtn{j} = [durtn{j} 3-sum(durtn{j})];  

                end 

  

                for b=1:length(durtn{j})  

  

% with shut-in 

                    if e==1  %this affects if it’s going to be BHP control (e=2) or 

rate control (e=1) 

                        if j == 1 % differentiates between seasons 

                            if b <= length(durtn{j})  

                                z = prod_prof_{e}(randi(round(length(prod_prof_{e} 

(1,:))*.25)));% 

                            else 

                                z = prod_prof_{e}(b-1); 

                            end  

                            rate1 = (z-randi(1e5))*RE_multiplier(ii); 

                            rate2 = (2.5*z-randi(1e5))*RE_multiplier(ii); 

                            rate3 = (.7*z-randi(1e5))*RE_multiplier(ii); 

                            if rate3 < 0 

                               rate3 = .7*z ; 

                            end 

  

                        elseif j == 3 
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                            if b <= length(durtn{j}) 

                                z = prod_prof_{e}(randi([round(length(prod_prof_{e} 

(1,:))*.75) round(length(prod_prof_{e}(1,:)))]));% 

                            else 

                                z = prod_prof_{e}(b-1); 

                            end 

  

                            rate1 = z-randi(1e5); 

                            rate2 = 2.5*z-randi(1e5); 

                            rate3 = .7*z-randi(1e5);  

                            if rate3 < 0 

                               rate3 = .7*z ; 

                            end 

                        else 

                            if b <= length(durtn{j})  

                                z = prod_prof_{e}(randi([round(length(prod_prof_{e} 

(1,:))*.25)+1 round(length(prod_prof_{e}(1,:))*.75)]));% 

                            else 

                                z = prod_prof_{e}(b-1); 

                            end 

  

                            rate1 = z-randi(1e5); 

                            rate2 = 2.5*z-randi(1e5); 

                            rate3 = .7*z-randi(1e5); 

                            if rate3 < 0 

                               rate3 = .7*z ; 

                            end 

                        end 

                    else 

                    end 

                    %} 

                    rate_yr{j} = ones(3,b).*[rate1; rate2; rate3];  

                end 

            end 

            rate_Yr{jj} = cell2mat(rate_yr); 

            durtn_F{jj} = cell2mat(durtn); 

            aa = aa-.003; 

        end 

        Durtn_F{ii} = cell2mat(durtn_F); 

        Rate_Yr{ii} = cell2mat(rate_Yr); 

  

        len_Durtn_F = length(Durtn_F{ii});     

        Durtn_Fsum(ii) = sum(Durtn_F{ii}); 

        ii=ii+1; 

    end 

end 

 

C.2.2 AUTOENOCDER (AE) MODEL WITH 2HLS 

An example of the autoencoder model that was used in this work is given below. 

# In[ ]: 

from numpy.random import seed 

seed(1) 

import tensorflow 

tensorflow.random.set_random_seed(2) 

 

# In[ ]: 

from scipy.io import loadmat, savemat 

import numpy as np 

 

# load training data 

PRES_Samp = loadmat('PRES_Samp.mat') # training data sample array  

PRES_Samp.keys() 

PRES_Samp =( PRES_Samp['PRES_Samp']) 
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PRES_Resp = loadmat('PRES_Resp.mat') # training data response array  

PRES_Resp.keys() 

PRES_Resp =( PRES_Resp ['PRES_Resp']) 

 

Test_Samp = loadmat('Test_Samp.mat') # validation data sample array  

Test_Samp.keys() 

Test_Samp =(SxT['Test_Samp']) 

 

Test_Resp = loadmat('Test_Resp.mat') # validation data response array  

Test_Resp.keys() 

Test_Resp =( Test_Resp['Test_Resp']) 

 

# In[ ]: 

from keras.layers import Dense, Input 

from keras.models import Model 

from keras import optimizers 

 

### PRE-TRAINING 

# initialise for AE 

n = len(Sx[0]) # spatial dimension 

nt_train = len(Sx[:,0]) # number of report steps 

nt_steps_out = len(SxT[:,0]) 

activation = 'elu' 

 

# In[ ]: 

#Assemble the AE model 

#Encoder section compressing from n to 10 

input_img = Input(shape=(n,)) 

encoded = Dense(100, activation=activation)(input_img) 

encoded = Dense(10,activation=activation)(encoded) 

#Decoder section expanding from 10 to n 

decoded = Dense(100,activation=activation)(encoded) 

decoded = Dense(n,activation=activation)(decoded) 

#Full Model assembled 

autoencoder=Model(input_img,decoded) 

 

# In[ ]: 

autoencoder.summary() 

 

# In[ ]: 

from keras import metrics 

from keras.optimizers import Adam 

 

###TRAINING 

#Compile the model, choosing an optmizer and loss function 

Adam_mee = Adam(lr=0.001) 

autoencoder.compile(optimizer=Adam_mee,loss='mean_squared_error',metrics=[metrics.M

eanAbsoluteError()]) 

history = autoencoder.fit(PRES_Samp,PRES_Resp,epochs= 1000,batch_size = 200,shuffle 

= True,validation_data=(Test_Samp,Test_Resp)) 

 

# In[ ]: 

#RECORD KEEPING (losses & metrics) 

loss_history = history.history["loss"] 

metrics_history = history.history["mean_absolute_error"] 

val_loss_history = history.history["val_loss"] 

val_metrics_history = history.history["val_mean_absolute_error"] 

 

# to save history losses as a numpy array 

numpy_loss_history = np.array(loss_history) 

np.savetxt("loss_history2.txt", numpy_loss_history, delimiter=",") 

numpy_val_loss_history = np.array(val_loss_history) 

np.savetxt("val_loss_history2.txt",numpy_val_loss_history,delimiter=",") 

 

# to save history metrics as a numpy array 

numpy_metrics_history = np.array(metrics_history) 

np.savetxt("metrics_history2.txt",numpy_metrics_history,delimiter=",") 

numpy_val_metrics_history = np.array(val_metrics_history) 
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np.savetxt("val_metrics_history2.txt",numpy_val_metrics_history, delimiter=",") 

 

# In[ ]: 

#Save full AE model and the weights 

autoencoder.save('autoencoder2.h5') 

autoencoder.save_weights('autoencoder2wt.h5') 

 

# In[ ]: 

# Loading Initial Condition Prediction data 

PRES_Exact1 = loadmat('PRES_Exact1.mat') 

PRES_Exact1.keys() 

PRES_Exact1=(PRES_Exact1['PRES_Exact1']) 

 

PRES_Exact2 = loadmat('PRES_Exact2.mat') 

PRES_Exact2.keys() 

PRES_Exact 2=(PRES_Exact2['PRES_Exact2']) 

 

PRES_Exact3 = loadmat('PRES_Exact3.mat') 

PRES_Exact3.keys() 

PRES_Exact3=(PRES_Exact3['PRES_Exact3']) 

 

PRES_Exact4 = loadmat('PRES_Exact4.mat') 

PRES_Exact4.keys() 

PRES_Exact4=(PRES_Exact4['PRES_Exact4']) 

 

PRES_Exact5 = loadmat('PRES_Exact5.mat') 

PRES_Exact5.keys() 

PRES_Exact5 =(PRES_Exact5['PRES_Exact5']) 

 

# In[ ]: 

# Loading prediction parameters 

Para1 = loadmat('Para1.mat') 

Para1.keys() 

Para1=(Para1['Para1']) 

 

Para2 = loadmat('Para2.mat') 

Para2.keys() 

Para2=(Para2['Para2']) 

 

Para3 = loadmat('Para3.mat') 

Para3.keys() 

Para3=(Para3['Para3']) 

 

Para4 = loadmat('Para4.mat') 

Para4.keys() 

Para4=(Para4['Para4']) 

 

Para5 = loadmat('Para5.mat') 

Para5.keys() 

Para5=(Para5['Para5']) 

 

# In[ ]: 

# AE Predictions 

para = len(Para1[:,0]) 

predictedPRES = [] 

predictedTest = [] 

predicted1 = [] 

predicted2 = [] 

predicted3 = [] 

predicted4 = [] 

predicted5 = [] 

 

predicted.append(PRES_Samp[0,:]) 

predictedT.append(Test_Samp[0,:]) 

predicted1.append(PRES_Exact1[0,:]) 

predicted2.append(PRES_Exact2[0,:]) 

predicted3.append(PRES_Exact3[0,:]) 

predicted4.append(PRES_Exact4[0,:]) 
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predicted5.append(PRES_Exact5[0,:]) 

 

training = PRES_Samp[0,:].reshape(1,n) 

test_run = U_test_in[0,:].reshape(1,n) 

 

for i in range(nt_train-1): 

    predtd = autoencoder.predict(training) 

    predicted.append(predtd[0,:]) 

    training = predtd 

 

for i in range(nt_steps_out): 

    predtdT = autoencoder.predict(test_run) 

    predictedT.append(predtdT[0,:]) 

    test_run = predtd 

 

for i in range(nt_steps_out): 

    predtd1 = autoencoder.predict(np.concatenate((PRES_Exact1[:,:-para],(Para1[:,i]) 

.reshape(1,para)),axis=1)) 

    predicted1.append(predtd1[0,:]) 

    PRES_Exact1 = predtd1 

 

    predtd2 = autoencoder.predict(np.concatenate((PRES_Exact2[:,:-para],(Para2[:,i]) 

.reshape(1,para)),axis=1)) 

    predicted2.append(predtd2[0,:]) 

    uNew2 = predtd2 

 

    predtd3 = autoencoder.predict(np.concatenate((PRES_Exact3[:,:-para],(Para3[:,i]) 

.reshape(1,para)),axis=1)) 

    predicted3.append(predtd3[0,:]) 

    PRES_Exact3 = predtd3 

 

    predtd4 = autoencoder.predict(np.concatenate((PRES_Exact4[:,:-para],(Para4[:,i]) 

.reshape(1,para)),axis=1)) 

    predicted4.append(predtd4[0,:]) 

    PRES_Exact4 = predtd4 

 

    predtd5 = autoencoder.predict(np.concatenate((PRES_Exact5[:,:-para],(Para5[:,i]) 

.reshape(1,para)),axis=1)) 

    predicted5.append(predtd5[0,:]) 

    PRES_Exact5 = predtd5 

     

predicted=np.array(predicted) 

predictedT=np.array(predictedT) 

predicted1=np.array(predicted1) 

predicted2=np.array(predicted2)    

predicted3=np.array(predicted3) 

predicted4=np.array(predicted4) 

predicted5=np.array(predicted5) 

     

predicted  = {'HL2_predicted':predicted.transpose()} 

savemat('HL2_predicted.mat',predicted) 

predictedT  = {'HL2_predictedT':predictedT.transpose()} 

savemat('HL2_predictedT.mat',predictedT)     

predicted1  = {'HL2_predicted1':predicted1.transpose()} 

savemat('HL2_predicted1.mat',predicted1) 

predicted2  = {'HL2_predicted2':predicted2.transpose()} 

savemat('HL2_predicted2.mat',predicted2) 

predicted3  = {'HL2_predicted3':predicted3.transpose()} 

savemat('HL2_predicted3.mat',predicted3)     

predicted4  = {'HL2_predicted4':predicted4.transpose()} 

savemat('HL2_predicted4.mat',predicted4)     

predicted5  = {'HL2_predicted5':predicted5.transpose()} 

savemat('HL2_predicted5.mat',predicted5) 
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