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ABSTRACT  

Copper is a trace element which is essential for many biological processes. A deficiency or 

excess of copper(I) ions, which is its main oxidation state of copper in cellular environment, is 

increasingly linked to the development of neurodegenerative diseases such as Parkinson’s and 

Alzheimer’s disease (PD and AD). The regulatory mechanisms for copper(I) are under active 

investigation and lysosomes which are best known as cellular “incinerators” have been found 

to play an important role in the trafficking of copper inside the cell. Therefore, it is important 

to develop reliable experimental methods to detect, monitor and visualise this metal in cells 

and to develop tools that allow to improve the data quality of microscopy recordings. This 

would enable the detailed exploration of cellular processes related to copper trafficking 

through lysosomes. The research presented in this thesis aimed to develop chemical and 

computational tools that can help to investigate concentration changes of copper(I) in cells 

(particularly in lysosomes), and it presents a preliminary case study that uses the here 

developed microscopy image quality enhancement tools to investigate lysosomal mobility 

changes upon treatment of cells with different PD or AD drugs.  

Chapter I first reports the synthesis of a previously reported copper(I) probe (CS3). The 

photophysical properties of this probe and functionality on different cell lines was tested and 

it was found that this copper(I) sensor predominantly localized in lipid droplets and that its 

photostability and quantum yield were insufficient to be applied for long term investigations 

of cellular copper trafficking. Therefore, based on the insights of this probe a new copper(I) 

selective fluorescent probe (FLCS1) was designed, synthesized, and characterized which 

showed superior photophysical properties (photostability, quantum yield) over CS3. The 

probe showed selectivity for copper(I) over other physiological relevant metals and showed 

strong colocalization in lysosomes in SH-SY5Y cells. This probe was then used to study and 

monitor lysosomal copper(I) levels via fluorescence lifetime imaging microscopy (FLIM); to 

the best of my knowledge this is the first copper(I) probe based on emission lifetime.  

Chapter II explores different computational deep learning approaches for improving the 

quality of recorded microscopy images. In total two existing networks were tested (fNET, 

CARE) and four new networks were implemented, tested, and benchmarked for their 

capabilities of improving the signal-to-noise ratio, upscaling the image size (GMFN, SRFBN-

S, Zooming SlowMo) and interpolating image sequences (DAIN, Zooming SlowMo) in z- 

and t-dimension of multidimensional simulated and real-world datasets. The best performing 

networks of each category were then tested in combination by sequentially applying them on 

a low signal-to-noise ratio, low resolution, and low frame-rate image sequence. This image 

enhancement workstream for investigating lysosomal mobility was established. Additionally, 

the new frame interpolation networks were implemented in user-friendly Google Colab 

notebooks and were made publicly available to the scientific community on the 

ZeroCostDL4Mic platform. 

Chapter III provides a preliminary case study where the newly developed fluorescent 

copper(I) probe in combination with the computational enhancement algorithms was used to 

investigate the effects of five potential Parkinson’s disease drugs (rapamycin, digoxin, 

curcumin, trehalose, bafilomycin A1) on the mobility of lysosomes in live cells.  
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INTRODUCTION 

Metal ions such as copper(I)/copper(II), iron(II)/iron(III) and zinc(II) amongst others play a 

fundamental role in biology by serving as essential cofactors in processes such as respiration, 

growth, gene transcription, enzymatic reactions, cell proliferation and immune function. Some 

estimates suggest that at least one third of all proteins interact with metal ions1 and half of all 

enzymes require them to perform their functions.2 

The unique chemical reactivity of metal ions allow for many essential biological processes to 

take place, but can also be responsible for a wide range of detrimental effects which makes a 

tight regulation of metal ion metabolism necessary to ensure that unwanted processes are 

minimal. The process of import, trafficking and availability, and export of metal ions is called 

homeostasis and because of the potential of metals to act as toxins the homeostasis must be 

tightly regulated. 

In the last few decades, several diseases have been identified to be related to a malfunction of 

metal homeostasis, such as neurodegenerative diseases3, cancer4 and diabetes.5 In particular, 

the abnormal accumulation of copper ions has been increasingly connected to the 

development of neurodegenerative abnormalities such as Parkinson’s disease, Alzheimer’s 

disease, and Wilson's disease. Generally, it is believed that in the diseased state the copper ion 

homeostasis is disrupted which results in a reduced control of the potentially toxic form of the 

metal ions.  

Copper(I) and copper(II) ions participate in the cascade of Fenton reactions that can lead to 

reactive oxygen species (ROS) generation. These reactions can turn relatively stable hydrogen 

https://www.sciencedirect.com/topics/chemistry/chemical-reactivity
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peroxide into hydroxyl radicals which induce oxidative stress to the neurons. Those radicals 

are very reactive and can damage lipids, proteins and nucleic acids.6 

Another reported copper-damaging mechanism in the case of Parkinson’s disease (PD) is 

linked to the oligomerization of the protein alpha-synuclein (AS).7 Copper supports the 

oligomerization and facilitates the fibrilization of this protein in the brain which leads to the 

formation of Lewy Bodies, the hallmarks of PD.  

Lysosomes have been found to play an important role in the trafficking of copper inside the 

cell as well as being involved in the process of dismantling cellular alpha-synuclein. This 

cellular organelle is mostly known as a cellular “incinerator” because of its function for the 

degradation and recycling of cellular waste. More recently a growing body of evidence has 

linked its function to the role of regulating the metabolism/homeostasis of metals inside cells. 

Through a web of transporter proteins (dyneins and kinesins) the lysosomes can move within 

the cells and specific transporter proteins on the lysosomal membrane allow metal ions to be 

moved into or out of this organelle. This allows the organelle to direct metal fluxes to cellular 

compartments where it is needed. If an excess of metal is present in the cell the lysosomal 

content can be sequestered outside the cell to lower cellular metal levels. 

The exact roles of metals and the regulatory mechanisms of lysosomes in the context of 

disease development is still unclear. Their intricate interactions with many proteins, their 

small catalytic concentrations inside biological systems and their complex regulatory cellular 

mechanism have limited their study. Therefore, it is of great importance to develop chemical 

and computational tools that allow us to gain deeper insights into the location, concentration, 

and trafficking of metal ions in biological systems. 

Fluorescent probes are the technology of choice to investigate in vivo cellular metal 

distributions and trafficking. Through their ability to selectively bind to target metals they 

show changes in their fluorescence intensity, fluorescence lifetime or/and their wavelength 

excitation or emission and have been widely used to study the cellular behaviour of metals. 

The vast majority of optical probes are intensity-based and a powerful tool/technique that is 

used to visualize them to study cellular structures and investigate dynamic cellular processes 

are point-scanning microscopy techniques such as confocal microscopes. They can capture 

spatiotemporal organization of biological micro-environments and provide the advantages of 

higher resolution, 3D information, and good signal-to-noise ratio (SNR). 

Although fluorescence intensity-based imaging microscopy is the most common technology 

used to investigate cellular processes, as will be discussed in subsequent chapters of this 

https://www.sciencedirect.com/topics/chemistry/oxidative-stress
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thesis, fluorescence lifetime imaging microscopy (FLIM), can provide additional insights, and 

has several advantages over traditional fluorescence microscopy techniques.  

However, these point-scanning systems suffer from an effect called the “eternal triangle of 

compromise” which states that at a given SNR, improving any of the three, i.e. resolution, 

system sensitivity or imaging speed, comes at the cost of one of the others. Therefore, the 

speed, sample preservation, and SNR of point-scanning systems are difficult to optimize 

simultaneously. This becomes especially problematic if computational tracking of objects 

over time is performed such as movements of cellular organelles in 4D (3D + time). If the 

travelled distance of an object from one image at a certain timepoint to the next image is too 

large the tracking algorithm will make mistakes. Therefore, it is important to find methods to 

overcome the limitations of imaging speed and image quality and signal by artificially 

increasing the image resolution, the image frequency and SNR.  

One such computational technology that has the potential to stretch these limitations is called 

“deep learning”. It has gained strong momentum in the field of computer vision and more 

recently it has also found its way into the biological sciences by applying these algorithms 

also to microscopy images. In the context of the limitations of point-scanning microscopy, 

deep learning algorithms have the potential to artificially upscale the image resolution, 

improve the signal-to-noise ratio of a given image and to synthetically increase the image 

frequency in 4-dimensional image timeseries, where the capturing of fast cellular processes 

are sometimes limited by a too low frame rate of the microscopy setup. 

These image improvements have beneficial consequences when e.g. performing 

computational tracking of small organelles which is of great importance to unveil their role 

and function for metal homeostasis. 

 

Aims and Objectives  

The three broad aims of this PhD research were to: (i) develop new fluorescent probes for 

imaging cellular copper(I) levels, (ii) implement computational deep learning tools to enhance 

the quality of confocal microscopy images and (iii) investigate the influence of Parkinson’s 

disease drugs on lysosomal mobility in a neuroblastoma cell-line using the new fluorescence 

probe and the implemented image enhancement algorithms. 

To achieve the first aim, an existing probe from the literature (CS3) was resynthesized, 

characterized, and tested for its cellular application. Subsequently, some biological 
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experiments with alpha-synuclein (AS) were carried out to investigate the role of copper(I) in 

Parkinson’s disease. Based on the knowledge gained from this first probe a novel selective 

fluorescent copper(I) probe was designed, synthesized, and spectroscopically characterized. 

The new probe demonstrated a selective binding to copper(I) and showed superior 

photophysical properties compared to the previously synthesized copper(I) probes from the 

literature. The new copper probe was then used in cellular studies to investigate the cellular 

localization of copper(I) in particular in organelles such as lysosomes. Finally, the effect of 

copper transporter molecules such as bis(thiosemicarbazonato)-copper complex (Cu-GTSM) 

on cellular copper levels was investigated using fluorescence lifetime imaging microscopy.  

For the second aim, the fluorescent copper(I) probe was used to monitor the trafficking of 

copper containing lysosomes over time. To overcome the physical limitations of speed, 

signal-to-noise ratio and resolution of point-scanning microscopy systems (“eternal triangle of 

compromise”), the aim was to implement several neural networks to improve each of the 

three limitation corners. The focus of the first deep learning tool was to artificially increase 

the resolution, the second neural network was to tackle the limitations of low SNRs and the 

third tool was applied to improve the recording frame rate of the microscopy image series. 

Each tool should be benchmarked with state-of-the-art mathematical interpolation or 

upscaling techniques and should be used on several different datasets to test their capabilities.  

The third aim was achieved by utilization of the new fluorescent copper(I) probe to 

investigate the effect of different Parkinson’s disease drugs on the mobility and movement 

behaviour of copper-containing organelles in the neuroblastoma cell line (SH-SY5Y) using 

confocal microscopy. The recorded low resolution and low frame rate image timeseries data 

was enhanced by the computational deep learning algorithms developed and implemented 

previously.  

Structure of the Thesis  

Chapter I gives a detailed literature review on the topics related to the first aim including the 

mechanism of fluorescence, the role of copper in biology, BODIPY fluorescent probes and 

technologies used for investigating copper(I) with a strong focus on the development on 

fluorescent copper(I) probes. It then describes the synthesis of fluorescent probes and their 

ability to detect copper(I) in vitro and in cells. 
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Then Chapter II transitions into the topics of computational tool development for 

microscopy. It gives an introduction into deep learning for microscopy, and it explains the 

algorithms that were implemented in this thesis. Furthermore, it presents the findings of the 

implemented deep learning image enhancement algorithms, including the results of 

benchmarking studies of three categories of neural networks implemented and tested (SNR 

enhancement, resolution upscaling, image interpolation).  

Chapter III provides the biological background on the importance of lysosomes in the 

context of neurodegenerative diseases. Then several Parkinson’s disease drugs that have 

previously shown positive effects on in vivo animal experiments are presented and discussed 

in the context of lysosomes. It then shows and discusses the results of the lysosomal copper 

tracking experiments and the observed influences of the different Parkinson’s disease drugs 

on the movement dynamics of lysosomes.  

The thesis ends with a summary Chapter IV which concludes the findings of the thesis and 

provides ideas for improvements and future research ideas for each of the targeted aim. 
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CHAPTER I 

 

1.1. Theoretical Background 

1.1.1. Luminescence 

Luminescence is “a spontaneous emission of radiation from an electronically excited species 

(or from a vibrationally excited species) not in thermal equilibrium with its environment”.8 

There are different types of luminescence that are categorized following their mode of 

excitation such as chemical reactions (chemiluminescence and bioluminescence), 

recrystallization (crystalloluminescence), and electrical current (electroluminescence), 

amongst others. Fluorescence and phosphorescence are forms of photoluminescence whose 

differences are determined by the nature of the electronic excited state. After the introduction 

of the term fluorescence by G. G. Stokes9 in the mid-19th century, the distinction between 

fluorescence and phosphorescence was based on duration of emission after the end of 

excitation. At that time, every emission that disappeared immediately after excitation was 

considered to be fluorescence, whereas phosphorescence was identified if the emitted light 

persisted after the end of excitation. However, this definition was modified later because of 

discoveries of several exceptions to the rules such as long-lived fluorescence (e.g. divalent 

europium salts) or short-lived phosphorescence (e.g. violet luminescence of zinc sulfide).  

 

1.1.2. Mechanism of fluorescence and phosphorescence 
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The mechanisms involved in fluorescence and phosphorescence are schematically explained 

in the Jablonski diagram (see Figure 1). This describes the different internal energy pathways 

and general electronic states of a molecule involved in fluorescence and phosphorescence and 

the transitions between them.10 

In the case of fluorescence, a molecule in the electric ground state S0 is excited by absorption 

of a photon to the first excited state S1 where the electron has an opposite spin compared to 

the remaining electron in the ground state. The electron first gets to a higher vibrational state, 

which undergoes vibrational relaxation processes by mechanisms such as intermolecular 

collisions with solvent molecules.11 When the electron returns to the ground state the loss of 

energy results in the emission of a photon. For fluorescence, this process happens very fast 

and the time that a fluorophore spends in the excited state (fluorescence lifetime) is in a range 

of 1 – 20 ns. The Born-Oppenheimer approximation12 demands that the nuclear motion of the 

molecules can be neglected for such short time frames which results in the emission spectrum 

mirroring the corresponding absorption spectrum. This process of excitation with spontaneous 

emission is competing with other processes such as intersystem crossing (ISC). For 

phosphorescence, the presence of heavy atoms within a molecule can result in a spin-orbit 

coupling, which allows the excited singlet state electron to be transferred via ISC to an 

excited triplet state by changing the spin direction of the excited electron (which has the same 

spin as the electron in the ground state orbital). The transition of the electron back to the 

ground state is therefore forbidden. This kinetic hindrance of the relaxation process results in 

an increased timescale, making the process of relaxation much slower and it can take between 

10-3 to 103 seconds. 

Fluorescence is typically observed in molecules which exhibit some aromaticity or have big 

conjugated systems. Phosphorescence occurs usually in molecules that have heavy atoms in 

their structure. When molecules have both aromatic systems and heavy atoms it can be 

difficult to distinguish phosphorescence from fluorescence.  
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Figure 1: Jablonski diagram showing the energy pathways of a molecule from the ground state S0 to 

the excited singlet state S1 after absorption of a photon (blue) and the possible transitions of internal 

conversion (black), fluorescence emission (red), intersystem crossing between excited singlet state and 

triplet state (green) and phosphorescence back to the ground state (yellow). 

 

1.1.3. Fluorescence parameters for sensing  

The most common parameter for fluorescence sensing is the fluorescence emission intensity 

(F). The intensity strongly depends on many physical variables such as temperature, 

concentration of the dye, excitation light intensity, solvent type, and presence of quenching 

agents, among others. The emission spectrum’s shape is usually independent of the excitation 

wavelength which is explained by the fast relaxation of the excited molecule to the lowest 

vibrational state S1. This is also the reason why the fluorescence spectrum usually is a “mirror 

image” of the absorption spectrum. For most fluorophores, the energy levels of the vibrational 

states S1 and S0 are usually not significantly altered which explains the symmetry of the 

mirrored emission and absorbance spectrum. Some exceptions for this symmetry can occur 

for two photon excitation or in the case of dimer formation of the measured dye molecule. 

There the emission spectrum can show significant differences compared to the absorbance 

spectrum. 

Other important parameters of the spectroscopic measurements are the absorption and 

emission maximum (λabs, λem). The peak of fluorescence emission usually shows a 

bathochromic redshift in comparison to the absorption spectrum. This is commonly caused by 

a loss of energy through the non-radiative vibrational relaxations of the higher vibrational 
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levels, complex formation or also by solvent stabilization of the excited state.13 The difference 

between λabs and λem was first discovered in 1852 and is called Stokes shift.9 

The anisotropy (I) and polarization (P) of fluorescence are two more parameters that can 

provide information on the immediate environment of the fluorophore which were found to be 

a useful metric for investigating biological systems. When fluorophores get irradiated with 

polarized light, only the molecules with a parallel transition dipole moment can absorb light. 

When recording fluorescence in environments with low viscosity the polarization of the light 

gets lost because of the high rotation rate of the molecules. However, when the molecule is in 

a highly viscous environment such as in polymers or lipid membranes the rotation is hindered, 

and this leads to a polarized emission. When this polarized fluorescence is measured at two 

different angles, one can calculate the fluorescence anisotropy. 

The efficiency of a fluorophore to emit light after excitation is characterized by its 

fluorescence quantum yield (𝛷). It describes the ratio between emitted photons to absorbed 

photons where fluorophores with 𝛷 values close to 1 are the most efficient converters of 

absorbed light and for non-fluorescent compounds the 𝛷 value approaches 0. This value is 

also strongly dependent on conditions like temperature, solvent polarity, type of substituents 

on the fluorophore, amongst others. The definition of fluorescence quantum yield in terms of 

the rates of excitation state decay is as follows 𝛷𝐹 = 𝑘𝑓/ ∑ 𝑘𝑖𝑖  where 𝛷𝐹 is the quantum yield; 

𝑘𝑓 the rate of spontaneous emission of radiation and ∑ 𝑘𝑖𝑖  the sum of all types of excited state 

decay from the lowest vibrational state S1. The term ∑ 𝑘𝑖𝑖  can also be split into (𝑘𝑟 +  𝑘𝑛𝑟), 

where 𝑘𝑛𝑟 represents the rate constant for all non-radiative decay processes that occur for that 

particular system. 

The last parameter for fluorophores presented is the fluorescence lifetime τ. This describes the 

average time that a molecule spends in the excited state before returning to the ground state. 

For fluorescence, this relaxation time is normally in the range of several nanoseconds and for 

phosphorescence it can take from several milliseconds up to minutes. The process of 

fluorescence lifetime includes both relaxation pathways, radiative and non-radiative. 

Fluorescence lifetime can be influenced by many factors such as the environment of the dye 

and the introduction of heavy atoms which increases the non-radiative decay and therefore 

increases the fluorescence lifetime.  
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1.3.1. Principles of fluorescence lifetime 

The fluorescence with organic molecules is generally understood as the process of a radiative 

transition from a first excited singlet state S1 to the ground state S0. This transition is called 

molecular fluorescence and can be characterized by the following three parameters: i) the 

fluorescence spectrum I(λ) which is defined as the intensity as a function of the wavelength; ii) 

the fluorescence quantum yield 𝛷, which is the ratio between the total number of emitted 

photons released after excitation to the total number of absorbed photons and iii) the 

fluorescence lifetime τ, which is seen as a kinetic parameter. The fluorescence lifetime is 

described as the inverse of the sum of all rate constants including the radiative and the non-

radiative processes, kr and knr respectively (see Equation 1). 

                                                                           𝜏 =
1

k𝑟+k𝑛𝑟 
                                                        (Equation 1) 

The non-radiative rate constant knr is the sum of rate constant for internal conversion kic and 

rate constant for intersystem crossing kisc to an excited triplet state kisc(see Equation 2). 

                                                                       knr = kic + kisc                                                 (Equation 2) 

Following the so-called Kasha’s rule11 the fluorescence emission always occurs from the 

lowest excited vibrational level S1. 

                                                                        𝜏0 =
1

𝑘𝑟
                                                                (Equation 3) 

The natural or radiative lifetime 𝜏0 is the inverse of the radiative rate constant (see Equation 3) 

and is related to the fluorescence lifetime via the fluorescence quantum yield 𝛷 which is the 

ratio of the number of photons emitted to the number of photons absorbed by a fluorescence 

compound (see Equation 4). 

                                                   𝛷 =  
𝜏

𝜏0
=  

𝑘𝑟

𝑘𝑟+𝑘𝑛𝑟
 =  

1

1+(𝑘𝑛𝑟/𝑘𝑟)
                                        (Equation 4) 

The fluorescence quantum yield can have a value between 0 and 1. Following the logic of the 

equation 𝛷 × 𝜏0 = 𝜏; τ0 can be seen as the fluorophore’s longest possible lifetime which is 

achieved if the non-radiative rate constant 𝑘𝑛𝑟 approaches zero. 

The two parameters, fluorescence lifetime 𝜏 and the fluorescence quantum yield 𝛷, are seen 

as key spectroscopic parameters because they make it possible to calculate the radiative rate 

constant 𝑘𝑟 and the non-radiative rate constant 𝑘𝑛𝑟. 

From a mechanistic point of view the time-dependent depopulation of the excited state can be 

explained with the following Equation 5. 

                                                     𝑑𝑁 = (𝑘𝑟 + 𝑘𝑛𝑟) × 𝑁(𝑡) × 𝑑𝑡                             (Equation 5) 
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This equation describes the time it takes for 𝑑𝑁  number of fluorophores to return to the 

ground state S0 after excitation of 𝑁 fluorophores to the excited state S1. The integration of 

this equation in aspect of time 𝑡 by taking into account that the fluorescence intensity 𝐹(𝑡) is 

proportional to the number of excited fluorophores 𝑁(𝑡) results in Equation 6 

                                                                        𝐹(𝑡) = 𝐹0 × 𝑒−
𝑡

𝜏                                               (Equation 6) 

where 𝐹0 is the fluorescence intensity at time t=0 and 𝜏 is the calculated fluorescence lifetime. 

According to this, the fluorescence lifetime has an exponential decay and 𝜏 describes the time 

it takes for the maximum fluorescence intensity to decay to a value 𝑒−1 ~ 37%. The easiest 

way of analysing the fluorescent decay curves is by plotting it on a logarithmic fluorescence 

intensity scale. During a measurement with a time-correlated single photon counting unit 

(TCSPC), the signal shows initially a steep increase caused by the instrument response 

function (IRF) (see Figure 2 red signal). For a mono-exponential decay the increase is 

followed by a linear signal decrease when plotted on a logarithmic scale. At longer lifetimes 

when the signal approaches zero the curve flattens out because of background signal collected 

(Figure 2). This way of plotting the data allows for easy visual inspection and provides quick 

insights into the fluorescence decay behaviour. For the extraction of the real fluorescence 

lifetime the measured signal needs to be deconvoluted from the IRF signal. 

 
Figure 2: Example TCSPC lifetime trace with normal and logarithmic intensity count scales. The 

black signal line shows the collected photon count distribution, and the red signal line shows the 

instrument response function (IRF) which needs to be considered in a deconvolution process for 

extracting the correct fluorescence lifetime value from the measured decay curve. 
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A linear decay in the logarithmic plot indicates that the measured fluorescence decay curve 

follows a first order relationship. In that case the measured fluorescence lifetime value 𝜏 is 

numerically equivalent to the average lifetime 𝜏𝑎𝑣𝑔.  

However, fluorophores with several different conformational states display more complicated 

lifetime decay curves because of several different fluorescent decays that contribute to the 

measured lifetime. This can be seen if the goodness of fit parameter 𝜒2  gets larger and 

deviates from unity ( 𝜒2  > 1.5). Then a multiexponential decay and a more complex 

fluorescence decay mechanism with multiple fluorescence components must be considered.14  

In that case, the fluorescence lifetime is defined as the arithmetic mean 𝜏̅ of each individual 

lifetime component (τi) and their fractional contribution (fi) (see Equation 7). 

                                                                       𝜏̅ = f1τ1 + f2τ2 + ⋯                                        (Equation 7) 

The parameters of individual lifetimes and fractional contributions are obtained by 

mathematical lifetime determination algorithms (LDA) on the measured decay curve. Two 

common fitting algorithms traditionally used for LDAs are the least square method (LSM) or 

maximum likelihood estimation (MLE)15 and a reduced chi-squared criterion is used to 

determine the goodness of the model fittings.  

In practice the two fitting LDA methods introduce some problems. In complex biological 

processes it is often difficult to categorize the fluorescence emission into a certain exponential 

model. Often a fitting routine with bi- or a tri-exponential models result in equal fits based on 

reduced chi-square tests16 but lead to totally different interpretation of the molecular 

mechanism. To verify the chosen models, and to ensure the accuracy a long acquisition time 

and a high photon count is needed, which is often not feasible for FLIM settings. Therefore, 

two alternative forms of average lifetimes have been found useful: the intensity-weighted 

(Equation 8) and amplitude-weighted (Equation 9) average fluorescence lifetime  

                                                              τI =
∑ fiτi

2p
i=1

∑ fiτi
p
i=1

                                           (Equation 8) 

                                                              τA =
∑ fiτi

p
i=1

∑ fi
p
i=1

                                      (Equation 9) 

where p is the number of exponentials used for fitting the decay curve.17 A thorough 

investigation on the two types of average lifetimes and associated case studies of when which 

one should be used can be found in the following review.18 
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1.3.2. Photophysical mechanisms of fluorescence sensing 

In this section the most important photophysical processes and principles involved in 

fluorescence sensing are discussed.  

1.1.3.1. Fluorescence quenching  

Fluorescence quenching is seen as one of the most important mechanisms of a fluorescent 

molecule. It describes any process that leads to a decrease of fluorescence intensity of a 

fluorophore by processes such as excited state reaction, molecular rearrangement, energy 

transfer, ground-state complex formation and collision quenching, amongst others. In the case 

of collisional quenching direct contact between quencher molecules and fluorophores are 

required and it occurs when the quencher diffuses to the fluorophore during the time-period 

where the fluorophore is in an excited state. This contact results in a return of the fluorophore 

to the ground state without emission of a photon. This process can be described by the Stern-

Volmer equation (Equation 10) which allows to explore the kinetics of photophysical 

intermolecular deactivation processes. 

                                                               
𝐹0

𝐹
 =  1 +  𝑘 × 𝜏 × 𝑐(𝑄)                                      (Equation 10) 

𝐹0 and 𝐹 are the fluorescence intensities in absence and presence of quenchers, respectively; 

𝑘 is the bimolecular quenching constant; 𝜏 is the fluorescence lifetime of the fluorescent dye 

in the absence of quenchers, and 𝑐(𝑄) is the concentration of the quenching substance. The 

equation is usually used to determine the diffusion coefficient of a quencher in a given 

environment. Molecules that can act as quenchers are e.g. molecular oxygen, heavy halogens 

and aromatic or aliphatic amines.  

1.1.3.2. Photoinduced electron transfer  

For the design of optical probes, the photoinduced electron transfer (PET) also needs to be 

considered. PET occurs when excited electrons of a donor get transferred to an acceptor down 

an energy gradient. Since the PET mechanism is much faster (often < 1ps) than the excited 

state relaxation of a fluorophore (ca. 2-5 ns), a system that incorporates a PET mechanism 

will undergo quenching which turns-off the fluorescence. In the context of molecular 

fluorescent probes, the fluorophore is designed in a way that the PET donor and acceptor are 

both within the same molecule and connected by some linker. 
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The PET mechanism can take place in two directions determined by the redox potential of the 

two involved parts of the molecule. The PET mechanism can be visualized with a simplified 

molecular orbital scheme (see Figure 3). 

 

 
Figure 3: Reductive (left) and oxidative (right) PET mechanism. 

 

PET can take place in two directions:  from a donor to the excited-state fluorophore (reductive 

PET), or from an excited-state fluorophore to a receptor (oxidative PET). Both events are 

accompanied by a quenching of the fluorophore emission. If the molecule is designed such 

that the photoexcitation promotes an electron of the fluorophore from HOMO to LUMO the 

mechanism is called “reductive PET”. The donor part of the molecule which is in a higher-

energy HOMO can then transfer its electron from the ground state to the ground state of the 

acceptor and occupies the vacant HOMO orbital. This in turn prevents the relaxation through 

photon emission and therefore the molecule is in a quenched state. On the other hand, if the 

LUMO electron of a donor fluorophore is transferred to the LUMO of the acceptor part of the 

molecule it is called “oxidative PET” mechanism which also leads to a quenching of the 

molecule. The effectivity of the PET mechanism can be tuned by chemically altering the 

electronic state of the receptor by changing coordination of analyte or by oxidation or 

reduction which changes the energy of the receptor’s HOMO and LUMO. A reductive PET 

mechanism usually results in a “turn-on” probe and oxidative PET in a “turn-off” type sensor.  

 

1.1.4. Biological role of copper 

1.1.4.1. The essential role of copper 

Copper ions play an important role in many biological processes. The electron configuration 

of elemental copper is [Ar]3d104s1 and it can occur in the oxidation states +1, +2 and +3 of 

which the preferred biological oxidation state is +2 but due to the reducing environment 
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inside cells its prevalent oxidation state is +1. The metal is an essential trace nutrient that 

plays both catalytic and structural roles in proteins and enzymes.19 A surprising fact is that the 

ionic radius of copper(I) and copper(II) cations are very similar even though they have 

different numbers of electrons, which allows them to coordinate to similar sized binding 

pockets and carry out many electron-transition tasks frequently found in biochemical cellular 

processes.  

Copper(I) is a soft Lewis acid and copper(II) is a borderline hard/soft Lewis acid. This is 

reflected in a different affinity for ligands. Copper(I) prefers soft ligands such as thiols, and 

copper(II) prefers hard ligands such as amines.20  

The copper ions found in biological systems can be divided into a static pool where the ions 

are tightly bound by proteins and other macromolecules, and a labile pool where the metal is 

bound relatively weakly to cellular ligands, including proteins and low molecular weight 

ligands21 (see Figure 4). The total metal pool of the cell can therefore be considered as the 

sum of the protein-bound metal pool and the labile metal pool. 

 
Figure 4: Simplified model of cellular copper homeostasis.  

 

The formation of copper(II) is tightly regulated by a system of intracellular chaperones and 

transporters (e.g. CTR-1, ATOX-1, GSH).21 The ability of copper to cycle between copper(I) 

and copper(II) during enzymatic processes, enables it to adapt to the enzyme's conformation. 
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Alternatively, it induces global morphological changes to the enzyme where the enzyme 

adapts itself to form a better ligand for the metal ion.  

In cellular biochemistry copper plays important roles in physiological processes and is a key 

component of a wide range of redox enzymes that react with dioxygen and its reduced 

derivatives like superoxide (O2-•).22,23 Copper related enzymes are involved in many biological 

processes such as respiration (e.g. cytochrome c oxidase),24 electron transfer/substrate 

oxidation and iron uptake,58 pigmentation,25 antioxidant defence,26 neurotransmitter synthesis, 

and metabolism.27  

1.1.4.2. Toxicity of ROS caused by copper ions 

Copper is usually tightly regulated in biological systems. Misregulation of copper metal 

homeostasis in the brain leads to oxidative stress which interrupts the cells detoxification of 

reactive oxygen species (ROS). This can produce irreparable cellular damage by degrading 

lipids, nucleic acids and can cause misfolding of proteins that could damage neuronal  

cells.28–32 Some of the most common ROS species are superoxide radical (O2
•−), hydrogen 

peroxide (H2O2), and hydroxyl radical (OH•), among others.33–35 Copper and iron ions can 

participate in Fenton-like reactions (see Equation 11) where copper(I) or iron(II) reacts with 

H2O2 to produce OH• and OH− and form the corresponding oxidized metal centres copper(II) 

or iron(III).36 

                                             Mn+ + H2O2 → M(n + 1)+ + HO• + HO-                                       (Equation 11) 

At the same time redox active ions such as copper and iron can also use their ability to change 

redox states to scavenge ROS. Some known antioxidant metalloenzymes are superoxide 

dismutase or catalase that are actively involved in cell defence mechanisms against ROS.37 

Furthermore, thiols like glutathione (GSH) help to maintain a healthy redox balance by 

scavenging superfluous oxidant species. GSH concentration and antioxidant enzymes are also 

established markers for diseased systems. They are used to indicate that the cellular 

equilibrium is favouring an oxidative environment where levels of ROS are elevated. To 

maintain optimal metal levels for function without causing damage, organisms maintain 

highly coordinated and regulated levels of both redox-active and redox-inactive metal ions.  

1.1.4.3. Copper homeostasis in biology 

The cellular uptake of copper is achieved by membrane reductases which import extracellular 

copper(II) into the cell by reducing its oxidation state.38 Once inside the cell there are two 

main mechanisms in place to ensure the delivery of copper(I) to the right place in the right 
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amount and at the right time. One being i) subcellular compartmentalization and ii) the usage 

of metallochaperone proteins. 

 
Figure 5: Copper trafficking within the lysosomal pathway. CTR1 and CTR2 are high/low affinity 

transporter proteins that are located largely on the plasma membrane and are responsible for copper 

influx in mammalian cells.39 ATP7A and ATP7B are proteins that function as copper transporter 

pumps across lipid bilayers by using energy obtained from ATP hydrolysis.40 

 

In the first strategy, cellular organelles like lysosomes are used for regulating and distributing 

the metals inside the cell. In this process metal-containing components are directed through 

incoming membrane flows, while numerous transporters such as CTR1/2 and ATP7A/B allow 

metal ions to move across the lysosome membrane.41 With this mechanism the lysosomes 

direct the metal fluxes to the sites where metal ions are either used by cellular components or 

in the case of a metal overload the lysosomal content is sequestered through the cell 

membrane to maintain a healthy metal concentration inside the cell (see Figure 5). 

In the second strategy, metallochaperones are used to selectively bind and safely escort the 

specific metal ion to various subcellular destinations. When reaching a target protein in need 

of such metal the ion gets transferred by protein–protein interactions.42 

The determined binding affinity and dissociation constant of the metal proteins involved in 

this copper trafficking process vary widely depending on the methods used for the  
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analysis.43–45 Some studies suggest that these metallochaperones bind copper(I) with 

dissociation constants in the femtomolar to attomolar concentration range,44 other research 

suggests that the binding affinity is in the order of picomolar affinity46 but the common 

ground of the different theories is that the metal downstream transfer to the recipient occurs 

with rapid kinetics.47  

Many studies suggest that the copper affinity to proteins follow a gradient from relatively low 

affinity ligation at the point of uptake, higher affinity for the metallochaperones and highest 

affinity at its ultimate destination.46 There are several arguments that suggest that the 

intracellular environment is devoid of free copper ions because at acidic pH aqueous copper(I) 

would either spontaneously disproportionate into copper(II) and copper(0) or form 

precipitates in the form of cuprous oxide (Cu2O) under neutral or basic conditions. These 

processes become thermodynamically unfavourable at low nanomolar concentrations. Since 

there is the necessity for biological systems to exchange metal ions between different 

metalloprotein pathways and the requirement for a supply of metal ions to nascent 

metalloproteins, in addition to the strongly-chelated metal in proteins, there must also be a 

labile pool of metal ions that is less tightly bound, and can be sequestered upon demand.48 

Glutathione (GSH) with its millimolar concentrations in the cytosol is proposed to serve as a 

cellular copper(I) buffer.49 

1.1.4.4. Copper related diseases 

Misregulation of copper has been shown to have significant implications for health and 

disease. Excess amounts of copper causes toxicity and compromises the redox homeostatic 

mechanisms of cells. The toxicity of a copper overload becomes particularly clear in Wilson’s 

disease, a pathological condition caused by a mutation in the ATP7B gene.50 With a correctly 

functioning ATP7B gene excess copper is transported from the trans-Golgi network to the 

endo-lysosomal organelles where ATP7B facilitates the metal excretion via a tightly regulated 

exocytic processes.51 However, a mutation on this gene disturbs this process and causes a 

build-up of copper in the liver and several other tissues.52  

On the other hand, Menkes disease is the best-known disorder of copper deficiency, which is 

caused by a genetic disorder associated with impaired copper efflux from enterocytes into the 

blood and inadequate transport of copper to the brain.53 Furthermore, copper has been 

proposed to play a crucial role for several other neurogenerative diseases such as Parkinson’s 

disease,54Alzheimer’s disease55 and Huntington disease.56  

https://www.sciencedirect.com/topics/chemistry/dissociation-constant
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/copper-ion
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/cuprous-oxide
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In Parkinson’s disease a misregulation of copper is proposed to lead to a faulty folding of the 

protein alpha-synuclein (AS). This protein is believed to play an important role in the 

outbreak of the disease by forming clusters of oligomers and consequently bigger 

accumulations forming fibrils inside the cells. Those fibrils can be found in post mortem 

brains in the so called Lewy bodies, which are the histopathological hallmark of PD (see 

Figure 6).57 

 
Figure 6: Alpha-synuclein spots as histopathological hallmark of Parkinson’s disease in examples of 

Lewy bodies, neurites, synapses and astroglia cells highlighted by black arrows. Figure taken with 

permission from publisher from the following reference.57 

 

In vitro studies have shown that even at physiological concentration divalent copper may 

accelerate the rate of AS aggregation.58 AS is mainly located in the cytosol of the presynaptic 

neuron. However, small amounts of AS monomers as well as aggregates might be secreted 

outside the cell, e.g. to plasma and cerebrospinal fluid,59,60 thus creating conditions that might 

favour copper(II) binding. These copper-bound forms may promote production of reactive 

oxygen species (ROS) which leads to oxidative cell damage.61 Additionally, it is believed that 

copper(II)-bound to extracellular protein oligomers is responsible for protein toxicity in PD.62  

The interest in elucidating the pathological roles of copper motivates the development of new 

technologies that enable monitoring of metal content in biological specimens and investigate 

the influence of external stimuli or genetic modifications on the metal content of cells.  

 

1.1.5. Technologies for measuring copper 

The physiological and pathological roles of copper and its delicate cellular regulation 

mechanisms have led to significant interest and motivated the development of new 

technologies to measure cellular metal levels.  

Technologies to measure the total cellular metal content have formed the basis of 

bioinorganic studies for more than half a century specifically through the development of 

absorption spectroscopy and mass spectrometry. Although there have been many advances 

made on measuring the total metal pool of cells, current research studies have a stronger focus 
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on investigating the effects of external influences on the cellular metal levels. This sets a 

demand for technologies that can detect changes in metal level rather than the absolute metal 

concentrations. Furthermore, there is an interest in observing the redistribution of metal pools 

within the cell which demands spatially resolved techniques. This demands a sufficient 

resolution to discriminate between distinct sub cellular regions which is achieved by 

microscopy technologies. 

In general, the technological tools to investigate cellular copper can be categorized in two 

groups i) technologies which investigate the total metal content of a cell and ii) tools that 

investigate just the cellular labile copper pool. 

1.1.5.1. Techniques to measure total metal content 

The total metal pool can be defined as all metal ions within the cell, regardless of oxidation 

state or coordination environment. Quantification of the total metal pool is therefore of value 

in reporting the occurrence of metal movements into or out of a cell in response to an external 

stimulus. 

Traditional techniques for the measurement of total metal content, such as flame atomic 

absorption spectroscopy (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS), 

require the digestion of cells prior to analysis, and can therefore report only on total changes 

in intracellular metal concentration for a population of cells, without sub-cellular spatial 

information. Amongst these techniques, ICP-MS, in particular, has advanced to the stage 

where it can now detect concentrations below 1 ppt for most elements.48 Laser ablation ICP-

MS is a modified form of this technology that uses a laser and allows for scanning for metal 

content of tissues.63 

Another commonly used technique is X-ray fluorescence microscopy (XFM).64 This 

synchrotron-based method65 has the advantage of greater sensitivity and spatial resolution for 

elemental analysis of single cells. It enabled the visualization of elemental distribution of 

chemically or cryofixed samples by detection of the characteristic fluorescence emission 

signatures. Nano-secondary ion mass spectrometry (Nano-SIMS)66 has similar capabilities to 

XFM but detects mass rather than fluorescence. It uses an imaging technique which measures 

secondary ions ejected from a solid sample and provides subcellular resolution. Example 

images of these techniques are shown in Figure 7. 
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Figure 7: Example images of copper distribution with a) LA-ICP-MS of a mouse brain section; b) S-

XRF elemental of 3T3 mouse fibroblast cell; c) NanoSIMS image of megamitochondria of a zebrafish 

retina. Figures taken with permission of publisher from the following references.67–69 

 

The techniques mentioned have their advantages, however they are not capable of measuring 

and tracking cellular copper levels in living cells and do not make distinctions between labile 

or static copper pools. For that purpose, fluorescent probes offer a powerful alternative for 

mapping specifically the labile metal pools with high spatial and temporal resolution.  

1.1.5.2. Techniques to measure labile copper content 

Analytical methods such as fluorescent probes can complement the suite of techniques to 

investigate metal ions by assessing the labile metal pools of cells.70,71 

Since metals in the labile pool are weakly bound to intracellular ligands, they can be rapidly 

removed or exchanged by competing metal chelators and can therefore also undergo exchange 

with small molecule fluorescent probes which offers similar binding affinities to the target 

metal as the cellular ligands. In that case, the small molecule fluorescent probe can bind with 

an intracellular metal and change its fluorescence response by increasing or decreasing its 

emission signal. The most common approach is a turn-on of the fluorescence after binding to 

the analyte where the emission of the bound molecule is measured against a dark background. 

This response allows for metal detection in live cells with high spatial but also temporal 

resolution which allows metal distribution to be monitored over time.32  

However, this technology comes with its own limitations, requirements, and challenges as 

discussed below.  

 

1.1.6. Basic criteria for an effective fluorescence probe 

To successfully utilize small molecules as fluorescent probes for cellular processes several 

criteria need to be met to get meaningful results in experimental measurements. In general, it 

is important that the probe shows cellular compatibility which requires the molecule to be 
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water soluble, non-toxic and cell permeable. Furthermore it should minimally perturb cellular 

homeostasis, should not cross-react with other sub-cellular species and the subcellular 

localization of the specimen should be understood.32 Those probes cannot report on the 

absolute copper ion concentration but rather provide relative information on the availability 

and distribution changes of labile copper pools in living or fixed cells. Since this approach is 

dependent on the chemical properties and the structure of the analyte, rather than the physical 

properties of the metal, it creates the challenge of sensitivity and selectivity of the formed 

complex in the heterogeneous environment of the cell. This also requires the development of 

independent analytical and chemical controls to properly validate the probe’s function for the 

biological context. 

Therefore, there are several important chemical design criteria to consider when developing 

an effective metal targeting fluorescent probe. 

1.1.6.1. Selectivity 

The metal ion probe needs to selectively bind to only one metal ion over other commonly 

found ions in cellular systems. There are several ways to ensure that the binding is specific for 

the ligand by considering the ligand denticity and geometry, the hardness or softness of the 

donor atoms, and the size of the metal ion.32 

1.1.6.2. Sensitivity (extinction coefficient and quantum yield) 

High sensitivity of a molecular sensor is a key requirement for studying cellular events. This 

is especially important because the local concentration of the particular analyte may be in the 

low nanomolar or picomolar range inside the cell. Furthermore, the signal needs to be 

distinguishable from autofluorescence (which is the natural emission of light after excitation) 

produced by highly conjugated molecules naturally occuring in cells. Autofluorescence makes 

it more difficult to distinguish background from weak fluorescence intensity signals produced 

by the fluorescent molecule. Therefore, the fluorescent probe should display a high extinction 

coefficient and quantum yield. By definition, compounds with large extinction coefficients 

strongly absorb light at a given wavelength and in case of a high quantum yield the molecule 

can efficiently convert the absorbed energy into emitted photons.32,72 
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1.1.6.3. Equilibrium dissociation constant Kd 

The dissociation constant (Kd) of a metal ligand binding describes the affinity between the 

probe and the metal ion of interest. The smaller the Kd value is the more tightly bound is the 

metal to the ligand. For a successful application of the fluorescent probe the metal chelating 

ligand should possess a dissociation constant that is within the same order of magnitude as the 

concentration of the metal ion of interest within a particular cellular location. In case of a too 

weak binding affinity, the sensor would not be able to detect the intracellular metal pools; 

conversely, if it is too strong it could disturb the physiological balance of the metal being 

detected and could cause unwanted cytotoxicity.32 

1.1.6.4. Excitation wavelength and photostability 

An excitation wavelength close to the UV-light spectrum usually results in more pronounced 

autofluorescence because several cellular components absorb light well in this range.72 

Therefore, fluorophores with visible-light or even further red-shifted excitation and emission 

wavelengths are preferred. A red-shifted excitation wavelength provides the additional benefit 

of better tissue permeability and allows the application of the fluorescent probe for 

fluorescence imaging in tissues. Furthermore, photobleaching effects due to limited 

photostability must be considered when the fluorophore is illuminated. Besides the reduced 

signal-to-noise ratio due to photobleaching, it produces toxic compounds and harms the 

cellular functions and therefore, potentially influences the investigated biological mechanisms.  

1.1.6.5. Turn-on/off sensors and ratiometric sensors 

Generally, “turn-on” and ratiometric probes are preferred for intracellular applications over 

“turn-off” probes that undergo emission quenching upon analyte binding. Ratiometric probes 

provide the advantage that the intensity is measured at two wavelengths, which makes it 

possible to normalize the background interference due to photobleaching.32 Such probes are 

often used to sense environmental parameters such as pH, viscosity, or polarity. 

Most sensors described in the literature do not fulfil all the criteria described above. This 

highlights the difficulty for optimal probe development and points out the need to develop 

probes with better and improved properties. One promising molecular platform that has been 

investigated thoroughly as fluorescent probes are the very bright and chemically stable 

compound platform of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacen or in short BODIPY. 
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1.1.7. BODIPY 

Over the past few decades BODIPY based fluorescent probes have seen a strong focus of 

research interest. The backbone compound was first synthesized by Kreuzer and Treibs in 

196873 where they tried to conduct an acylation of 2,4-dimethylpyrrole by acetic anhydride in 

the presence of BF3 as a Lewis acid. Instead of the desired 2-acetyl-3,5-dimethylpyrrole they 

obtained the first highly fluorescent BODIPY compound (see Scheme 1). 

 
Scheme 1: Synthetic scheme of the first BODIPY compound by Kreuzer and Treibs73 

 

BODIPY compounds saw their rise in popularity in chemistry in the mid 1990’s due to their 

synthetic versatility and outstanding spectroscopic properties. The feature that make BODIPY 

molecules such interesting compounds and target fluorophores are their very high chemical 

stability. They only decompose under very strong acidic or basic conditions and therefore 

allow a wide range of reactions on the fluorescent core of the molecule. The reason for 

BODIPY’s high chemical stability can be explained by the fact that all three heteroatoms 

(boron, fluorine, and nitrogen) are first row elements that enable an efficient delocalization of 

the π-orbitals. This allows for tuning their spectroscopic properties across a broad spectral 

range from the visible to the near infrared (NIR), by introduction of different groups into the 

BODIPY core structure. They have therefore found many applications in science and 

technology fields such as for chemical sensing,70,74–76 biological imaging,77,78 as well as more 

recently in photodynamic therapy,79,80 and organic photovoltaics.81,82 

1.1.7.1. Structure of BODIPY  

The BODIPY core has, similar to many other fluorescent organic dyes, a mostly planar 

structure; except for the two fluorine atoms, that lie on the perpendicular bisecting plane. The 

BF2 unit restricts the flexibility of the dipyrrin structure which results in an enhanced 

fluorescent response. The molecular structure of BODIPY dyes can be described by two 
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equivalent ionic resonance structures shown in Scheme 2. To simplify the notation the 

positive and negative isomeric charges on the boron and nitrogen atoms are omitted. The 

notation for the numbering of each atom follows the rules set for s-indacene where the 

position 8 of the BODIPY core can also be referred as meso-position which is similar to the 

notation of porphyritic systems. 

 
Scheme 2: The two resonance structures of BODIPY (left); IUPAC atom numbering convention 

(right).  

1.1.7.2. Synthesis of BODIPY core structure 

Most BODIPY synthetic routes are based on well-established pyrrole condensation reactions 

with electrophile reagents inspired by porphyrin research which lead to the formation of 

symmetrical BODIPY molecules.83,84 Also the synthesis of BODIPY molecules from 

aromatic aldehydes are well established and widely used.85,86 Dipyrrolomethanes are formed 

from acid-catalysed condensation reactions of pyrroles with aldehydes where the pyrroles 

should be used in large excess to prevent polymerization. The intermediate dipyrrolemethanes 

are not very stable and are normally not isolated but immediately oxidized in-situ to 

dipyrromethenes or dipyrrins with DDQ or p-chloranil (Scheme 3) 

 
Scheme 3: Synthetic route to BODIPY by condensation of pyrroles with aromatic aldehydes. 

 

The deprotonation of the formed dipyrrins and complexation with boron trifluoride diethyl 

etherate leads to the BODIPY product. Some reports demonstrated that in the case of 

introduction of different substituents at the meso-position the oxidation of dipyrrolemethanes 

fails with DDQ or p-chloranils.87  

Alternatively other acylium equivalents such as anhydrides,88 acid chlorides,89 or 

orthoesters,90 are used as electrophilic agents for which the reaction does not form the 

intermediate acylated pyrrole product. Instead under these acidic conditions, the 2-acylpyrrole 

immediately reacts with a second pyrrole molecule to form the dipyrrin. This reaction 

pathway does not require the oxidation step and under basic conditions and after addition of 
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BF3 provides the BODIPY compounds in high yields (see Scheme 4). This reaction procedure 

has the additional advantage that it allows for the synthesis of alkyl-substituted dyes in meso-

position which in the previous procedure with the acylium equivalent would not be possible. 

 

Scheme 4: Synthetic route to BODIPY by condensation reaction of pyrroles with acylium equivalents. 

 

These are the most common general synthetic steps for the formation of the BODIPY 

structure which are at the core of any further modification of this molecule structure. Many 

alterations and substitutions on the BODIPY core have been reported and two exhaustive 

reviews provide further details on that.91,92 

Because of their stability and easily tuneable properties BODIPY molecules have been widely 

used as platform for several selective fluorescent metal probes. In the next section the 

attention is focused on the field of fluorescent copper(I) probes which saw a rise of popularity 

over the past 15 years. Several of the reported probes have BODIPY as a core structure, but 

also other fluorescent dyes demonstrated some advantages in certain aspects.  
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1.3.3. Fluorescent copper(I) probes 

 
Figure 8: Chemical structure of fluorescent copper(I) probes. Taken with permission from the journals 

of references.93,46 

 

Over the last two decades several fluorescent copper(I) probes were reported in the literature 

(Figure 8). These chemical tools were designed to sense the labile copper(I) pools in live cells 

by molecular imaging, allowing for real-time detection of changes in copper(I) levels. 

Furthermore, next to the cellular metal distribution also movement patterns of the metal 

containing organelles can be investigated with high spatial and temporal resolution.94–96  

The fluorescence switching mechanism of most of the available turn-on fluorescent sensors 

for copper(I) is dependent on a photoinduced electron transfer (PET) process or a related 

charge transfer (CT) pathway.97 Two exhaustive reviews show greater details of these 

developments.46,93 

In brief, the group of Fahrni developed the first small-molecule fluorescent probe CTAP-198 

(Figure 8a) to detect copper(I) which is comprised of a 1,3-diarylpyrazoline fluorophore 

linked to a tetrathiazacrown ether receptor (NS4) which has high selectivity for copper(I). This 

probe was then further improved with CTAP-299 (Figure 8b) in which the hydrophilicity of 

CTAP-1 was increased by adding four hydroxymethyl groups to the tetrathiazacrown 
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receptor. CTAP-399 (Figure 8c) represents the third generation of these copper(I) probes and 

has improved the optical properties over the previous generations by introducing strong 

electron withdrawing groups such as sulfonamide and anionic sulfonate moieties into the 

structure which made it also nicely water soluble. This third-generation copper(I) probe 

overcomes the problem of aggregation and accumulation in lipid environments, which is a 

common challenge for many fluorescent dyes. However, it has not been applied to cells as it 

was done for the previous generations of probes. More recently Fahrni’s group developed a 

new probe with a sulfide-stabilized phosphine copper(I) binding site, crisp-17143 (Figure 8d), 

which allows for cytosolic copper(I) detection which is buffered at very low attomolar 

concentrations.  

Over those years in parallel the group of Chang developed several other copper(I) probes. 

Their first copper(I) probe was based on acyclic form of the NS4 receptor connected to a 

BODIPY based fluorophore named CS1100 (Figure 8e). The optical properties of this probe 

was further improved by exchanging the fluoride substituents of the boron centre for more 

electron-rich methoxy groups in CS3101 (Figure 8e). The Chang laboratory also modified the 

BODIPY core structure to develop the ratiometric copper sensor RCS196 (Figure 8f) and 

another version that specifically targets mitochondrial copper(I) Mito-CS1102 (Figure 8g). In 

later generations different dye platforms were investigated such as Cy5-base in CS790103 

(Figure 8h) or fluorescein-base probes in CR3 and CF3104 (Figure 8i) while keeping the 

binding site of the NS4 receptor the same. However, CS1 and CS3 were the most widely used 

probes to tackle biological questions. Even though both compounds have been successfully 

used for detecting intensity changes after copper supplementation in HEK293 cells this could 

not be repeated in SH-SY5Y, M17, U87MG, and CHO cell lines. In those cell lines the dye 

mainly localized in lysosomes and did not show changes in intensity signals upon 

supplementation of copper.105 Furthermore, it has been shown that the free copper(I) levels in 

the cytosol of eukaryotic cells are modulated at attomolar levels (∼10−18 mol L−1)106,107,108 due 

to copper metallochaperone proteins such as Atox1 or GSH44 which bind copper(I) with 

orders of magnitude lower than the binding affinity of the acyclic tetrathiaza-receptor (Kd 

~10-13 mol L−1).101 At a neutral physiological pH, as it is present in the cytosol of the cell, it 

has been shown that the high GSH levels can remove the copper(I) from the tetrathiaza 

binding site of CS1 and CS3. However, at acidic pH 4.0, which is present in lysosomes109 

CS1 could successfully compete with GSH for copper(I).105 
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Since it is well established that lysosomes play a key role in the regulation of copper110,111 it 

could well be that the probe is gaining access to copper(I) made available via recycling of 

nutrient copper in the acidic lysosome, as it was hypothesized for CS1 in 105. 

Other research groups added some more selective copper(I) probes such as ACu1112 (Figure 

8j) which is a two-photon fluorescent copper(I) probe that has successfully been used for 

detecting copper(I) in brain tissue. FluTPA113 (Figure 8k) is a fluorescent copper(I) probe 

based on a fluorescein platform that turns-on irreversibly upon cleavage of an ether bridge by 

interaction with copper(I) ions. A tricarbocyanine dye backbone in combination with the NS4 

copper(I) binding site was used for Probe 3114 (Figure 8l) a NIR turn-on copper(I) probe 

which has been used to detect copper(I) changes in living MG63 cells and the ratiometric 

naphthalimide based copper(I) sensor Naphthyl-CS1115 (Figure 8m) was published by the 

group of Satriano which was able to monitor changes in copper(I) levels by fluorescence 

intensity changes in SH-SY5Y cells.  

 

1.1.8. Fluorescence lifetime imaging microscopy (FLIM)  

Besides the detection of metal ions such as copper by intensity-based sensing, the last few 

decades showed the gaining popularity of an alternative in vivo fluorescence sensing method 

based on the fluorescence lifetime property of fluorescent dyes. The idea of time-resolved 

fluorescence measurements with a microscope was first mentioned in the 1950s116 but the 

actual breakthrough for FLIM came in 1989 when the first reports about the use of 

fluorescence lifetime for imaging were published.117,118 Specifically in the last two decades 

FLIM saw an increasing rise of popularity because of its high sensitivity to the molecular 

environment and changes in molecular conformations which allowed the visualisation of 

phenomena that could not be studied using intensity based methods. Therefore FLIM 

established itself as a key technology to image the interaction and environment of fluorescent 

probes in living cells.14,119,120  

What makes FLIM stand out from all the other fluorescence microscopy techniques is that it 

can report on photophysical events that are difficult or impossible to observe with 

fluorescence intensity imaging. One big advantage of FLIM is that it is independent of the 

fluorophore concentration.115 This is especially beneficial in context of cellular imaging since 

sensory probe molecules are not distributed uniformly throughout a cell.70,95,121 

Compared to fluorescence intensity, fluorescence lifetime provides an absolute measurement 

which, is less susceptible to artefacts arising from scattered light, photobleaching, non-
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uniform illumination of the sample or excitation intensity variations.72 The FLIM signal can 

monitor changes in the immediate microenvironment of the molecules and is capable at 

reporting molecular processes with high sensitivity. This technique allows for semi-

quantitative analysis by monitoring systematic signal changes at subcellular locations as a 

function of time or analyte concentration.122 FLIM has been shown to be useful for sensing 

parameters such as viscosity123 and temperature of different parts of the cell.124 Furthermore, 

this technique has been used to visualize cellular uptake and release of ions.120,119 However, 

the measured lifetime needs to be considered with caution due to the dependency of both the 

local concentration of the analyte and the sensor, on the average radiative lifetime. Therefore, 

two different cellular regions can have the same measured lifetime, but very different overall 

concentrations in the aspect of the measured analyte.122 Additionally, varying cellular (local) 

environments (such as polarity, rigidity etc.) can show strong sensitivity on the average 

radiative lifetimes and the resulting observed multi-exponential decay can be difficult to 

interpret.120,121,125  

1.1.8.1. Fluorescence lifetime imaging microscopy for copper 

 
Figure 9: Examples of copper(II) probes used for FLIM. Taken with permission from the journal of 

references.126–130 

 

FLIM has been used in several different ways to investigate the behaviour and function of 

intracellular copper(II). Fluorescently labelled copper(II) bis(thiosemicarbazonato) complexes 
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were used to monitor the release and substitution of copper(II) with zinc(II) of in 

neuroblastoma cells and primary cortical neurons with FLIM (Figure 9a, b).126,127 Jung et al., 

developed a high-affinity copper(II) probe based on a peptide binding site connected to a 

BODIPY molecule for fluorescence lifetime correlation spectroscopy (Figure 9c). This 

system, however, has not been used in live cells.128 Another concept for measuring copper(II) 

at very low femtomolar concentrations in cells with FLIM was proposed by Thompson et al., 

where they used the protein human carbonic anhydrase II labelled with the dye Oregon Green 

to monitor differences of copper(II) concentrations based on the frequency-domain of 

fluorescence lifetime microscopy (Figure 9d).129 Another approach to measure copper(II) with 

FLIM was with a ditopic boronic acid and an imine-based naphthalimide fluorescence turn-

off probe (Figure 9e)130 and the quenching effect of copper(II) on GFP was used in cells to 

monitor release and uptake of copper(II) with FLIM in plant cells.119 

Although there are several examples where FLIM has been used to investigate copper(II) in 

live cells, there is no reported compound in the literature that is able to do that with copper(I). 

Therefore, it was attempted to design a new selective fluorescent copper(I) probe that aims to 

perform FLIM measurements to sense fluctuations of copper(I) levels in live cells.  

1.2. Aims and Objectives 

The first aim of this PhD project was to develop a detection toolset for visualizing and 

studying copper(I) in cellulo in different cell lines and to investigate its localization pattern in 

relation to alpha-synuclein and amyloid-beta. The technology of choice was the use of 

selective fluorescent copper(I) probes and fluorescently labelled proteins. With this combined 

toolset at hand their localization/colocalization with AS and AB would then be investigated.  

The milestones of the first phase of this aim are:  

• resynthesize an already existing and well-established probe from the literature which 

is capable of detecting cellular copper(I) via fluorescence microscopy; 

• test the photophysical properties and the abilities of the selected target molecule to 

sense copper(I) in vitro and in cells;  

• perform localisation studies of copper(I) in cells; 

• find a fluorescent labelling strategy for AS proteins which enables the in cellulo 

localization of AS and to perform a colocalization study with the copper(I) probe in 

SH-SY5Y, N27, HEK293 cell lines and primary hippocampal neurons; 
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• perform a control experiment with overexpressed AS by transfecting cells with a 

plasmid and visualize AS by immunohistochemistry staining with an AS antibody; 

• investigate the potential of the copper(I) probe for sensing copper(I) based on 

fluorescence lifetime changes.  

In the next phase of the project, based on the knowledge gained from the synthesized probe 

from the literature, a new copper(I) selective fluorescent “turn-on” probe should be designed 

with improved properties and its qualities should be compared with the previously 

synthesized one. The properties should be tuned for improved photostability for a potential 

use of the new probe in fluorescence lifetime imaging microscopy. 

1.3. Results and Discussion 

1.3.1. Copper Sensor 3 (CS3) 

For the selection process of the existing probes in the literature, a thorough literature research 

was carried out and the copper(I) probe CS3 developed in C. Chang’s laboratory was 

identified as a potentially suitable first target probe.101 The small molecule probe consists of a 

BODIPY core structure connected to a NS4 copper(I) binding ligand linked via a carbon 

bridge to the meso position of the BODIPY dye. A PET mechanism from the NS4 ligand 

causes quenching of CS3 in the unbound state. When binding to copper(I) a 40-fold 

fluorescence “turn-on” response was reported. CS3 selectively binds to copper(I) over many 

other biological relevant metal ions, and it has been successfully used for cellular imaging (in 

HEK293 cells and primary hippocampal neurons). The Kd of CS3 was determined to be 

13×10-14 mol×L-1. Furthermore, a control ligand Ctrl-CS3 without the copper(I) binding 

abilities was used to confirm the functionality of the probe. Since the properties of this probe 

sounded promising this ligand was chosen as a first target molecule to synthesize and perform 

experiments to investigate copper(I) in cells.  
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1.3.1.1. Synthesis of CS3 

The synthesis of the two compounds copper(I) ligand CS3 and control ligand Ctrl CS3 was 

performed following an already existing procedure from the literature.100,101,131 The synthetic 

scheme of the selected molecule and its control counterpart are shown in Scheme 5.  

 
Scheme 5: Synthetic scheme for the synthesis of fluorescent copper(I) ligand CS3 and control ligand 

Ctrl-CS3 

 

In the reaction step A the basic structure of the BODIPY dye was synthesized. The pyrrole 

derivate 1 and the acid halide 2 were mixed in a 2:1 ratio in degassed DCM and heated up. 

After changing the solvent to toluene, boron trifluoride was added to the mixture. The 1H-

NMR spectrum gave very clear evidence that the right product was formed showing one 

triplet and one quartet which indicated that the ethyl group was attached onto the pyrroles and 

the three singlet peaks indicated the two methyl groups on the pyrrole and the slightly 

upshifted chlorinated methyl group in the meso position between the two pyrrole rings. 

(Figure 10a). The exchange of the fluorine moiety to methoxy groups had shown to have a 

positive effect on the fluorescent properties of the dye by increasing the electron density in 

the system.132 The methoxylated form of the BODIPY 4 from reaction B was easily identified 

by an additional peak at 2.8 ppm in the 1H-NMR spectrum which was not present in the 

fluorinated form of the BODIPY 3 (Figure 10b). For reasons that were not known this signal 

showed a small split with a coupling constant of 5.1 Hz which became a normal singlet in the 

reaction steps following to that. 
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Figure 10: 1H-NMR spectra of (a) compound 3 with arrow indicating the chlorinated methyl group in 

the meso position of BODIPY; b) compound 4 with arrow on the peak of the newly formed methoxy-

groups in the product. 

 

The methoxylated BODIPY had a short shelf life, was very unstable to light exposure and was 

used immediately after its preparation for the next reaction step. The synthesis of the copper(I) 

binding ligand tetrathia-monoazaheptadecan 9 was performed in a two-step synthesis 

(reaction C and D in Scheme 5). The first reaction step yielded product 7 as a very smelly oil 

which was not further purified and used crude for the reaction with bis(chloroethyl)amine 8 to 

form compound 9. This product was characterized by 1H-NMR spectroscopy which showed a 

triplet and a quartet, corresponding to the two terminal ethyl groups, and two multiplets 

corresponding to the four symmetric ethyl linkers. Furthermore, the hydrogen from the 

nitrogen was visible as a broad peak in the aliphatic region of the spectrum (see Figure 11).  

 

Figure 11: 1H-NMR spectrum of copper(I) binding site tetrathia-monoazaheptadecan. 

 

The final reaction step E was the reaction of the amine 9 with the chloride of the BODIPY 

dye 4. In this reaction, KI and K2CO3 were used as activating agent for reaction of the amine 

of 9 with the chloride residue of the BODIPY dye 4. This reaction was also kept under a strict 

nitrogen atmosphere. The pure product CS3 was obtained after column chromatography using 

ethyl acetate as solvent resulting in a clear separation of the product from side products. The 

product was characterized by 1H-NMR spectroscopy which shows a slightly shifted overlap of 

the two starting materials. The synthesis of the Ctrl-CS3 ligand was performed following 

analogous procedures to those used to prepare CS3. Reaction F followed the procedure of 
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reaction step E and reaction G followed the procedure of reaction step B. The formation of 

both final products was confirmed using 1H-NMR and ESI-MS.  

1.3.1.2. Spectroscopic characterization of CS3 

After the synthesis of ligand CS3 and control ligand Ctrl-CS3 some spectroscopic 

measurements were performed to confirm the properties which were reported in the 

literature.101  

The absorption spectrum of CS3 with 1 equivalent of copper(I) shows a characteristic intense 

peak at 540 nm with a weaker shoulder at around 500 nm. In the fluorescence spectrum, after 

excitation of the HEPES buffer solution at 525 nm, the fluorescence shows a stock shift of 

around 10 nm (see Figure 12a) and the fluorescence copper(I) titration confirms a 1:1 binding 

of the ligand with CS3 (Figure 12b). During the copper(I) titration the peak of the absorbance 

spectrum shifts from 540 nm to 536 nm. Furthermore, the shape of the absorption spectrum 

changes slightly becoming sharper compared to the copper(I) unbound form (see Figure 12c). 

 

 
Figure 12: Spectroscopic studies of the interaction of copper(I) with CS3 and Ctrl-CS3 in HEPES 

buffer pH 7.5. a) Normalized absorption and emission spectrum of CS3 (1 μM) with excess copper(I) 

showing a 10 nm Stokes shift. b) Emission spectrum comparison of CS3 and Ctrl-CS3 (1 μM) upon 

addition of excess copper(I). c) Absorption spectra for CS3 copper(I) titration showing a 4 nm 

blueshift of the main peak. d) Fluorescence emission spectra of copper(I) titration to CS3 (λex = 520 

nm); inset showing the binding plot recorded at the fluorescence peak maximum (λem = 540 nm). 

Fluorescence emission comparison with Rh6G and CS3 (1 μM) with and without excess copper(I) in e) 

HEPES buffer; f) EtOH. 
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The quantum yield Φ of CS3 was determined to be 0.4 in comparison to rhodamine 6G with 

ethanol as solvent. The quantum yield dropped to 0.1 when using HEPES buffer at pH 7.5 

(see Figure 12e, f). However, the turn-on response in both solvents was roughly a 10-times 

increase after copper(I) addition over the unbound form of CS3. As expected, Ctrl-CS3 did 

not show a fluorescence increase upon copper(I) addition (see Figure 12b). 

In a fluorescence spectroscopy experiment in different solvents, it became obvious that the 

probe is very much dependent on the environment which it was interacting with. CS3 showed 

good turn-on responses in PBS buffer and MeOH, in DCM and ACN the signal decreases and 

in acetone and EA the signal did not change upon addition of copper(I) (see Figure 13a-f). 

Furthermore, the addition of excess of the competing ligand BETA just showed a reversibility 

of the signal in MeOH and PBS and caused a surprising increase in ACN as solvent (see 

Figure 13f). These results indicated that the cellular experimental results that were later 

carried out for this research needed to be interpreted with caution because the local 

environment of the probe had a strong effect on its fluorescent properties.  

 
Figure 13: Effect of solvents on CS3. CS3 (1 μM) in a) MeOH; b) PBS; c) Acetone; d) EA; e) DCM; 

f) ACN with and without excess copper(I). 

1.3.1.3. pH effect and CS3 aggregation 

In a pH experiment with the CS3 probe with fluorescence spectroscopy the fluorescence 

response was stable over all acidic pHs, displaying a consistent fluorescence increase after 

copper(I) addition. However, under basic conditions starting from pH 8 the fluorescence 

signal declined over time (see Figure 14a). Furthermore, DLS was used to investigate the 

possibility of aggregation of the probe in an aqueous environment. This has been already 
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discussed in the literature for the first generation of this BODIPY based probe (CS1).105 For a 

concentration of 2 μM of CS3 in PBS buffer the aggregation behaviour was confirmed 

displaying an average particle size of 200 nm (see Figure 14b). Interestingly, when adding 

copper(I) the measured particle size increased slightly to 250 nm (see Figure 14c). When 

measuring CS3 in MeOH, the particle size could not be determined because of an inconsistent 

detection signal of the DLS device resulting in a calculated particle size between 1000 nm and 

7000 nm. This could be due to the fact that the probe is actually dissolved in MeOH and that 

the background signal could have caused these inconsistent results. Interestingly, in both 

solvents (PBS and MeOH) a fluorescence increase upon copper addition could be observed 

suggesting that the probe could follow a different signal mechanism for the different solvents. 

From these preliminary experiments a combination mechanism of PET with de-aggregation of 

the probe could be one possible explanation. However, this phenomenon was not investigated 

further for this probe. 

 
Figure 14: Fluorescence of CS3 at different pH and CS3 DLS experiments. a) Fluorescence response 

of CS3 (1 μM) in PBS at different pH before and after addition of 3 μM copper(I); inset showing 

fluorescence signal at pH 8 after addition of 3 μM copper(I) over time. b) DLS results of CS3 (1 μM) 

in PBS. c) DLS particle size of CS3 (1 μM) in PBS before and after addition of excess copper(I). 

1.3.1.4. CS3 and fluorescence lifetime  

Next, the fluorescence lifetime properties of CS3 in MeOH using a Time-Correlated Single 

Photon Counting (TCSPC) system was investigated. The decay traces changed with 

increasing amounts of copper(I) (see Figure 15a). By fitting the data with a global fit with two 

components the fluorescence lifetimes were calculated with τ1 and τ2 being 0.97±0.02 ns and 

6.59±0.04 ns, respectively. The interpretation of τ1 was associated to the unbound and τ2 to 

the copper-bound probe which is consistent with the amplitude contributions during the 

copper(I) titration where α1 and α2 have opposing trends with increasing amounts of copper(I) 

(see Figure 15b).  
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Figure 15: Fluorescence lifetime measurements of CS3. a) Time-resolved fluorescence decays of CS3 

(λex = 530 nm, λem = 540±10 nm); Instrument response function (IRF) is shown in blue; inset shows 

calculated intensity-weighted average lifetime. b) Titration amplitude trends.  

 

The average intensity weighted fluorescence lifetime showed an increase during the copper(I) 

titration starting at 3.18±0.01 ns without copper(I) and reaching a maximum at 5.27±0.02 ns 

with an excess of copper(I). Representative examples of the fitted traces with variable and 

fixed lifetimes can be seen in Figure 16. The fits for the decays show a low 𝜒2 value which 

indicated a good fit of the biexponential decay curve. The full set of parameters of the titration 

data can be found in the Appendix in Table 5.  

 
Figure 16: Biexponential lifetime fitting comparison. Fluorescence decay curves of CS3 (5 μM) in 

MeOH with copper(I) (1, 3, 8 μM) were measured and traces were fitted with two exponentials 

keeping τ1 and τ2 variable (a, b, c) and fixed τ1 = 0.97±0.02 ns and τ2 = 6.58±0.04 ns (d, e, f). 

Dsad  + Dsad  + Dsad  + 

Dsad  + Dsad  + Dsad  + 
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This data suggested that BODIPY probes with a NS4 binding site for copper(I) had the ability 

to monitor changes of copper(I) concentrations by fluorescence lifetime measurements.  

1.3.1.5. Cellular studies with CS3 

After establishing the functionality of CS3 in vitro, the copper(I) probe was tested on 

different cell lines to investigate its properties and behaviour in a cellular environment and 

was imaged with point-scanning confocal fluorescence microscopy. Furthermore, some 

colocalization experiments were carried out with alpha-synuclein (AS) and amyloid-beta (AB) 

to investigate the potential role of copper(I) in Parkinson’s and Alzheimer’s disease. 

1.3.1.5.1. CS3 and Ctrl-CS3 in cells  

First, the copper(I) binding probe CS3 was compared with the control ligand Ctrl-CS3 which 

does not have the functional copper(I) binding site. For this experiment cells from the 

neuroblastoma cell line SH-SY5Y were incubated for 15 min with CS3 (2 μM) in PBS. The 

fluorescence microscopy images confirmed a successful uptake of the probe and showed 

bright punctate localization of the CS3 probe indicating that copper(I) was in those cellular 

compartments (see Figure 17). When treating the same cell line under the same conditions 

with Ctrl-CS3 no fluorescence signal was observed in the cell. Under the assumptions that 

the control ligand has the same polarity as the actual probe and the same subcellular 

localization and cellular uptake, the probe’s signal was believed to correspond to copper(I) 

and was not caused by any other fluorescent turn-on responses.  
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Figure 17: Comparison of CS3 and Ctrl-CS3 signals in SH-SY5Y cells. Cells were treated with CS3 

and Ctrl-CS3 (2 μM) in PBS for 15 min and imaged at 40x magnification (λex = 530 nm). 

1.3.1.5.2. Colocalization of CS3 with AS and AB 

Next, the localization of copper(I) measured with CS3 was compared with the localization of 

labelled alpha-synuclein. AS (0.5 μM) which was labelled with the dye Alexa 647 was used to 

incubate SH-SY5Y cells overnight. Before imaging of the cells, copper(I) was labelled with 

CS3 (2 μM) and both dyes were imaged with a confocal microscope. Comparing the 

fluorescence signal of CS3 with the signal of labelled AS showed that no colocalization of the 

copper(I) probe was found with the fluorescently labelled protein (see Figure 18). By closer 

inspection and comparison of the brightfield channel with the fluorescent puncta from the 

CS3 probe, it was found that these fluorescent signals often colocalized with punctate 

structures in the brightfield channel likely to be lipid droplets (see white arrows in zoomed in 

sections in Figure 18).  
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Figure 18: Colocalization of CS3 and AS. SH-SY5Y cells were stained with CS3 (2 μM) for 15 min 

(λex = 530 nm) and AS labelled with Alexa 647 (0.5 μM) was incubated overnight (λex = 630 nm); 

zoomed in sections highlight colocalization of CS3 signals with punctate structures in brightfield 

image likely to be lipid droplets. 

 

Since AS and CS3 copper(I) did not show any colocalization the same experiment was 

performed to compare the localization of Alexa 488 labelled AB and CS3 in SH-SY5Y cells 

(see Figure 19). There CS3 and the labelled AB also did not colocalize in this cell line.  

 
Figure 19: Colocalization of CS3 and AB. SH-SY5Y cells were stained with CS3 (2 μM) for 15 min 

(λex = 530 nm) and AB labelled with Alexa 488 (0.5 μM) incubated overnight (λex = 450 nm). 

 

Following the suggestions from the literature in Parkinson’s and Alzheimer’s disease, copper 

is believed to play a crucial role in the aggregation behaviour of alpha-synuclein and amyloid-

beta, respectively.133 With this experimental setup of investigating copper(I) with the CS3 

probe in combination with fluorescently labelled proteins, an interaction could not be 

confirmed and no colocalization of those species in cells was measured. 

1.3.1.5.3. Colocalization experiments with lipid droplets 

To investigate the localization of the CS3 dye the two human cell lines A2780 and SH-SY5Y 

were used for this experiment. When these cells were incubated with CS3 (2 μM) for 10 mins 

at 37 °C, the dye stained positively for lipid droplets (LDs) (Figure 20a, b). This was further 

confirmed by counterstaining the cells by BODIPYTM, a commonly used marker dye for LD. 
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Furthermore, LDs were isolated from A2780 cells and incubated with CS3 dye in vitro. The 

fluorescence of the CS3 dye increased upon binding to LDs (Figure 20c), this sample when 

spotted on a coverslip and imaged under confocal microscope also showed CS3 stained lipid 

droplets (Figure 20d). 

This experiment indicated that CS3 dye had a polarity affinity that results in a preferable 

localization of CS3 in lipid droplets. This must be considered when analysing cellular studies 

which investigate copper(I) in correlation with other cell organelles or proteins. 

 
Figure 20: Colocalization study of CS3 with lipid droplet dye. Colocalization of CS3 (2 μM) with 

BODIPY LD dye in a) A2780; b) SH-SY5Y cells with DAPI and F-Actin staining. c) Fluorescence 

spectrum of extracted LD from A2780 cells, d) image of extracted CS3 stained LD under fluorescence 

and brightfield microscope.  
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1.3.1.5.4. Cell depolarization effects on CS3 signal 

To further investigate the behaviour of the copper(I) dye in cellular environment a 

depolarization experiment was performed with CS3 in HEK293 cells. This experiment was 

carried out in the original paper on primary hippocampal neurons showing a shift of 

fluorescence signal from the soma into the dendrites of the cells.101 For this experiment the 

cells were incubated with CS3 (2 μM) in PBS and then changed back to cell culture media. 

While recording the cells, 50 mM KCl was added to the well which showed a spike of 

fluorescence signal (as shown in Figure 21). The selectivity experiment which was carried out 

in the original paper of this probe has shown that CS3 is selective for copper(I) and does not 

show a turn-on response with other metals usually present in the cellular environment.101 

Therefore, these results indicate that the depolarization of the cell changes the concentration 

of copper(I) in the compartments where CS3 is located.  

 
Figure 21: Signal increase of HEK293 cells stained with CS3 (2 μM) in PBS for 15 min during KCl 

(50 mM) addition. 

 

However, then performing the same experiment on rat primary hippocampal neurons as it was 

carried out in the original paper no differences of the copper distribution between the before 

and after treatment was observed (see Figure 22). In that experiment the neurons were also 

incubated with AS (0.5 μM) for 24 h with the aim to see, if the AS location would also change 

after depolarization. Surprisingly, both of the signals, before and after the treatment with KCl 

did not show any changes except the natural photo bleaching of the fluorescent dyes. 

Furthermore, there was no colocalization of CS3 and AS found in primary hippocampal 

neurons. 
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Figure 22: Colocalization study and effect of depolarization of primary hippocampal neurons stained 

with CS3 (2 μM) in PBS for 15 min and AS (0.5 μM) incubated overnight before and after treatment 

of KCl (50 mM). 

1.3.1.5.5. Photo bleaching of CS3 

Since the previous experiment did not show any indications of fluorescence increase after 

KCl treatment of the cells but a significant decrease of fluorescence signal most likely caused 

by photobleaching, an experiment was carried out to investigate this further. Neuroblastoma 

SH-SY5Y cells were incubated with the CS3 dye (2 μM) for 15 min and the cells were 

washed with PBS and changed back to media before imaging. The fluorescence microscope 

was set to a 5 % laser power (λex = 530 nm) and the cells were measured over time. As can be 

seen in Figure 23, the signal started to decrease significantly straight after the beginning of the 

imaging process. The intensity drop shows an exponential decay and the intensity of the 

bright puncta dropped below 50% after 17 recorded images and approached almost 0% after 

around 60 recorded images.  

These results suggest that CS3 could face difficulties in the application for fluorescence 

lifetime imaging microscopy (FLIM) because compared to normal fluorescence microscopy 

where the recording of one image takes usually less than a second, in FLIM the collection 

process of the photons necessary to reconstruct the decay curve can take several seconds and 

up to minutes depending on the brightness of the dye. Therefore, a dye with better 

photostability and stronger fluorescence would be desirable for this specific use case. 
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Figure 23: Photobleaching experiment of SH-SY5Y cells stained with CS3 (2 µM) in PBS measured 

with fluorescence microscopy (λex = 530 nm) with a 5% laser power; a) shows example images at the 

different recording times and b) shows the signal drop measured on the intensity of the bright puncta 

inside the cells. 

1.3.1.5.6. PFA fixation effect on CS3 staining 

Before continuing the investigation of copper(I) measured by CS3 with internally produced 

AS, the behaviour of the CS3 dye with different fixation techniques was investigated. This 

was necessary to establish a protocol for performing antibody staining of overexpressed AS in  

SH-SY5Y cells. The two different fixation techniques used for this experiment were the use 

of 4% PFA in PBS and cooled down MeOH at -18 °C. First SH-SY5Y cells were incubated 

with CS3 (2 μM) for 10 min and imaged before fixing the cells. For PFA the cells were 

incubated with the dissolved PFA in PBS solution for 20 min before measuring the same cells 

again (see Figure 24a). There, the form of the cell as well as the fluorescence signal of the 

punctate structures remained the same as measured before fixation. The fixation with cold 

MeOH however, showed a complete vanishing of the signal after the fixation process (see 

Figure 24b). Therefore, the fixation protocol with PFA was used for the next experiment to 

investigate the colocalization of AS with CS3 measured copper(I) in overexpressed AS in 

SH-SY5Y cells. 
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Figure 24: Fluorescence signal comparison of CS3 on SH-SY5Y cells with PFA fixation (4% in PBS) 

and MeOH (-18 °C). 

1.3.1.5.7. Colocalization of CS3 with overexpressed AS 

With the established fixation protocol with 4% PFA in PBS the location of overexpressed AS 

in SH-SY5Y cells was investigated. The cells were transfected with a plasmid using a 

Turbofect transfection reagent which caused an overproduction of this protein in the cells. 

After 24 h the cells were first stained with CS3 (2 µM) for 10 min, then fixed with 4% PFA in 

PBS solution for 20 min, followed by blocking with 0.2% Triton X and 1% BSA in PBS. 

After blocking, the cells were incubated with a primary antibody and then labelled with the 

AS secondary antibody with an Alexa 647 dye. Furthermore, the nucleus stain DAPI was used 

after this staining procedure. In the fluorescence images, it could be seen that the 

overexpressed AS signal was uniformly distributed throughout the cell with an increased 

signal in the nucleus. The CS3 copper(I) staining showed the expected punctate structure in 

the cytosol similar to the previous observations in life cells with little or no overlap in the 

nucleus (see Figure 25)  
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Figure 25: Co-staining experiment of CS3 with AS and Hoechst 33342 nucleus staining with overlays 

including brightfield of SH-SY5Y cells. 

1.3.1.5.8. CS3 staining of mouse brain slices 

Before re-evaluating the capabilities of the synthesized probe CS3 from the literature and to 

draw conclusions for the next iteration for developing an improved version of a copper(I) 

probe the use of CS3 on mouse brain slices was investigated. Here, fixed mouse brain slices 

were used and treated with 0.25% Triton X before staining the sample with CS3 (4 μM) for 

10 min. The results show a shaded fluorescence signal without the typical punctate structures 

that were observed in the in vivo cell experiments. However, the staining seemed to uniformly 

stain the brain tissue and even penetrated the tissue for several micrometres (see Figure 26). 

 
Figure 26: Brightfield and fluorescence signal of CS3 on fixed mouse brain slices.  
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1.3.1.5.9. Conclusion of copper(I) probe CS3 

CS3 was successfully synthesized, and its characterization was in accordance with the results 

of the published literature.101 It was a copper(I) selective turn-on probe showing a 10-fold 

increase of fluorescence intensity signal when bound to the target metal. Its maximum 

quantum yield after copper(I) binding was around 0.4 in comparison to Rh 6G in EtOH which 

droped to 0.1 in aqueous solution. The fluorescence response to copper(I) was strongly 

dependent on the environment of the probe resulting in a naturally turned-on state in polar 

aprotic solvents like DCM or EA and turned-off in solvents like acetone and ACN. However, 

the probe was stable in the acidic pH region and showed a slow decline of signal over time in 

a basic pH environment. The concerns from the literature that CS3 formed aggregates in 

aqueous solution was confirmed with DLS but could not be tested in MeOH where the probe 

also showed strong fluorescence turn-on response after copper(I) binding. CS3 changed the 

average intensity weighted fluorescence lifetime after copper(I) binding by shifting the 

amplitude contributions of the lifetime component of the unbound form towards the lifetime 

component of the copper(I) bound species. Therefore, BODIPY based dyes with a NS4 

copper(I) binding moiety showed good potential for sensing copper(I) with fluorescence 

lifetime. CS3 was also successfully used in cellular studies showing to be non-toxic and cell 

permeable as previously reported.101 In cell experiments CS3 displayed punctate patterns 

which were identified to colocalize with lipid droplets. The control ligand Ctrl-CS3 did not 

show any signal in cells and colocalization experiments with labelled internalized alpha-

synuclein and amyloid-beta did not confirm a colocalization with the two different proteins. 

Depolarization with KCl of CS3 in HEK293 cells displayed a fluorescence signal spike which 

could not be confirmed in primary hippocampal neurons. Also, the previously reported 

changes of copper(I) location in primary hippocampal neurons could not be confirmed in this 

research. The CS3 probe was shown not to be very photostable, limiting the recording of 

copper(I) over longer time periods in confocal microscope settings. Finally, CS3 was 

successfully used to stain fixed brain slices. 

The main identified limitation of CS3 for fluorescence lifetime imaging microscopy was its 

poor photostability. Furthermore, the aggregation behaviour in aqueous environments and its 

colocalization in lipid droplets in SH-SY5Y cells was something that needed to be considered 

when answering biological questions in the context of cellular copper(I).  

Based on the gained knowledge from the CS3 copper(I) probe a new improved fluorescent 

copper(I) sensor should be designed which should overcome some of the limitations of CS3.  
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1.3.2. Design criteria of FLCS1 

In the next phase of the project, a new and improved copper(I) probe was designed, 

synthesized, and characterized and the photophysical properties of the new probe were 

compared with CS3. 

Based on the knowledge gained from the first synthesized selective copper(I) probe CS3, 

some key properties were identified and were considered in the design process of the new 

probe: 

• The probe needs to be selective for copper(I) over other biologically relevant metal 

ions. 

• It needs to show a significant turn-on response upon binding of copper(I). 

• It should be possible to use the probe in cell experiments which demands the 

compound to be non-toxic.  

• The molecular design of the new probe should display a high photostability. 

• The probe should show changes in fluorescence lifetime when binding to copper(I) 

ions to target a potential use for measuring changes of copper(I) levels using 

fluorescence lifetime imaging microscopy (FLIM). 

The basic idea for the design of the new fluorescent copper(I) probe which from now on will 

be named as Fluorescence Lifetime Copper Sensor 1 (FLCS1) was the combination of two 

concepts. The copper-sensing part of the molecule was selected to be the same thioether-rich 

NS4 receptor that was already successfully used in many other copper(I) ligands96,102,104,114,115 

and provides a selective and stable binding of soft copper(I) ions. This binding site should be 

combined with the very good photophysical properties such as good photostability and 

brightness of BODIPY-based KFL-fluorophore previously successfully developed for 

calcium(II) sensing by Suzuki et al.76  

Combining a thioether-rich copper(I) binding side on the BODIPY-based fluorophore is 

expected to invoke a photoinduced electron transfer (PET) from the electron-rich ion 

chelating moiety to the fluorescent dye moiety.134 In the absence of copper(I), the 

fluorescence of the dye is expected to remain quenched due to this PET process, and emission 

should recover upon binding to copper(I) because of the weakening of the electron-donating 

ability of the tetrathiaza moiety. The very good photophysical properties of the extended 

conjugated system of the BODIPY dye molecule was expected to display fluorescence in the 

red region of the spectrum allowing for good penetration of signal in tissue and its high 

photostability should allow for the use of this probe for fluorescence lifetime imaging 
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microscopy. As a control a second version of the ligand without the thioether bridges in the 

copper(I) binding site should be synthesized. The structure of the designed target molecules 

FLCS1 and Ctrl-FLCS1 are shown in Figure 27.  

 

Figure 27: Target molecules: copper(I) ligand FLCS1 and control ligand Ctrl-FLCS1 

1.3.2.1. Synthesis of FLCS1 

The synthesis of the FLCS1 probe was carried out following previously reported procedures 

for the synthesis of the BODIPY dye core and the copper(I) binding moity.135–137  

FLCS1 was obtained in an 11 step synthesis shown in Scheme 6 and can be broken down into 

three synthetic parts. Generally, the synthetic route from compound 5 to 7 and 12 to 16 was 

following previously published literature from a similar BODIPY-based compound112,137 and 

the synthesis of compounds 17 to 27 was inspired by the synthetic procedure of a previously 

published Ca2+ probe.136  

In the first part of the synthesis of FLCS1 (see Scheme 6a) the tetrathia receptor 15a was 

delivered in three steps. Ethyl 2-hydroxyethyl sulfide 5 with thiourea 6 and HBr as solvent 

generated thiol 7 in 72% yield. This slightly yellow transparent oil was characterised by 1H 

NMR spectroscopy and used crude for the next reaction step. In parallel  

n-phenyldiethanolamine 12 dissolved in pyridine with toluenesulfonyl chloride 13 reacted to 

14. The product was characterizable by 1H NMR spectroscopy, displaying characteristic 

peaks for the three aromatic rings and two triplets in the aliphatic region corresponding to the 

ethyl groups on the amine. In the next reaction step of 14 with 7 and in situ generated sodium 

ethanolate produced 6-phenyl-3,9-dithia-6-azaundecane 15a. On the aniline derivative 15a a 

formylation reaction with phosphorus oxychloride in DMF at low temperatures produced the 

intermediate product 16a with a 35% yield after workup and purification. This product 

displayed the typical aldehyde peak in the 1H NMR spectrum and showed an additional 

carbon in the 13C NMR spectrum which supported the formation of the product. The same 
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reaction was carried out with the sulphur free compound 15b which was commercially 

purchased. These compounds served later as the connection element of the two arms in the 

meso position of the BODIPY fluorophore. 

In the second part of the synthesis (see Scheme 6b) the side arms of the BODIPY platform 

were synthesized. This started with a Suzuki coupling using 5-formyl-2-furanboronic acid 17 

with 4-(4-bromo-phenyl)-butyric acid 18, with the palladium catalyst 19 and potassium 

carbonate as a weak base and dimethoxyethane as a solvent.  

Next, an esterification step of the crude product was carried out with EDC to activate the 

carboxy group and DMAP as a catalyst together with allyl alcohol 20 to form the ester bond 

with the alcohol. This reaction yielded compound 21 with an overall yield of 5% to 12% after 

workup and purification. 

This sequence of reactions was seen as a big limitation due to its very low yields and was 

therefore attempted to optimize by varying the amounts of catalyst, temperature of the 

reaction and speed of the acidification step. This led to limited successes and only a minor 

increase of the reaction yield. Three variables that were identified to increase the yield were 

the use of degassed solvent in the first part of the reaction while working under strict N2 

atmosphere. Furthermore, the quality of the Pd catalyst was identified as one cause for 

decreased yields and a slow acidification step was identified as being beneficial to produce a 

purer product. The 1H NMR spectrum of this product showed sharp aromatic peaks of the 

benzol and the furan moiety as well as a multiplet around 6 ppm from the allyl-ester attached 

to the butyl-acid. tert-Butyl 2-azidoacetate 23 was synthesised by reacting bromoacetate 22 

with sodium azide. The reaction yielded 95% of compound 23 which was used for the fused 

pyrrole ring formation with 21. From this reaction step onwards, all reactions were strictly 

carried out under a N2 atmosphere. The ring formation was performed in a 2-step reaction. 

First the azido ester was mixed in THF and compound 21 and potassium tert-butoxide 

dissolved in t-butanol were slowly added at low temperatures (-15 °C to -20 °C). After a 

partial purification by column chromatography on silica gel the product mixture was 

dissolved in toluene and heated up to 120 °C for 1 h resulting in the ring closure. The product 

was again purified by column chromatography yielding 38% of product 25. Then 25 was 

decarboxylated using TFA and immediately after 0.5 equivalents of the linking compound 

16a was added to the reaction. Thereafter, the reaction completion was monitored by TLC, 

the solvent was exchanged to THF, the DDQ was added to oxidize the bridging carbon 

between the two BODIPY arms to generate a fully conjugated system. An aluminium oxide 
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column removed some of the impurities including the excess DDQ. The product mixture of 

27a was dissolved in 1-2-dichloroethane and reacted with DIEA and BF3·Et2O complex. 

FLCS1 was obtained after column chromatography and preparative TLC separation in very 

low 2-3 % yield and was characterized by 1H and 13C NMR spectroscopy as well as MALDI-

TOF MS. All other isolated reaction product steps were characterized by 1H and 13C NMR 

spectroscopy and were confirmed by comparing them with the literature reported values. 

The control ligand Ctrl-FLCS1 was synthesized following the same procedure but 

exchanging 15a for 15b which was commercially available, and compound 16a with 

compound 16b. 
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Scheme 6: Synthetic scheme for the preparation of the new BODIPY-based optical copper(I) probe 

FLCS1 and control ligand Ctrl-FLCS1. 
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1.3.2.2. Spectroscopic characterization of FLCS1 in MeOH 

With this new probe at hand, the photophysical properties were first investigated in MeOH as 

solvent. The probe displayed characteristic optical features of a BODIPY chromophore. The 

extended conjugated system of the apo probe exhibits two red-shifted absorption bands with a 

main peak at 646 nm (ε = 2.48 × 105 M-1 cm-1) and a broad shoulder at 594 nm (ε = 8.07 × 104 

M-1 cm-1) with a slight redshift of 4 nm upon copper(I) addition (Figure 28b, 29b). An 

effective photoinduced electron transfer quenching (PET) by the azatetrathia receptor, 

resulted in weak fluorescence in its apo form of FLCS1 (Φ = 0.032) and after addition of 

copper(I), the fluorescence intensity increased by ca. 20-fold (Φ = 0.66) with a 1:1 ratio of 

dye to copper(I) binding and a Stokes shift of 10 nm resulting in an emission peak at 660 nm 

(see Figure 28a). The corresponding emission maximum of this compound also shifted 

slightly from 657 nm to 660 nm at an equimolar concentration of copper(I) to dye. 

Interestingly, after reaching the titration maximum, when adding a big excess (100 eq.) of 

copper(I) to the already saturated solution another signal increase was observed. This could be 

due to another probe equilibrium such as dissolving of small aggregates at higher ion 

concentrations. Even though a 1:1 binding ratio of copper(I) and dye was confirmed by a 

Job’s plot (Figure 28f), the emission intensity kept increasing over time upon addition of 

excess copper(I) amounts, and an equilibrium was reached after 4 h (see inset Figure 28e). 

After the equilibrium was reached, further addition of excess copper led to another rapid step 

increase of the fluorescent signal (inset, Figure 28c). 

The Kd of FLCS1 and copper(I) was determined in a buffered thiourea solution (in methanol) 

as previously reported (see Figure 28g, h),101,138 giving a value of 2.6×10-9 M. This value 

however cannot be directly compared to the Kd values previously reported for similar copper(I) 

probes since different solvents were used. The emission of FLCS1 was not activated in the 

presence of 2 mM calcium(II), sodium(I), magnesium(II) and zinc(II), nor did the other 

biologically abundant transition metal ions 20 μM potassium(I), cobalt(I), iron(II), 

manganese(II) or nickel(II) showed a turn-on effect with the probe. However, in accordance 

with previously published literature on probes with the same thioether rich binding side,101,104 

a large excess of copper(II) (20 μM) also showed a minor increase of emission signal (see 

Figure 28d).  
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Figure 28: Spectroscopic studies of the interaction of copper(I) with FLCS1. a) Normalized 

absorption and emission spectrum of FLCS1 (1 μM) with excess copper(I) showing a Stokes shift of 

10 nm. b) Absorption spectra for FLCS1 copper(I) titration with 4 nm redshift of main peak. c) 

Fluorescence spectra (λex = 610 nm); inset shows the binding plot recorded at the fluorescence peak 

maximum, λem = 660 nm with two extra titration points for big excess of copper(I) (20 and 100 eq.). d) 

Response of FLCS1 (1 μM in MeOH) to the addition of different metal ions with bars representing the 

integrated fluorescence response of the probe. Black bars represent the response of the addition of 

excess metal ions (2 mM calcium(II), magnesium(II), zinc(II) and sodium(I); 20 μM cobalt(II), 

iron(II), manganese(II), nickel(II), potassium(I) and copper(II)); red bars represent the response of the 

subsequent addition of copper(I) (3 μM) to the corresponding metal ion solutions. e) Fluorescence 

emission over time is increasing for 4 h before reaching equilibrium. f) Job’s plot of FLCS1 with 

copper(I) at concentrations of 2.5-0 μM for FLCS1 and 0-2.5 μM for copper(I). The total combined 

concentration of FLCS1 and copper(I) was kept constant at 2.5 μM. The spectra were acquired in 

MeOH. The maximum fluorescence response at 1.25 μM fraction of FLCS1 indicates the formation of 

a 1:1 copper(I):FLCS1 complex. g) Normalized binding affinity titration for Kd determination. 

Response of FLCS1 (1 μM) in MeOH containing thiourea (400 μM) to free copper(I) ions (0, 0.49, 

0.99, 1.98, 4.97, 7.95, 15.91, 23.86, 67.61, 238.63 pM). h) Benesi–Hildebrand plot of competition 

titration (from g)) resulting in a calculated Kd value of 2.6×10-9 M (not directly comparable to 

previously reported values due to usage of organic solvent). Excitation wavelength was 610 nm and 

collection range 615-700 nm.  

  

The quantum yield for FLCS1 was determined in comparison to Alexa647 (see Figure 29a). 

The extinction coefficient for copper(I) unbound and bound FLCS1 was determined to be 

243,064 M-1cm-1 and 248,271 M-1cm-1, respectively (see Figure 29b). To assess the 

reversibility of the copper(I) binding process, the FLCS1:copper(I) complex was treated with 

2 equivalents of PSP-2, which is known to have a very strong binding constant to copper(I).139 

This led to a decrease of the fluorescence intensity down to the basal level, observed for the 

free probe. Addition of excess copper(I) to this solution led to a complete restoration of the 

fluorescence intensity, initially observed for the FLCS1:copper(I) complex (see Figure 29c). 

Next the control ligand was investigated. As expected, the Ctrl-FLCS1 ligand did not display 
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any increase in the emission spectrum after addition of excess copper(I) (see Figure 29d). To 

get a better understanding of the nature of the fluorescence properties of the probe, a variable 

temperature experiment was performed. This unveiled that the emission was slightly 

temperature dependent resulting in an increased signal in the apo and copper(I) bound form of 

the probe at low temperatures (see Figure 29e). This could be explained due to the nature of 

the probe which at higher temperatures is more mobile and flexible and can therefore lose 

energy by rotation of the NS4 moiety or the whole ligand attached to the meso position of the 

BODIPY core.140 Next, the probe was tested in aqueous solution containing DMCP lipids 

which did not display any fluorescence even when adding excess copper(I). However, when 

MeOH was added to the solution mixture a slight signal increase was observed (see Figure 

29f). This indicated that the solubility of the probe might be limited in water. In the next 

section, experiments were carried out to investigate the behaviour of FLCS1 in aqueous 

solutions in more details.  

 
Figure 29: Spectroscopic studies of FLCS1 and Ctrl-FLCS1. a) Quantum yield determination 

experiment of FLCS1 with copper(I) in comparison to Alexa 647 (λex = 625 nm). b) Absorption 

comparison of FLCS1 with and without copper(I) in comparison to Alexa 647 for extinction 

coefficient determination. c) FLCS1 (1 μM) in MeOH was repeatedly measured before and after 

copper(I) (2 μM) addition, followed by addition of PSP-2 (4 μM) and repeated addition of excess 

copper(I) (10 μM) showing reversibility of the probe’s response to copper(I) addition/depletion. d) 

Fluorescence response comparison of FLCS1 and Ctrl-FLCS1 (1 μM) in MeOH to excess copper(I) 

(λex = 625 nm). e) Fluorescence response of FLCS1 (1 μM) in MeOH at RT and -18 °C. f) 

Fluorescence spectra of FLCS1 in PBS with DMCP lipids (100 μM) and addition of MeOH. 
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1.3.3.1. Spectroscopic characterization of FLCS1 in aqueous solution 

As established before in a UV/vis titration with FLCS1 in MeOH the probe has very good 

solubility in that solvent. However, increasing concentrations of H2O led to a steep drop of 

absorbance (Figure 30a) and already at water concentrations of 14% the absorbance started 

dropping significantly and the formation of a very broad band in the observed wavelength 

range indicated nanoparticle formation. This in turn also influenced the emission abilities of 

the probe reducing the signal at higher concentration of water (Figure 30b). A similar but 

slightly better solubility trend for the probe was observed in EtOH, showing a decreased 

fluorescence signal with higher concentrations of H2O (see Figure 30c). Since it was 

suspected that this abnormal behaviour might be due to aggregation of the dye in the solvent, 

as was mentioned to be the case for the CS1 and CS3 dye,105,141 DLS measurements were 

carried out. The DLS experiment of FLCS1 in PBS confirmed the formation of small 

particles with a diameter size of roughly 120 nm which increased in diameter to 150 nm when 

copper(I) was added (see Figure 30d, e). Similar to CS3, the DLS experiments of FLCS1 in 

MeOH did not give any meaningful results, potentially due to a high background noise of the 

measured signal. To evaluate the potential applications of FLCS1 in different biological 

environments, the changes in fluorescence intensity under various pH values was evaluated. 

Based on findings of improved solubility in EtOH a 1:1 ratio (v:v) of EtOH and PBS buffer 

was used for the pH experiments. The fluorescence signal of FLCS1 showed consistent 

fluorescence increase upon copper(I) addition across different acidic to neutral pH values. 

Interestingly, at pH 8 the signal initially increased when copper(I) was added but displayed a 

steep decline of the signal over time (see Figure 30f). Since the cellular environment is in the 

neutral or in the case of lysosomes in the acidic pH range109 this was not seen as a problem for 

the use of the probe in cells, however the limited solubility of the probe was seen as a 

potential challenge for the investigations of cellular copper(I).  
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Figure 30: Solubility investigations with FLCS1. a) UV/vis spectra from FLCS1 (1 μM) in MeOH 

with increasing concentrations of H2O (0-37%); inset displaying maximum intensity at different H2O 

concentrations. b) Integrated fluorescence emission of FLCS1 (1 μM) with/without excess copper(I) at 

different H2O concentrations (MeOH:H2O; 100:0, 80:20, 60:40, 20:80); inset showing fluorescence 

spectra. c) Fluorescence turn-on response for FLCS1 (1 μM) in EtOH and MeOH with increasing 

concentrations of H2O. d) DLS results of FLCS1 (1 μM) in PBS. e) DLS particle size of FLCS1 (1 

μM) in PBS before and after addition of 3 μM copper(I). f) Fluorescence response of FLCS1 (1 μM) 

in EtOH:H2O (1:1) at different pH before and after addition of 3 μM copper(I); inset showing 

fluorescence signal at pH 8 after addition of 3 μM copper(I) over time. 

1.3.2.3. Spectroscopic characterization of FLCS1 in aqueous solution 

Next, the fluorescence response of FLCS1 in different solvents was investigated. There the 

probe showed the expected fluorescence increase upon copper(I) addition in MeOH (see 

Figure 31a). In H2O no fluorescence signal was observed most likely due to aggregation and 

particle formation of the dye in that solvent (see Figure 31b). Similarly, to CS3, also FLCS1 

displayed a strong fluorescence turn-on in DCM as solvent which decreased slightly after 

copper(I) addition (see Figure 31d). In the solvents acetone, DMSO and ACN just a small 

signal was observed but no change of fluorescence was measured after copper(I) was added to 

the solution mixture (see Figure 31d, e, f). These experiments indicated that the dye might be 

sensitive to the polarity of the environment of the dye. This needed to be considered when 

drawing conclusions in following cellular experiments. 
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Figure 31: Solvent experiment with FLCS1 and copper(I). Fluorescence spectrum of FLCS1 (1 μM) 

with and without excess copper(I) was tested in a) MeOH; b) H2O; c) DCM; d) Acetone; e) DMSO; f) 

ACN solvent. 

1.3.2.4. FLCS1 and fluorescence lifetime 

After the investigation of the effects of different solvents on the FLCS1 probe and confirming 

a higher photostability of FLCS1 than CS3 (as it is demonstrated in Section 1.3.2.9.5 in an 

imaging experiment in Figure 48) the fluorescence lifetime behaviour of the new probe in 

MeOH was investigated. In a copper(I) titration experiment the time resolved fluorescence 

traces were best fitted using a biexponential decay function, with the two lifetime components 

(τ1 = 0.39±0.00 ns and τ2 = 3.08±0.01 ns) which were extracted from a global fit of the data. 

The short lifetime (τ1 = 0.39 ns) was assigned to the copper-free FLCS1 and the long lifetime 

(τ2 = 3.08 ns) to the copper(I) bound form of FLCS1, which was supported by the change in 

fitted amplitudes of the two components upon copper(I) titration showing an opposing trend 

during the titration (see Figure 32c). As the copper(I) concentration increased, the lifetime of 

the probe changed from 0.6 ns (apo probe) to 2.75 ns when more than one equivalent of 

copper(I) was added – i.e., mostly copper(I) coordinated probe (see inset Figure 32a). When 

investigating the different τ values at the different concentrations there was a slight systematic 

change in the τ2 value, whereas τ1 was randomly distributed and not changing significantly 

(see inset Figure 32c, d). Since the changes of the long fluorescence lifetime with increasing 

copper(I) concentrations were not very big and could not be explained, investigation was 

continued with the suggested fixed τ values from the global fit. 
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Figure 32: TCSPC copper(I) titration and selectivity of FLCS1. a) Time-resolved fluorescence decays 

of FLCS1 (λex = 630 nm, λem = 660±10 nm). Instrument response function (IRF) is shown in dark red; 

inset shows calculated intensity-weighted average lifetime. b) Time-resolved fluorescence decay 

curves of FLCS1 with excess of different metal ions (2 mM calcium(II), magnesium(II), zinc(II) and 

sodium(I); 20 μM cobalt(II), iron(II), manganese(II), nickel(II), and potassium(I)); brown line shows 

20 μM copper(II) and black line shows 3 μM copper(I). c) In vitro fluorescence lifetime titration 

results of a methanolic solution of FLCS1 (1μM) with copper(I) showing amplitude trend at fixed 

values of τ1 = 0.39±0.00 ns and τ2 = 3.08±0.01 ns, obtained from the global fit of the whole dataset. d) 

τ2 values and e) τ1 values for the copper(I) titration at different copper(I):FLCS1 ratios. 

 

Representative examples of the fits of the traces with variable (a-c) and fixed (d-f) lifetimes 

are shown in Figure 33. The fits for the decay showed a low 𝜒2value which indicated a good 

fit of the biexponential decay curve, however, for the beginning of the decay fitting some 

systematic deviations from the curve fit could be seen. The full set of parameters of the 

titration data can be found in the Appendix (Table 6). 
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Figure 33: Biexponential lifetime fitting comparison. FLCS1 (5 μM) in MeOH with copper(I) (2.5, 4, 

8 μM) lifetime was measured and traces were fitted with two exponentials with variable τ1 and τ2 (top) 

and fixed at τ1 = 0.39±0.00 and τ2 = 3.09±0.01 ns (bottom). 

 

To verify the validity of the biexponential decay fit a triexponential fit was also performed on 

the data and two representative example fits are shown in Figure 34. Although, the 𝜒2 value 

for the triexponential fit improved slightly compared to the biexponential fit, the fitting with 

the determined fixed lifetime values still displayed the error at the beginning of the trace, 

which can be seen in the residual plots. Furthermore, the amplitude contributions of the very 

fast lifetime had the biggest contribution to the overall lifetime which was not physiological 

explainable. Therefore, the biexponential model was used for evaluating future experiments. 

 

Dsad + Dsad + Dsad + 

Dsad + Dsad + Dsad + 
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Figure 34: Triexponential lifetime fitting comparison. FLCS1 (5 μM) in MeOH with copper(I)  

(2 μM). TCSPC traces were recorded and fitted with three exponentials with variable τ1, τ2 and τ3 (left) 

and fixed at τ1 = 0.08±0.00 ns, τ2 = 0.57±0.01 ns, and τ3 = 3.12±0.01 ns (right). 

 

Next, the influences of polarity, viscosity and pH on the fluorescence lifetime of FLCS1 was 

investigated. To test the effects of polarity on FLCS1, increasing amounts of H2O was used in 

a methanolic solution of FLCS1 with an excess of copper(I). A systematic shift towards 

higher contributions of the shorter lifetimes were observed. The same trend was also seen for 

increasing viscosity by increasing the amount of glycol in the solution and finally the pH also 

had a slight effect on the fluorescence lifetime shifting the decay trace towards lower lifetimes. 

Those effects were important control experiments whose effects would need to be considered 

when analysing FLIM images. Example traces of each category are shown in Figure 35. 

Dsad  + Dsad  + 
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Figure 35: Lifetime dependency of FLCS1 on H2O concentration/viscosity/pH. FLCS1 (1 μM) with 

copper(I) (3 μM) was measured a) at different H2O:MeOH ratios (100:0, 95:5, 90:10, 85:15); b) at 

different glycol:MeOH ratios (100:0, 80:20, 50:50); c) at different pH values. The pH values were 

calibrated with diluted HCl and NaOH solutions. The average lifetime was evaluated by biexponential 

fitting with τ1 and τ2 kept variable. 

1.3.2.5. FLCS1 with cell lysate 

To evaluate the ability of FLCS1 to detect cellular copper(I), an in vitro experiment was 

carried out investigating the effect of cell lysate (from SH-SY5Y cells) on the copper(I) 

sensing ability of the probe. There, a lysis buffer was used to digest the cell membrane and 10 

μL of the lysate (1 mg/mL) was added to a methanolic solution of FLCS1. Surprisingly, no 

fluorescence increase due to the cellular copper(I) was observed and even adding 1 μM of 

copper(I) externally did not show a fluorescence increase but when adding excess copper(I) 

then the signal increased (see Figure 36a). Alternatively, when adding lysate to a 1:1 mixture 

of FLCS1 and copper(I) the lysate addition resulted in a signal decrease successfully 

removing copper from the FLCS1:copper(I) complex (see Figure 36b). This indicated that the 

binding affinity of intercellular chaperones, proteins and GSH was higher than the binding 

affinity of FLCS1. This suggests that the probe can just be used to study cellular copper(I) in 

specific compartments of the cell which is not competing with those strong binding proteins 

and chaperones in the cytosol of the cell. 
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Figure 36: Competition of FLCS1 and cell lysate. a) Fluorescence spectrum of FLCS1 (1 μM) in 

MeOH with 10 μl cell lysate (1 mg/mL) followed by addition of 1 μM copper(I) and 6 μM copper(I). b) 

Fluorescence spectrum of FLCS1 (1 μM) in MeOH with 0.5 μM copper(I) followed by addition of 10 

μl cell lysate. The proteins and chaperones from the cell lysate bind copper(I) stronger than FLCS1. 

1.3.2.6. FLCS1 cellular control experiments 

Before, investigating the behaviour of FLCS1 in cells some more control experiments with 

the FLCS1 probe in MeOH were carried out with compounds that would be used later in the 

cellular studies to alter the copper(I) levels in the cell (see cellular experiments in Section 

1.3.2.9.6). First, two compounds which were previously used in the literature for depleting 

copper(I) from cells, i.e. 2,9-dimethyl-4,7-diphenyl-1,10-phenantrolinedisulfonic acid 

disodium salt (BCS),46 and bis(2-((2-(ethylthio)ethyl)thio)ethyl)amine (BETA)114 were tested. 

The addition of the compounds to the methanolic FLCS1:copper(I) complex solution led to a 

reduction of fluorescence signal (see Figure 37a, b). Clioquinol, a well established zinc and 

copper(I) ionophore did not remove copper(I) from the FLCS1:copper(I) complex (see Figure 

37c).142 Cu-GTSM143 is a copper(II) ligand which is cell permeable and after a bioreductive 

process in the cell it releases copper(I) into the cytosol. In the cell free environment however, 

the complex just contains copper(II) in a bound form and does not form copper(I). Therefore, 

not surprisingly, in methanolic solution Cu-GTSM did not show a turn-on response after 

addition to FLCS1 (see Figure 37e). The compound 2,2’-dipyridyldisulfide (DTDP) is a 

thioselective reductant and was previously reported in the literature to bind to thiols of 

proteins in the cells releasing the copper(I) usually bound to those proteins making them 

available for the other copper(I) binding molecules.143 This reagent did not alter the 

fluorescent signal of the FLCS1:copper(I) complex (see Figure 37d). Triton X, which is a 

commonly used blocking agent for tissue staining showed surprising results. After addition of 
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1 μL of that compound to the FLCS1 solution a fluorescence increase over time was observed 

(see Figure 37f). 

 
Figure 37: FLCS1 fluorescence control experiments with chemical reagents used in cell studies. 

Competition of FLCS1 (1 μM) in MeOH with 3 μM copper(I) with a) 5 μM BETA; b) 10 μM BCS; c) 

100 μM clioquinol; d) 500 μM DTDP. Fluorescence turn-on experiment with e) 5 μM Cu-GTSM; f) 

0.1% Triton X over time. 

1.3.2.7. Effects of surfactants on FLCS1 

Since the non-ionic surfactant Triton X displayed a fluorescence increase over time of a 

methanolic solution of FLCS1, this phenomenon was investigated in more detail. Here the 

two surfactants Triton X and SDS, where SDS in contrast to Triton X is an anionic surfactant, 

was explored for FLCS1 in MeOH, H2O and TRIS buffer for fluorescence and absorption 

measurements. In MeOH both surfactants displayed a strong fluorescence increase over time 

where Triton X developed a signal quicker than SDS, where it took a week for the 

fluorescence to increase. The UV/vis spectra in both experiments over time were not 

influenced and remained the same (see Figure 38a, d, and Figure 39a, d). In 1 M TRIS buffer 

FLCS1 was first insoluble judging from the broad band in the absorbance spectrum, however 

over time an increasing peak developed in the absorbance which also resulted in an increased 

fluorescence signal for both surfactants (see Figure 38b, e, and Figure 39b, e). In pure water 

FLCS1 was again insoluble and remained insoluble even after 1 week incubation with Triton 

X but anionic surfactant SDS managed to partially dissolve the aggregates which led to a 

small fluorescence increase (see Figure 39c, f, and Figure 39c, f). Taken together it seemed 

that surfactants had a positive turn-on response with the fluorescent dye not only in MeOH 
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but also in ionic aqueous solutions. Based on these findings an ionic solution of water in 

combination with surfactants could dissolve the small particles and produce a turn-on effect 

of the dye even without addition of copper(I). 

 
Figure 38: SDS effect on FLCS1 in different solvents. Fluorescence and absorbance spectra for 

FLCS1 (1 μM) in a, d) MeOH; b, e) 1 M TRIS buffer; c, f) H2O over time. 

 

 
Figure 39: Triton X effect on FLCS1 in different solvents. Fluorescence and absorbance spectra for 

FLCS1 (1 μM) in a, d) MeOH; b, e) 1 M TRIS buffer; c, f) H2O over time. 

1.3.2.8. Cell experiments 

1.3.2.8.1. FLCS1 dye delivery with co-solvent 

For the first cell experiments a protocol had to be established to overcome the poor solubility 

of FLCS1 in water and to search for a method to get the probe into the cells. In a first set of 

experiments DMSO and EtOH as co-solvents were tried at different concentrations to 

elaborate whether the dye would successfully at least partially dissolve and enter the cells. 

Even with a DMSO concentration of 40% in PBS, the probe did not succeed to enter the cells 
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(see Figure 40a). Low concentrations of EtOH as co-solvent also did not show any successes, 

however when reaching 25% or more, FLCS1 managed to enter the cell over time (see Figure 

40b) and the more EtOH was used the quicker the signal appeared inside the cell. When 

comparing the signal of the first copper(I) probe CS3 with FLCS1 delivered with a 1:1 

H2O:EtOH mixture both dyes colocalized in the same compartments (see Figure 40c). The 

same procedure was also carried out on primary hippocampal neurons which also stained 

nicely with FLCS1 (see Figure 40d). The obvious disadvantage of this approach was that the 

cells did not survive the treatment with the dye because of the high concentration of ethanol 

and thus no cellular processes or other experiments could be carried out with this protocol. 

Therefore, other protocols and methods for delivering the dye into the cells were investigated. 
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Figure 40: FLCS1 internalization attempts with DMSO/EtOH:PBS (40:60, v:v). SH-SY5Y cells 

treated with FLCS1 (1 μM) in a) DMSO:PBS showing no cellular uptake of the dye; b) EtOH:PBS 

mixture showing successful uptake; QR codes show example videos of the dye in those solvent 

mixtures. c) Colocalization experiment of FLCS1 (1 μM) treated with EtOH:PBS mixture followed by 

treatment with CS3 (1 μM) in PBS for 20 min showing colocalization of both dyes inside the cells. d) 

Primary hippocampal neurons treated with FLCS1 in EtOH:PBS mixture. 

1.3.2.8.2. FLCS1 dye delivery with lipofectamine 

Lipofectamine 2000 (LF) is a common transfection reagent sold by Thermo Fisher and it 

consists of a mixture of two different types of lipids that form liposomes in aqueous 

environments. It is commonly used to internalize big molecules like mRNA or plasmid DNA 

into in vitro cell cultures by lipofection. This reagent was successfully used to deliver 60nM – 
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100 nM FLCS1 into the cells with a 24 h incubation time at 37 °C. With this treatment 

method FLCS1 was located inside the cell with punctate locations spread out throughout the 

cell plasma. When comparing the punctate locations with the spots from CS3 no 

colocalization of the dye was observed (see Figure 41). After incubation with FLCS1 cells 

showed to be fully viable, growing and replicating for over 48 h (see Figure 42). 

 

 
Figure 41: Colocalization experiment of CS3 and FLCS1 with lipofectamine protocol. SH-SY5Y 

cells were treated for 24 h with DMEM containing 60 nM FLCS1, 0.2% lipofectamine and 10% FBS, 

washed twice with PBS and treated with CS3 (2 μM) in PBS for 20 min. Overlayed images show no 

colocalization of the two copper(I) probes.  

 

 
Figure 42: Visual viability inspection. Brightfield (top) fluorescence image (bottom) of SH-SY5Y 

cells treated for 24 h with DMEM containing 60 nM FLCS1, 0.2% lipofectamine and 10% FBS and 

measured at timepoint a) 0 h b) 24 h and c) 48 h after changing back to unsubstituted media. The cells 

show normal morphology and cell growth. 
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In another experiment cells which were first treated with FLCS1 with 0.2% lipofectamine 

overnight, were recorded and afterwards treated with the first treatment protocol with the 

H2O:EtOH solvent mixture. The overlaying of the images showed that the FLCS1 location 

pattern changed after the treatment with the solvent mixture (see Figure 43). This confirmed 

again that the first treatment protocol mostly likely did not reflect the correct location of 

copper(I) inside the cells but just shows a turn-on response in lipid droplets which was 

previously confirmed with the CS3 copper(I) probe (see Figure 20).  

 
Figure 43: Comparison of FLCS1 cell internalization protocols. FLCS1 (60 nM) incubated with 0.2% 

lipofectamine in DMEM with 10% FBS imaged for 24 h (left) followed by treatment with FLCS1  

(1 μM) in EtOH:H2O 1:1 mixture for 20 min (middle). Overlayed images showing a change of FLCS1 

location inside the cell after treatment with the ethanolic solvent mixture (right) (λex = 620 nm,  

λem = 630-700 nm). 

1.3.2.8.3. Colocalization FLCS1 and AS and Lysotracker Green 

Next, in a colocalization experiment of the copper(I) dye FLCS1 and externally treated 

labelled alpha-synuclein was investigated. There the three different cell lines N27, SH-SY5Y 

and HEK293 were simultaneously incubated with FLCS1 and Alexa488 labelled AS with 0.2% 

lipofectamine for 24 h. The results for all three cell lines show strong colocalization patterns 

with AS and the copper(I) probe (see Figure 44).  
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Figure 44: Colocalization of FLCS1 with AS. HEK293, N27 and SH-SY5Y cells were 

simultaneously incubated with FLCS1 (60 nM) with 0.2% lipofectamine for 24 h in DMEM with 10% 

FBS imaged together with AS (0.5 μM) labelled with Alexa 488 overnight and imaged the day after on 

confocal microscope at 40x magnification (λex = 500 nm, λem = 510-550 nm for AS and λex = 620 nm, 

λem = 630-700 nm for FLCS1). 

 

Furthermore, the colocalization of FLCS1 and Lysotracker Green showed strong overlaps in 

the fluorescence signal for all three cell lines (see Figure 45). The colocalization was also 

confirmed in primary hippocampal neurons. However, when looking more closely in some 

examples the fluorescence signals of the FLCS1 signal did not 100% overlap with the 

labelling signal of the lysotracker (see Figure 46). These results suggest that the FLCS1 probe 

as well as alpha-synuclein are present in lysosomes and copper(I) is potentially interacting 

with the protein in this cellular compartment. This is in accordance with the literature where 



Chapter 1 

Martin Priessner - January 2022 72 

growing body of evidence has indicated that lysosomes, well known for being involved in the 

degradation and recycling of cellular waste and energy metabolism,144,145 also play a vital role 

in the regulation of transition metal homeostasis including copper ions.41,110 

One question which remained was whether the copper(I) probe was present in lysosomes 

because of its affinity towards copper(I), because of other turn-on reasons like polarity or 

because of the method used for delivering the dye to the cells.  

 
Figure 45: Colocalization of FLCS1 and Lysotracker Green. HEK293, N27, SH-SY5Y cells and 

primary hippocampal neurons were incubated with FLCS1 (60 nM) with 0.2% lipofectamine for 24 h 

in DMEM with 10% FBS. Before imaging, the cells were treated with Lysotracker Green (LTG)  

(50 nM) for 20 min in PBS. Images show colocalization of FLCS1 with LTG in all cell lines  

(λex = 500 nm, λem = 510-550 nm for LTG and λex = 620 nm, λem = 630-700 nm for FLCS1). 
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Figure 46: Partial colocalization of FLCS1 with Lysotracker Green. N27 cells incubated with FLCS1 

(60 nM) with DMEM containing 0.2% lipofectamine and 10% FBS for 24 h and before imaging 

treated with Lysotracker Green (50 nM) for 20 min in PBS. Cells imaged show only partial 

colocalization of FLCS1 and lysosomes. QR code shows video of full z-stack of the displayed cells.  

1.3.2.8.4. FLCS1 on organotypic cells cultures  

Next, the functionality of FLCS1 was tested on organotypic cultures. The organotypic cell 

cultures were treated with the same protocol as for normal cell cultures with 0.2% 

lipofectamine in Neurobasal-A media with B27 supplement for 24 h. The fluorescence image 

showed some signal at the cells at the border of the brain slice but most of the organotypic 

cell tissue remained unlabelled (see Figure 47).  

 
Figure 47: Organotypic cell culture labelling with FLCS1. Organotypic cell culture slices were 

treated with FLCS1 (60 nM) with 0.2% lipofectamine in neurobasal-A medium with B27 supplement. 

Dye got internalized just for peripheral regions of the brain slice. 

1.3.2.8.5. FLCS1 and CS3 photobleaching experiment 

A photobleaching experiment was carried out on SH-SY5Y cells with both copper(I) probes 

to compare their stability. The cells were incubated with FLCS1 (60 nM) with 0.2% 

lipofectamine for 24 h and CS3 (2 μM) for 20 min before imaging. The signal for both dyes 

was equally intense at the beginning of the recording process, however the signal of CS3 

dropped significantly faster compared to FLCS1. This indicated that FLCS1 was 
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significantly more stable and FLCS1 stained cells could be recorded for much longer 

compared to CS3 incubated cells (see Figure 48).  

 
Figure 48: Photobleaching comparison of FLCS1 and CS3. SH-SY5Y cells were stained with FLCS1 

and CS3 with the usual protocol and imaged over time with confocal microscopy at a 1% laser power 

for both lasers (λex = 520 nm, λem = 530-580 nm for CS3 and λex = 620 nm, λem = 630-700 nm for 

FLCS1). QR code shows a video example of the photobleaching experiment. 

1.3.2.8.6. Copper(I) alteration experiments with FLCS1 

To test whether FLCS1 can sense copper(I) alterations, several different approaches were 

carried out to alter the copper(I) levels inside cells. First, the thiol-selective oxidant  

2,2’-dithiodipyridine (DTDP) was used, which is known to increase the cellular free copper(I) 

levels by binding to thiols of proteins releasing copper(I) ions in that process. When  

SH-SY5Y cells were treated with 100 μM DTDP dissolved in PBS, the cells did not show any 

changes of their fluorescence signal from FLCS1 (see Figure 49a). However, when DTDP 

was added to the cells from the DMSO stock solution a clear turn-on effect was observed 

which lasted for several seconds before recovering the initial fluorescence intensity. This 

signal increase could be repeated twice on the same cells (see Figure 49b and QR code videos) 

indicating that DTDP released copper(I) which was captured back into equilibrium after 

around 1 min and with a second addition of an increased quantity of DTDP the signal increase 

could be repeated. Addition of pure DMSO did not show any intensity changes (see Figure 

49c) and the laser exposure for the same time period did not significantly change the 

fluorescence signal of the dye inside the cells (see Figure 49d). 
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Figure 49: DTDP treatment of FLCS1 stained SH-SY5Y cells. SH-SY5Y cells were incubated with 

FLCS1 (60 nM) with DMEM containing 0.2% lipofectamine and 10% FBS for 24 h and imaged 

before and after treatment with a) 100 μM DTDP from a PBS stock solution; b) 100 μM DTDP from a 

DMSO stock solution; c) addition of the same amount of DMSO as for (b); d) repeated laser exposure 

in the same time intervals as the treated cells. DTDP treatment from DMSO stock showed signal 

increase in treated cells. 

 

Next, the same cell line was treated with a well-known copper(II) ionophore clioquinol which 

can reversibly bind to copper(II) in the media and can pass with the ion through the cell 

membrane increasing cellular copper(I) levels. Addition of a mixture of copper(II) and 

clioquinol from a PBS stock solution did not show any changes in the fluorescence signal of 

the dye (see Figure 50a) but when clioquinol was added from a DMSO stock solution onto the 

cells the signal showed a strong increase (see Figure 50b).  

 
Figure 50: Clioquinol and copper(II) treatment of FLCS1 stained SH-SY5Y cells. SH-SY5Y cells 

were incubated with FLCS1 (60 nM) with DMEM containing 0.2% lipofectamine and 10% FBS for 

24 h and imaged before and after treatment with 400 μM copper(II) and 800 μM clioquinol from a) 

PBS stock; b) DMSO stock. 

 

These first two attempts successfully increased the fluorescence signal inside the cells after 

treatment with the compounds dissolved in DMSO but with this protocol the cells did not 

survive the treatment which could be judged from the lack of movement of the cells over time 

after the addition of the compounds. Furthermore, the fact that DMSO was necessary for 

observing the effects indicated a poor cell permeability of the compounds used. Because of 

this, other methods to alter intracellular copper(I) concentrations were tested. For that the 

ionophoric complex Cu-GTSM was used to increase cellular copper(I) which showed some 
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signal increase in SH-SY5Y cells over time after treatment (see Figure 51a) and BCS and 

BETA were used to deplete copper(I) from the cell (see Figure 51b). As a control experiment, 

cells were repeatedly imaged in the same time intervals as the treated cells to test the effect of 

repeated laser exposure on the fluorescence signal (see Figure 51c). This did not show a 

signal decrease to the same extent as the copper(I) depleted cells and a comparison of the 

signal over time for all four reagents and the control are shown in Figure 51d. These 

experiments demonstrated that the fluorescence signal was slightly altered by increasing or 

decreasing the cellular copper(I) concentration.  

 
Figure 51: Copper(I) depletion and increase in FLCS1 labelled SH-SY5Y cells. SH-SY5Y cells were 

incubated with FLCS1 (60 nM) with DMEM containing 0.2% lipofectamine and 10% FBS for 24 h 

and imaged before and after treatment with a) 2.5 μM Cu-GTSM (three repeats); b) 125 μM BCS; c) 

untreated control cells; d) shows fluorescence signal progression over time for cells treated with 

different compounds. Cells show slightly increased signal for Cu-GTSM and a decreased signal for 

copper(I) depleting compounds BETA and BCS. 

 

To confirm that the probe is not influenced by pH changes in lysosomes, cells were treated 

with bafilomycin A1, which stops lysosomal acidification, thus increasing the pH in the 

lysosomes. Pleasingly, confocal microscopy showed that this treatment did not alter the 

fluorescence intensity from FLCS1 localised in lysosomes suggesting that a pH increase in 

lysosomes did not affect the intensity signal of the probe (see Figure 52). 
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Figure 52: Inhibition of lysosome acidification with bafilomycin A1. SH-SY5Y cells were treated for 

24 h with DMEM containing 60 nM FLCS1 and 0.2% lipofectamine and 10% FBS a) imaged before 

and after treatment with bafilomycin A1 (30 nM) for 24 h. b) Bafilomycin A1 (30 nM) treated cell 

compared to equivalent concentrations DMSO (0.01%) treated cells. c) Statistical student t-test of 

intensity comparing 48 and 41 cells treated with bafilomycin A1 and DMSO, respectively, showing no 

statistically significant change of lysosomal intensity signals. 

1.3.2.8.7. FLCS1 and fluorescence lifetime imaging microscopy (FLIM) 

The microscopy studies carried out with FLCS1 suggested that copper(I) was present in 

lysosomes and alterations of those copper(I) levels could be measured with the probe which 

was consistent with existing literature that indicated that there were increased copper(I) levels 

in those organelles. However, intensity-based probes were generally not concentration-

independent and, thus, it was not possible to assess whether the measured fluorescence 

intensity in the lysosomes was observed, indeed, due to the presence of large pools of 

copper(I), or simply due to a consequence of high accumulation of the probe in this organelle 

or due to any other turn-on effect of the probe. As shown before the copper(I) depletion 

experiments and the experiments for copper(I) increase in cells showed small changes in the 

intensity profile of the fluorescence on confocal microscopy images. To confirm the 

functionality of the probe with a different approach, fluorescence lifetime imaging 

microscopy (FLIM) images of SH-SY5Y live cells incubated with FLCS1 were recorded. 

Since the in vitro studies of the new copper(I) probe discussed above showed that FLCS1 

displayed significantly longer fluorescence lifetimes when bound to copper(I) as compared to 

the metal-free probe (see Figure 32a), FLIM should provide an unambiguous confirmation of 

the presence of copper(I) in lysosomes. A representative example of the FLIM images is 

presented in Figure 53a. The FLIM signal showed biexponential time-resolved decays (Figure 

53g) of FLCS1 in cells, which was consistent with the cell-free data (see Figure 53a and 
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Figure 33). When fitting the FLIM images with a biexponential decay function the values of 

τ1 and τ2 in cellular distribution centred around 1.1 ns and 2.6 ns, respectively (see Figure 53g 

and Figure 53i). These values deviated slightly from the observed in vitro values for FLCS1 

which were determined to be 0.39±0.00 ns for τ1 in a copper(I) free state and 3.08±0.01 ns for 

τ2 in the copper(I) bound state. This difference could be due to the complex intracellular 

environment, as compared to the cell-free assays (e.g. crowding, viscosity, polarity, refractive 

index) which was established for the in vitro experiment with the probe. It was shown that the 

lifetime was affected by various parameters; for example, adding increasing amounts of water 

to methanolic solutions of FLCS1 decreased its fluorescence lifetime; increasing viscosity or 

decreasing the pH shifted the fluorescence lifetime of the probe to lower values  

(see Figure 35). 

While none of these changes were large, they were sufficient to explain the small 

discrepancies in the lifetime values between the in vitro and in cellulo data. The calculated 

intensity weighted average lifetime (τavg = 2.06±0.2 ns, τ1 = 1.1±0.6 ns, τ2 = 2.6±0.4 ns, α1= 

0.59±0.15, α2=0.41±0.15, χ2 = 1.18±0.1) (see Figure 133 and compare to the cell-free data in 

Table 6 in the Appendix) in lysosomes indicated the probe being partially bound to copper(I).  

Next, the cellular concentration of copper(I) was artificially increased using Cu-GTSM as it 

was done for the fluorescence intensity experiment before. This should confirm the ability of 

FLCS1 to image copper(I) in cellulo. As indicated above, Cu-GTSM is a well-established 

reagent that is cell permeable and that undergoes a bio-reduction process releasing copper(I) 

inside a cell.146 

For the recorded FLIM images of the SH-SY5Y cells before and after treatment with this 

compound, the most suitable fitting model remained a biexponential decay. Consistent with 

the release of additional copper(I) from Cu-GTSM inside the cell, an upwards shift in the 

average fluorescence lifetime (or, in other words, an upshift in the longer component 

amplitude, Figure 133a, b in the Appendix) of the FLCS1 probe was observed upon treating 

SH-SY5Y cells with Cu-GTSM (5 μM for 20 min) (see Figure 53b, e). 
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Figure 53: FLIM imaging of SH-SY5Y cells treated with FLCS1. a), c), d) FLIM data recorded 

before and b), e), f) after incubation with 5 μM Cu-GTSM for 20 min; a), b), c), e) show the lifetime 

maps (τavg); d) and f) show fluorescence intensity images; c), d), e), f) show the zoomed-in sections 

highlighted by white squares in a) and b); g) and h) show typical time-resolved fluorescence decay 

curves from the regions indicated by white crosses in c) and e); fitting parameters (inserts) and 

residuals (bottom panels) are also shown. 

 

To reduce the uncertainty in the determination of the fitting parameters, the two lifetime 

components were fixed at τ1 = 0.7 ns and τ2 = 2.7 ns for copper(I) treatment analysis. The 

goodness of fit parameter (χ2) distribution was not influenced by this adaptation (see Figure 

135 in Appendix) but allowed to clearly visualise the changes of the amplitudes of two 
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lifetimes before and after the treatment (see Figure 54d). These changes were observed 

without significant altering the distribution of the short and long lifetime components.  

The amplitude increase of the longer lifetime component α2 (see in Figure 134a, b in the 

Appendix), rather than its lifetime, was consistent with an increase in the fraction of the 

bound copper(I) seen by FLIM in cells following the treatment. The intensity of the 

fluorescence signal, as shown before did not undergo significant changes following Cu-

GTSM treatment (see Figure 54d, f). 

 
Figure 54: FLIM analysis of FLCS1 in SH-SY5Y cells. A) Statistics of average lifetime changes 

before and after treatment with Cu-GTSM in comparison with repeated laser exposure and DMSO 

treatment of 12 cells, over 3 independent biological repeats. b) Amplitude of the longest lifetime 

component. d) Average lifetime histograms before and after Cu-GTSM incubation. c) Brightfield 

image of cells with fluorescence image overlayed.  

 

This confirmed that FLIM is a more sensitive technique compared to intensity-based imaging, 

allowing to monitor small changes in copper(I) in lysosomal compartments in cells using the 

newly developed FLCS1 copper(I) probe. As controls, treatment of cells with DMSO as well 

as the repeated laser irradiation exposure of the cells with FLCS1 did not lead to significant 

changes in fluorescence lifetime compared to cells treated with Cu-GTSM (see Figure 54a 

and Figure 136 in the Appendix). 
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1.4. Experimental Procedures 

1.4.1. Synthetic Materials and Methods 

All chemical reagents and solvents for synthesis were purchased from commercial suppliers 

and were used without further purification. All moisture or oxygen sensitive reactions were 

carried out under a nitrogen atmosphere. The composition of solvent mixtures is given by 

volume ratio (v/v). Analytical and preparative thin layer chromatography was performed 

using Merck 60 F254 silica gel with 0.25 mm and 2 mm thickness, respectively. Flash 

chromatography (FC) was performed using Merck Kieselgel 60 at room temperature (RT) 

under a positive pressure. 1H NMR spectra were collected in CDCl3 or DMSO-d6 (Cambridge 

Isotope Laboratories, Cambridge, MA) at 25 °C on a Bruker AV-300 or AV400 spectrometer. 

Chemical shifts (δ) are given in ppm and coupling constants in Hz. Notation for the 1H NMR 

spectral splitting patterns include singlet (s), doublet (d), triplet (t), quartet (q), quintet (qui), 

broad (br) and multiplet/overlapping peaks (m). Matrix-assisted laser desorption/ionization 

MALDI analyses were carried out with a Thermo Scientific MALDI mass spectrometer and 

CHCA was used as embedding matrix.  

1.4.1.1. Synthetic procedure for CS3 and Ctrl-CS3 

Synthesis of 10-(chloromethyl)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4l4,5l4-

dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine (3) 

  

 

 

 

The basic structure of the BODIPY compound was synthesized following an already existing 

procedure from the literature.131 In a 50 mL two necked flask chloroacetyl chloride 2 (0.228 g, 

2.01 mmol, 1 eq.) and 2.4-dimethyl-3-ethylpyrrole 1 (0.498 g, 4.04 mmol, 2 eq.) were mixed 

in with nitrogen degassed DCM (25 mL). The deep purple reaction mixture was heated up to 

50 °C and was stirred for 2 h under a nitrogen atmosphere. Then the solution was allowed to 

cool down to room temperature and the solvent was removed on a rotary evaporator under 

reduced pressure. The residue was dissolved in toluene (50 mL) with a trace of DCM (2.5 

mL). The reaction flask was put under nitrogen and after adding triethylamine (1.35 mL, 9.6 

mmol, 4.8 eq.) the colour changed from purple to dark green. After stirring for 30 min boron 

trifluoride diethyl etherate (1.75 mL, 14.18 mmol, 7.1 eq.) was added. With this reagent the 
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colour changed again back to a dark purple and the reaction was heated up to 50 °C for 2 h. 

After that, the reaction mixture was cooled down and the solvent was removed on a rotary 

evaporator under reduced pressure. The residue was again re-dissolved in dichloromethane, 

washed with water, dried over Na2SO4, evaporated to dryness and purified with flash 

chromatography (silica gel, 3:1 toluene/n-hexane; 214 mg, 30% yield). 

1H NMR (CDCl3, 400 MHz): δ 4.86 (s, 2H,), 2.54 (s, 6H), 2.49 (s, 6H), 2.44 (q, 4H, J = 7.6), 

1.09 (t, 6H, J = 7.6). 

13C NMR (CDCl3, 400 MHz): δ 155.2, 136.5, 134.4, 133.8, 131.1, 38.2, 31.2, 17.4, 14.9, 12.9. 

 

Synthesis of 10-(chloromethyl)-2,8-diethyl-5,5-dimethoxy-1,3,7,9-tetramethyl-5H-4l4,5l4-

dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine (4) 

 

 

 

 

 

The methoxylated form of BODIPY was synthesized following an already existing procedure 

from the literature.101 The BODIPY starting material 3 (71 mg, 0.20 mmol, 1 eq.) was 

weighted into a 5 mL vial. The solid was dissolved in DCM (2 mL) and AlCl3 (80 mg, 0.60 

mmol, 3 eq.) was added to it. After this addition of AlCl3 the purple solution changed to a 

more bluish colour. Then the mixture was sonicated at room temperature for 6 min and then 

methanol (1 mL) was added, and the reaction mixture was stirred for an additional 6 min. The 

reaction was then diluted with EA (10 mL) washed twice with water and once with brine 

solution, and dried over Na2SO4. The pure dark red solid product 4 was obtained after flash 

chromatography (silica gel, EA; 39.3 mg, 52% yield). 

1H NMR (CDCl3, 400 MHz): δ 4.86 (s, 2H), 2.80 (d, 2H, J = 5.1)*, 2.49 (s, 6H), 2.47 (s, 6H), 

2.41 (q, 4H, J = 7.6 ), 1.05 (t, 6H, J = 7.5). 

13C NMR (CDCl3, 400 MHz) δ 155.3, 134.2, 134.1, 133.1, 132.4, 60.4, 49.1, 38.5, 17.3, 14.9, 

12.7. 

  

* Splitting was not explainable and became a singlet in the next reaction step 
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Synthesis of 2-(ethylthio)ethane-1-thiol (7) 

 

 

 

 

2-(Ethylthio)ethane-1-thiol 7 was synthesized following an already existing procedure from 

the literature.100
 Ethyl-2-hydroxyethyl sulfide 5 (4.25 g, 40.0 mmol, 1 eq.) and thiourea 6 

(3.05 g, 40.0 mmol, 1 eq.) were mixed in 48% hydrobromic acid (8.5 mL, 75.0 mmol, 1.88 

eq.) and heated up to 110 °C under nitrogen atmosphere for 20 h. Afterwards the reaction 

mixture was cooled down to room temperature, concentrated aq. NaOH (3.2 g, 80.0 mmol,  

2 eq.) was slowly added to the reaction solution and pH paper was used to verify a final pH of 

8-9. Then the reaction was heated up to reflux at 110 °C overnight. Following this, the 

reaction was cooled to room temperature, neutralized with concentrated HCl. The pH was 

monitored using pH paper and after reaching pH 7 the solution was extracted using DCM 

(3×30 ml). The organic phase was washed with water, dried over Na2SO4 and the solvent was 

removed on a rotary evaporator under reduced pressure. The remaining product was a very 

strong-smelling slightly yellow to orange oil which was used without further purification 

(4.36 g, 89% yield).  

1H NMR (CDCl3, 400 MHz): δ 2.85-2.68 (m, 4H), 2.59 (q, 2H, J = 7.4), 1.76 (t, 1H, J = 7.9), 

1.29 (t, 3H, J = 7.4). 

 

Synthesis of 3,6,12,15-tetrathia-9-monoazaheptadecane (9) 

 

 

 

 

 

 

Tetrathia-monoazaheptadecane 9 was synthesized following an already existing procedure 

from the literature.100 Sodium (0.194 g, 8.4 mmol, 4 eq.) was added to 2-thiapentan-1-thiol 7 

(0.615 g, 5.0 mmol, 2.4 eq.) dissolved in absolute EtOH (9 mL) kept under nitrogen. The 

resulting solution was then heated up to reflux and a solution of bis(2-chloroethyl)amine 

hydrochloride 8 (0.30 g, 2.1 mmol, 1 eq.) dissolved in absolute ethanol (5 mL) was added 
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dropwise via dropping funnel to the thiolate solution. After that the reaction mixture was 

refluxed for 4 h. The solvent was removed on the rotary evaporator under reduced pressure 

and the product 9 was purified using flash chromatography (silica gel, 10% MeOH/DCM) 

resulting in a light brown oil as product (0.38 g, 72% yield). 

1H NMR (CDCl3, 400 MHz): δ 2.86 (t, 4H, J = 6.5), 2.72-2.81 (m, 12H), 2.60 (q, 4H, J = 7.5), 

1.87 (br, 1H), 1.29 (t, 6H, J = 7.4). 

 

Synthesis of N-((2,8-diethyl-5,5-dimethoxy-1,3,7,9-tetramethyl-5H-4l4,5l4-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-10-yl)methyl)-2-((2-(ethylthio)ethyl)thio)-N-(2-((2-

(ethylthio)ethyl)thio)ethyl)ethan-1-amine (CS3) 

 

The final BODIPY copper(I) ligand CS3 was synthesized following an already existing 

procedure from the literature.101 The methoxylated BODIPY compound 4 (35 mg, 0.093 

mmol, 1 eq.), the copper(I) binding ligand 9 (38 mg, 0.121 mmol, 1.3 eq.), KI (16 mg, 0.096 

mmol, 1 eq.) and K2CO3 (26 mg, 0.190 mmol, 2.1 eq.) was weighted into a 25 mL Schlenk 

tube. Then ACN (1 mL) was added via syringe and the solution was stirred at 45 °C for 3 h 

under nitrogen atmosphere. The reaction mixture was then concentrated using the vacuum 

from the Schlenk line and the residue was re-dissolved in DCM (50 mL) and washed with 

water twice. The organic phase was dried over Na2SO4, concentrated to dryness and purified 

by column chromatography (silica gel, 100% EA). The product CS3 was a dark red oil. (29 

mg, 48% yield)  

1H NMR (CDCl3, 400 MHz): δ 4.07 (s, 2H), 2.91 (t, 4H, J = 7.8), 2.82 (s, 6H), 2.69–2.54 (m, 

16H), 2.52 (s, 6H), 2.48–2.39 (m, 10H), 1.26 (t, 6H, J = 7.4), 1.06 (t, 6H, J = 7.6). 

ESI-MS: m/z calcd. for C32H56BN3O2S4: 653.87; found: 654.3062 [M+H]. 
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Synthesis of N-((2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-4l4,5l4-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-10-yl)methyl)-N-octyloctan-1-amine (11) 

 

The control BODIPY ligand Ctrl-CS3 was synthesized following the same procedure as for 

the CS3 ligand.101 The BODIPY starting material compound 3 (90 mg, 0.255 mmol, 1 eq.), 

dioctylamine 10 (155 mg, 0.642 mmol, 2.5 eq.), KI (84 mg, 0.506 mmol, 2 eq.) and K2CO3 

(71 mg, 0.513 mmol, 2 eq.) was weighted into a 25 mL Schlenk tube. Then ACN (1 mL) was 

added via syringe and the solution was stirred at 45 °C for 3 h under nitrogen atmosphere. The 

reaction mixture was then concentrated using the vacuum from the Schlenk line and the 

residue was re-dissolved in DCM (50 mL) and washed with water twice. The organic phase 

was dried over Na2SO4, concentrated to dryness, and purified by column chromatography 

(silica gel, 100% EA). The product 11 was a dark red oil. (25 mg, 18% yield)  

1H NMR (CDCl3, 400 MHz): δ 3.85 (s, 2H), 2.49 (t, 4H, J = 7.3), 2.43 (s, 6H), 2.34 (s, 6H), 

2.32 (q, 4H, J = 7.50), 1.37-1.26 (m, 4H), 1.23-1.03 (m, 20H), 0.97 (t, 6H, J = 7.50), 0.80 (t, 

6H, J = 7.0). 

 

 

Synthesis of N-((2,8-diethyl-5,5-dimethoxy-1,3,7,9-tetramethyl-5H-4l4,5l4-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-10-yl)methyl)-N-octyloctan-1-amine (Ctrl-CS3) 

 

 

 

 

 

 

The methoxylated form of Ctrl-CS3 ligand was synthesized following the same procedure as 

previously mentioned.101 Compound 11 (71 mg, 0.122 mmol, 1 eq.) was weighted into 5 mL 

vial. The solid was dissolved in DCM (2 mL) and AlCl3 (80 mg, 0.608 mmol, 5 eq.) was 
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added to it. After the addition of AlCl3 the purple solution changed to a more bluish colour. 

Then the mixture was sonicated at room temperature for 6 min and then MeOH (1 mL) was 

added, and the reaction mixture was stirred for an additional 6 min. The reaction was then 

diluted with EA (10 mL) washed twice with water and once with brine solution, dried over 

Na2SO4. The pure dark red oily product Ctrl-CS3 was obtained after flash chromatography 

(silica gel, 100% EA; 39.3 mg, 55% yield). 

1H NMR (CDCl3, 400 MHz): δ 3.97 (s, 2H), 2.81 (s, 6H), 2.60 (t, 4H, J = 7.36), 2.51 (s, 6H), 

2.45 (s, 6H), 2,42 (q, 4H, J = 7.6), 1.53-1.45 (m, 4H), 1.34–1.16 (m, 20H), 1.06 (t, 6H, J = 

7.5), 0.89 (t, 6H, J = 6.8). 

ESI-MS: m/z calcd. for C36H64BN3O2: 581.51; found: 580.50 [M-H]. 

 

Synthesis of 1,5-bis(p-tolylsulfonyloxy)-3-phenyl-3-azapentane (14) 

 

Compound 14 was synthesized following an already existing procedure from the literature.112  

N-Phenyldiethanolamine 12 (2 g, 11.04 mmol, 1 eq.) was ground to a rough powder with a 

mortar and pestle and added to 20 mL pyridine. After the compound was completely 

dissolved the solution mixture was cooled down to 0 °C and 4-toluenesulfonyl chloride 13 

(6.4 g, 33.57 mmol, 3 eq.) was added. Then the reaction was put under a nitrogen atmosphere 

and stirred at 0 °C for 5 h. Following that, water was added to the reaction mixture and an 

extraction was carried out with DCM. The organic layer was dried over Na2SO4 and the DCM 

and partially pyridine was removed on a rotary evaporator under reduced pressure. The crude 

product was purified by a recrystallization step using petroleum ether (60-80 °C). The clean 

product crystals formed after putting the mixture for 24 h at -18 °C. The crystals 14 were 

collected by filtration, washed with petroleum ether and dried on air (5.1 g, 94% yield).  

1H NMR (CDCl3, 400 MHz): δ 7.74 (d, 4H, J = 8.3), 7.30 (d, 4H, J = 8.3), 7.16 (dd, 2H,  

J = 8.9, 7.3), 6.73 (tt, 1H, J=7.3, 1.0), 6.46 (d, 2H, J = 8.0), 4.11 (t, 4H, J = 6.1), 3.58 (t, 4H,  

J = 6.1), 2.45 (s, 6H). 

13C NMR (CDCl3, 400 MHz): 145.7, 145.0, 132.6, 129.9, 129.5, 127.9, 117.7, 112.1, 66.6, 

50.2, 21.7. 
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Synthesis of 6-phenyl-3,9-dithia-6-azaundecane (15a) 

 

Compound 15a was synthesized following an already existing procedure from the 

literature.112 Sodium (0.21 g, 9.13 mmol, 2.2 eq.) was dissolved in dry EtOH (50 ml) under a 

nitrogen atmosphere. Then ethanethiol 7 (1.0 g, 8.18 mmol, 2 eq.) was added to the solution 

mixture and stirred at room temperature for 1 h. After that the reaction was heated up to reflux 

and 1,5-bis(p-tolylsulfonyloxy)-3-phenyl-3-azapentane 14 (2.0 g, 4.08 mmol, 1 eq.) was 

added to the hot solution and the solution was kept stirring overnight. After that, the solution 

colour changed from yellow to red. The reaction solvent was evaporated on a rotary 

evaporator under reduced pressure and then an extraction was carried out with water (40 ml) 

and CHCl3 (3×40 ml). The organic phase was dried over Na2SO4 and after removing the 

solvent the product was obtained as an orange-coloured oil 15a. (1.5 g, 94% yield)  

1H NMR (CDCl3, 400 MHz): δ 7.26 (t, 2H, J = 7.2), 6.75 (tt, 1H, J = 7.2, 1.1), 6.69 (d, 2H,  

J = 7.9), 3.58 (t, 4H, J = 7.5), 2.83-2.73 (m, 12H), 2.59 (q, 4H, J = 7.4), 1.29 (t, 6H, J = 7.4). 

13C NMR (CDCl3, 400 MHz): δ 146.6, 129.6, 116.9, 111.9, 51.7, 32.5, 31.9, 29.4, 26.1, 14.9. 

 

Synthesis of 4-(bis(2-((2-(ethylthio)ethyl)thio)ethyl)amino)benzaldehyde (16a) 

 
Compound 16a was synthesized following an already existing procedure from the 

literature.112 Dimethylformamide (4 mL) was cooled down under nitrogen atmosphere to  

-20 °C using acetone and dry ice. Then phosphorus oxychloride (1.96 mL, 3.08 g, 22.4 mmol, 

7.5 eq.) was slowly added to the solvent. After 20 min stirring at this low temperature the 

solution turned white because of the formation small crystals of the frozen salt. 6-Phenyl-3,9-

dithia-6-azaundecane 15a (1.18 g, 3.0 mmol, 1 eq.) was dissolved in DMF (2 mL) and added 

very slowly over the course of 1 h with an automated syringe system to the reaction solution 
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while maintaining the temperature below -20 °C. When the addition of the compound was 

finished, the reaction solution has changed from white to a dark greenish colour. The reaction 

solution was heated to 70-80 °C for 3 h and the progression of the reaction was monitored by 

taking small samples and performing TLCs (n-hexane:EA = 2:1). When the reaction was 

completed the mixture was poured on ice, neutralized to pH 7-8 using K2CO3 and extracted 

with DCM (3×10 ml). The organic solvent was dried over Na2SO4 and the solvent was 

removed on a rotary evaporator under reduced pressure. Then a silica column purification was 

carried out using an eluting gradient from 0-20% EA in n-hexane. (0.44 g, 35% yield) 

1H NMR (CDCl3, 400 MHz): δ 9.78 (s, 1H) 7.78 (d, 2H, J = 8.9), 6.73 (d, 2H, J = 8.9), 3.68 (t, 

4H, J = 7.7), 2.86-2.74 (m, 12H), 2.60 (q, 4H, J = 7.4), 1.29 (t, 6H, J = 7.4). 

13C NMR (CDCl3, 400 MHz): δ 189.4, 146.2, 129.5, 116.8, 111.0, 52.1, 32.6, 31.9, 29.1, 26.2, 

14.8. 

 

Synthesis of 4-(dioctylamino)benzaldehyde (16b) 

 
Compound 16b was synthesized following an already existing procedure from the  

literature.112,137 The synthesis of compound 16b was following the exact same procedure as 

for compound 16a with the only difference of using N,N-dioctylaniline 15b (1.17 g, 3.7 mmol, 

1 eq.) as starting material obtaining product 16b (0.7 g, 55% yield).  

1H NMR (CDCl3, 400 MHz): δ 9.74 (s, 1H), 7.74 (d, 2H, J = 9.1), 6.74 (d, 2H, J = 9.1), 3.36 

(t, 4H, J = 7.8), 1.68-1.60 (br, 4H), 1.38-1.27 (br, 20H), 0.91 (t, 6H, J = 7.0), 

13C NMR (CDCl3, 400 MHz): δ 190.0, 152.1, 132.2, 124.3, 111.5, 51.5, 31.8, 29.4, 29.3, 27.2, 

27.0, 22.7, 14.1. 
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Synthesis of tert-butyl 2-azidoacetate (22) 

 
Compound 23 was synthesized following an already existing procedure from the  

literature.135 tert-Butyl 2-bromoacetate 22 (0.28 mL, 0.37 g, 1.9 mmol, 1 eq.) and sodium 

azide (0.2 g, 3.1 mmol, 1.6 eq.) was mixed in acetone (1.2 mL) and water (0.8 mL). Then the 

reaction mixture was refluxed at 50 °C overnight. The mixture was cooled to room 

temperature and the remaining acetone was removed by gently blowing compressed air into 

the flask. The product with the remaining water was then extracted with diethyl ether. The 

organic phase was washed with brine solution and water and then it was dried over Na2SO4. 

The diethyl ether was again removed by blowing compressed air and the product was used 

without further purification. (0.29 g, 97% yield) 

1H NMR (CDCl3, 400 MHz): δ 3.77 (s, 2H), 1.50 (s, 9H). 

13C NMR (CDCl3, 400 MHz): δ 167.3, 82.9, 31.0, 27.7.  

IR: Azide band (2105 cm-1), CO band (1740 cm-1) 

 

Synthesis of allyl 4-(4-(5-formylfuran-2-yl)- butyric acid allyl ester (21) 

 
Compound 21 was synthesized following an already existing procedure from the  

literature.135 Potassium carbonate (11.04 g, 79.9 mmol, 2.35 eq.) was dissolved in water (80 

mL) and was degassed by purging it with nitrogen for 2 h. 4-(4-Bromo-phenyl)-butyric acid 

18 (8.72 g, 35.9 mmol, 1.06 eq.) and 5-formyl-2-furanboronic acid 17 (4.79 g, 34.2 mmol, 1 

eq.) were dissolved in 1,2-dimethoxyethane (150 mL). The reaction solution was kept under 

nitrogen and was degassed by repeatedly freezing the solution with liquid nitrogen and slowly 

thawing it under high vacuum. After that, the aqueous degassed potassium carbonate solution 

was added to the mixture via dropping funnel. The solution was heated up to 95 °C and the 

tetrakis(triphenylphosphine)palladium(0) catalyst 19 (200 mg, 0.173 mmol) was added. The 
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reaction was stopped after 24 h by letting the reaction cool down to room temperature and 

filtering it through a celite pad. Most of the filtered solution was evaporated and then aqueous 

HCl solution (1 M) was slowly added to the remaining solution at 0 °C to acidify the mixture 

to pH 2. During this process, a solid sticky slurry was formed which was filtered washed with 

water and dried on the freeze dryer by repeatedly freezing it with liquid nitrogen. The 

resulting crude compound (4-[4-(5-formyl-furan-2-yl)-phenyl]-butyric acid) was dissolved in 

DCM, cooled down to 0 °C, and allyl alcohol 20 (2.35 mL, 2.01 g, 34.6 mmol, 1 eq.), DMAP 

(0.55 g, 4.5 mmol, 0.13 eq.) and EDC (5.81 g, 37.4 mmol, 1.1 eq.) was added to the mixture. 

Then the reaction was stirred for 2 days at room temperature. Thereafter, water was added to 

the reaction mixture to stop the reaction, followed by an extraction with DCM. The organic 

phase was washed with brine solution and water, was dried over Na2SO4, and evaporated with 

a rotary evaporator under reduced pressure. The residue was purified using silica flash 

chromatography (n-hexane and 0-20% EA). (1.65 g, 16% yield) 

1H NMR (CDCl3, 400 MHz): δ 9.65 (s, 1H), 7.77 (d, 2H, J = 8.3), 7.34 (d, 1H, J = 3.7), 7.28 

(d, 2H, J = 8.3), 6.83 (d, 1H, J = 3.7), 5.99-5.89 (tdd, 1H, J = 5.8, 10.4, 17.2), 5.34 (d, 1H, J= 

17.2), 5.26 (d, 1H, J = 10.4), 4.60 (d, 2H, J = 5.8), 2.72 (t, 2H, J = 7.4), 2.40 (t, 2H, J = 7.4), 

2.01 (tt, 2H, J = 7.2, 7.5).  

13C NMR (CDCl3, 400 MHz): δ 177.2, 173.0, 159.7, 151.9, 143.4, 132.2, 129.1, 127.0, 125.5, 

118.3, 107.3, 65.1, 34.9, 33.5, 31.0, 26.3. 

HR-MS: m/z calcd. for C18H18O4: 299.1283, found: 299.1283 [M+H]+. 

Synthesis of tert-butyl 2-(4-(4-(allyloxy)-4-oxobutyl)phenyl)-4H-furo[3,2-b]pyrrole-5-

carboxylate (25) 

 
Compound 25 was synthesized following an already existing procedure from the  

literature.135 tert-Butanol (8.7 mL) was used to dissolve potassium tert-butoxide (1.1 g, 9.8 

mmol, 2 eq.) and the solution was added dropwise into the mixture and 4-[4-(5-formyl-furan-

2-yl)-phenyl]-butyric acid allyl ester 21 (1.45 g, 4.9 mmol, 1 eq.) and azido acetic acid tert-

butyl ester 23 (2.5 g, 15.9 mmol, 3.2 eq.) were dissolved in THF (100 mL) and was stirred 

and cooled down to -18 °C. With an automated syringe the tert-butanol potassium tert-

butoxide solution was slowly added to the THF reaction mixture. The reaction mixture was 
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slowly warmed up to room temperature and was stirred for 14 h. An excess of saturated 

aqueous NH4Cl solution (50 ml) was added to the reaction and THF was removed by 

evaporation on a rotary evaporator under reduced pressure. The remaining aqueous solution 

was extracted with ethyl acetate, washed with brine, and water and the organic phase was 

dried over Na2SO4. The residue was further purified by flash chromatography on silica gel 

(eluent: n-hexane/EA = 100/0 to 80/20) which resulted in a still crude mixture of products. 

This mixture was then dissolved in toluene (60 mL) and heated up to 120 °C for 1 h. The 

reaction colour changed from yellow to dark orange. After the ring-closing reaction of the 

fused pyrrole ring was confirmed by TLC the reaction was stopped by letting it cool down. 

Then the solvent was evaporated under vacuum (~10-20 mbar) with a water temperature of 

30 °C. The residue was again purified with silica flash chromatography (eluent: n-hexane/EA 

= 90/10 to 80/20) which resulted in the clean final product 2-[4-(3-allyloxycarbonyl-propyl)-

phenyl]-4H-furo[3,2-b]-pyrrole-5-carboxylic acid tert-butyl ester 25 (0.76 g, 38% yield) 

1H NMR (CDCl3, 400 MHz): δ 8.75 (s, 1H), 7.68 (d, 2H, J = 8.1), 7.24 (d, 2H, J = 8.1), 6.76 

(s, 1H), 6.69 (s, 1H), 5.99-5.90 (tdd, 1H, J = 5.7, 10.5, 17.1), 5.34 (d, 1H, J = 17.1), 5.26 (d, 

1H, J = 10.5), 4.61 (d, 2H, J = 5.7), 2.71 (t, 2H, J = 7.5), 2.40 (t, 2H, J = 7.5), 2.01 (qui, 2H,  

J = 7.5), 1.62 (s, 9H). 

13C NMR (CDCl3, 400 MHz): δ 173.1, 161.4, 159.7, 147.7, 141.4, 132.2, 129.8, 129.2, 128.9, 

125.3, 124.1, 118.3, 96.5, 93.1, 81.0, 65.1, 34.9, 33.5, 28.5, 26.4. 

 

Synthesis of divinyl 4,4'-((11-(4-(bis(2-((2-(ethylthio)ethyl)thio)ethyl)amino)phenyl)-5,5-

difluoro-5H-4l4,5l4-furo[2',3':4,5]pyrrolo[1,2-c]furo[2',3':4,5]pyrrolo[2,1-

f][1,3,2]diazaborinine-2,8-diyl)bis(4,1-phenylene))dibutyrate (FLCS1) 

 
Compound 25 (500 mg, 1.22 mmol, 2 eq.) was dissolved in acetone (5 ml) and transferred 

into a Schlenk flask. The solvent was carefully evaporated on the vacuum of a Schlenk line. 

After that, 25 was redissolved in trifluoroacetic acid (5 mL) and the mixture was heated up 

under nitrogen atmosphere to 40 °C. After 10 min when the starting material was consumed, 

the mixture containing compound 26 was cooled down to room temperature and compound 
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16a (0.254 g, 0.61 mmol, 1 eq.) was added to the reaction mixture. After 15 min the solvent 

was evaporated on the Schlenk line, and the residue was redissolved in THF (8 mL). DDQ 

(276 mg, 1,22 mmol, 2 eq.) was separately dissolved in THF (1 mL) and slowly added with a 

syringe through a septum into the Schlenk flask. The reaction was stopped after 20 min by 

adding water and the crude products was extracted with DCM. The organic layer was washed 

with brine and water, dried over Na2SO4, and evaporated. The mixture was partially purified 

via flash column chromatography (eluent: n-hexane/CHCl3 = 40/60; solid phase: alumina) to 

remove the remaining DDQ from the reaction mixture. The remaining product mixture 

containing crude compound 27a was dissolved in 1,2-dichloroethane under nitrogen, DIEA 

(0.83 mL, 0.62 g, 4.8 mmol, 7.8 eq.) was added and the reaction mixture was heated-up to 

60 °C. Then BF3∙Et2O (0.83 mL, 0.95 g, 6.7 mmol, 11 eq.) was added which led to an instant 

colour change from green to very dark blue. After 25 min toluene was added to the reaction 

mixture and an extraction was carried out. The organic phase was again washed with brine 

and water and the solvent was evaporated on a rotary evaporator under reduced pressure. The 

final purification steps was by flash chromatography on silica gel (eluent: n-hexane/EA = 

100/00 to 80/20) followed by a preparative thin layer chromatography (eluent: n-hexane/EA = 

66/33) for which both of the silica used was first neutralized with  

0.1% TEA in n-hexane. The crude product was dissolved in acetone and deposited on a 

preparative TLC plate with a pipette. The product band was scratched off from the TLC and 

extracted with MeOH. The solvent was then removed under reduced pressure to yield the pure 

FLCS1 product, which is a dark blue compound (21.7 mg, 3.3 % yield). A sample of the 

compound was used to prepare a 10 mM stock solution in DMSO and stored at -18 °C. For all 

further spectroscopic measurements, this sample was diluted to 1 mM and 20 μM which 

served as a stock solution for the optical experiments and for the cell experiments respectively.  

1H NMR (CDCl3, 400 MHz): δ 7.77 (d, 4H, J = 8.3), 7.53 (d, 2H, J = 8.8), 7.30 (d, 4H,  

J = 8.2), 6.99 (s, 2H), 6.79 (d, 2H, J = 8.9), 6.46 (s, 2H), 5.98-5.91 (tdd, 2H, J = 5.8, 10.5, 

17.1), 5.35 (d, 2H, J = 16.9), 5.27 (d, 2H, J = 10.4), 4.61 (d, 4H, J = 5.7), 3.70 (t, 4H, J = 7.5), 

2.91-2.78 (m, 12H), 2.74 (t, 4H, J = 7.6), 2.63 (q, 4H, 5.7), 2.41 (t, 4H, J = 7.4), 2.03 (qui, 4H, 

J = 7.4), 1.31 (t, 6H, J = 7.4). 

13C NMR (CDCl3, 400 MHz): δ 172.3, 167.1, 153.5, 148.6, 148.2, 143.8, 139.2, 132.8, 132.2, 

129.2, 127.9, 125.5, 122.8, 118.4, 111.2, 103.5, 95.2, 65.1, 51.6, 35.1, 33.5, 32.6, 31.9, 29.5, 

29.3, 26.3. 26.2, 14.9. 

MALDI: m/z calcd. for C57H64BF2N3O6S4: 1064.20 found: 1064.40 [M]. 
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Synthesis of divinyl 4,4'-((11-(4-(dioctylamino)phenyl)-5,5-difluoro-5H-4l4,5l4-

furo[2',3':4,5]pyrrolo[1,2-c]furo[2',3':4,5]pyrrolo[2,1-f][1,3,2]diazaborinine-2,8-

diyl)bis(4,1-phenylene))dibutyrate (Ctrl-FLCS1) 

 
Ctrl-FLCS1 was synthesized following the same procedure as FLCS1 by just exchanging the 

bridging ligand 16a for 16b (0.21g, 0.61 mmol, 1 eq.) yielding the final compound after 

column chromatography and preparative TLC purification (4.8 mg, 0.8% yield). 

1H NMR (CDCl3, 400 MHz): δ 7.76 (d, 4H, J = 8.2), 7.51 (d, 2H, J = 8.7), 7.29 (d, 4H,  

J = 8.6), 6.99 (s, 2H), 6.74 (d, 2H, J = 8.7), 6.52 (s, 2H), 6.01-5.88 (m, 2H), 5.34 (d, 2H, J = 

17.0), 5.27 (d, 2H, J = 10.4), 4.61 (d, 4H, J = 5.7), 3.39 (t, 4H, J = 7.9), 2.73 (t, 4H, J = 7.6), 

2.41 (t, 4H, J = 7.4), 2.03 (qui, 4H, J = 7.5), 1.43-1.25 (br, 24H), 0.90 (t, 6H, J = 7.2). 

13C NMR (CDCl3, 400 MHz): δ 173.4, 167.1, 153.8, 150.1, 148.4, 143.9, 139.4, 133.2, 132.6, 

129.6, 125.8, 121.5, 118.7, 111.3, 104.1, 95.6, 65.5, 51.5, 35.5, 33.9, 32.2, 31.3, 30.1, 29.9, 

29.7, 27.7, 27.6, 26.6, 23.1, 14.5. 

MALDI: m/z calcd. For C61H72BF2N3O6: 992.07 found: 992 [M]. 

 

1.4.2. General protocols and instrumentation 

UV/vis spectra were recorded in a Perkin-Elmer spectrometer. Emission spectra were 

obtained on Varian Cary-Eclipse or Perkin-Elmer fluorescence spectrometers. The raw data 

was smoothed with a factor 15, the slit width was set to 5 nm and the PEM was 600 volts. 

Data were recorded on-line and analysed by Excel and Prism software. Time-resolved 

fluorescence decay traces were obtained using a TCSPC DeltaFlex Lifetime System using the 

635-nm NanoLED-02B R excitation source (HORIBA Scientific Ltd, FWHM <200 ps). The 

detection system consisted of a PPD Series Picosecond Photon Detection Modules (HORIBA 

Scientific Ltd). A long-pass filter (645 nm long pass) was used in the detection channel to 

avoid light scattering for fluorescence decays. Signal intensity was at least 10,000 counts in 

the peak maximum. A neutral density filter was used for the instrument response function 

(IRF) measurements using a Ludox solution, detecting emission at the excitation wavelength. 

The TCSPC, absorption and emission measurements were performed in 1 cm × 1 cm quartz 

cuvettes with septum (3.5 mL volume, Starna, Atascadero, CA) or 0.35 cm × 1 cm quartz 
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cuvettes (Cole-Parmer). The titration experiments were all performed under N2 atmosphere by 

supplying positive nitrogen pressure to the cuvette with a nitrogen balloon. Because of the 

delayed fluorescence increase of the probe, the sample was stirred with a small stirrer bar in 

the dark before measuring each titration point by TCSPC and fluorescence spectrometer. 

Fluorescence quantum yield for FLCS1 was determined by reference to Alexa 647 in water as 

a standard (Φf = 0.33) and to rhodamine 6G in ethanol (Φ = 0.95) for CS3. 

 

Preparation of metal ion solutions for spectroscopic experiments 

For the spectroscopic fluorescence and absorbance experiments the MeOH was degassed by 

purging with N2 for 2 h before the experiment to avoid oxidation of the copper(I) salt. During 

the experiment the solution was kept under N2 atmosphere using a nitrogen balloon. 10 mM 

FLCS1 stock solution was further diluted to 1 mM in DMSO. 37.3 mg of the copper(I) metal 

tetrakis(acetonitrile)copper(I) hexafluorophosphate [Cu(MeCN)4][PF6] was dissolved in 5 mL 

degassed MeOH resulting in a 20 mM copper(I) stock solution. This stock was then further 

diluted to 1 mM and 0.1 mM for the titration experiments. For the selectivity experiments 

with the different competing metals, 100 mM stock solutions of CaCl2, NaCl, MgCl2, ZnCl2 

and 10 mM stock solutions of KCl, CoCl2, FeSO4, MnBr2, Ni(OAc)2, and CuSO4 in H2O were 

prepared and 20 μl of each was added to a 1 mL methanolic solution of FLCS1 (1 μM).  

 

Time-correlated single photon counting 

Traces from the TCSPC were fitted by iterative reconvolution to the equation 𝐼(𝑡) =

𝐼0(𝛼1𝑒
−

𝑡

𝜏1 + 𝛼2𝑒
−

𝑡

𝜏2) where α1 and α2 are variables (in %), with α1+α2 normalized to unity. 

The fractional contribution to the steady-state emission is calculated from the equation  

 𝑓𝑖 = 𝛼𝑖𝜏𝑖/ ∑ 𝛼𝑗𝜏𝑗𝑗 . The τ1 and τ2 were fixed to 0.39 ns and 3.08 ns based on the global fit 

over the whole titration data. To account for the differences in the emission wavelength 

between the IRF and decay, a prompt shift was included in the fitting. The goodness of fit was 

judged via a weighted residuals plot by consideration of the deviations from the model. 

 

Preparation and staining of cell cultures 

SH-SY5Y, N27 and HEK297 cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM, Invitrogen, Carlsbad, CA) supplemented with 10% Fetal Bovine Serum (FBS, 

Invitrogen), glutamine (2 mM), and penicillin/streptomycin (50 µg/mL, Invitrogen). All cells 

were grown in a 5% CO2 incubator at 37 °C. The cells were plated and grown on 8-well 
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chamber slides (LabTekII Chamber Coverglass) in 250 μL of culture media at a plating 

density of 25,000 cells per well and allowed to grow for 24 h. Next the media was changed to 

media containing lipofectamine 2000 (2 μL/mL) and FLCS1 (60 nM). The cells were 

incubated with the dye for 24 h. Prior to imaging the cell media was changed back to DMEM 

with 10% FBS (250 μL/well). The lysosome stain Lysotracker Green (λex = 500 nm;  

λem = 510-550 nm; Invitrogen, ThermoFisher) was incubated with cells at 50 nM for 5 min 

prior to 3 washing cycles in DMEM and subsequent image acquisition on a confocal 

microscope (Leica SP5) with 40x or/and 63x magnification 1.4 NA oil objective. For FLIM 

imaging the coverslide was mounted in a microscope chamber heated by a circulating 

thermostat (Lauda GmbH, E200) with feedback control of temperature and 0.2 C precision. 

Cells were measured by FLIM, as described below, in the ‘before’ and ‘after’ treatment states.  

 

Fluorescence microscopy imaging 

For the cell experiments several different microscope setups were used. For the colocalization 

studies a widefield microscope (Axio Observer 7, Carl Zeiss) with a Colibri 7 LED 

illumination (Carl Zeiss) and a 63x or 40x NA 1.4 was used with a Plan-Apochromat 

objective. The CS3 probe was excited at 530 nm and fluorescence was collected at  

560-600 nm. The Alexa 647 dye and FLCS1 was excited at 630 nm and fluorescence was 

collected at 650-700 nm. Lysotracker Green was excited at 480 nm and fluorescence was 

collected at 500-520 nm. The single channel images were performed on two TE2000U 

inverted optical fluorescent microscope (Nikon). One is equipped with a Coolview 1000 

EMCCD camera (Photonic Sciences) and a 532 nm DPSS laser. The other is equipped with an 

ORCA FLASH 4.0 sCMOS camera (Hamamatsu) and a 633 nm He-Ne laser (Thorlabs). The 

intensity studies were imaged on a Leica SP5 II confocal microscope with an APD detector 

unit. 

 

Alpha-synuclein, Lysotracker Green, CS3 and FLCS1 colocalization experiment 

HEK293, N27, SH-SY5Y cell lines and primary hippocampal neurons were treated with a 

500 nM labelled alpha-synuclein for 24 h in DMEM. The CS3 stock solution (2 mM in 

DMSO) and the probe was loaded just before the measurement (2 μM, 10 min in PBS). 

Lysotracker green (50 nM) was incubated for 20 min before measuring. For both dyes the 

DMEM was removed, and the cells were washed with PBS twice to remove the excess dye 

and labelled AS. The cells were acquired using z-stacks with a 0.3 μm slice thickness. FLCS1 
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(1 μM) was either delivered in a 1:1 ration EtOH:PBS just before measuring or by incubating 

the cells with 0.2% lipofectamine at a dye concentration of 60 nM for 24 h.  

 

Photobleaching experiment with CS3 and FLCS1 

SH-SY5Y cells were incubated with FLCS1 (60 nM) and 0.2% lipofectamine in DMEM with 

10% FBS at 37 °C for 24 h. After washing the cells twice with PBS the cells were treated with 

CS3 (2 μM) in PBS for 15 min and washed again before imaging the cells with the confocal 

microscope. z-stacks of the cells were recorded over time at 40x magnification and 1% laser 

power for both excitation wavelength (CS3 λex = 520 nm and FLCS1 λex = 620 nm). The 

emission was collected for at λem = 530-600 nm for CS3 and λem = 630-700 nm for FLCS1. 

 

pH/viscosity/H2O-effect experiments with TCSPC 

The TCSPC pH measurements were carried out in a methanolic solution of FLCS1 (1 μM). 

The pH was calibrated using diluted HCl and NaOH solutions. For the viscosity experiment 

the probe was dissolved in different ratios of MeOH and glycerine and for the water-effect on 

the lifetime the solvent ratios were altered between water and MeOH. All the measurements 

were carried out with excess copper(I) (3 μM). 

 

AS transfection and staining of SH-SY5Y 

The plasmid for the transfection of SH-SY5Y cells was provided by Prof. Magdalena Sastre 

from Imperial College London.  

The cells were plated with a seeding density of 25,000 cells per well and the 4 μg of the DNA 

plasmid for AS overexpression was mixed with 8 μL Turbofectamin in 400 μL Opti-MEM 

starvation media. After 20 min incubation period in an Eppendorf tube 50 μL of this mixture 

was added with 500 μL Opti-MEM starvation media in the well. After 24 h incubation the 

media was changed back to DMEM with 10 % FBS and the cells were continued to grow for 

another day. After this treatment the cells were fixed with 4% PFA in PBS for 20 min, treated 

with 0.2% Triton X and 1% BSA in PBS for 30 min and then a primary antibody (ratio 

1:1000) in PBS was used on the cells for another 60 min, followed by labelling with the 

alpha-synuclein selective secondary antibody (ratio 1:500) with Alexa 647 labelling for 60 

min. After these steps the cells were washed with PBS and the other stains (CS3 and 

Hoechst33342) were employed with the usual staining procedure.  
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Lysate experiment 

The cell lysate was provided by postdoc student Maria Maneiro Rey from the group of Prof. 

Tate from Imperial College London. 

Confluent SH-SY5Y cells were detached from the flask using trypsin transferred into a falcon 

tube with media and centrifuged to collect a cell pellet. After removing the cell media these 

cells were treated with a RIPA lysis buffer containing protein inhibitor and benzonase. The 

cell content concentration was determined with UV/vis measurements. 

 

Lipid droplets staining 

This experiment was carried out by Reeba Jacob a postdoc student in the group of Prof. 

Philipp Selenko from the Weizmann Institute of Science in Israel.  

A2780 and SH-SY5Y cells were incubated with CS3 (2 μM) dye for 10 min at 37 °C, 

followed by incubation of BODIPYTM (1 μM) again for 10 min which is a dye for selective 

lipid droplet staining. Then, LDs were isolated from A2780 cells and incubated with CS3  

(1 μM) dye in vitro and the fluorescence was measured with a fluorometer. This sample was 

then spotted on a coverslip and imaged under confocal microscope which showed CS3 

stained lipid droplets. 

 

Determination of dissociation constant Kd  

For the determination the dissociation constant (Kd) a methanolic solution of FLCS1 (1 μM) 

containing thiourea (400 μM) as competitive ligand was used to provide a buffered copper(I) 

after copper(I) addition. To calculate the available copper(I) the stability constants for 

thiourea binding was used taken from the literature: β12 = 2.0 × 1012, β13 = 2.0 × 1014, β14 = 

3.4 × 1015.147 For this titration the copper(I) stock solution was further diluted to 1 μM to 

provide the necessary low copper(I) amounts. Excitation was provided at λex = 610 nm and 

collected emission was integrated from λem = 620 to 750 nm. The binding affinity was 

calculated following the literature references101,138 using the Benesi–Hildebrand plot (see 

Figure 28) with the equation: (𝐹𝑚𝑎𝑥– 𝐹𝑚𝑖𝑛)  =  𝛥𝐹 =  [𝑐𝑜𝑝𝑝𝑒𝑟(𝐼)](𝐹𝑚𝑎𝑥  −  𝐹𝑚𝑖𝑛)/(𝐾𝑑 +

 [𝑐𝑜𝑝𝑝𝑒𝑟(𝐼)])  where 𝐹  is the observed fluorescence 𝐹𝑚𝑎𝑥  is the fluorescence for the 

FLCS1/copper(I) complex, and 𝐹𝑚𝑖𝑛 is the fluorescence for the copper(I) free probe. When 

plotting the 1/△F against 1/[copper(I)] the linear relation equation (Y= A + BX) was used to 

calculate 𝐾𝑑 from B/A. 
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Bafilomycin A1 treatment experiment 

SH-SY5Y cells were grown in DMEM with 10% FBS with added penicillin and streptomycin 

at 37 °C. The healthy cells were plated on LabTek II coverslides at a seeding density of 

20,000 cells per well and let grow for 48 h in an incubator. Then the media was changed to 

media containing 0.2% lipofectamine and 60 nM FLCS1 and the cells were incubated for 

another 24 h. After that the media was changed back to grow media and the after a calming 

period of 1 h the cells were imaged in their “before treatment” state on a Leica SP7 confocal 

microscope at 630 nm excitation and a laser power of 0.1%. The location of the cells was 

precisely recorded by measuring the coordinate distances of a set reference point of a cover 

glass impurity at the well corner. Then the cells were treated with bafilomycins A1 (30 nM) in 

DMEM and was incubated for 24 h. For the second time point the same cells were searched 

based on the recorded coordinates and measured with the same microscopy settings as before. 

For the control comparisons the cells were treated with DMSO (0.01%) and also incubated for 

24 h. After the incubation time images were taken with the same settings as for the 

bafilomycin A1 treated cells.  

 

Primary Hippocampal Neurons 

The primary hippocampal neurons were provided by doctorate student Nicola Davis from the 

group of Magdalena Sastre and postdoc student Darya Kiryushko from Imperial College 

London. 

 

Organotypic cell cultures 

The organotypic cell cultures were provided by doctorate student Nicola Davis from the 

group of Magdalena Sastre from Imperial College London. 

 

H2O titration with FLCS1 

In a small cuvette 0.5 mL of 1 μM FLCS1 was prepared. For the titration several aliquots of 

20 μL H2O were added to the cuvette and were thoroughly mixed before measuring. The 

resulting concentration of H2O was calculated considering the increased volume of each 

titration step and the concentration of the dye was volume and dilution corrected.  

 

Copper alteration experiments 

SH-SY5Y cells were incubated with FLCS1 (60 nM) in DMEM with 0.2% lipofectamine and 

10% FBS for 24 h. For the test of the cells with DTDP (100 μM) and clioquinol with 
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copper(II) (800 μM/ 400 μM), images were recorded before and during the addition process 

of DTDP from a PBS stock and a DMSO stock solution over time. The experiments with Cu-

GTSM (2.5 μM), BCS (125 μM) and BETA (5 μM), cells were recorded before the treatment 

and in certain time steps after addition up to 1 h.  

 

pH experiments with fluorescence spectroscopy 

For the fluorescence pH measurements FLCS1 (1 μM) and CS3 (1 μM) was prepared in 

EtOH:buffer (60:40, v:v, 20 mM TRIS and 100 mM NaCl, pH 7.4). The pH was calibrated 

prior mixing using diluted HCl and NaOH. Excitation for spectroscopic emission 

measurements were provided at λex = 610 nm for FLCS1 and collected emission was 

integrated from λem = 615 nm to 750 nm for FLCS1 and excited at λex 520 nm and emission 

was collected from λem = 520 nm to 650 nm for CS3. For the TCSPC pH experiment a 

methanolic solution of FLCS1 or CS3 (1 μM) without buffer was used to avoid the effects of 

water on the lifetime of the probe. The pH was calibrated using a diluted HCl solution.  

 

Fixed mouse brain slice imaging 

The fixed mouse brain slice was provided from doctorate student Tiffany Chan from James 

Choi group from Imperial College London. 

C57BL/6J mice were transcardially perfused with ice-cold phosphate buffered saline (pH 7.4; 

137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4 and 2 mM KH2PO4) with added heparin  

(10 units/mL), and then fixed with 20 mL ice-cold 10% formalin solution. Brains were 

extracted and submerged in 10 mL 10% formalin solution at 4 °C, and then cryoprotected by 

immersing in 15% sucrose for 6 h followed by 30% sucrose overnight. Samples were 

cryosectioned into 20 μm sections and allowed to air-dry prior to staining. 

 

Alpha-synuclein labelling 

The fluorescently labelled alpha-synuclein probe mutated at D122C was produced and 

labelled in collaborator with Giuliana Fusco (postdoc student in Prof. Dobson’s Group at 

Cambridge University). 

After purification by column (Sephadex G25; Amersham Biosciences) a protein labelling was 

performed with amino-reactive fluorescent dye Alexa Fluor-647-O-succinimidylester. 

To achieve this 500 mL PBS was prepared and stirred for 20 min. Then 10 mL Sephadex G25 

resin was swelled up with 40 mL of water, the slurry was transferred into a column and the 

column was rinsed with 50 mL water followed by 50 mL of degassed PBS. The concentrated 
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AS protein was mixed with 10 mM dithiothreitol (DTT) which ensured that the proteins were 

in the monomeric form. The protein was loaded onto the column and flushed with PBS and 

the protein was collected in several Eppendorf tubes. The concentration of the individual 

Eppendorf tubes was determined via UV/vis spectrometry (ε = 5600 M-1cm-1 at 275 nm).  

1 mg of Alexa 647 dye was dissolved in 100 μL DMSO. The protein in the Eppendorf tubes 

was mixed with an excess (4 eq.) of the dye and incubated on a roller in a cold room 

overnight. The following day a new PBS buffer solution was prepared and degassed. Several 

new columns were prepared using the same procedure as the day before (10 mL Sephadex 

G25 and 40 mL water). The Eppendorf tubes with the proteins were centrifuged for 1 min and 

a maximum of 2 mL protein was loaded onto each column. PBS was flushed through the 

column separating the labelled protein (first coloured band) from the free dye (second 

coloured band). The combined labelled protein fractions were concentrated using a falcon 

filter (vivaspin 6, 5,000 MW) on a centrifuge (8 min, 4,000 rpm, 4 °C) and the concentration 

of the protein was determined by UV/vis (Alexa 647, ε = 265,000 M-1 cm-1) resulting in 11.6 

μM labelled AS solution (10 mL). 

 

Cu-GTSM preparation  

The Cu-GTSM was prepared fresh before every use by mixing stock solution of 10 mM 

GTSM dissolved in DMSO with the same volume of 10 mM CuCl2 dissolved in H2O. The 

compound formed instantly after thorough mixing by pipetting the two solutions which could 

be observed by a colour-change from transparent to dark orange. The compound was then 

used within a few hours. The 250 μL of DMEM containing the treatment agent (10 μM  

Cu-GTSM) resulting in a chamber concentration of 5 μM, was added to chambers for 20 min 

following FLIM measurements of the “after treatment” state. 

 

FLIM imaging experiments 

FLIM imaging of FLCS1 was performed on an inverted confocal laser scanning microscope 

(Leica, SP5 II) with a 63x (NA 1.4) oil objective and a pulsed diode laser (Becker & Hickl 

GmbH, λex = 630 nm, 20 MHz) as an excitation source. The emission (λem = 640–750 nm) was 

collected using a cooled Becker&Hickl HPM100-40 hybrid detector, and TCSPC was 

performed by a SPC-150 Becker&Hickl module. FLIM images of 512 × 512 pixels were 

obtained, and the images were analysed in the SPCImage software (Becker&Hickl, Germany) 

using a biexponential decay model with τ1 and τ2 fixed at 0.7 ns and 2.7 ns respectively. The 
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regions of interests (ROIs) for analysis were manually selected, to coincide with bright 

fluorescence of the dye. The scatter parameter was kept variable and the shift was fixed to the 

overall average shift of all ROIs. Appropriate bin sizes were chosen (3 × 3 or 4 × 4 circular 

bin) to ensure a peak count of at least 100 for accurate fitting of biexponential traces and a 

sum count threshold of 4,000 was used to exclude dye traces in the cytosol or other not 

relevant regions. A pseudo-colour scale was assigned to each fluorescence lifetime, amplitude 

and the goodness of fit χ2 values (red for small values and blue for large values) to visualise 

the corresponding maps. The IRF was obtained by measuring the reflection of urea crystals on 

a glass coverslide. Cellular images were acquired using the same settings, and the acquisition 

times was ca. 15 s - 30 s (live cells) depending on the brightness of the dye. The decays in the 

region corresponding to the lysosomes of different cells were selected and analysed by hand 

(ca. 15 different cells in 7-8 images, to accumulate good statistics). The fitting of the FLIM 

images was performed in SPCImage software (Becker-Hickl) using the weighted least squares 

method and reconvolution algorithm for finding the best fit. Goodness of fit was judged by 

the χ2 value and randomness of in the residuals plot. Based on the TCSPC experiments the 

decay models of the fluorescence dye were judged to be a biexponential and were calculated 

using the following equation: 𝐼(𝑡) = ∑ 𝛼𝑖𝑒−𝑡/𝜏𝑖𝑛
𝑖=1  where I is the fluorescence intensity, t is 

the time, αi is the amplitude, and τi is the fluorescence lifetime of the biexponentially decaying 

components. The calculation of the mean intensity-weighted fluorescence lifetime was 

according to the equation: 𝜏𝑎𝑣𝑔 =  
∑ 𝛼𝑖𝜏𝑖

2

∑ 𝛼𝑖𝜏𝑖
. 

 



Chapter 2 

Martin Priessner - January 2022 102 

CHAPTER II 

2.1. Introduction 

Biologists have a strong interest and research focus for investigating the complex interactions 

between different cellular organelles. Central to these investigations are non-invasive 

techniques which are capable of visualizing dynamic processes with a high spatiotemporal 

resolution. Microscopy technologies which meet these demands have revealed that 

intracellular organelles distribute in a highly non-homogeneous dynamic fashion over time 

and space, and their organization is responding to biochemical and mechanical inputs which 

are essential in many biological processes. These dynamic processes include nuclear 

organization and signalling in cell division, differentiation, cell adhesion and migration.148 

Getting a better understanding in the mobility of the dynamic processes and organization of 

the individual cellular compartments is therefore crucial for understanding living organisms 

and can help to get a more profound understanding in health and disease at a microscopic 

level. There have been significant progresses in the development of novel imaging hardware 

platforms and fluorescent probes which allowed for visualization of biological processes at 

the level of whole organisms, single cells, and subcellular organelles. Equally important have 

been the development of software analysis tools that allow the extraction of quantitative data 

of the dynamic processes examined by microscopy. Specifically, the development of particle 

tracking software enabled objects to be followed computationally in time-lapse movies and to 

quantify their dynamics became an essential toolbox for life-cell imaging.149 The task of 
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detecting and following individual particles in a time series of 2D or 3D images is referred to 

as 'single-particle tracking' (SPT).150 

The technology that fulfils the need for high spatiotemporal resolution in 3D which allows 

organelle tracking to be performed are point-scanning microscopy technologies such as laser 

scanning confocal microscopes or electron microscopes. These point-scanning microscopy 

techniques suffer from an effect called the “eternal triangle of compromise” which states that 

at a given signal-to-noise ratio (SNR) improving any of the three, i.e. resolution, system 

sensitivity or imaging speed, comes at the cost of the other two. Therefore, the speed, sample 

preservation, and SNR of point-scanning systems are difficult to optimize simultaneously. To 

draw conclusions from multi-dimensional microscopy images the timescale is of great 

importance to correctly understand cellular processes and movement patterns. Improving the 

SNR or increasing the dimensionality of the data recording (e.g. 4D (3D+t) acquisitions) on 

the one hand provides more information of the imaged details, but on the other hand slows 

down the recording speed making it more difficult to understand those dynamic processes. 

The image acquisition in z-dimension for 3D tracking over time increases the acquisition time 

from one time point to the next proportional to the number of layers in the z-dimension. When 

increasing the image resolution of point-scanning systems, a higher number of acquired pixels 

is necessary to ensure the correct sampling which in turn increases the image acquisition time 

and the sample damage proportional to the size of pixel sampling. To analyse dynamic 

processes in cells all these limiting parameters should be as high as possible. Therefore, 

finding and developing tools to improve the limitations of point-scanning systems could be 

transformative and is of great importance. More recently deep learning started being applied 

for postprocessing of microscopy images which improved some of limitation corners of the 

“Eternal Triangle of Compromise”. 

This chapter focuses on the topic of image enhancement for microscopy which is used to 

improve the limitation corners of the “Eternal Triangle of Compromise” in relation to 

monitoring the copper trafficking of lysosomes in SH-SY5Y cells. To put this research in 

context, a detailed background section is provided which covers some technical background 

of key technologies that made microscopy of subcellular organelles possible, and it points out 

the limitations and how new inventions such as deep learning are pushing the boundaries of 

these limitations. Furthermore, it provides an introduction into deep learning, its terminology, 

explains the importance of assessment metrics for evaluating image enhancement algorithms 
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and finally describes the neural networks that are implemented and used in this research 

project.  

2.2. Theoretical Background 

2.2.1. Confocal Microscopy 

In 1961 the American computer scientist Marvin Minsky developed a microscopy technique 

which solved some of the challenges of widefield microscopes. By introducing a pinhole 

system in the detection and excitation path it became possible to just illuminate a small 

section of the whole specimen by aligning the excitation volume, the detection volume, and 

the detector. His new approach made it possible to remove the out of focus contributions to 

the image. This confocality of excitation and detection path gave the new microscopy 

technique the name “Confocal Microscope”.151 

 
Figure 55: Schematic illustration of a confocal microscope: A laser illuminates the specimen by 

passing through a dichroic mirror. It is controlled by a single mode fibre which acts as confocal 

excitation pinhole (blue). The fluorescent emitted light passes through the dichroic mirror and the 

pinhole (green). The out of focus light and light from the side of the focal plane (red and yellow) is 

blocked by the pinhole. A system of lenses focusses the laser beam of interest to align the focal plane 

with the pinhole. 

 

The basic setup of a confocal microscope is shown in Figure 55. First the laser beam is guided 

through a single mode fibre, which creates a Gaussian shaped laser signal. The small diameter 

of the output fibre of a few μm diameter acts as the first confocal pinhole for the excitation 
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path. Then the excitation light is redirected over a dichroic mirror which also has the function 

of a long-pass filter that only allows fluorescence response signal to pass through. The laser 

then reaches a focal plane of the specimen, and the resulting fluorescence is collected by the 

objective and directed through a set of lenses through the dichroic mirror to the pinhole. 

Fluorescence signals away from the focal plane as well as signals from the lateral offset of the 

excitation region are blocked by the pinhole. After another set of lenses, the light is registered 

by a detector which often includes a photomultiplier tube (PMT) to detect and amplify the 

signal. The variations of the laser beam on the specimen can either be created by using a piezo 

controlled stage or through controlled steering of the laser-beam by piezo or galvano 

controlled mirrors.152 The actual pinhole in the optical path of a confocal microscope has only 

a small effect on the spatial resolution but improves the optical sectioning capabilities of the 

system. The axial and spatial resolution enhancement is dependent on the pinhole diameter 

measured in Airy units (AU). The Airy unit describes the diameter of the central maximum 

peak of Airy pattern of the focussed beam to the first minima of the Airy disk pattern153 

multiplied by the magnification of the microscope (see Figure 56). 

 
Figure 56: A grayscale intensity image of a computer-generated an Airy disk. Figure take from the 

following reference.154 

 

If the pinhole diameter is larger than 1 Airy unit, the resolution in spatial and axial directions 

can be calculated with the following equations: 

                                                                         ∆𝑥𝑦 =  
0.51λ

𝑁𝐴
                                             Equation (12) 

and 

                                                                    ∆𝑧 =  
0.88λ

𝑛−√𝑛2−𝑁𝐴2
                                                Equation (13) 
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Where λ is the wavelength, 𝑛 the refraction index of objective immersing medium and 𝑁𝐴 is 

the numerical aperture of the objective. For pinhole diameters smaller than 1 AU, the equation 

changes to 

                                                                           ∆𝑥 =  
0.37λ

𝑁𝐴
                                                    Equation (14) 

and 

                                                                         ∆𝑧 =  
0.64λ

𝑛−√𝑛2−𝑁𝐴2
                                           Equation (15) 

Therefore, the introduced pinhole in the light path of the image plane led to an improvement 

of the optical sectioning capabilities of the scanning microscope by rejecting out of focus light. 

However, the pursuit of even better spatial resolution comes at a price of reduced image 

signal. 

2.2.1.1. Limitations of confocal microscopy 

The standard pinhole size of a conventional confocal microscope is 1 Airy unit which already 

improves the resolution compared to wide-field microscopy images by a factor of 1.06. A 

reduced pinhole size improves the spatial resolution even further but comes at the price of a 

big reduction of detectable emission light. The maximum potential for resolution 

enhancement of a confocal microscope is by a factor of 2 which can only be achieved if the 

pinhole is closed to its minimum value. However, the image quality of all point-scanning 

confocal microscopy techniques is directly proportional to the ratio of detected signal 

(photons) and the amount of noise in the image (SNR) which is usually already low in 

confocal microscopy imaging because of the small labelling density and the optical sectioning 

of the pinhole. When the pinhole is closed too much the resulting statistical number of 

detected background photons called “shot noise” or “photon noise” become the dominant 

factor of the image and therefore reduces the image contrast and quality. Since the shot noise 

follows Poisson statistics, it is directly proportional to the square root of the signal or the 

square root of the number of photons (N):  

                                                                         𝑆𝑁𝑅 ~ √𝑁                                                  Equation (16) 

Background fluorescence is another statistical noise that can also occur in confocal 

microscopy and originates from out-of-focus signals or autofluorescence of the investigated 

specimen. This background can be defined as an offset in signal intensity that is omnipresent 

in the whole image such as stray light that enters the detector.155 This also limits the contrast 

of the signal in comparison to the background signal and overall reduces the image quality. 

This signal-to-background ratio (SBR) increases with a closing of the pinhole and would 
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reach its maximum when being completely closed which would also exclude all the actual 

signal from reaching the detector. Therefore, the pinhole aperture opening needs to be chosen 

such that the SNR is maximum while keeping the SBR level at acceptable levels to yield a 

good contrast in the image. A typically recommended pinhole size is between 1.0 and 0.85 

AU to achieving a good compromise between resolution enhancement and detection yield. 

Some other limitations of point-scanning microscopy technologies are an unwanted stretch of 

the point spread function (PSF) by a factor of ~2x in the z-axis compared to the spatial 

dimensions. This leads to a reduced axial resolution and errors in 4D object tracking.156 

Furthermore, the photonic interaction of the laser with biological samples can produce 

unwanted scattering, thus producing out of focus fluorescence.157–159 A refractive index 

mismatch between thick specimens, glass, and immersion media could lead to further 

spherical aberration which increases errors in z-localization.160 Several of the mentioned 

limitations are interconnected and improving one of them leads to a reduced quality in the 

aspect of another criteria. This phenomenon was termed “Eternal Triangle of Compromise” 

by Shotton (Figure 57).161 

 
Figure 57: Eternal triangle of compromise stating that at a given SNR the sensitivity, spatial 

resolution (pixel sampling) and imaging speed of a point-scanning microscopy system cannot be 

optimized simultaneously. 

 

Imaging with point-scanning microscopy systems such as confocal microscopes is always a 

trade-off between several different factors. At a given signal-to-noise ratio of a recorded 

image sequence, the imaging speed (sampling frequency), the sensitivity (sample frequency 

and pinhole size) and the spatial resolution (pinhole size) are influencing each other and are 

difficult to optimize simultaneously.  

For example, to improve the imaging speeds the image acquisition rate needs to be increased. 

This is just possible by reducing the sampling pixel dwell time resulting in a lower photon 
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count and a drop of sensitivity. On the other hand, to enhance the spatial resolution of the 

image the pinhole size needs to be lowered which again results in a reduced sensitivity. 

Alternatively, to increase the sensitivity, the pinhole size must be increased which leads to a 

loss of resolution. The only physical way of simultaneously improving all parameters without 

compromising any one of them is by increasing the number of detected photons (SNR). 

There are two physical ways of achieving this, one is by improving the efficiency of the 

collecting photon detector, and the second one is by increasing the illumination laser power 

on the specimen.  

The first approach increases the SNR of an image by increasing the detection quantum 

efficiency of the PMT used in the confocal systems.  

The second approach of improving the SNR by increasing the laser power has some 

significant limitations in fluorescence microscopy imaging. Especially when increasing the 

dimensionality, moving from 2D to 3D and further to time-lapse 3D+t (4D) images, those 

disadvantages and limitations get even more pronounced. The two problems most significant 

for 4D imaging in the context of laser power are a limited imaging frame rate and an 

increased phototoxicity. 

2.2.1.2. Frame rate limitations 

A big challenge in 4D microscopy is the limited imaging acquisition speed. The development 

of point-scanning microscopy techniques such as confocal laser scanning microscopy (CLSM) 

or two-photon microscopy (2PM) have led to major breakthroughs in the field of structural 

cell biology by enabling precise 3D imaging of cells, tissues, and whole animals. This is 

achieved by a pinhole that rejects out of focus fluorescence and selective excitation of a small 

optical section of the probe.162 In spite of their advantages, scanning microscopy techniques 

like the ones described are poor at 4D imaging due to their limited acquisition speed. Both 

techniques rely on a laser exciting the whole image with one voxel position at a time for all 3 

dimensions (XYZ) of the sample. The additional the z-dimension of the image collection 

leads to a significant increase of acquisition time for each time point. Therefore, the higher the 

resolution images the higher is the number of sequentially acquired pixels. Furthermore, the 

image time as well as the damage to the sample are in direct proportion to the pixel resolution. 

This highlights the trade-off between time resolution, image volume and z-resolution. For the 

detection of dynamic cellular processes such as rapid organelle movements, microtubule 

dynamics or organelle interactions this becomes increasingly problematic because for 
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capturing those processes it requires both high temporal and spatial resolution in 4D (3D + 

time) for motion tracking analysis.  

Although CLSM just illuminates the in-focus image volume, the entire z-axis of the specimen 

is exposed to excitation throughout scanning. Because of a limited quantum efficiency of the 

PMT detectors the laser excitation intensity in CLSM needs to be quite high at ~1 mW/μm2. 

The quantum efficiency of a fluorophore and its photo-stability determines how many photons 

the dye can emit and for how long this can be done at a given laser power. If the excited laser 

power gets too high the fluorophore can be pushed into a saturated excited state which limits 

the photon flux. Furthermore, depending on the stability of the fluorescent dye, a high laser 

power might lead to undesirable decomposition which leads to photobleaching and in turn to 

phototoxicity when investigating live samples. 

2.2.1.3. Photobleaching and phototoxicity 

In 4D microscopy imaging the sample specimen gets exposed to the laser-beam much more 

often due to the inherent need to collect several z-planes for each time-point. This leads to 

increased problems with photobleaching of fluorophores and therefore causes stronger 

phototoxicity compared to the 2D time-lapse recording. The reason for phototoxicity in 

fluorescence microscopy is because of a generation of reactive oxygen species (ROS).163 

These highly reactive compounds get created when high energy electrons in excited 

fluorophores are not emitting energy in the form of fluorescence but instead react with 

dissolved oxygen. This leads to a bleaching of the fluorophore and the production of highly 

reactive substances that cause the phototoxic effect.164–166 The use of simple antioxidants that 

scavenge the ROS species such as L-ascorbic acid167 can reduce the effects of phototoxicity. 

However, this is unfavourable when investigating delicate cellular processes in which 

exposure of additional foreign substances could lead to unforeseen effects in the biological 

system. Phototoxicity and photobleaching are cumulative effects which means that they are 

directly proportional to the total photon load which correlates with the time of laser light 

exposure and light intensity.168 This highlights the need for strategies to minimize the 

exposure of high intensity laser light to the sample. 

 

2.2.2. Technological developments in microscopy 

To improve the limitations of point-scanning systems there have been several advances on the 

hardware as well as on the software side. Several different microscopy techniques have been 
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introduced that each improved at least one of the limitation factors and the recent advances in 

machine learning and especially deep learning in the field of microscopy show promising 

improvements to tackle these limitations. In the context of the thesis only the software based 

data post acquisition processing aspects will be covered in this section and more information 

on improved hardware for microscopy can be found in the following review paper.164 

2.2.2.1. Video microscopy and computational methods 

The last century saw steep developments in the field of quantitative analysis for microscopy 

images which provided important insights into many disciplines such as physics and biology.  

From the first tracking experiment carried out by manually drawing the trajectories on paper 

by Perrin in 1910 to the break throughs with the start of the digital age of microscopy in the 

1950s the recording speed of microscopes improved significantly. With the start of the age of 

digital microscopy in the 1950s with the developments of analogue electronics, the 

acquisition and analysis speed of microscopes increased even further. In the early 1960s, the 

first digital computers found their way into microscopy imaging and analysis adding speed 

and functionalities to the field that was previously not possible to achieve. The first use cases 

for this technology were in biomedical applications such as the achievements from Prewitt 

and Mendelson in 1965 who managed to distinguish cells in a blood smear by using 

computers to analyse images obtained with a flying spot microscope.169 In the 1970s, the use 

of digital microscopy expanded from the research laboratories to clinical settings with the 

development of computerized tomography scanner in 1972170 and the automated flow 

cytometer in 1974.171 

In the last decade machine learning has started to be employed for image analysis obtained 

from digital microscopy. Together with the “gold rush” of the deep learning revolution172 it 

has seen massive improvements in the field of computer vision in tasks such as image 

recognition,173 semantic segmentation,174 and image generation,175 which are now easily 

automatized. Some of these achievements have now also demonstrated its potential to apply 

deep learning to microscopy. 

One milestone achievement in microscopy was the implementation of a special kind of neural 

network (U-Net) by Ronneberger et al., in 2015 which is now widely used as a backbone 

structure for many applications such as for the segmentation of biomedical images cell 

segmentation and classification,176 images object counting,176 depth-of-field extension,177 and 
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image enhancement.178–180 In the context of tracking, deep learning has also been successfully 

used in the task of multiple particle tracking surpassing standard mathematical models.181 

These are just some of the early successes that demonstrate the potential of deep learning to 

analyse or/and improve microscopy data. It also highlights one of the key limitation factors 

for the deployment of deep learning to microscopy which is the need for experimentally 

acquired and often manually annotated data. In biomedical applications this is often time 

consuming, expensive and potentially a biased process.182  

In the next few sections, the definition and the concepts of deep learning are elaborated, and 

examples are given of how it found its way into post processing and image enhancement for 

microscopy images. Furthermore, the networks used for this thesis are broken down and are 

conceptually explained. 

 

2.2.3. Deep Learning in microscopy 

2.2.3.1. Machine learning 

Machine learning is a branch of artificial intelligence that uses computational algorithms 

capable of learning from data without being specifically programmed to do so. This 

technology is considered the work horse in the new era of the so called “Big Data” and the 

different techniques have been applied in many different fields such as pattern recognition, 

computer vision, finance, computational biology and biomedical applications amongst 

others.183  

Conventional computer algorithms required a user to define explicit rules to process the data. 

Machine learning algorithms, however, provide the benefit to be able to learn patterns and 

rules to perform specific tasks directly from a series of data mostly in a supervised way. This 

means that the machine learning algorithm learns from sets of input data and the 

corresponding desired outputs (the ground truth) by adjusting their behaviour accordingly. 

The input-output data pairs are usually collected by experiments or through simulations and 

are called the training dataset. 

Despite the advances with conventional machine learning approaches they still require a good 

amount of engineering skills and domain expertise. So called feature extractors, which reduce 

the dimensionality of the dataset and transform raw data into a good feature vector must be 

carefully engineered and designed. These features are then fed into learning system such as 

classifiers that could identify patterns from a given input.172 More recently, representation 
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learning has been developed which feeds in raw data and automatically discovers the 

representations needed to perform the detection or classification. Deep learning is one very 

common representation-learning method.  

2.2.3.2. Deep learning 

Deep learning is a subfield of the broader family of machine learning and is inspired by the 

information processing of biological systems such as the human brain. The aim of this 

algorithmic technology is to try to emulate the brain’s ability to learn which is achieved by 

using artificial neural networks (ANN) to perform representation learning.172 One major 

difference of ANNs is that, neural networks have static architectures while the biological 

brains are dynamic (plastic).184–186 Neural networks consist of interconnected simple 

computing units called artificial neurons which are often just capable of calculating a non-

linear function from a given input. The organization of these neurons into layers allow 

different architectures to be designed of the neural networks with different connectivity. The 

most popular architecture is simply connecting each neuron of one layer with all the neurons 

in the following layer. This layer computes some transformation into a representation at a 

higher slightly more abstract level and feeds the result again into the next layer by connecting 

each neuron with each other. Especially for computer vision tasks this process is repeated for 

several layers (often more than ten) which describes the “depth” of the ANN and therefore 

implies the name “deep learning”. The different layers of representation focus on different 

aspects of the input. With several of those abstraction transformations, very complex 

functions can be learned which can be used for classification tasks but also for more difficult 

image reconstruction tasks.172 In an image for example, which is fed into the network in the 

form of an array of pixel values, the first layer typically represents the absence or presence of 

edges at particular orientations and locations in the image172 whereas the second layer could 

detect particular arrangements of those edges without taking the precise position of those 

arrangements into consideration. Then the third layer may assemble certain motifs into larger 

combinations of familiar objects and subsequent layers then further transform the information 

until it reaches the last layer which provides a presented output again. The main aspect of 

deep learning is that these levels of abstraction created by the different features are not 

designed by humans, but they are learned by the network using a learning procedure.172 In 

that way, the ANNs can be designed to perform many different tasks such as classification, 

forecasting and recreation tasks amongst others. In that way several different variations of 
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deep neural networks have been designed such as convolutional neural networks (CNN), deep 

belief networks (DBN) or recurrent neural networks (RNN) which have produced results that 

are comparable and in some cases surpassed human expert performance.173,187–189  

2.2.3.3. The learning-phase 

In machine learning, including deep learning, learning can be performed supervised, semi-

supervised or unsupervised of which the most common one is supervised learning.172,190,191 In 

supervised learning the algorithm or network is presented with examples of input-output pairs. 

Each example pair consists of an input which is presented typically in the form of a vector 

and an output which is called a supervisory signal. The final aim of the learning algorithm is 

to learn to generalize from the training data in a “reasonable” way to be able to later map new 

unseen examples correctly. In the supervised learning task, the network produces an inferred 

function based on the analysed labelled training data by modifying the internal adjustable 

parameters to reduce the error. These parameters are called “weights” and a typical deep 

learning system can have billions of them.  

The training phase can be broken down into four steps. In the first step, the first layer of an 

ANN receives an input which propagates through the network and produces an output based 

on the given weights. The second step takes the predicted output signal and compares it to the 

true desired output provided from the training data pair (ground truth) and it calculates the 

gradient vector of the error using a loss function. In the third step, in order to decrease the 

error of future inputs, the ANN propagates the error backwards through the network and 

recalculates each weight to determine whether it should increase or decrease it in order to 

reduce the error. In the final/fourth step the weights are updated with an optimizer function 

that calculated how much the weight values should be altered before restarting with the next 

training example. 

The most common objective function for optimizing the predicted results used in deep 

learning is called stochastic gradient descent (SGD). The algorithm is presented with sets of 

examples, of which it computes the outputs and errors. Then the average gradient is computed, 

and the weights are adjusted for many cycles until the objective function stops decreasing. 

The name stochastic derives from the fact that each set of examples provides a noisy estimate 

of the average gradient of all examples. When the training is finished the network is usually 

tested on unseen data called “test set” to evaluate the generalization ability of the network. 

The inferred function produced by the algorithm after training could be seen as a hilly 
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landscape in a multi-dimensional space of weight values and the negative gradient vector 

shows the steepest decent which brings the algorithm to an output where the error is low.  

 

2.2.4. Deep Learning terminology 

Before explaining some of the commonly used network architectures for deep learning in the 

field of computer vision, some specific terminologies about the different building blocks of 

neural networks are explained in this section. 

2.2.4.1. Convolution layers 

The convolutional layer is the core building block of any CNN and is usually used as the first 

layer of such a network. It is sometimes called feature extractor layer and the parameters of 

this layer consist of filters (so-called kernels) which offers a certain receptive field of the 

image dimension volume (height × width × channels). When passing the information to the 

next layer, the input area of the same dimension as the filter is convoluted by using the dot 

product of the filter entity and the input region which produces a feature map of the filter (see 

Figure 58). This convolution step converts all the pixels in the receptive field into a single 

pixel value on the output feature map. Depending on the size of the filter kernels the size of 

the image is reduced. Sometimes, in order to not reduce the image size during this process an 

image manipulation called zero-padding is performed before the convolution step. This adds a 

circle of zeros around each image dimension which increases the input image dimension size 

by the number it will be reduced in the convolution step. 

 
Figure 58: Schematic representation of a convolution layer with a series of filter kernels producing 

different output maps. 

 

The activation maps of all the filters are stacked along the depth dimension and form the full 

output of the convolution layer. Every single feature map can therefore be interpreted as the 
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receptive field of one single neuron which looks at a small region of the full image and all the 

neurons in this layer share the same parameters in the activation map. The shared parameters 

allow this network to extract a different sets of features within an image by using the same 

parameters on each receptive field of the image which make CNNs more efficient compared 

to fully connected networks because of the reduced dimensionality of the data. Furthermore, 

the division of images into small blocks help in extracting feature motifs.192 

2.2.4.2. Pooling layer 

The pooling layer is a form of non-linear down-sampling of the data. There are several down-

sampling functions that can perform the pooling of which the max-pooling is the most popular 

one. This function splits the image into a set of rectangles for which it outputs the maximum 

value of the observed sub-regions. These values form the new image with the two dimensions 

of the number of the subregions. The main idea of a pooling layer is that the exact location of 

a feature is less important than the relative location of the feature to other features. The main 

function of the pooling layer is to reduce the number of parameters by reducing the size of the 

representation. This also reduces the computational effort for the network and reduces the 

risks of overfitting. This down-sampling step is usually done after a convolution layer and is 

often followed by an activation function such as a ReLU layer. A very common filter size for 

a max pooling layer is 2x2 with a stride of 2 (see Figure 59). This leads to a down-sampling 

of the input along the width and height and results in a 75% reduction of activations. Other 

options for pooling layers are average pooling and L2-norm pooling. 

 
Figure 59: Example of 2x2 max pooling. Down-sampling the image by taking the highest number of a 

2x2 matrix.  

2.2.4.3. ReLU - Rectified Linear Unit 

The Rectified Linear Unit layer is usually applied immediately after a convolution layer. It 

applies a non-linear activation function to each element of the computed convoluted layer. 
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The reason for this mathematical operation is to introduce non-linearity to a system. In the 

early days of neural networks, the functions used for this layer were usually a tanh or sigmoid 

function but more recently it was found that a ReLU operations work better because of an 

increased training speed without compromising on the accuracy (see Figure 60).  

 

Figure 60: Activation functions. a) Sigmoid function; b) tanh function; c) ReLu function. 

Furthermore, it also helps to avoid the so-called vanishing gradient problem. This problem 

describes the phenomenon that the early layers of a neural network train slower because of an 

exponential decrease of the gradient for the backpropagation through the layers of the network. 

The ReLU function applies the function 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) to all the values of the previous 

layer which basically removes all negative values from the activation map by correcting them 

to the value zero. It does not influence the receptive field of the convolution layers but 

introduces non-linear properties to the decision function.  

2.2.4.4. Fully connected layer 

Fully connected layers are connecting each artificial neuron of one layer with every neuron in 

the next layer. It is usually used as part of a deep learning model where the last few layers are 

fully connected which compiles the data extracted and processed in the previous layers to 

form a final output. 

2.2.4.5. Stride and padding 

The stride is the value that denotes how many pixels the attention field of a convolution is 

moving in each step. By default, it would be one, but to reduce the size of the output even 

further the stride can be as big as the dimension of the receptive field. To maintain the 

dimension size of the output compared to the input, padding can be used. Padding is the 

systematic addition of zeros around the input matrix of the actual image to increase the 

investigated area. For example, by increasing the matrix dimension by one pixel around the 

image allows to perform a convolution 3x3 convolution with a stride of 1 without reduction of 

the dimension of the input image (see Figure 61).  
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Figure 61: Example convolution of 4x4 input with stride of 1 and padding of 1 resulting in a feature 

map of dimensions 4x4. 

2.2.4.6. Dropout layer 

In many neural networks which are trained on relatively small datasets for a long time the 

network tends to overfit. This means that the weights of the network are specifically tuned to 

the training examples they are given but the network does not perform well when given new 

examples. One way of overcoming this problem is the use of dropout layers. This layer 

randomly sets a certain percentage of the activations to zero which forces the network to 

generalize for the correct output even when some activations are dropped out. The removed 

neurons are reinserted after each training example into the network with their original weights. 

This layer is just used during the training phase but not in the test phase. By avoiding training 

all neurons on all the training data, the dropout layer decreases the likelihood of overfitting. 

2.2.4.7. Transfer learning 

Transfer learning in the context of machine learning (ML) is defined as the storage of 

knowledge gained while solving one problem and applying it to a different but related 

problem.193 In deep learning, transfer learning is used by applying a neural network that has 

been previously trained on a big dataset to solve a certain problem and use this pretrained 

model as starting weights for fine-tuning the same neural network for a different task using a 

new or smaller dataset. Often a pretrained network is integrated into a bigger network 

structure where for example, the input and output layers are specifically adapted for the task, 

but the centre of the network is used from the already trained network. The idea is that the 

pretrained network acts as a feature extractor. When training such a network it is common 

practice to freeze the layers of the pretrained network to make sure that the fine-tuning does 
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not alter this part of the network. The benefit of such a workstream is that a network does not 

need to be trained from scratch which would take a very long time on a big dataset. By using 

the pretrained network the fine-tuning of the network is taking just a fraction of the time that 

it would have taken to train the full network architecture.  

2.2.4.8. Data augmentation techniques 

Data augmentation techniques are very useful to increase the amount of training data for 

training a neural network. The general principle works that an algorithm alters the available 

training data while keeping the label the same. This step artificially expands the dataset and 

can easily double or triple the number of training examples. The most popular augmentation 

methods are horizontal and vertical flips, rotation, random cropping, introduction of random 

noise and colour alterations amongst others. The reason why this works is because those 

transformations change the values of the image input which might appear as little changes for 

a human observer but for a neural network those changes can be significant as the 

classification or label of the image does not change, while the array values do change a lot.  

In the following section the most common neural network architectures used for deep learning 

applications in microscopy are explained and discussed in more detail. 

 

1.3.4. Deep learning architectures  

In the field of microscopy, the most common artificial neural networks architectures are dense 

neural networks, convolutional neural networks, convolutional encoder-decoders, U-Nets, 

recursive neural networks, and generative adversarial networks.178–180  

2.2.4.9. Dense Neural Network 

 
Figure 62: Schematic representation of a dense neural network 

 

The most popular ANN is the dense neural network (DNN) the architecture which consists of 

several fully connected layers. This fact is at the same time its strength and weakness. A 

sufficiently large DNN has the potential to calculate any function, however, the computational 
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costs for running these calculations increase with the increasing number of layers and quickly 

reach their limits if for example large inputs are provided. This is the reason why they are 

usually employed as just one part of a network which is most often for the last few layers of 

the network architecture.  

2.2.4.10. Convolutional Neural Networks 

 
Figure 63: Schematic representation of a convolutional neural network (CNN); blue bars represent 

convolution layers of neurons; red bars represent pooling layers. The higher the bar the more neurons 

are in that layer. Last layer is usually a fully connected layer to the output neurons. 

 

On the other hand, convolutional neural networks (CNNs) are widely used for analysing and 

handling of image input data. As the name implies, they are built upon convolutional layers 

where in each convolutional layer a set of 2D filters with varying dimensions are used to 

produce feature maps as output of the layer. The filter size of the convolutional layer 

determines the dimensions of the features that can be detected by the specific network layer. 

A trick that is widely used to also enable to detect bigger features in high dimensional images 

is that the feature maps are down-sampled after each convolutional layer and are fed with the 

new dimensions into the next processing layer of the network. In current applications it is 

often that a small DNN is integrated at the end of the network architecture to integrate the 

information contained in the output feature maps.  
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1.3.4.1. Convolutional Encoder-Decoder Network 

 
Figure 64: Schematic representation of a convolutional encoder-decoder network; blue bars represent 

convolution layer of neurons; red bars represent pooling layers; orange bars represent deconvolution 

layers. The higher the bar the more neurons are in that layer. 

 

Convolutional encoder-decoders are similar to CNN in a way that they are constructed by 

using two parts (see Figure 64). The first part which is called the encoder part, reduces the 

dimensionality of the input through down-sampling or convolutional layers. This step encodes 

the information of the original input image. The second part called decoder part, uses the 

information provided at the end of the encoder and can either reconstruct the original image or 

perform some transformations on the output of the image (e.g. used in style transfer or 

segmentation tasks). In a trained version of the network the output of the encoder part can 

serve as a compressed version of the input image. 
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1.3.4.2. U-Nets 

 
Figure 65: Schematic representation of U-Net architecture; blue bars represent convolution layer of 

neurons; red bars represent pooling layers; orange bars represent deconvolution layers. The higher the 

bar the more neurons are in that layer. The arrows indicate some direct connections between the 

indicated layers. 

 

The architecture of so-called U-Nets have been found to be especially useful for many 

microscopy-related tasks. Their architecture is seen as an evolution of the convolutional 

encoder decoder networks. The difference lies in a feature forward concatenation step which 

is introduced in the corresponding levels of the encoder and decoder path. This allows for 

preservation of more detailed information which otherwise would have gone lost when 

reducing the image resolution in the encoding path. They have been particularly useful in 

segmenting and analysing biomedical image data194–196 and were also used for spatial image 

upscaling.180 
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2.2.4.11. Generative Adversarial Networks 

 
Figure 66: Schematic representation of a generative adversarial network (GAN); blue bars represent 

convolution layer of neurons; red bars represent pooling layers; orange bars represent deconvolution 

layers. The last part of the network represents a fully connected dense layer. 

 

A very different concept provides the generative adversarial network (GAN). This 

architecture describes the combination of two different network structures regardless of their 

specific designs.188 The first one is a generator and the second one is the discriminator (see 

Figure 66). The generator creates new data from a set of input data and the discriminator is 

classifying the inputs from the generator as either being real data or synthetic data artificially 

created. The name adversarial comes from the fact that both networks compete against each 

other, where the generator tries to fool the discriminator and the discriminator tries to uncover 

the synthetic input presented by the generator. The generator structure can be either a 

convolutional encoder-decoder network or the architecture of a U-Net. It is trained to generate 

new images through this subnetwork and mixes it with the real images as input for the 

discriminator which is often a convolutional neural network. The obvious advantages of 

GANs are that they can generate additional training data given some examples, but they are 

difficult to train and often very sensitive to hyperparameter tuning. Furthermore, small 

architecture changes sometimes lead to lack of convergence, vanishing gradients, and loss of 

image quality.189 
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1.3.4.3. Recurrent Neural Network 

 
Figure 67: Schematic representation of a recurrent neural network (RNN). 

 

Recurrent neural networks (RNN) are another class of ANNs where the connections of the 

artificial neurons form a graph system along a time sequence. This means that they can take 

input of time series data and allow outputs of one layer to be fed into previous layers creating 

a “memory effect” of the information flow. In traditional feed forward neural networks inputs 

and outputs are independent of each other and can be seen as a directed acyclic graph that can 

be unrolled in one direction. In contrast to that RNNs can be seen as directed cyclic graphs 

that cannot be unrolled. The output of RNNs depend strongly on the element of the sequence 

and allow a temporal dynamic behaviour because they can learn from past inputs. This makes 

them a useful tool for especially natural language processing (NLP) related tasks.  

2.2.4.12. ConvLSTM 

 
Figure 68: Schematic representation of a ConvLSTM which includes several gates controlled with 

sigmoid or tanh functions for controlling the flow of information.  

 

A special type of a RNN architecture is a long short-term memory (LSTM) network. This 

network has the characteristics of a normal RNN providing feedback loops within the network. 

Additionally, it provides special gates that can store information states which is under direct 

control of the network. These gates can also incorporate time delays or further feedback loops 

which are then called LSTMs. LSTMs usually consist of three building blocks within a cell 

which are an input gate, an output gate and a forget gate. This cell can remember time 
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sequence data and the three gates define how the information in the cell is remembered 

replaced or forgotten. In a ConvLSTM which is a special type of recurrent neural network 

which combines the convolutional layer structure of with the idea of a gated cell structure of 

LSTMs is used for spatio-temporal prediction. It can determine the future state of a certain 

cell in a grid by the inputs and past states of its local neighbours. In context of image 

processing tasks ConvLSTM with a larger transitional kernel is able to capture faster motions 

while ones with a smaller kernel can capture slower motions. 

 

2.2.5. Microscopy image enhancement neural networks 

In context of this research four different neural network types were implemented to improve 

the image quality of a recorded 4D or 3D image sequence. The first attempt was to try to 

perform artificial labelling of copper of brightfield images. Then three image special 

resolution enhancement algorithms were implemented and benchmarked against classical 

mathematical models. Additionally, one network for improving the signal-to-noise ratio of the 

recorded images was used and finally two networks were implemented that are capable of 

interpolating images between images of two time points of a sequence, increasing the image 

frequency which is shown to be specifically beneficial for improving the performance of 

tracking algorithms.  

2.2.5.1. Artificial labelling 

Fluorescence microscopy uses a high laser power to excite fluorophores in cells which 

produces significant amount of phototoxicity perturbing the sample and creating a trade-off 

between data-quality and the time scale of life cell imaging. Additionally, the number of 

simultaneous recordings of different fluorescence channels further puts constraints on the cell 

health and limits the time resolution of life cell imaging. On the other hand, transmitted-light 

microscopy (TLM) (such as bright-field microscopy) is relatively cheap and is a label free 

technology which has negligible phototoxicity in comparison to fluorescence microscopy. 

Even though TL microscopy provides valuable information on the cell organization, it lacks 

the contrast of fluorescence microscopy for clearly identifying the cell organelles of interest. 

In 2018, Johnson et al., developed a deep neural network that allows for cross-modality 

analysis between fluorescence and TLM microscopy images.199 It allows to perform artificial 

labelling of cell organelles by training a neural network with brightfield and fluorescence 

labelled organelle image pairs. This label-free prediction neural network recognizes the 
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relationship between 3D TLM and fluorescence live cell images and can label several 

different subcellular structures. The deep learning tool is based on a CNN U-Net architecture 

shown in Figure 69.  

 
Figure 69: Schematic representation of the neural network architecture of the fNET network. It shows 

the different dimensions throughout the network with the different dimensionality reductions in the 

convolution layers (black and red arrows), the transposed convolution layers (blue arrows) and the 

concatenation between data from different layers within the network. The figure was taken with 

permission of the publisher from the following reference.199 

 

It consists of three convolution layers with different pixel and stride dimensions followed by a 

batch normalization and ReLU operation. In the paper it allowed corresponding fluorescence 

images to be predicted directly from three-dimensional (3D) TLM live cell images. Even 

though the authors of the paper mentioned some challenges regarding the dependency of the 

results on the cell line of interest and dependence on the contrast of the organelle of interest in 

the TLM, the network was used in this research to try to predict the cellular copper(I) 

distribution based on the fluorescence labelling signal results of the newly developed 

fluorescence copper(I) sensor.  

2.2.5.2. Signal-to-noise enhancement 

The image restoration task of improving the signal-to-noise levels of an image, is a 

reconstructing problem where the corrupted image should be recovered from the information 

that is available. A poor SNR in microscopy can be the result of a too weak laser power used 

to excite the fluorescent dye, a low dye concentration present in the cell, or also a too low 

quantum yield of the fluorescent molecule. All three mentioned reasons result in a poorer 

SNR.  
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The neural network implemented in the content-aware image restoration (CARE) network can 

improve the SNR of poor-quality images given that it was trained on pairs of images with 

high and low SNR. It is a classical U-Net architecture consisting of a convolutional neural 

network in combination with an encoder-decoder structure. The encoder part of the network 

reduces the spatial resolution with pooling layers which typically takes the maximum value of 

the local neighbourhood. The decoder part performs the up sampling by enlarging the image 

to its original input size. However, the up sampling of the image can lead to blurred CNN 

outputs. To overcome this problem, skip connections in the high-resolution feature layers in 

the decoder part were integrated that concatenate the feature layers of the encoder part with 

the decoder part of the network.176,200 The network is set up to not learn the output of interest 

directly (such as the restored image) but the residual �̂�  of the input of the network i.e. 

𝑔(𝑥)  =  𝑥 +  �̂�(𝑥). Furthermore, instead of calculating a single output value per pixel, the 

CARE network calculates a distribution of probabilities, by predicting the location and scale 

of a Laplace probability density function. 

The training of the network is carried out by providing it with high and low SNR input pairs 

which are used to calculate a loss function by minimizing stochastic gradient descent (Adam 

optimizer201). In contrast to conventional CNN image restoration networks the loss function is 

calculated by averaging the per pixel negative log-likelihood of the Laplace distributions.  

2.2.5.3. Interpolation-based image spatial pixel resolution up sampling  

In mathematical terms interpolation is the problem of approximating the value of a function 

for a non-given point in some space when given the value of that function in positions around 

that point. Image interpolation, which is also called image scaling, is the process of digitally 

resizing images. It is still widely used in many image-related applications and the most 

famous traditional methods are nearest-neighbour, bilinear and bicubic interpolation (see 

Figure 70). All these algorithms can be performed along each dimension of a multi-

dimensional image series and since these methods are easy to implement they are still widely 

used in some CNN-based SR models.182 
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Figure 70: Graphical representation of nearest neighbour, linear and cubic interpolation in 1 or 2 

dimensions. 

2.2.5.3.1. Nearest-neighbour interpolation  

The nearest-neighbour interpolation simply takes the same value of the nearest pixel next to 

the newly interpolated one. This increases the spatial resolution of the image and is a very fast 

process but as a downside it produces blocky patterns with low quality resulting images.  

2.2.5.3.2. Bilinear interpolation  

In bilinear interpolation (BIL) a receptive field of 2 × 2 is linearly interpolated along one axis 

first and then along the second axis. Since this is a quadratic interpolation taking 4 pixels into 

account this algorithm performs better than the nearest neighbour interpolation while 

remaining a relatively fast and computational inexpensive method. 

2.2.5.3.3. Bicubic interpolation 

The bicubic interpolation (BIC) takes 4 × 4 pixels for their interpolation into consideration 

performing the interpolation along each axis sequentially. This algorithm results in smoother 

results with fewer artefacts but it compromises on calculation speed.  

All mathematical interpolation-based up-sampling methods just use the existing image signals 

to increase the spatial resolution of the image without bringing any more information into the 

image, but they introduce some side effects, such as noise amplification and blurring results. 

The current trend is to replace mathematical interpolation-based methods with learnable 

layers. Neural network based up-sampling methods have shown to provide the advantage that 

they can recognize patterns from the training data and therefore, can introduce new 

information into the reconstructed images.  
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2.2.5.3.4. Deep learning based single-image-super-resolution 

Single image super-resolution (SISR) is a research field which aims to reconstruct a high-

resolution (HR) image from a low-resolution (LR) observation. Especially deep learning 

approaches have drawn significant attention to this topic and brought strong improvements for 

this reconstruction task over the past decade. The general principle how a neural network 

learns to reconstruct a high-resolution image is by providing it with training pairs of high-

resolution and down-sampled low-resolution counterparts (usually down-sampled by bicubic 

interpolation) and let it learn to reconstruct high level features that are lost in the low-

resolution images. In most existing DL based image SR networks, the information often flows 

in a feedforward direction, which leads to many high-level features and details getting lost in 

this network architecture. In recent years there have been several SISR methods proposed 

which include example-based,202 reconstruction based,203,204 and deep learning-based 

approaches. Especially the deep learning approaches have taken the super-resolution 

performance on synthetic low-resolution images to a new level. Two examples of such a 

state-of-the art deep learning-based image super resolution network, implemented for this 

research project were published in 2019 by Qilei Li et al., with the name “Gated Multiple 

Feedback Network for Image Super-Resolution” (in short: GMFN)205 and in 2019 by Zhen Li 

et al., with the name “Feedback Network for Image Super-Resolution” (in short:  

SRFBN-S).206 Both networks follow a similar principle and structure, allowing a spatial 

resolution upscaling of up to 4-times and both have been tested competitively on several real-

life photographic datasets. In traditional linear feedforward networks, the information flows 

solely from the shallower layers directly to the reconstruction layer of the SR image. This 

brings the disadvantage that the narrower receptive fields in the shallower layers cannot take 

the valuable contextual information into account which hinders the reconstruction ability. The 

GMFN network overcomes this problem by integrating several gated multiple feedback loops 

in the architecture of the network. Those gated feedback modules efficiently select high-level 

information from several provided feedback connections and uses this information to enhance 

the high-level information to refine the details of the low-resolution image in the super-

resolved output. Following this logic, the GMFN network is designed as a convolution 

recurrent neural network which unrolls along t time steps. At each time step the sub-network 

can be regarded as an independent CNN which aims to reconstruct the SR image from the 

original LR image. This is achieved by cascading multiple residual dense blocks (RDBs) and 

recurrently unfolding them across time by processing the same low-resolution image in 
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several timepoints. Each sub-network consists of four parts which are an initial low-level 

feature extractor, multiple residual dense blocks (RDBs), multiple gated feedback modules 

(GFMs), and a reconstruction block (RB). Multiple gated-feedback connections allow the 

subnetwork to communicate with the different sub-networks across time. Those feedback 

connections across different time points support to refine the low-level features using high-

level information. The only difference between SRFBN-S and GMFN is that SRFBN-S has 

just a single gated feedback module whereas GMFN has several which explains the slightly 

better performance of GMFN based on the benchmark studies performed in the original 

papers. 

 
Figure 71: Schematic representation of the GMFN network showing the information flow from the 

convolutional RNN rolled out along t time steps where the same low resolution input image is fed into 

the network providing increasing amounts of information to the GFM modules which improves the 

HR image reconstruction. Image taken with permission from the publisher from the following 

reference.205 

 

The results of this image super-resolution upscaling are evaluated with PSNR, SSIM and 

RMSE and compared with classical mathematical interpolation-based upscaling methods.  

2.2.5.4. Video frame interpolation 

Video frame interpolation is an important research area in the field of computer vision. It was 

found useful in the areas of video post-processing, surveillance, and in video restoration tasks. 

In general, it aims to increase the frame rate of a video sequence by calculating intermitted 

frames between consecutive input frames. This field has seen big improvements over the last 

decade in the film and video related industries but has not been employed to the field of 

microscopy imaging yet.  
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For high-quality video frame interpolation, precise motion estimation techniques are used 

(such as mathematical or deep learning models) which allow the correlation between 

consecutive frames to be predicted to preserve a continuity of flow vectors and retain the 

colour constancy of the objects in the intermediate frames. There are several approaches that 

are being used to perform the interpolation task. The most common video interpolation 

approaches are using convolutional neural networks and can be subdivided into two 

categories: i) based on interpolation convolution kernel estimation and ii) based on optical 

flow estimation.207 The first process uses a combination of motion estimation and pixel 

synthesis in one process producing a convolution kernel of each pixel. This allows the motion 

information of two consecutive image frames to be captured. The second approach of flow-

based methods estimates the flow of motion of each pixel in a sequence of frames where the 

information flows bi-directional across consecutive images and it captures dense pixel 

correspondences. The estimated flow vectors guide the blending of the two input images to 

the interpolated frame. In the process often energy minimization processes are used to 

determine the flow vectors. One disadvantage of these CNN based approaches is that kernel-

based methods207 are computationally expensive, and for flow-based methods the accuracy of 

the calculations (optical flow or convolution kernel estimations) directly affect the quality of 

the generated frame, and they will produce unrealistic and blurry results if the intermediate 

process fails.208 An alternative approach uses generative adversarial networks (GANs) which 

have achieved great successes in the field of image and video generation.208,209 In the context 

of image interpolation GANs consist of a generator network (G) and a discriminator network 

(D). They are trained simultaneously where D tries to distinguish real inputs from artificially 

created ones from G. The aim of G is to create realistic video frames that can fool D. An often 

arising problem with GANs is that the image interpolation task offers a vast search space of 

possible intermediate frames if no other information is provided for the network resulting in a 

poor quality of the interpolation.  

There are also hybrid approaches which combine two or more different methods to perform 

the image interpolation. The DAIN network used for this research is one of those hybrid 

networks. 

2.2.5.4.1. DAIN architecture 

The implemented network for performing the image interpolation on microscopy images is 

called Depth-Aware Video Frame Interpolation in short DAIN and was published by Wenbo 
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et al., in 2019.209 As the name already implies the network is trained to detect occlusion by 

exploring depth information and based on this information it performs the frame interpolation. 

Generally, DAIN can be seen as a hybrid frame interpolation method that uses different 

information and tools to perform the frame interpolation task. It attempts to combine the two 

approaches of both convolution kernels and flow vectors that are estimated by using sub-

CNNs. 

In more detail the network learns hierarchical features by gathering contextual information 

from neighbouring pixels. The interpolated frame is synthesized by combining the 

information in an adaptive wrapping layer by integrating the two input frames, depth maps 

and contextual features based on optical flow and a local interpolation kernel. The depth maps 

functionality from the input frames is performed by an hourglass network (a special type of 

convolutional encoder-decoder network) trained on the MegaDepth dataset.210 Furthermore, 

the flow estimation is performed by a pretrained PWC-Net211 and the contextual information 

is obtained by using a pretrained ResNet212 architecture. A U-Net network is then used for the 

kernel estimation and an adaptive wrapping layer combines all the information flows from 

each sub-network. In order to ensure that the network predicts residuals between the ground 

truth frame and the blended frame, the two warped frames are linearly blended. The 

pretrained network used for transfer learning was trained on the Vimeo90K dataset (82GB) 

which is a large-scale, high-quality video dataset consisting of 89,800 video clips downloaded 

from the VIMEO streaming platform. A more detailed explanation about the architecture of 

the network can be found in the original paper.209 

2.2.5.4.2. Zooming SlowMo interpolation 

An alternative second interpolation algorithm was the Zooming SlowMo network. It is based 

on a paper published in 2021 by Xiaoyu Xiang et al.213 This network aims to perform video 

frame interpolation (VFI), but in contrast to DAIN, this network offers at the same time the 

option to perform a simultaneous video super-resolution (VSR) in the same processing step. 

Usually, this task can be achieved in a two-stage process by combining a video frame 

interpolation method such as DAIN with a single-image super resolution method like GMFN 

in a two-stage manner. However, since those two tasks are intra-related a two-stage method 

cannot fully take advantage of this natural property. Furthermore, to predict high-quality 

video frames, both state-of-the-art VFI and VSR networks would need many parameters to 

http://toflow.csail.mit.edu/
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perform a big frame reconstruction which makes a two-stage STVSR model very 

computationally expensive.  

The Zooming SlowMo network allows for a one-stage process of directly reconstructing high-

spatial resolution and high frame rate image sequences. The network uses a deformable 

feature interpolation network to get feature-level temporal information and combines it with a 

deformable ConvLSTM to aggregate the temporal information. This allows for handling of 

motions and effectively leveraging global contexts with simultaneous temporal alignment and 

aggregation. ConvLSTMs are a type of recurrent neural network that are often used for 

spatio-temporal prediction. They have convolutional structures between their state transitions. 

Those networks are specifically good in determining the future state of a certain cell in the 

grid providing the inputs and past states of its local neighbours. The network achieves state-

of-the-art interpolation and spatial resolution upscaling results in one calculation step. 

One main difference between Zooming SlowMo and the single-image super resolution 

approach for resolution upscaling (such as GMFN) is that Zooming SlowMo uses the 

recurrent neural networks (ConvLSTM) as a sequence-to-sequence (S2S) input information 

compared to single separated images as inputs for GMFN. Therefore, Zooming SlowMo can 

leverage also temporal information for the resolution upscaling task which is not available for 

GMFN. The Zooming SlowMo network consists of four main parts which are a feature 

extractor, frame feature temporal interpolation module, deformable ConvLSTM, and an HR 

frame reconstructor. The feature extractor with a convolution layer first produces feature 

maps which are then used to synthesize LR intermediate frames in the frame feature 

interpolation module. Then the ConvLSTM performs a simultaneous alignment and 

aggregation for the consecutive feature maps. In the last step the HR sequence is constructed 

from the aggregated feature maps.  

Schematic representations of both networks (DAIN and Zooming SlowMo) are shown in 

Figure 72. 
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Figure 72: Schematic representation of image interpolation for Zooming SlowMo and DAIN on 4-

dimensional input dataset. Low t- and z-dimensional image dataset (top left) used on Zooming 

SlowMo, interpolating images using a ConvLSTM with an optional convolutional resolution upscaling 

(top right), compared to DAIN network (bottom left) consisting of 4 different network modules 

(hourglass network, PWC-Net, ResNet, U-Net) combined with a wrapping layer producing 

interpolated images in t- and z-dimension (bottom right). Green framed images indicate input images 

and orange frames indicate interpolated images.  

 

2.2.6. Reliability metrics for image enhancement and image restoration  

One of the most fundamental ideas in science is to be able to trust observations from acquired 

data. If this reliability for the data is not given, the conclusions drawn from the data is prone 

to error. As the “Eternal Triangle of Compromise” demonstrated in thesis Chapter II, the 

image quality of modern microscopy image recordings often must be intentionally 

compromised to improve a certain quality of the recorded images (speed, resolution, or SNR) 

to be able to capture biological processes. Therefore, restoring or enhancing the quality of an 

image is important to stretch the boundaries of what is possible to observe. Since some of the 

image enhancement algorithms can produce unwanted artefacts, it would be desirable to 

provide the user a measure of uncertainty of the synthesized and enhanced images.  

Especially in very powerful data-adaptive deep learning methods where the neural network 

learns very effectively to adapt to the training data, it makes very strong assumptions about 

the restored images. This has the advantage that it improves the restoration quality of the 
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image but also poses the risk of creating artefacts that look very realistic and cannot be 

detected by human specialists.  

The current computer vision research is mostly driven by standardized benchmark datasets, 

which are used to compare the results of different algorithms on an agreed-upon problem. The 

used evaluation protocols for these benchmark datasets do not take the prediction uncertainty 

into account which also does not incentivise other researchers to do so.  

There are two main types of uncertainty in the context of modelling, i) aleatoric uncertainty 

and ii) epistemic uncertainty.  

Aleatoric uncertainty describes an intrinsic uncertainty which is not avoidable. Even in a 

perfect situation of capturing the same image under the microscope twice, the camera of the 

microscope will never be able to capture the image situation exactly twice because of the 

randomness of excitation and collection of photons. Furthermore, there is an inherent 

uncertainty for the noise observations for any given acquisition. Therefore, there is not a 

single value capturing this kind of uncertainty but rather a distribution that captures the 

probability of a given uncertainty.  

On the other hand, epistemic uncertainty can be improved and reduced if more data and 

information about the observation is available. If a model got trained on a small dataset the 

model uncertainty for reconstructing a correct representation of the image is high. This 

uncertainty can be reduced by collecting additional data and training the network on this 

bigger dataset. To assess whether neural network created images are close to real observations 

it is important to perform evaluations which can determine the quality of the reconstructed 

images. 

2.2.6.1. Assessment metrics for image enhancement  

To assess the quality of an image enhancement algorithm two evaluation methods can be 

performed: i) human perception-based subjective evaluation and ii) quality metric-based 

evaluation. The first evaluation method (subjective evaluation) by human perception is a more 

direct way but suffers from the limitations of personal preference and bias, and that the 

evaluation process is very time consuming and cannot be automated. In contrast, the objective 

evaluation by using certain mathematical evaluation metrics often lacks consistency between 

each other. The most common mathematical evaluation metrics also used in this research are 

peak-signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and root-

mean-square error (RMSE). All three-assessment metrics can be used if a ground truth image 
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of the newly synthesized image is available. In that case, the two images can be compared on 

a pixel-by-pixel basis to calculate a numerical value that can easily be compared between 

different methods which can perform the same tasks.  

2.2.6.1.1. Peak signal-to-noise ratio 

The peak signal-to-noise ratio (PSNR) is the most widely used full-reference objective quality 

assessment metric for image restoration (e.g. SR, denoising, and deblurring). PSNR is defined 

by the ratio of maximum power signal to the power of noise signal. It describes the difference 

between the ground truth and prediction in decibels by using the mean-square-error between 

the images. This metric is more concerned with the proximity between pixels which 

sometimes can lead to lower consistency with perceptual quality. The higher the score the 

better the agreement with the compared ground truth image. In the case of a colour image 

with RGB values for each pixel, the PSNR can be calculated with the mean-square error (sum 

over all squared value differences divided by the total number of pixels and channels). If a 

ground truth image is described as 𝑋 and �̅� is the from the network synthesized image, where 

H × W × C denotes the height, width, and channels of the two images, the calculation of 

PSNR follows the following formula:  

                                                         𝑃𝑆𝑁𝑅 =  10 ∗ 𝑙𝑜𝑔10 (
𝐿2

 𝑀𝑆𝐸
 )                                     Equation (17) 

where 𝑀𝑆𝐸 is the mean-square-error between 𝑋 and �̅� and 𝐿 represents the maximum pixel 

value (i.e. 255 for an 8-bit image) of each pixel dimension and 𝑀𝑆𝐸 is defined as follows.214 

                                                𝑀𝑆𝐸 =  
1

H×W×C
∑ (𝑋(𝑖) −  �̅�(𝑖))2H×W×C

𝑖=1                           Equation (18) 

 

2.2.6.1.2. Structural similarity index measure 

The structural similarity index measure (SSIM) is an objective quality assessment metric and 

is used to measure the image quality by evaluating the perceptual difference of two compared 

images.214 SSIM is a normalized metric where values closer to 1 correspond to better 

similarity. In contrast to PSNR, SSIM maps do not compare on a pixel-per-pixel basis but are 

considering the surrounding structural similarity in aspects of luminance, contrast, and 

structure in the neighbourhood of the pixel of interest. SSIM is therefore defined as follows:  

                                               𝑆𝑆𝐼𝑀 =  [𝑙(𝑋, �̂�)]𝛼 [𝑐(𝑋, �̂�)
𝛽

 [𝑠(𝑋, �̂�)]𝛾                        Equation (19) 

where  



Chapter 2 

Martin Priessner - January 2022 136 

𝑙 (𝑋, �̂�) =  
2µXµ �̂� +C1 

µX2 +µ�̂�2 +C1
,   𝑐(𝑋, �̂�) =  

2σXσ �̂� +C2 

σX2 +σ�̂�2 +C2
,   𝑠(𝑋, �̂�) =  

σX�̂� +C3 

σX +σ�̂� +C3
      Equations (20-23) 

α, β, and γ are weighting parameters. µX and σX denote the mean and standard deviation of 𝑋, 

respectively. Similarly, µ�̂� and σ�̂� denote the mean and standard deviation of �̂�, respectively. 

σX�̂� is the covariance between �̂� and X. C1, C2, and C3 are constants. Further, the previous 

equation can be simplified when α = β = γ = 1 and C3 = C2/2 as  

                                𝑆𝑆𝐼𝑀 =  
(2µ𝑋µ�̂�   +  C1)(2𝜎𝑋�̂�   +  C2) 

(µ𝑋2  +  µ�̂�2   + C1 )(𝜎𝑋2  +  𝜎�̂�2   +  C2) 
            Equation (24) 

SSIM captures in comparison to PSNR visual qualities better and the notation mSSIM is 

usually used to as an average value of SSIM calculated across the entire window of both 

images.214 

2.2.6.1.3. Root-Mean-Squared-Error  

The root-mean-square-error (RMSE) map is a metric that displays the root square difference 

between the normalized synthesized image and the target ground truth image. The smaller the 

values for the RMSE are the better is the accordance with the ground truth image. However, 

this value cannot be used to compare different type of data since the measured number is 

dependent on the scale of the numbers used. Therefore, RMSE is a measure of accuracy that 

can be used to compare the performance of different models for a particular dataset and not 

between datasets, as it is scale-dependent.215 The RSE map with perfect agreement would 

result in a dark image. The RMSE is the average difference of all pixels in the image with the 

ground truth. RMSE is sensitive to outliers because single large errors have disproportional 

large effect on the RMSE due to the squaring of the value.216,217 

2.3. Aims and Objectives 

The second part of this PhD research project was to implement existing deep learning 

algorithms that improve the limitations of the “Eternal Triangle of Compromise” in regard of 

signal-to-noise ratio, imaging frequency, and spatial image resolution which should allow 

imaging of FLCS1-labelled lysosomes (see previous thesis Chapter I) over long time periods. 

This was achieved by: i) using two already implemented AI tools fNET and CARE neural 

network; ii) implementing three image resolution upscaling networks, i.e., GMFN, SRFBN-S 

and Zooming SlowMo; iii) implementing two image interpolation neural networks DAIN and 
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Zooming SlowMo. The improvement of these enhancement algorithms was tested for 

improvements on tracking results on simulated and real-life data. 

• The fNET network was used to test the possibility to train it to recognize the 

lysosomal compartments by artificially labelling brightfield images after training with 

collected brightfield and fluorescence image pairs. This would allow lysosomal 

compartments to be monitored without using fluorescence microscopy. 

• The CARE neural network was used for de-noising low SNR images after training it 

on collected high and low SNR image pairs enabling longer recordings of the 

lysosomal compartments with low laser power. 

• Three image resolution upscaling neural networks (GMFN, SRFBN-S and Zooming 

SlowMo) were implemented and tested to perform image resolution upscaling on 

different benchmark datasets and the results were compared with classical BIL and 

BIC spatial resolution upscaling methods. This allowed us to record image sequences 

in lower special resolution therefore reducing the laser exposure to the specimen and 

enabling faster imaging speeds or/and longer recording times. 

• Two frame interpolation neural networks (DAIN and Zooming SlowMo) were 

implemented and tested on their performance on multi-dimensional time series 

datasets and the results were compared with classical mathematical BIL and BIC 

frame interpolation techniques. This allowed to increase the image density in t- and z-

dimension of 4D (3D + t) datasets therefore, enabling a more reliable tracking of 

fluorescently labelled lysosomes while reducing the recording speed which lowers the 

laser exposure and phototoxicity on the sample. 

• After implementation and benchmarking of those four image enhancement tools a 

combination of de-noising, resolution upscaling and image interpolation was used to 

improve long recordings of lysosomes with point-scanning confocal microscopy. 

2.4. Results and Discussion 

2.4.1. Artificial lysosome labelling with fNet 

The fNET neural network is based on a publication from Johnson et al.,199 where they 

implemented a U-net architecture that is capable of labelling different cell organelles such as 

nucleus, mitochondria or cell membrane by providing it with fluorescence and brightfield 

microscopy pairs for training. For this research, the code was slightly modified, and training 
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data was collected from SH-SHY5Y cells labelled with FLCS1 after incubation for 24 h with 

0.2% lipofectamine to detect the copper containing lysosomes (see previous thesis Chapter I 

for experimental details). After labelling, the cells were imaged in z-stack mode on a Leica 

SP7 confocal microscope at different resolutions (1024 px, 512 px and 256 px) to collect 

image pairs of brightfield and fluorescence images. The network was then trained with 

roughly 5 GB of data to teach the neural network to potentially recognize copper containing 

lysosomes just on the basis of brightfield images. After a 24 h training phase the network was 

tested on unseen data examples. One representative example is shown in Figure 73.  

 
Figure 73: Representative example of artificial labelling of fNET neural network compared to real 

images of copper(I) containing lysosomes fluorescently labelled with FLCS1. Zoomed in sections 

show no colocalization of the artificial and the real label of lysosomes. 

 

Here the results show that the network confidently learned to recognize certain punctate 

structures in the brightfield images but when overlaying the images of the real ground truth 

label of the fluorescence image, the artificial labelling of the fNET neural network labelled 

lipid droplets instead of lysosomes. When investigating the zoomed-in sections of the image 

example the lipid droplets can be clearly recognized on the brightfield image whereas the 

lysosomes are located in parts of the cells where no contrast change is seen in the input image. 

Therefore, the results demonstrate that fNET is not capable of labelling lysosomes based on 

brightfield input images.  

 

2.4.2. Denoising with content-aware image restoration (CARE)  

To improve the signal-to-noise ratio of fluorescence images the content-aware image 

restoration (CARE) neural network was used which is based on a publication from Weigert et 

al.218 It uses a U-Net architecture consisting of a convolutional neural network in combination 
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with an encoder-decoder structure and is trained on high and low SNR image pairs. The 

network allows for a reduction of laser power resulting in fewer photons interacting with the 

sample therefore reducing the phototoxicity and increasing the time that a fluorescent dye can 

be recorded before bleaching. There the functionality was tested on a synthetic dataset and 

then the algorithm was used on real-life data of lysosomal movement recorded over time. 

2.4.2.1. CARE on simulated dataset  

First, the network was tested on simulated synthetic datasets which were created using the 

ICY plugin from the 2014 ISBI particle tracking challenge.150 The synthetic dataset produced 

white particles (“switching uniform”) with Brownian motion in a 4D (3D + t) image series in 

front of a black background. The detailed parameters for the particle simulation with the ICY 

plugin are provided in Table 7. 1 GB of these simulated moving particle datasets were created 

and noise was added to it using the ImageJ noise generator (noise level 50) which served as a 

training dataset for the CARE network. After training the network for 10 h the fine-tuned 

network was tested on a new sample of noisy data. A representative example of a z-projection 

of the image input and output of the network can be seen in Figure 74. 

 
Figure 74: CARE denoising results on simulated noisy dataset. White boxes mark zoomed in sections 

shown in panel below with white arrows highlighting not recognized particles in the noisy image. 

 

By visual inspection it can be seen that the CARE network is performing reasonably well 

considering the strong noise level. However, it does make some mistakes which are 

highlighted with white arrows in the zoomed in section of Figure 74. Furthermore, in the 

video example it can be observed that the intensity of the denoised particle signals of the 

CARE network is fluctuating which is not the case in the ground truth image. This fluctuation 

can be explained by faulty intensity assignments of the CARE network of the dots in the 
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different z-stack depth levels. In summary, this experiment demonstrates a proof of concept 

for improving images with very poor SNR levels using the CARE network with the example 

dataset of white moving particles in front of a black background. Therefore, this same 

algorithm was then used and fine-tuned on the experimental lysosomal movement dataset. 

1.3.4.4. CARE on lysosomal movement dataset  

For collecting the high and low SNR image pairs SH-SY5Y cells were labelled with the 

FLCS1 dye incubated for 24 h with 0.2% lipofectamine 2000 in the culture media. After 

washing the cells with PBS and switching back to DMEM with 10% FBS, the training data 

images were collected on a Leica SP7 confocal microscope using switching laser powers 

(0.05% and 1%). For every scanned line two images were simultaneously collected with 

different signal-to-noise ratios for z-stacks at 63x or 40x magnification or 2D+t recordings 

over several minutes. The collected data were augmented by rotation, horizontal and vertical 

flipping of the collected images which increased the available dataset for training. The 

network was trained on roughly 3 GB of high and low SNR image pairs and was tested on an 

unseen low SNR sample. 

 
Figure 75: CARE denoising results on real life dataset at different timepoints. 

 

First it was tested whether CARE can recover already bleached areas of the image to a level 

that is similar to the quality of the non-bleached examples. For this test, images of the labelled 

cells were recorded for 10 min with high (1%) laser power. After using the CARE denoising 
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neural network on this dataset the visual inspection shows that there is no quality 

improvement for later image slices of the already bleached image areas (see Figure 75).  

Next, image z-stacks were recorded over time with high (1%) and low (0.05%) laser power 

and it was tested whether CARE could improve the image quality of initially low SNR from 

the low laser power images. As it can be seen in Figure 76, the high laser power shows a 

strong decline of fluorescence signal from the lysosomes over time, whereas the signal of the 

low laser power remained weak but constant. After processing the low SNR images with the 

CARE network, it recovers the lysosomal signals nicely from the background and the signal 

remains stable of the whole imaging period (see Figure 76b). 

 
Figure 76: a) Fluorescence signal comparison of lysosomes in SH-SY5Y cells labelled with FLCS1 

for 24 h with 0.2% lipofectamine recorded with 1% (high, first row) and 0.05% (low, middle row) 

laser power. CARE network was used on the low laser power image sequence resulting in improved 

signals (third row). Zoomed in sections shown on the right. b) fluorescence intensity profile of high 

(left), low (middle) laser power and CARE improved (right) images. c) QR code for video 

demonstration. 

 

In summary CARE was successfully trained and used on a synthetic and experimental dataset 

showing promising signal improvements for low SNR images but was unable to recover 

already bleached signal. 
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2.4.3. Spatial resolution upscaling with GMFN, SRFBN-S and  

Zooming SlowMo 

To improve the spatial image resolution without compromising on imaging speed the three 

networks GMFN, SRFBN-S and Zooming SlowMo (ZS) based on published 

literature205,206,213 were implemented for this research in form of Google Colab notebooks. In 

those notebooks the user can perform the training/fine-tuning of the network and the 

upscaling using the free GPU provided from Google. Since the GMFN and the SRFBN-S 

have the same backbone structure it was implemented within the same notebook. A 

screenshot of the basic structure of the two notebooks is shown in Figure 77.  

 
Figure 77: Implemented Google Colab notebooks for Zooming SlowMo and GMFN and SRFBN-S 

network (combined) with QR-code linked to the website. 

 

The data for training of upscaling can be provided via Google Drive or for bigger quantities 

via Google Cloud Storage. Furthermore, for the training data preparation a python script was 

created which allows to process the data off-cloud.  

All three networks were tested on three different datasets (BF = brightfield, SDC = spinning 

disk confocal, Lyso CF = lysosomes with confocal microscope) with two upscaling option (2x 

and 4x) and were benchmarked against mathematical bilinear (BIL) and bicubic (BIC) 

upscaling methods. Each neural network was fine-tuned on a subset of the data (2-5 GB for 

12-24 h). For every dataset, the ground truth image was first downscaled by a factor of 2x or 

4x and then re-upscaled with the different techniques. The quality evaluation was performed 

within the notebooks comparing the ground truth images with the re-upscaled images of the 

different upscaling methods. A summary of the quality evaluation together with the file 

dimensions is presented in Table 1 for 2x resolution upscaling and in Table 2 for 4x resolution 

https://colab.research.google.com/drive/1iZGGN5FGpiB96QV_6rHGO7rCfcx-AJWv?usp=sharing
https://colab.research.google.com/drive/1bTqMOqGDWBtPIcShMvJhS-nB0OTRrSu1?usp=sharing
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upscaling. In all provided examples all three neural network outperformed their mathematical 

counterparts and the GMFN network performed slightly better than ZS for most cases. Visual 

differences between the neural networks were relatively small but more obvious compared to 

the classical methods. The visual comparisons are presented in Figure 78 to Figure 85. 

 
Table 1: 2x spatial resolution upscaling results of quality metrics comparison of the different datasets 

with the different upscaling methods. 

 
 

Table 2: 4x spatial resolution upscaling results of quality metrics comparison of the different datasets 

with the different upscaling methods. 
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Figure 78: 2x spatial resolution upscaling (256 px – 512 px) of SH-SY5Y cells recorded with 

brightfield microscope. Scale bars correspond to 10/2.5/0.85 μm for the different zoomed sections, 

respectively. 

 

 
Figure 79: 4x spatial resolution upscaling (256 px – 1024 px) of SH-SY5Y cells recorded with 

brightfield microscope. Scale bars correspond to 10/2.5/0.85 μm for the different zoomed sections, 

respectively. 
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Figure 80: 2x spatial resolution upscaling (256 px – 512 px) of lysosome labelled with FLCS1 in  

SH-SY5Y cells recorded with confocal microscope. Scale bars correspond to 20/5/2 μm for the 

different zoomed sections, respectively. 

 

 
Figure 81: 4x spatial resolution upscaling (256 px – 1024 px) of lysosome labelled with FLCS1 in 

SH-SY5Y cells recorded with confocal microscope. Scale bars correspond to 20/5/2 μm for the 

different zoomed sections, respectively. 
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Figure 82: 2x spatial resolution upscaling (256 px – 512 px) of Hoechst 33342 labelled nuclei in 

Dictyostelium discoideum cells recorded with spinning disk confocal microscope. Scale bars 

correspond to 20/5/1.25 μm for the different zoomed sections, respectively. 

 

 

Figure 83: 4x spatial resolution upscaling (256 px – 1024 px) of Hoechst 33342 labelled nuclei in 

Dictyostelium discoideum cells recorded with spinning disk confocal microscope. Scale bars 

correspond to 20/5/1.25 μm for the different zoomed sections, respectively. 
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Figure 84: 2x spatial resolution upscaling (256 px – 512 px) of labelled Dictyostelium discoideum 

cells recorded with spinning disk confocal microscope. Scale bars correspond to 20/5/1.5 μm for the 

different zoomed sections, respectively. 

 

 

Figure 85: 4x spatial resolution upscaling (256 px – 1024 px) of labelled Dictyostelium discoideum 

cells recorded with spinning disk confocal microscope. Scale bars correspond to 20/5/1.5 μm for the 

different zoomed sections, respectively. 

 

In the 4x upscaling option one more dataset was tested with the ZS upscaling functionality as 

described in the literature180 where the authors used noisy electron microscopy data and 

trained their neural network (PSSR) to perform a 4x spatial resolution upscaling based on 

training of the network with downscaled images where gaussian noise was artificially 

introduced to the training data. With this dataset the ZS network was also trained and 
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compared with the results of the PSSR network reported in that paper. Based on the 

evaluation metrics the results indicate that ZS has equal and sometimes slightly better-quality 

results. The GMFN and SRFBN-S network were not able to cope with this dataset since it 

contained a lot of noises which resulted in very strong visual artefacts for those two networks. 

Representative examples of this dataset are presented in Figure 86 and the quality metrics 

differences between ZS and PSSR are shown in Figure 87. 

 
Figure 86: 4x spatial resolution upscaling comparison of electron microscopy dataset including the 

PSSR network result. PSSR upscaling results was taken with permission of the publisher from the 

following reference.180 Scale bars size is 1.5 μm.  
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Figure 87: Quality metric comparison of Zooming SloMo with PSSR showing the value difference of 

all provided images for comparison. 

 

Based on these results, all three neural networks perform significantly better than classical 

mathematical interpolation techniques such as BIL or BIC. In most cases the GMFN network 

performed slightly better than ZS which was again better than SRFBN-S. However, in certain 

cases such as for noisy datasets, ZS performs significantly better than GMFN or SRFBN-S 

and ZS was equally as good as the PSSR network.180 

 

2.4.4. Content-aware-frame-interpolation with Zooming SlowMo (ZS)  

and DAIN 

Next, the possibility of improving the frame rate of multi-dimensional microscopy datasets 

with frame interpolation tools was explored. This would allow to reduce the frame 

acquisitions in t- and z-dimension which lowers the laser illumination dose on the specimen. 

The resulting reduced phototoxicity and photobleaching would enable longer recordings 

without compromising on cell health and image stack quality. It would also achieve a higher 

image density which could be beneficial for tracking of fast cellular processes. If point-

scanning systems (like confocal microscopy or EM) require higher image resolutions, the 

reduced imaging speed could be compensated with the interpolation algorithm which 

maintains a high imaging frequency while achieving a higher resolution. These three 

examples clearly demonstrate the potential benefits of frame interpolation tools for increasing 

the frame density of any microscopy modality. Classical mathematical interpolation 

techniques such as frame duplication, or bilinear (BIL) or bicubic (BIC) frame interpolation 

or simple frame duplication (NONE) techniques can increase the frame frequency but do not 

consider moving objects. Therefore, developing computational tools that artificially increase 

the frame rate while considering moving objects have the potential to be transformative and 

can push the limits of any frame rate limiting microscopy modality. 
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In the rapidly advancing computer vision sub-field of video frame interpolation (VFI), several 

deep learning frameworks have been implemented for increasing the frame rate of videos to 

produce slow motion movies.219 Although critical benchmark studies have been carried out to 

evaluate which network has the best performance and the least visual artefacts, none of the 

well performing networks has yet been implemented for performing their tasks on microscopy 

image sequences. 

Using deep learning image prediction to artificially increase the frame rates of multi-

dimensional microscopy datasets has the potential to be beneficial for any microscopy 

modality in need for higher image frequencies. However, the interpolation task is not trivial 

and frame interpolation neural networks are known to sometimes produce visual 

artefacts209,220 that could mislead researchers to draw faulty conclusions on biological 

processes.  

To test the capabilities of such frame interpolating networks, two state-of-the-art content-

aware-frame-interpolation networks (Zooming SloMo (ZS)213,221 and Depth-Aware Video 

Frame Interpolation (DAIN)209) were implemented and their ability to increase the image 

frequency of time-lapse 3D (4D) microscopy datasets was studied. Both networks have shown 

competitive performance in various benchmark studies against other VFI networks without 

producing significant visual artefacts.213,221,209,222 Furthermore, the ZS network also allows for 

2x or 4x pixel resolution upscaling of the image sequence within the same interpolation step 

as it has been demonstrated in the previous section. Since the original source of ZS was 

implemented and trained just with the 4-times resolution upscaling, the network was modified 

to let it perform the interpolation step without and with 2x upscaling and trained it on the 

Vimeo-septuplet (86GB) dataset as it was done for 4x pixel resolution upscaling in the 

original paper.213 The two implemented frame interpolation prediction networks were used on 

six different datasets, tracking performance comparisons on simulated and real-life data was 

carried out, and the interpolation results of the networks were evaluated by comparing their 

strengths and weaknesses on 4 different imaging modalities (confocal, brightfield, spinning 

disk confocal and electron microscopy).  

These are the first neural network implementations used to increase the image frequency by 

artificially interpolating images in the t- and z-dimension of 4D microscopy datasets. The 

neural networks were made publicly available on the ZeroCost4DLMic platform223 which 

makes it easily available to the wider scientific community and allows to fine-tune the 

network and post-process the microscopy images on the free GPU provided by Google Colab.  
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Figure 88: Implemented Google Colab notebooks for Zooming SlowMo and DAIN with QR-code 

linked to the websites. 

2.4.4.1. Zooming SlowMo (ZS) and DAIN on mitochondria movement dataset 

Initially the neural network tools were tested on a mitochondrial movement dataset and their 

performance was compared with classical interpolation techniques such as bicubic (BIC), 

bilinear (BIL) interpolation and frame duplication (NONE). The quality of the interpolated 

images was evaluated by visual inspection, and with objective metrics such as Structural 

Similarity (SSIM), Root-Mean-Square-Error (RMSE) and Peak-Signal-to-Noise Ratio 

(PSNR). First ZS and DAIN were used with the provided pretrained models trained on a large 

amount of video data. Already without any fine-tuning both networks performed significantly 

better than the classical techniques (see Figure 89 for representative examples). After short 

fine-tuning of Zooming SlowMo (FT ZS) and DAIN (FT DAIN) (2 GB for 2h) the 

performance improved even further (see quality metrics in Figure 89g). ZS captured 

movement patterns on the mitochondria branches most accurately and could interpolate 

movement patterns with great precision (see Figure 89a-f). A video demonstration of 2x and 

4x frame interpolation are presented in QR-code link in Figure 89h.  

https://colab.research.google.com/drive/1iZGGN5FGpiB96QV_6rHGO7rCfcx-AJWv?usp=sharing
https://colab.research.google.com/drive/1Cj9s4nQ2cvAS99evuIZd0afvn0dtHuEK?usp=sharing
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Figure 89: Mitochondrial movement example with 2x frame interpolation using classical NONE, BIC, 

BIL and neural network FT ZS and FT DAIN interpolation. a) GT image sequence example with b) 

zoomed in sections; red arrows highlight movement regions (scale bare 5 and 1 μm); c) and d) 

showing results of different interpolation techniques in original size and zoomed in, respectively; e) 

showing SSIM and f) RMSR maps of the different interpolation results. ZS produces better-quality 

results than DAIN and both significantly better results than the classical interpolation techniques. g) 

PSSR, SSIM and RMSE of 49 interpolated images of mitochondria image sequences compared with 

each method including best performing fine-tuned Zooming SlowMo (FT ZS). h) QR-code for video 

example. 

2.4.4.2. Predicting simulated particle motion with ZS and DAIN 

To investigate the performance of the networks further and to objectively compare the 

predicted interpolation results, different interpolation techniques were tested on a synthetic 

dataset of simulated white particles moving in front of a dark background. The synthetic 

dataset provided the opportunity to control all the parameters such as particle speed, SNR, 

Brownian motion, sequence dimensions and frame density in z- and t-dimension. Furthermore, 

it provided the ground truth of the particle locations allowing for easy comparison of the 

tracking results after frame rate enhancement. The neural network predictions were compared 

to the results with the bilinear frame averaging (BIL) interpolation method which was the best 

performing classical technique from the previous experiment. First, the ability of the networks 
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to cope with increasing particle movement speeds (“switching uniform” with 0.3 Brownian 

motion) in the t-dimension was evaluated. From a high image frequency synthetic dataset, an 

increasing number of images between each time point was removed, resulting in increased 

particle movement speeds and the removed images were kept as ground truth for quality 

evaluation. The ZS and DAIN networks were fine-tuned on 500 MB of the synthetic dataset 

produced with the same parameters as the test data. The visual quality metrics showed that the 

neural network interpolated images clearly outperform the BIL interpolation and ZS performs 

better than DAIN. With increasing particle speeds ZS declines faster than DAIN reaching a 

similar performance for both networks at fast movement speeds (see Figure 90a).  

As expected, the quality of the image prediction decreased with higher particle speeds. The 

interpolated results show that at slow particle speeds both networks are almost 

indistinguishable from the ground truth images. The visual inspection results of overlaying 

the time series data (see Figure 90b) show that both networks perform very well on particles 

with slow to medium speeds but at high movement speeds DAIN’s interpolation results start 

performing better than the ones from ZS. For both networks, when the particle speeds reaches 

a critical limit, or the particles get closer together while having opposing directions the 

networks start making mistakes. For DAIN in situations of close proximity to other particles 

with opposing movement directions it sometimes creates visual artefacts of interpolating the 

signal in multiple different directions (see Figure 90c middle). ZS however, does not create 

the particles if the travelled distance from one frame to the next becomes too large (see Figure 

90c left) and both networks performed significantly better than the BIL interpolation (see 

Figure 90c right). This is the reason why ZS shows a steeper drop of image quality at higher 

movement speeds compared to DAIN. 

 



Chapter 2 

Martin Priessner - January 2022 154 

 
Figure 90: Interpolation in t-dimension: a) Image quality metrics comparison (SSIM, RMSE, PSNR) 

of simulated dataset interpolation with BIL, DAIN and ZS for increasing particle speeds in the t-

dimension. b) Temporal colour coded overlaid projection of image sequences of the different 

interpolation methods for the particle speeds V7 (left) and V10 (right); white arrows highlighting 

regions of interest for comparing differences between results, with scale bar size of 100 px. c) Visual 

artifact comparison of DAIN (left), ZS (middle) and BIL (right) (in magenta) overlaid with GT (in 

green) of the simulated dataset at particle speed V7 with white boxes indicating zoomed sections 

displayed next to it; white arrows highlighting regions of interest where different techniques make 

mistakes. SSIM/RMSE/PSNR values of the presented frame shown below the images. Scale bar size is 

50 px for the full image. 

 

Next, the interpolation capabilities of ZS and DAIN in the z-dimension of synthetic z-stack 

datasets with increased slice distances was investigated.  
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For this experiment 9 different image z-stacks containing 17 frames with increased slice 

spacings (50-450 nm) were generated where each z-stack image sequence had the same 

number of particles within, and the particle height was 900 nm. The “Directed Mix” particle 

type was chosen here to test the z-interpolation without PSF scattering which would have 

been present for the particle type used for the previous experiment. 

Here, ZS performs marginally better than DAIN on the three quality metrics and both 

networks were better than the BIL interpolation (see Figure 91a). At low slice spacing ZS 

performed best, and all three approaches produced good results with little artefacts (see Figure 

91b for 200 nm spacing example) but started making mistakes when spacing was increased 

(see Figure 91c for 400 nm spacing example). After falling below a particle height to slice 

spacing ratio of 3 (900 nm particle height / 300 nm slice spacing = 3) the quality dropped 

rapidly for each interpolation method due to an insufficient nyquist sampling of the particle 

which needs at least 3 slices per particle to be able to do a valid interpolation prediction. 

More detailed visual comparisons of these experiments can be found in the Appendix (Figure 

139 to Figure 144).  

In summary, ZS performs generally better for datasets with moderate movement in both t- and 

z-dimension. However, ZS makes more mistakes for fast object speeds creating blurry 

artefacts or letting the object disappear. This is where DAIN’s performance is more stable and 

should therefore be used for more challenging faster moving objects. 
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Figure 91: Interpolation in z-dimension: a) Image quality metrics comparison (SSIM, RMSE, PSNR) 

for z-stack dataset interpolations of BIL, DAIN and ZS with increasing slice distance (50 - 450 nm). b) 

200 nm and c) 400 nm z-stack slice GT sequence (top) and visual artifact comparison of interpolated 

image of BIL, DAIN and ZS (in magenta) overlaid with GT (in green) with white boxes highlighting 

zoomed areas shown next to original image; white arrows highlighting regions of interest for error 

comparison. SSIM/RMSE/PSNR values from the image slices are presented in the zoomed in sections. 

 

In summary, ZS and DAIN both performed better than BIL interpolation for temporal and 

axial interpolation on the simulated particle datasets both for the interpolation in t- and z-
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dimension. ZS had slightly better performance for slow to moderately moving particles, 

however ZS made more mistakes for faster object speeds creating blurry artefacts or letting 

the object disappear. This is where DAIN’s performance is more stable, and it should 

therefore be used for more challenging faster moving datasets. For interpolation in the axial 

dimension ZS also performed slightly better than DAIN and both networks showed a steep 

quality decline when the ratio of particle height to slice spacing distance reached a critical 

value of 3 (e.g. 900 nm particle height / 300 nm slice distance). 

2.4.4.3. ZS and DAIN allow for multi-step 16x temporal resolution improvement  

To test the ability of both networks to perform on an extreme case for multi-step interpolation, 

the densely framed synthetic dataset was down-sampled removing every second image in 4 

iterative steps (2x - 4x - 8x - 16x down-sampled) while keeping the removed images as 

ground truth for comparison. Thereafter, the removed images were re-interpolated (2x - 4x - 

8x - 16x interpolation). Both networks were fine-tuned on examples of the same dataset type. 

After an initial drop in image quality in the first interpolation step for both networks, which is 

the most demanding one because of the big travel-distance of the particles, the quality for 

DAIN and ZS just decreases slowly in the following interpolation steps thereafter. Based on 

the quality metrics both networks show very similar performance in the multi-step 

interpolation (Figure 92a). When looking into the quality of each interpolated image the 

quality drop for the centre image between two input images shows the strongest drop for the 

first interpolation step recovering slightly in the steps thereafter (Figure 92b). The visual 

inspection shows that for this demanding task of fast-moving particles in the first 

interpolation step DAIN performs slightly better compared to ZS which lets some particles 

disappear (see Figure 92c). Furthermore, the simulated Brownian motion of the synthetic 

particles get lost in those interpolated images for both networks. However, the general 

direction of the particles can be captured very well with these interpolation techniques (see 

arrows in Figure 92c).  
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Figure 92: a) Image quality metrics comparison (SSIM, PSNR, RMSE) of BIL, DAIN and ZS on 

bootstrapped multi-step image interpolation for every image frame between two ground truth input 

images. b) Temporal colour-coded overlaid projection for visual comparison of 16x interpolated image 

sequences of ZS, DAIN, BIL and ground truth (GT); SSIM/RMSE/PSNR of image sequence shown in 

original overlaid images of each interpolation technique. c) Overlaid projections showing the errors 

between GT (green) and the interpolated results of BIL, ZS and DAIN (magenta) with matching 

overlaid parts (white); white boxes indicating zoomed in section and red arrows highlighting regions 

of interest for error comparison. 

2.4.4.4. Predicting motion of live-cell dynamics and synthetic data 

To quantify the improvements of the interpolated datasets, tracking experiments were carried 

out using the Fiji224 TrackMate149 plugin. Here the ground truth tracks of the image sequences 

generated by the synthetic dataset generator were compared with the detected tracks from 

TrackMate of the interpolated image sequences. The five performance criteria from the ISBI 

particle tracking challenge150 were used for quality evaluation of the tracks. 

At very slow particle movement speeds, all interpolation methods achieved similar results and 

ZS performed slightly better than DAIN. With increasing particle speeds the tracking results 
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of both networks were outperforming those of the bilinear frame averaging interpolation by a 

big margin especially for intermediate movements speeds (see Figure 93a). Representative 

tracking results of the TrackMate particle tracks at speed 7 are shown in Figure 93b. The 

visual comparison of the tracks confirms the superiority of neural network interpolation 

techniques over the BIL method and the down-sampled results.  

After applying the different neural network approaches to synthetic data, real experimental 

data was investigated. A lysosomal tracking experiment on a 4D (3D+t) confocal image series 

of labelled lysosomes of SH-SY5Y cells was analysed. All z-slices were projected on one 

image with maximum intensity projection generating a 2D+t dataset where every second 

image in the temporal dimension was removed and kept for ground truth track comparison. 

For evaluation, the tracks of the interpolated image sequence were compared with the tracking 

results of the original dataset which was used as ground truth for comparison. On this 

experimentally obtained dataset both ZS and DAIN performed significantly better in all 

tracking evaluation metrics than the down-sampled tracking results and both networks 

showed very similar quality improvements. The five evaluation metrics (see Figure 93e) and 

the visual comparison of the tracks showed clear improvements of ZS and DAIN over the 

down-sampled tracking results (see Figure 93d). Except for the “Pairing distance” metrics 

where lower values are better, higher values correspond to better results. For a detailed 

explanation of the performance criteria see the following paper.150 
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Figure 93: a) Five tracking evaluation metrics results of simulated datasets at different particle speeds 

with ZS, DAIN, and BIL interpolation. b) TrackMate visual track comparison of ZS, DAIN and BIL 

interpolation compared to GT dataset at particle speed velocity V7. c) Visual comparison of lysosomal 

tracking performance on interpolated datasets with zoomed in sections; arrows highlighting region of 

interest of tracking differences (scale bar: 20 μm). d) Lysosomal tracking performance metrics 

comparison; ZS and DAIN perform significantly better than tracks of BIL interpolated sequence.  
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2.4.4.5. Superior performance of ZS and DAIN on different microscopy modalities 

After investigating the capabilities of DAIN and ZS to improve tracking results of synthetic 

and real-life datasets, their interpolation image quality was tested on six more experimental 

datasets of four different microscopy modalities (fluorescence microscopy, electron 

microscopy, spinning disk confocal and brightfield microscopy).  

For these datasets 2x and 4x interpolation was performed on the previously down-sampled 

datasets. For 2x interpolation every second frame and for 4x interpolation the three centre 

frames out of five images were removed and were kept for ground truth comparison and 

quality evaluation. Next to the bilinear interpolation DAIN’s functionality to interpolate 

multiple images in a single step was compared. Furthermore, ZS and DAIN were tested with 

the provided pretrained network as well as after fine-tuning on image examples of the same 

modality (DAIN (FT), ZS (FT)). The results of the quality evaluation metrics data of all 

compared datasets are presented in Table 3 and Table 4. Based on the evaluation metrics of 

PSNR, SSIM and RMSE, the provided pretrained network of ZS already outperforms DAIN 

for all tested datasets in the single image interpolation results (2x) as well as for most 4x 

frame interpolation results. When fine-tuning the ZS network the performance improves even 

further, ranking first also for all 4x interpolation tasks. The visual inspection shows that 

DAIN sometimes displays artefacts by blending the different input images together. On the 

other hand, ZS creates washed out and smoothened results where the interpolation details 

cannot be reconstructed with great confidence (see representative examples in Figure 94a-d). 

A full demonstration of the different neural network interpolated scenarios is presented in a 

demonstration video and further visual comparisons can be found in the Appendix (see Figure 

139 to Figure 144). 

 

Table 3: Quality evaluation of ZS and DAIN, BIL, BIC, and NONE interpolation on 8 different 

datasets for 2x interpolation. The numbers in red and blue indicate the best and second-best 

performance. 
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Table 4: Quality evaluation of ZS and DAIN, BIL, BIC, and NONE interpolation on 8 different 

datasets for 4x interpolation. The numbers in red and blue indicate the best and second-best 

performance.

 

 

 
Figure 94: Visual comparison of ZS, DAIN and BIL interpolation results. t-Dimension interpolation 

datasets from a) spinning disk confocal microscope (scale bar 50 μm); b, d) confocal microscope 

(scale bars 10 and 50 μm); c) brightfield microscope (scale bar 75 μm); and z-dimension interpolation 

datasets from e) confocal microscope (scale bar 10 μm), f) electron microscopy (scale bar 1.5 μm), 

with quality metrics (SSIM/RMSE/PSNR) displayed in zoomed in images. Arrows highlight regions 

of interest of visible differences between the interpolation techniques. 
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In conclusion, in this part of the thesis the first two content-aware frame interpolation neural 

networks (Zooming SlowMo and DAIN) were implemented which are capable of increasing 

the frame rate of microscopy images by predicting intermediate frames between two provided 

images along t- and z-dimension. Both neural networks showed significant improvements for 

computational tracking results on synthetic and experimentally obtained datasets. The 

networks were tested on 6 different datasets of four different microscopy modalities (spinning 

disk confocal, fluorescence confocal, brightfield and electron microscopy) for 2x and 4x 

interpolation and for each dataset ZS before DAIN was outcompeting traditional interpolation 

techniques such as bilinear and bicubic interpolation. Furthermore, their strength and 

weaknesses in the context of artifact creation were demonstrated and critically reflected. 

These universal image prediction tools show great potential for any kind of microscopy 

modality that is in the need for higher frame rates or higher image density to investigate fast 

cellular processes. All the tools used in this thesis were implemented in Google Colab 

notebooks and are made available to the scientific community on the ZeroCostDL4Mic 

platform.  

 

2.4.5. Combining denoising, spatial pixel resolution upscaling and image 

frame interpolation 

Now that each corner of the “Eternal Triangle of Compromise” was improved with different 

deep learning neural networks individually, a combination of these tools was studied to 

improve examples of very poor-quality images (low resolution, low SNR and low recording 

frequency) by sequentially improving each limitation corner. For the following experiment, 

the neural networks were just fine tuned for their individual task but were used in sequence. 

Since a low SNR was seen as the biggest limitation factor, the denoising algorithm CARE 

was used first, then the spatial resolution upscaling algorithms followed by the frame 

interpolation algorithms. Since ZS had both functionalities included (resolution upscaling and 

frame interpolation) this network was used for both tasks and the best performing spatial 

resolution upscaling network GMFN was combined with the frame interpolation algorithm 

DAIN.  

2.4.5.1. CARE & ZS/GMFN & ZS/DAIN on synthetic dataset 

The first dataset on which the neural networks were tested was a synthetic dataset of white 

points moving in front of a black background. A high-quality image example (XYT) was 
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artificially degraded in a step-by-step process (see Figure 95a) where first the image 

frequency was reduced followed by downscaling and addition of noise. This low spatial 

resolution, low frequency and low SNR image was then first provided to the CARE network 

which removed the noise from the low SNR image. Then a spatial pixel resolution upscaling 

(2x) was performed with BIC, ZS and GMFN and finally BIL, ZS and DAIN were used to 

perform the image interpolation, respectively. In the overlayed imaged in Figure 95b and 

Figure 95c CARE performed very well for removing the noise from the degraded images. 

However, the video demonstration shows that the few artefacts created by CARE resulted in 

increased errors in the following steps of spatial resolution upscaling and especially in the 

frame interpolation step. This also explains the small differences in quality improvements 

from the different spatial resolution upscaling and frame interpolation techniques. Regardless 

of the artefacts, all image enhancement combinations were found performing significantly 

better than the image where no denoising was carried out before. Therefore, it can be 

concluded that for very poor SNR CARE is an essential step for improving the image quality.  

 
Figure 95: a) Image degradation workflow from high spatial resolution, high frequency, high SNR to 

low spatial resolution, low frequency, and low SNR image. b) Image enhancement results of different 

combinations of enhancement algorithms where CARE in combination with ZS for image spatial pixel 

resolution upscaling and image frame interpolation performs best of all tested combinations. c) 

Zoomed in section with the different image enhancement techniques compared to GT and down 

framed (DF) results. 
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2.4.5.2. CARE & ZS/GMFN & ZS/DAIN on real-life lysosomal movement dataset 

Next, the two best performing algorithm combinations (CARE + ZS (resolution) + ZS (frame) 

and CARE + GMFN (resolution) + DAIN (frame)) were used on an experimental dataset of 

moving lysosomes labelled with FLCS1 in SH-SY5Y cells. Images of the cells were recorded 

at low spatial resolution (256 px) and low laser powers (0.05%) as it was established in the 

previous section, by recording z-stacks over time (3D + T). For comparison, some examples 

with high laser power (1%) with the same low spatial resolution was used and the 

fluorescence intensity profile over time was plotted along the number of z-stacks (see Figure 

96a). When looking at the intensity profile comparing low and high laser powers over time 

low spatial resolution combined with low laser powers show very little photobleaching at 

those settings whereas high laser powers with low spatial resolution still caused a strong 

reduction of signal already after a few z-stack recordings. Since the low-resolution - low 

laser-power settings already showed a relatively stable fluorescence signal, the spatial pixel 

resolution upscaling network combined with image frame interpolation was also used directly 

on the low SNR images without performing the CARE denoising step before. To test the 

improvement quality of the low laser power images, the 4D image sequence was down-

sampled once in the z-dimension and twice in the t-dimension before using them on the 

enhancement algorithms. This down-sampled low laser power image sequence was then 

enhanced in the same way as it was performed on the synthetic dataset using first the 

denoising algorithms followed by the spatial pixel resolution upscaling and the image frame 

interpolation network. The visual comparison of the overlayed image sequence (see Figure 

96c) showed that the enhanced results with all three neural networks show quality 

improvements in terms of signal intensity of the lysosomes, however, CARE introduced 

artefacts where the lysosome size was significantly increased compared to the ground truth 

image (see Figure 96e). Furthermore, some of the lysosomes from the ground truth fused 

together to one big lysosome signal in the denoised image result which also contributed to 

bigger and less precise reconstruction of the ground truth images (see white arrow in zoomed 

in sections in Figure 96e for a representative example). As a comparison, the same dataset 

was enhanced just by the spatial pixel resolution and the image frame rate without using 

CARE for denoising. Those results were much more similar to the ground truth image 

sequence than to the enhancement sequences with CARE denoising. The lysosomes were 

easily recognized by the two networks (GMFN&DAIN or ZS&ZS) and the results of this 

enhancement combination did not show significant artefacts in comparison to the three-
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network enhancement workstream (CARE&GMFN&DAIN or CARE&ZS&ZS). The 

intensity profile over time also provided additional reasons to not use the denoising CARE 

network in combination with the other two networks because CARE caused strong intensity 

fluctuations in the recording over time which was not the case for the spatial resolution and 

frame rate enhancement algorithms (see Figure 96d). Video examples for the laser intensity 

comparison and the different enhancement results are presented in the QR code links in 

Figure 96b. These results demonstrated that combining all three enhancement networks on 

one input image caused significant errors due to artefacts created in the first enhancement step 

in the denoising network CARE. However, at low laser powers and low spatial resolutions the 

fluorescence signal was stable and strong enough to use these input images just on the spatial 

pixel resolution upscaling and image frame interpolation networks which showed promising 

improvements over the ground truth input images.  
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Figure 96: a) Intensity signal of recorded fluorescence over time with high (1%) and low (0.05%) 

laser powers. b) QR code of example videos showing fluorescence bleaching of over time for high and 

low laser powers (left), and image enhancement comparison of different neural network combinations 

(right). c) Overlayed images over time as comparison of neural network combination results (top) with 

zoomed in sections (below). Scale bars 50/20 μm. d) Intensity profile over time for neural network 

enhanced image sequence, showing strong spikes for the CARE network combinations. e) Selected 

images comparing ground truth with the different neural network combinations highlighting 

reconstruction error from CARE network (see white arrows in zoomed in sections). Scale bars 50/20/5 

μm. 
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2.5. Conclusion 

In conclusion, in this part of the thesis neural network solutions for enhancing the microscopy 

image quality has been explored and it has been found that some are applicable for 

investigating biological applications such as lysosomal mobility. The fNET network which 

was implemented with the aim of labelling lysosomes just based on provided brightfield data 

did not manage to recognize those cellular organelles correctly but falsely labelled them as 

lipid droplets. Therefore, this network cannot be used for investigating lysosomal movements.  

The image enhancement algorithms for SNR enhancement, spatial pixel resolution upscaling 

and image frame interpolation have kept their promise and have proven to be useful for 

microscopy applications when applying them individually which improves each one corner of 

the “Eternal Triangle of Compromise”. All implemented neural network enhancement 

algorithms performed significantly better than classical mathematical methods for the spatial 

pixel resolution upscaling and image frame interpolation. The denoising algorithm CARE also 

performs very well when trained on the same type of dataset. However, in some cases this 

denoising network creates some artefacts which are especially relevant in 4D datasets where it 

assigns the depths of the particle wrongly or the intensity of the particle is assigned 

incorrectly.  

When combining the denoising algorithms with spatial resolution and frame upscaling 

methods the results also improve significantly compared to their low-quality input images. 

However, especially the CARE network introduces some artefacts at the first image 

enhancement step. Those artefacts caused amplifications of the errors in the final results. 

Although, a combination of different neural networks led to big improvements in the quality 

results of very poor-quality image examples, the artefacts that have been introduced by the 

CARE network propagated and worsened in the following neural networks which in a 

practical scenario could lead to false biological conclusions. For the application on biological 

images, it seems advisable to just record the image at a medium to low intensity laser power 

at lower spatial resolutions. This significantly lowers the laser dose on the sample and the 

combination of spatial pixel resolution upscaling and image frame interpolation algorithms 

can be combined without much artifact creations to enhance the image quality. With these 

settings (low resolution 256 px and 0.05% laser power) lysosomes labelled with FLCS1 can 

be recorded at for at least 100 z-stacks without losing on much intensity signal of the 

fluorescent labels.  
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These settings were used for the research presented in the next chapter where the movement 

patterns of copper(I) containing lysosomes was investigated by recording them in 3D over 

time before and after treatment of certain drugs that are under investigation to have positive 

effects for Parkinson’s disease. 

2.6. Materials and Methods 

2.6.1. Simulated dataset 

The simulated synthetic dataset was created using the ICY plugin from the 2014 ISBI particle 

tracking challenge.150 The synthetic dataset consisted of “switching uniform” moving white 

particles in front of a black background including Brownian motion. The tracks provided from 

the ICY plugin were used as ground truth for the tracking benchmark comparisons. For the 

interpolation experiments in t-dimension between 1 to 12 images were removed from one 

time point to the next which gradually increased the distance of the travelled particles. For the 

multi-step interpolation experiment, the densely framed synthetic dataset was down-sampled, 

removing every second image in four repetitions (2x - 4x - 8x - 16x down-sampling), while 

keeping them as ground truth for comparison. The z-dimension interpolation dataset was 

created by gradually increasing the parameter for z-spacing (50-450) in the ICY image dataset 

generator while keeping the number of particles in the whole z-stack the same. The full set of 

parameters for the created simulated data can be found in Table 7 in the Appendix. 

 

2.6.2. Particle tracking 

Particle tracking was performed using the Fiji plugin TrackMate.149,224 The detailed 

parameters for the particle tracking are provided in the Appendix Table 8(Table 8). The 

ground truth tracks for the real-life lysosomal data were evaluated as the track of the full 

image sequence without any removed images. For the synthetic datasets, the tracks were 

taken from the ICY plugin data generator. The evaluated tracks from TrackMate were 

exported in the ISBS challenge format and the down-sampled re-interpolated image 

sequences were compared to their ground truth tracks using the ISBI Challenge Tracking 

Batch Scoring plugin from ICY.150 
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2.6.3. Particle speed ground truth tracks generation 

The ground truth tracks for the different particle movement speeds were generated in the 

following steps. First a big, simulated dataset (225 frames) was generated with the ICY data 

generator. This plugin provided an XML file with all the ground truth timepoints with precise 

particle point locations. This XML file was first converted into the ISBI XML format in the 

TrackMate interface and the relevant timepoints of this file were down-sampled the same way 

as the actual image sequence (where an increasing number of frames was removed between 

each timepoint). A developed python script selected just the timepoints and particle 

coordinates relevant for the specific movement speed and generated a new XML file 

containing just the locations of the particles for the selected frames in that speed option. These 

ground truth tracks were then compared with the TrackMate detected tracks of the BIL, BIC 

and the neural network tools interpolated image sequences. Then the five performance criteria 

from the ISBI particle tracking challenge150 were evaluated with the associated ICY plugin by 

comparing the different tracking files. 

The ground truth tracks for the real-life lysosomal data were evaluated as the TrackMate 

generated tracks of the full ground truth image sequence before removing images.  

The evaluated tracks from TrackMate were exported in the ISBS challenge format and the 

down-sampled and then re-interpolated image sequences were compared to their ground truth 

tracks using the ISBI Challenge Tracking Batch Scoring plugin from ICY.150 

 

2.6.4. Network training 

Zooming SlowMo with the options of 1x (no spatial resolution upscaling) and 2x image 

spatial resolution upscaling was first trained from scratch on the Vimeo90K-septuplet (82 GB) 

dataset in several steps of smaller 8-12 GB subsets for 3 days on Google Colab. Before using 

the networks for the interpolation task on a dataset both networks were fine-tuned with 0.5 to 

3 GB of training data of the same imaging modality for 3-6 h. For the spatial resolution 

upscaling ZS was trained on the training data for 12 to 24 h. 

 

2.6.5. Lysosome cell imaging  

SH-SY5Y cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen, 

Carlsbad, CA) supplemented with 10% Fetal Bovine Serum (FBS, Invitrogen), glutamine  

(2 mM), and penicillin/streptomycin (50 µg/mL, Invitrogen). All cells were grown in a 5% 
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CO2 incubator at 37 °C. The cells were plated and grown on 8-well chamber slides (LabTekII 

Chamber Coverglass) in 250 μL of culture media at a plating density of 25,000 cells per well 

and allowed to grow for 24 h. Next the media was changed to a media containing 

lipofectamine 2000 (2 μl/ml) and the copper(I) probe, FLCS1 (60 nM). The cells were 

incubated with the dye for 24 h. Prior to imaging the cell media was changed back to DMEM 

with 10% FBS (250 μl/well). The image acquisition was performed on a confocal microscope 

(Leica SP5) with a 63x magnification 1.4 NA oil immersion objective. 3D image (XYZT) 

time series were recorded for 15 min collecting 40 time points of 30 z-stack images at a 

resolution of 512 px (0.481 μm/px). 
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CHAPTER III 

3.1. Introduction 

The development of optical probes (Chapter I) and computational tools (Chapter II) allowed 

us to apply the new toolbox to specific biological problems. In particular, an investigation into 

the effects of Parkinson’s disease (PD) drugs on the cellular movement of copper-containing 

lysosomes was a topic of interest. This chapter first provides a brief overview of the biology 

of lysosomes, it states a hypothesis of connecting lysosomal mobility with the health state of 

the cell, and it presents five drugs being investigated to treat PD that might influence the 

lysosomal activity and mobility. With this background in mind, preliminary investigations are 

presented where the new lysosome-selective fluorescent copper(I) probe has been used 

(FLCS1 – see thesis Chapter I) together with the deep learning image enhancement tools (see 

thesis Chapter II) to investigate the lysosomal mobility changes upon treatment of SH-SY5Y 

cells with five drugs. This should serve as a case study for the new tools to be subsequently 

used for more detailed investigations of the lysosome mobility. 

3.2. Theoretical Background 

3.2.1. Lysosomes 

As briefly mentioned in thesis Chapter I, lysosomes are intercellular membrane-enclosed 

organelles responsible for degrading biomacromolecules in mammalian cells and have 

therefore earned a reputation as the ‘garbage disposal system’ of the cell.225 This degradative 

function is carried out by a vast number of luminal hydrolases specialized for certain 
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substrates. Those hydrolases contribute to the acidic lysosomal lumen pH of around 4.5-5.0. 

The lysosomal membrane consists of over 200 integral membrane proteins that regulate the 

proton-import to maintain the acidic pH of the lumen and control the luminal ion composition. 

Furthermore, there are multiple transporters that export products of degradation to the cytosol. 

Tethering factors and SNARE proteins are included to promote contact and fusion, 

respectively and a set of highly glycosylated lysosome-associated membrane proteins 

(LAMPs) protect the membrane from degradation by the acidic hydrolases inside the 

lysosomes. The lysosomal membrane that faces the cytosol serves as a platform for protein 

complexes that mediate interaction with the cytoskeleton and perform nutrient and stress 

signalling.225 More recently, the garbage disposal perception of lysosomes has widened with 

the realization that they also participate in many other cellular processes such as killing of 

intruders and pathogens, plasma membrane repair, tumour invasion and metastasis, apoptosis, 

and gene regulation, among others (see Figure 97).145 These findings sparked an increasing 

research interest in lysosomes and their multiple cellular functions.  

 
Figure 97: Multiple functions of lysosomes are influenced by their positioning and mobility. 

3.2.1.1. Movement and location of lysosomes 

The positioning of lysosomes is dependent on many factors. Usually they are broadly 

distributed throughout the cytoplasm, however in non-polarized cells they are mostly located 

in the so-called perinuclear cloud which is the central region surrounding the microtubule-

organizing centre.226 Lysosomes in polarized cells, such as neurons are also found in the 

cytoplasm of soma, axons and dendrites. Some of them are very mobile moving 

bidirectionally along microtubule tracks between the peripheral parts of the cells and the 

centre.227 The movement of lysosomes is mostly mediated by kinesin (anterograde transport) 
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and dynein motors (retrograde transport).228,229 Their movement can be seen as being not 

continuous but “stop-and-go”230 which suggests that they are following a regulation 

mechanism. Interestingly the regulation mechanisms can be influenced under certain 

conditions such as cytosol acidification which leads to a lysosome dispersal of the perinuclear 

lysosome population. Alternatively alkalization leads to a cluster formation in central 

locations of the cell.231,232 On the other hand, lysosomal dispersion can be induced by special 

stimuli such as treatment of macrophages or dendritic cells with bacterial lipopolysaccharides 

which simulate a bacterial infection. Other stimuli that lead to the perinuclear cluster 

formation of lysosomes are starvation,233 drug-induced apoptosis,234 or leucin-rich repeat 

kinase 2.235 Sometimes, the lysosomal movement can be disturbed in a situation where both 

kinesin and dynein are pulling the lysosome in opposite directions.236,237 Furthermore, 

lysosomal movement is also modulated by contacts with other organelles such as the 

endoplasmic reticulum (ER),238,226 the trans-Golgi-network (TGN)239 and peroxisomes.240 In 

that way, lysosomes populate the entire cytosol in a regulated manner and perform their 

important cellular functions such as regulation of transition metal homeostasis, detoxification 

and recycling of proteins and cellular waste via autophagy during their travels. This highly 

controlled process of lysosomal movement is very important for the cell viability and miss-

regulation of this intracellular transport is linked to several diseases such as 

neurodegenerative disorders (e.g. Parkinson’s, Alzheimer’s, and Huntington’s disease),241,242 

diabetes, lysosomal storage disorders (LSDs) and many more.243,244 

The causes for these diseases are very complex and under active investigation. One possible 

reason is an often age-related breakdown of cellular protein degradation pathways where 

lysosomes and autophagy play an important role.  

3.2.1.2. Cellular degradation pathways and diseases 

In eukaryotic cells there are two major protein internal degradation pathways in place. The 

first one is the ubiquitin-proteasome system (UPS) which is responsible for degrading short-

lived proteins. The second one is the autophagy-lysosome pathway (ALP) where during 

autophagy signalling, autophagosomes fuse with lysosomes, forming the autolysosome which 

recycle long-lived and insoluble proteins.245 In general autophagy is a self-degradative 

process that has a housekeeping role within a cell by removing misfolded or aggregated 

proteins and is responsible for balancing the energy and resources of a cell.246  
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The transcription factor EB (TFEB) plays very important regulatory roles influencing various 

processes including autophagy, lysosomal biogenesis and exocytosis, and lipid membrane 

repair catabolism amongst several others.247–250 Furthermore, TFEB is part of the so called 

“coordinated lysosomal expression and regulation” (CLEAR) network,251 which directly 

controls expression of genes linked to autophagy, lysosome and mitochondria biogenesis and 

mitochondrial quality control (MQC). The MQC is part in the defence mechanisms against 

ROS generation (see illustration in Figure 98).247,252–254 

The mammalian target of rapamycin protein kinase complex 1 (mTORC1) is a key 

component that regulates the balance between energy and nutrient abundance with cell growth 

and proliferation.248 It has been shown that inhibition of mTORC1 leads to an increased 

nuclear localization and activity of TFEB which in turn leads to increased autophagy and 

lysosome biogenesis.248 Also N2a cells treated with GSK3 could regulate TFEB by 

phosphorylation, which controls its trafficking to the nucleus.255 Therefore, targeting TFEB 

directly or via mTORC1 activation may represent an appealing therapeutic strategy to 

regulate cellular processes.256 

 

Figure 98: Visual illustration of TFEB gene regulation affecting processes such as lysosome 

biogenesis and MQC by activating mitophagy, regulating mitochondrial biogenesis, ROS clearance 

and balance of mitochondria fission-fusion cycle, etc. Targeting TFEB directly or via mTORC1 with 

certain drugs may represent an appealing therapeutic strategy to regulate MQC and other vital cellular 

processes.  
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The aging process and certain diseases cause a steady decline in autophagy.257 Malfunction of 

the ALP results in impairments of the autophagosome-lysosome biogenesis process and 

causes increased levels of reactive oxygen species which can damage the cell. An enhanced 

TFEB activation improves the clearance mechanisms of deleterious macromolecules and 

defective or damaged organelles through autophagic and lysosomal degradation. It positively 

modulates the lipid catabolism, promotes longevity and has ameliorating effects for disease 

related to ALP dysfunction such as neurodegenerative diseases and lysosomal storage 

disorder amongst others.251,258 An example for the positive effect of TFEB was observed by 

an overexpression of TFEB in C. elegans which significantly increased the lifespan through 

induction of macroautophagy.258 Furthermore, lysosomal activity and mobility of C. elegans 

worms was investigated and a higher motility was found to be connected to a good organism 

health state and that aging resulted in a reduced activity of the lysosomes.259 

Neurodegenerative diseases in particular are often caused by a loss of neurons due to an 

intracellular accumulation of aggregation-prone proteins, which in turn damage the protein 

degradation systems. The ALP pathways play an important role for the clearance process of 

intracellular misfolded protein aggregation to maintain a healthy homeostasis. Genetically, 

upregulation of TFEB has shown to lead to an attenuation of alpha-synuclein pathology in 

Parkinson’s disease.258,260  

Based on this evidence for the beneficial effects of TFEB up-regulation and the importance of 

a healthy lysosomal activity for cell health, many small molecules have been investigated for 

their use as TFEB activators or as supporters for lysosomal biogenesis. In general, any 

upregulation mechanism for lysosomal activity is thought to have beneficial effects on the 

clearance mechanisms and on the house keeping function of the cells. The potential 

therapeutic use of such compounds is seen as promising strategy for treating ALP dysfunction 

related diseases. 

In the next section some of the compounds that have shown to have an influence on the ALP 

or/and the TFEB activity are presented.  
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1.3.5. Promising drug targets for autophagy and lysosomal regulation 

 
Figure 99: Chemical structures of a) rapamycin; b) curcumin; c) digoxin; d) trehalose; and  

e) bafilomycin A1 

 

In the past many small molecules (such as those shown in Figure 99) have been investigated 

for their potential role on TFEB activation or for their support on lysosomal biogenesis. As 

shown in Figure 98, there are different proposed biological mechanisms of action. For this 

study five promising drugs were selected to investigate the lysosomal mobility after treatment 

of cells with those compounds. This could help to better understand the proposed mechanisms 

and their implications for cell health. Figure 99 presents the selected drug targets that have 

been used for this research. The first two compounds rapamycin and curcumin (see Figure 

99a, b, respectively) both follow a TFEB activation process by influencing mTORC1 (see 

Figure 98). 

Chemically, these compounds are clearly different. Rapamycin is a macrolide which belongs 

to a class of natural products that consist of a large macrocyclic lactone-ring, and it is 

commonly used as an immunosuppressant for human organ transplants. It is known to 

selectively bind to the protein complex mTORC1. It has been shown that influencing the 

activity of mTORC1 has some neuroprotective effects on several in vivo models for 

neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease.261 Curcumin on the 

other hand is a polyphenol that belongs to the family of curcuminoids. It has shown a wide 

range of positive effects such as a free radical scavenging activity, anti-inflammatory effects, 

it can cross the blood brain barrier and is neuroprotective.262 These neuroprotective effects of 

curcumin have been tested on several neurotoxins or genetically induced PD models.263 

Furthermore, curcumin treatment has shown to enhance lysosomal function by increased 

lysosomal acidification and enzyme activity. 

Both compounds are known to influence the TFEB activity via a mTORC1 inhibition 

pathway (see Figure 98).264,265 Curcumin promotes TFEB nuclear translocation and reduces 
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the phosphorylation level of TFEB via a mTORC1 inhibition pathway and increases the 

transcriptional activity of TFEB.266 Rapamycin is known to selectively bind and deactivate 

the protein complex mTORC1. The inactivation of mTORC1 by this drug leads to an 

enhanced TFEB gene expression which directly increases autophagy and lysosome biogenesis 

which is suspected to be the cause of its positive effects.263  

The third compound with a slightly different TFEB activation mechanism is the drug digoxin 

(see Figure 99c). It is an organic compound that belongs to the category of cardiac glycosides 

and it can enhance the TFEB activation by increasing cytosolic Ca2+ levels (see Figure 98). 

The drug has been reported to extend the lifespan of C. elegans nematodes with this 

mechanism by increasing lysosomal activity and biogenesis.267 

Alternatively, trehalose and bafilomycin A1 (see Figure 98d, e, respectively) are two 

compounds that follow very different biological mechanisms compared to the previously 

mentioned ones but also induce lysosome biogenesis.  

Trehalose is a nonreducing and naturally occurring sugar molecule consisting of two glucose 

molecules. It is widely produced in many different organisms such as bacteria, yeast, fungi, 

insects, invertebrates, and plants and it is used as a bioprotectant for cells from environmental 

conditions such as heat, cold, dehydration and oxidation.268,269 Trehalose activates TFEB in an 

mTORC1-independent manner and enhances autophagy and lysosomal activity270 which leads 

to an improved clearance of protein aggregates.266 It has been found to provide many 

beneficial effects in the context of several different neurodegenerative diseases and decreases 

misfolded protein aggregates such as alpha-synuclein in PD cell models or tau accumulation 

in Alzheimer’s mouse models,271 amongst others. 

On the other hand, bafilomycins belong to the family of macrolide antibiotics, which are 

produced by several different actinobacterias. These compounds have shown a wide range of 

biological activities such as anti-parasitic, anti-tumor, anti-fungal or immunosuppressant 

effects. In particular, bafilomycin A1 is known for its potent inhibition of cellular autophagy. 

Under normal conditions, autophagosomes fuse with lysosomes which facilitate the 

degradation process due to the lysosomal acidic pH and its available proteases.272 When cells 

are treated with bafilomycin A1 it targets the vacuolare-type H+-ATPase enzyme, which is a 

proton pump that acidifies lysosomes. This inhibits the acidification process, which stops the 

cascade of lysosome autophagosome fusion.  

Taken together, the combination of the different drugs’ positive health-related benefits with 

their different biological mechanisms and the lack of available literature of their effects on the 
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lysosomal mobility, makes the cellular effects of these drug interesting for investigation with 

the molecular and computational tools developed here. 

3.3. Aims and Objectives 

In this final part of the research project the different molecular (Chapter I) and computational 

(Chapter II) tools were used to investigate the movement of lysosomal compartments inside 

SH-SY5Y cells and explore the effects that different drugs have on the lysosomal mobility. 

This was planned as a case study for the utilization of the here developed tools and should 

serve as an exemplary workflow for future experiments that could investigate lysosomal 

mobility patterns in greater detail.  

Based on the proposed biological functions of the five selected drug targets, which all 

somehow lead to an increase of lysosome biogenesis, it was hypothesized that treatment of 

cells with those compounds could lead to an increase in the activity and mobility of 

lysosomes. This was expected to provide a potential explanation for their positive effects 

reported in the literature. Since the mechanisms, of the first three compounds (rapamycin, 

curcumin, and digoxin) all follow mTORC1 dependent mechanisms, the activity and mobility 

changes of those compounds might follow a similar trend. On the other hand, trehalose and 

bafilomycin A1 with their mTORC1 independent mechanisms could display an alternative 

trend. Specifically, bafilomycin A1 with its ability to change the lysosomal pH was expected 

to show significant effects on the mobility behaviour of lysosomes since this compound has 

shown to have direct effects on the organelle of interest.  

To investigate these hypotheses, cells were grown under normal conditions, labelled with the 

new FLCS1 lysosomal copper(I) probe and z-stack recordings over long time periods were 

taken before and after the treatment of the cells with the corresponding drugs. The recorded 

image sequences were enhanced with the pixel resolution upscaling and image frame 

interpolation neural networks presented in thesis Chapter II. The movement patterns of the 

lysosomes were captured and analysed with the TrackMate plugin from Fiji.149,224 Finally, the 

quantitative data from the lysosomal tracking studies after treatment, were analysed for 

anomalies and compared to the control baseline of untreated cells.  
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3.4. Results and Discussion 

3.4.1. Case Study: Drug treatment comparison  

The comparison of lysosomal mobility was carried out by recording cellular images with a 

confocal microscope over time in a z-stack mode at low laser powers (0.05%) and low 

resolution (256 px) to ensure a high frame sampling rate. Subsequently, the GMFN and DAIN 

network were applied increasing the resolution from 256 px to 512 px and increasing the 

frame density by a factor of 2x. After that the lysosomes were tracked using the TrackMate 

plugin. As expected, the untreated cells and cells treated with 0.1% DMSO in buffer (i.e., as a 

control since this amount was used to prepare the drug solutions), did not show significant 

changes in the mean particle speeds of the lysosomes before and after treatment.  

Treatment of cells with digoxin and curcumin for 24 h significantly reduced the speed at 

which the lysosomes were moving. Treatment with bafilomycin A1 and trehalose also led to 

reduction on the lysosomes’ speed, although this was less pronounced. Interestingly, 

treatment with rapamycin resulted in a small increase of lysosomal mobility. For the precise 

treatment protocols of the different drugs and concentrations see Materials and Methods 

Section 3.6. The average lysosomal speeds of the different conditions are shown in Figure 

100a, overlayed recordings of the cells are shown in Figure 100c, and comparison videos are 

presented in the QR-code video link in Figure 100b.  

These preliminary experiments suggest that the drugs digoxin and curcumin have a similar 

mobility reduction effect on lysosomes. Since curcumin and digoxin are following both a 

mTORC1-dependent mechanism for TFEB activation this could be the reason for these 

aligning effects. However, the increase of mobility of rapamycin, which does not follow the 

same trend contradicts this hypothesis. Generally, it was expected that these compounds 

would lead to a lysosomal mobility increase which could have indicated the reason for their 

positive effects in different disease models. An alternative explanation for the reduced 

mobility observed for digoxin and curcumin could be a drug induced apoptosis.234 This is 

known to also reduce the mobility of lysosomes and lead to a lysosomal aggregation at the 

perinuclear region of the cell. However, this aggregation was not observed for the two 

investigated compounds in question.  

The results on trehalose and bafilomycin A1 also showed a slight mobility reduction after the 

treatment but these were less pronounced compared to digoxin and curcumin.  
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Although all five compounds have previously been shown to either influence lysosome 

biogenesis and autophagy directly (trehalose, bafilomycin A1) or via indirect means by 

influencing the mTORC1 controlled TFEB location (rapamycin, curcumin, digoxin), their 

precise mechanisms are too different to draw mechanistic conclusions from these results. 

Since the results described above were only done in duplicate, more repeats and the effect of 

different drug concentrations need to be investigated before drawing definite conclusions of 

these findings. However, this observational case study provides the general workflow 

combining the different technologies to enable more thorough investigations into the precise 

biological mechanisms for these lysosomal speed reductions. Therefore, these preliminary 

results indicate that the selected drugs influence the lysosomal mobility to a certain extent, but 

more repeats and control experiments should be carried out to exclude other effects that could 

also play a role in lysosomal mobility.  

Furthermore, the dose of the drugs and the treatment time (which has not been investigated in 

this research) could have an effect on the outcome of the studies. Since each drug used has a 

different mode of action on the cell metabolism more mechanistic experiments could also be 

beneficial to investigate the precise reason for the observed lysosomal mobility changes. 

Finally, specific autophagy staining with LC3 protein dye could be carried out in future 

experiments to distinguish lysosomes from autophagosomes. 
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Figure 100: Lysosome drug treatment analysis. a) Lysosome movement speed distribution for the 

different before and after treatment conditions. b) QR-code video comparison examples for SH-SY5Y 

cells recorded in before and after treatment state for the different drugs. c) Overlayed image recordings 

over time of the different treatment conditions in the before and after state. 

3.5. Conclusion  

In this chapter preliminary drug treatment experiments on SH-SY5Y cells with rapamycin, 

digoxin, curcumin, trehalose and bafilomycin A1 were carried out to examine the lysosomal 

mobility changes compared to untreated cells. It was hypothesized that those drugs, which 
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have been shown to support the biogenesis of lysosomes, could also induce an increased 

activity and mobility of lysosomes. In contrast to the stated hypothesis the results suggested 

that only rapamycin showed a slight increase in lysosomal activity. Digoxin and curcumin 

induce a significant reduction on lysosome mobility while bafilomycin A1 and trehalose 

showed only a modest reduction effect. The results indicate that these drugs induce changes in 

the lysosomal movement behaviour, even though only one case showed the predicted increase. 

More experiments examining the effects of the drugs’ dosage and more repeats need to be 

carried out to exclude other effects that could lead to the same observations. Furthermore, 

their precise mechanism should be investigated thoroughly before drawing definite conclusion 

on these results.  

Despite the unexpected observations, the study presented in this chapter shows the 

applicability of the new optical probe and the computational tools to study the mobility of 

lysosomes in cells.  

3.6. Materials and Methods 

3.6.1. Treatment of SH-SY5Y cells 

SH-SY5Y cells were grown in DMEM with 10% FBS, penicillin and streptomycin at 37 °C. 

Cells were plated on LabTek II coverslides at a seeding density of 20,000 cells per well and 

let grow for 48 h in the incubator. Then the media was changed to media containing 0.2% 

lipofectamine and 60 nM FLCS1 and the cells were incubated for another 24 h. After that, the 

media was changed back to grow media and after 1 h the cells were imaged (this is the 

“before treatment” state) on a Leica SP7 confocal microscope at 630 nm excitation and a laser 

power of 0.05 % at a resolution of 256 px and in 4D z-stacks over time. Every z-stack took 15 

sec, and the cells were recorded for 40 to 60 time points (10-15 min). The location of the cells 

was precisely recorded by measuring the distances of a set reference point of a cover glass 

impurity at the well corner. After the first imaging procedure the cells were treated with 370 

nM digoxin, 250 nM rapamycin, 5 μM curcumin, 50 mM trehalose or 30 nM bafilomycin A1 

in DMEM with its supplements and was incubated overnight for 24 h. For the second time 

point the same cells were searched based on the recorded coordinates and measured with the 

same microscopy settings as before (this is the “after treatment” state). 
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1.3.6. Particle tracking with TrackMate 

Particle tracking was performed using the Fiji plugin TrackMate.149,224 First the spatial pixel 

resolution of the recorded z-stack image sequence was upscaled with GMFN and the image 

frame interpolation along the t-dimension was carried out using the DAIN network. The 

enhanced image was then overlayed along the z-dimension and on this 2D+t dataset the 

particle tracking with TrackMate was performed. For detecting the particles, the LoG detector 

with an estimated blob diameter of 1 px and a threshold of 10-30 (depending on the intensity 

quality of the image) was used. The linking step was performed with the “Simple LAP tracker” 

with a linking distance of 3 μm, gap-closing of 3 μm and maximum frame gap of 2 frames. 

For the track selection a filter was set removing very short tracks with less than 7 frames to 

avoid flickering effects of partially detected lysosomal spots. The track statistics was saved 

and for the analysis the mean particle speed of each track in the image sequence was 

compared in the before and after treatment state of the same cells incubated with the drugs for 

24 h.   
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CHAPTER VI 

4.1. Summary and Outlook 

4.1.1. Fluorescence copper(I) dye FLCS1 

In this PhD research project, a new fluorescent copper(I) probe (FLCS1) was developed 

based on a BODIPY core structure connected with a NS4 ligand that selectively bound to 

copper(I) based on in vitro experiments. The new probe showed superior photophysical 

properties and higher photostability to another BODIPY-based copper(I) probe (CS3) which 

is considered a ‘gold standard’. FLCS1 showed to detect copper(I) in lysosomes when live 

SH-SY5Y cells were imaged using FLIM. Further experiments with optically labelled alpha-

synuclein confirmed colocalization of FLCS1 with this protein inside lysosomes. In cellular 

experiments with this probe the copper transporter complex Cu-GTSM was used to 

demonstrate the ability to monitor changing levels of copper(I) in lysosomes using FLIM 

microscopy which is the first reported use of this technology for monitoring copper(I) levels 

in live cells.273 

For future generations of copper(I) probes especially the binding affinity of the probe should 

be enhanced since the binding affinity of copper(I) in the cytosol exceeds the one from the 

FLCS1 probe. This limits its application to only be able to detect copper(I) present in 

lysosomes, where due to the low pH, the probe is able to compete with other copper(I) 

binding sources. Furthermore, the dye could be made more water soluble which would 

potentially increase the likelihood to be able to directly treat the cells with the dye without the 

need of lipofectamine as a vehicle. This could be achieved by cleaving the allyl-ester groups 
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of the molecule or by modifying the BODIPY core structure with functional groups that 

increase the water solubility (e.g. SO3
-, or COO- groups) 

4.1.2. Microscopy image enhancement strategies 

The same copper(I) probe which localised in lysosomes was then used to perform lysosomal 

imaging to monitor the trafficking of the metal of this organelle inside cells. To overcome the 

limitations of the “eternal triangle of compromise” of point-scanning systems (speed, signal-

to-noise ratio and spatial pixel resolution), several different neural networks were 

implemented tackling each of the corners of the triangle.  

To improve the limitation of low image resolution, three neural networks were implemented 

(GMFN, SRFBN-S and Zooming SlowMo (ZS)) that could increase the pixel resolution of the 

recorded images by a factor of up to 4x. They were benchmarked against state-of-the-art 

mathematical upscaling methods (BIL and BIC), and it was shown that the deep learning 

resolution enhancement algorithms were better than the classical mathematical ones. 

Furthermore, ZS was compared with a previously reported neural network (PSSR) recently 

implemented for microscopy; ZS showed equivalent performance as this established network 

already used for microscopy. 

To tackle the SNR problem an existing neural network called “Content-Aware Image 

Restoration” (in short CARE)218 was used. This network showed promising results removing 

high levels of noise on a simulated dataset but also introduced some artefacts for 4D datasets 

where the intensity of the signal was sometimes not reconstructed correctly or caused 

flickering signals in the different z-stack slices. 

Then, two state-of-the-art neural networks were implemented (DAIN and Zooming SlowMo) 

that could increase the image frame rate by interpolating images between two consecutive 

timepoints in the t- and z-dimension of 4D (TZXY) microscopy datasets. Those two 

interpolation networks were benchmarked against mathematical bilinear and bicubic 

interpolation techniques on simulated datasets and real-life microscopy data and showed 

significant improvements on the tracking performance of those datasets. All the mentioned 

image enhancement algorithms were implemented in Google Colab notebooks and were made 

available for the scientific community on the ZeroCostDL4Mic platform. 

After establishing the functionality of each quality improvement technique, all three 

enhancement algorithms were tested in sequence on a synthetic dataset as well as on real 

experimental data. The low SNR, low resolution and low frame rate image sequences were 



Chapter 4 

Martin Priessner - January 2022 187 

improved with CARE&ZS&ZS and CARE&GMFN&DAIN networks. Both workstreams 

showed large improvements over the low-quality images but the denoising network (CARE) 

produced artefacts that were amplified in the following enhancement steps. It was found that 

reducing the laser power made the CARE network redundant since the FLCS1 probe showed 

good photostability while maintaining a good signal contrast at low laser powers. Therefore, 

just the resolution and frame rate enhancing algorithms were used for biological experiments. 

For future developments newer and more powerful algorithms could be implemented which 

potentially do not cause artefacts that are sometimes created by the frame interpolation 

networks. Also, the image spatial pixel resolution upscaling research is progressing quickly 

and could soon provide better and more powerful networks that could perform even better 

than the here implemented ones. 

1.3.7. Effects of drug treatment on lysosomal mobility 

Finally, the best performing neural network combination, i.e. GMFN and DAIN, was used to 

perform image enhancement on lysosomal movement datasets where the tracking results of 

copper-containing lysosomes before and after treatment with different drugs used in 

Parkinson’s disease were compared. Treatment with digoxin and curcumin resulted in a 

significant reduced lysosomal activity and movement after incubation for 24 h. Trehalose and 

bafilomycin A1 also showed small reduction of lysosomal mobility while rapamycin showed 

a small lysosome movement speed increase. To confirm these observations more control 

experiments and repeats are needed, and some biological control experiments would be 

helpful to investigate the cause for the observations in more details. Furthermore, other 

movement parameters provided by the tracking algorithm can be considered to gain deeper 

insights into the effect of these drugs. The direction and lysosomal location over time in 

comparison to the nucleus could be investigated in more detail as well as the conditions of 

each individual cell could be considered. This would allow for a better understanding of yet 

unanswered question of, how individual lysosomes are organized spatially to coordinate and 

integrate their functions. More data and potentially even longer image recordings could be 

necessary to be able to carry out proper statistical evaluation of these results. 
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Angew. Chemie Int. Ed. - doi.org/10.1002/anie.202109349 (2021). 

2) Priessner M., Gaboriau D. C.,Sheridan A., Lenn T., Chubb J., Manor U., Vilar R., 

Laine R. F., Deep Learning-based frame predictions for bioimaging, bioRxiv, 

doi.org/10.1101/2021.11.02.466664 / Nature Methods (submitted) 

 

Academic Conference Presentations and Research Stays 

03/07/2019: Poster presentation at Post Graduate Symposium at Imperial College London: 

Developing a colocalization toolset for detecting copper(I) and alpha-synuclein in 

Parkinsons’s Disease 

26/07/2018 – 29/07/2018: Conference poster presentation at the EMBO Workshop. In situ 

Methods in Cell Biology and Cellular Biophysics: Developing a colocalization toolset for 

detecting copper(I) and alpha-synuclein in Parkinsons’s Disease  

12/08/2019: Poster presentation at Post Graduate Symposium at Imperial College London: 

Development of fluorescent probes for cellular imaging of copper(I) and colocalization 

studies with alpha-synuclein (Award: 2nd best Poster Presentation) 

12/08/2019 – 16/08/2019: Poster presentation at the International Conference on. Biological 

Inorganic Chemistry Conference: Development of fluorescent probes for cellular imaging of 

copper(I) and colocalization studies with alpha-synuclein 

05/01/2020 – 29/02/2020: Research internship at Omnivoyant: Using deep learning 

approaches for establishing colour constancy on social media images 

24/07/2020: Research talk at the Post Graduate Symposium at Imperial College London: 

Investigation of Lysosomal Copper(I) Mobility in Cells relevant to Parkinsons’s Disease 

using Deep Learning Strategies in Confocal Microscopy 
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Figure 101: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 3. 
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Figure 102: 13C NMR spectrum (in CDCl3, 100 MHz) of compound 3. 

 
Figure 103: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 4. 
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Figure 104: 13C NMR spectrum (in CDCl3, 400 MHz) of compound 4. 

 
Figure 105: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 5. 
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Figure 106: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 9. 

 

 
Figure 107: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 11. 
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Figure 108: 1H NMR spectrum (in CDCl3, 400 MHz) of compound Ctrl-CS3. 

 
Figure 109: 1H NMR spectrum (in CDCl3, 400 MHz) of compound CS3. 
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Figure 110: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 14. 

 
Figure 111: 13C NMR spectrum (in CDCl3, 100 MHz) of compound 14. 
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Figure 112: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 15a. 

Figure 113: 13C NMR spectrum (in CDCl3, 100 MHz) of compound 15a. 
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Figure 114: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 16a. 

 
Figure 115: 13C NMR spectrum (in CDCl3, 100 MHz) of compound 16a. 
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Figure 116: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 16b. 

 
Figure 117: 13C NMR spectrum (in CDCl3, 100 MHz) of compound 16b. 
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Figure 118: 1H NMR spectrum (in DMSO, 400 MHz) of compound 23. 

 
Figure 119: 13C NMR spectrum (in CDCl3, 100 MHz) of compound 23. 
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Figure 120: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 21. 

 
Figure 121: 13C NMR spectrum (in CDCl3, 100 MHz) of compound 21. 
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Figure 122: 1H NMR spectrum (in CDCl3, 400 MHz) of compound 25. 

Figure 123: 13C NMR spectrum (in CDCl3, 100 MHz) of compound 25. 
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Figure 124: 1H NMR spectrum (in CDCl3, 400 MHz) of compound FLCS1 

 

Figure 125: 13C NMR spectrum (in CDCl3, 100 MHz) of compound FLCS1. 
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Figure 126: 1H NMR spectrum (in CDCl3, 400 MHz) of compound Ctrl-FLCS1 

 
Figure 127: 13C NMR spectrum (in CDCl3, 100 MHz) of compound Ctrl-FLCS1 
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Figure 128: ESI-MS spectrum of CS3 in MeOH. 

 
Figure 129: ESI-MS spectrum of Ctr-CS3 in MeOH. 
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Figure 130: MALDI-TOF MS spectrum of FLCS1. 

 

Figure 131: MALDI-TOF MS spectrum of Ctrl-FLCS1. 
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Figure 132: Comparison of IR spectra of compound 22 and compound 23 showing azide band 

appearing at 2105 cm-1.  

 

Table 5: TCSPC titration parameters. TCSPC fitting parameters of titration of copper(I) to CS3 (5 μM) 

in methanol; biexponential fit with fixed values for τ1 = 0.97±0.02 ns and τ2 = 6.58±0.04 ns. 
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Table 6: TCSPC titration parameters. TCSPC fitting parameters of titration of copper(I) to FLCS1  

(1 μM) in methanol; biexponential fit with fixed values for τ1 = 0.39±0.00 ns and τ2 = 3.09±0.01 ns. 
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Figure 133: FLIM imaging with variable lifetime values. Example FLIM images and corresponding 

histograms of parameter distributions for FLCS1 in SH-SY5Y cells showing a, b) α2; c, d) τavg; e, f) χ2; 

g, h) τ1 and g, h) τ2 signal at variable values for τ1 and τ2 before and after 20 min treatment of Cu-

GTSM. 
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Figure 134: FLIM imaging with fixed lifetime values. Example FLIM images and corresponding 

histograms of parameter distributions for FLCS1 in SH-SY5Y cells showing a, b) α1; c, d) τavg; e, f) χ2; 

at fixed values for τ1 =0.7 ns and τ2 =2.7 ns before and after 20 min treatment of Cu-GTSM. 

 

 
Figure 135: FLIM χ2 comparison. Example FLIM image of FLCS1 in SH-SY5Y cells showing χ2 

value with variable τ1 and τ2 values a) before and c) after and for values fixed at τ1 =0.7 ns and τ2 =2.7 

ns, b) before and d) after 20 min treatment of Cu-GTSM; histograms of χ2 value distributions are also 

shown. 
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Figure 136: FLIM image analysis. Effect of 20 min incubation of 1% DMSO in DMEM (left), effect 

of repeated laser exposure (middle), effect of Cu-GTSM (2.5 μM) in DMEM on FLCS1 fluorescence 

lifetime signal in cells (right). * p > 0.5 shows no statistical significance ** p < 0.0005 shows 

statistical significance with student t-test. 

  



Appendix 

Martin Priessner - January 2022 224 

Appendix Chapter II 

 
Figure 137: Visual artefacts of DAIN and ZS image frame interpolation results in comparison to the 

ground truth of a simulated dataset at particle speed V7. Overlayed images show ground truth particles 

in green and interpolated location of particles in magenta. 
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Figure 138: t-Project of the different image frame interpolation methods of the particle movements at 

different speeds. 

 

 
Figure 139: Visual comparison of DAIN and ZS for z-stack image frame interpolation to the ground 

truth at slice distance 300. 
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Figure 140: 2x image frame interpolation of ZS and DAIN on EM dataset. ZS produces better quality 

results than DAIN. ZS creates smoother transitions of an imaged dendrite (see red arrow in zoomed 

sections). 

 
Figure 141: 2x image frame interpolation of ZS and DAIN of lysosomes on a confocal microscope. 

DAIN produces slightly better-quality results than ZS. ZS misses faster moving lysosomes while 

DAIN is able to capture these organelles well (example highlighted with white arrow in zoomed 

sections). 
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Figure 142: 2x image frame interpolation of ZS and DAIN of SH-SY5Y cells in brightfield 

microscope. ZS produces slightly better-quality results than DAIN. DAIN creates visual artefacts for 

fast moving lipid droplets while ZS manages to capture the movement better (see white arrow in 

zoomed sections). 
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Figure 143: 2x image frame interpolation of ZS and DAIN on spinning disk confocal microscopy 

dataset. ZS creates smoother transitions and better-quality interpolation results than DAIN (see white 

arrows in zoomed sections). 

 

 



Appendix 

Martin Priessner - January 2022 229 

 
Figure 144: 4x image frame interpolation of ZS and DAIN on EM dataset. DAIN produces better 

quality results than ZS. ZS creates strong visual artefacts especially for the synaptic vesicles (see 

zoomed sections). 

 

 
Figure 145: QR-code video example of 2x and 4x image frame interpolation. 
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Table 7: Parameter for creation of synthetic dataset with ICY plugin.150 

 
 

Table 8: Parameters for tracking particles with Fiji TrackMate plugin.149,224 
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Table 9: Training data and time information for fine-tuning DAIN and ZS networks for the image 

interpolation task with the different datasets. 

 

Table 10: Training data and time information for fine-tuning DAIN and ZS networks for the image 

spatial pixel resolution upscaling task for the different datasets. 

 

 

 

 

 

 


