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Abstract

Lesion-symptom mapping studies are a critical component of addressing the relationship

between brain and behaviour. Recent developments have yielded significant improve-

ments in the imaging and detection of lesion profiles, but the quantification of motor

outcomes is still largely performed by subjective and low-resolution standard clinical rat-

ing scales. This mismatch means than lesion-symptom mapping studies are limited in

scope by scores which lack the necessary accuracy to fully quantify the subcomponents

of motor function.

The first study conducted aimed to develop a new automated system of motor func-

tion which addressed the limitations inherent in the clinical rating scales. A wearable

fusion system was designed that included the attachment of inertial sensors to record

the kinematics of upper extremity. This was combined with the novel application of

mechanomyographic sensors in this field, to enable the quantification of hand/wrist func-

tion. Novel outputs were developed for this system which aimed to combine the validity

of the clinical rating scales with the high accuracy of measurements possible with a wear-

able sensor system. This was achieved by the development of a sophisticated classification

model which was trained on series of kinematic and myographic measures to classify the

clinical rating scale. These classified scores were combined with a series of fine-grained

clinical features derived from higher-order sensor metrics.

The developed automated system graded the upper-extremity tasks of the Fugl-

Meyer Assessment with a mean accuracy of 75% for gross motor tasks and 66% for

the wrist/hand tasks. This accuracy increased to 85% and 74% when distinguishing be-

tween healthy and impaired function for each of these tasks. Several clinical features

were computed to describe the subcomponents of upper extremity motor function. This

fine-grained clinical feature set offers a novel means to complement the low resolution

but well-validated standardised clinical rating scales.
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A second study was performed to utilise the fine-grained clinical feature set calculated

in the previous study in a large-scale region-of-interest lesion-symptom mapping study.

Statistically significant regions of motor dysfunction were found in the corticospinal tract

and the internal capsule, which are consistent with other motor-based lesion-symptom

mapping studies. In addition, the cortico-ponto-cerebellar tract was found to be statisti-

cally significant when testing with a clinical feature of hand/wrist motor function. This

is a novel finding, potentially due to prior studies being limited to quantifying this sub-

component of motor function using standard clinical rating scales. These results indicate

the validity and potential of the clinical feature set to provide a more detailed picture of

motor dysfunction in lesion-symptom mapping studies.
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CHAPTER

ONE

Introduction

1.1 Motivation

Over the past few decades stroke has increasingly become one of the major causes of

acquired adult disability in the UK [22]. This rate of increase is primarily due to improve-

ments in the quality of post-stroke care which has increased the proportion of individuals

surviving stroke and living with a resulting disability. This increase in quality is driven by

several recent innovations including imaging technology, thrombolysis, and surgery tech-

niques. Despite these innovations, methods of quantifying the motor deficits post-stroke

remain relatively unchanged in decades and are still dependent on subjective evaluation

by a clinician. The key drawbacks associated with this method include high time expendi-

ture, the requirement for extensive training, and low resolution. These limitations have a

significant impact in terms of the quality of monitoring and targetting patient rehabilita-

tion. Secondly, the reliance on these limited clinical rating scales has ramifications on the

depth of insights possible in motor-based research studies. This includes lesion-symptom

mapping studies which seek to study the relationship between brain lesion profiles and

measures of motor dysfunction but are limited by the low-resolution scores provided by

clinical rating scales.

Multiple systems have been trialled over the past decade to attempt to automate the

traditional clinical rating scales. These systems have attempted to improve on the limi-

tations of these rating scales in one or a combination of accuracy, time saving, and ob-

jectivity. Developed systems have taken the form of sensors which collect data from the

subjects and algorithms which are used to compute motor scores. A pervasive limitation
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Chapter 1. Introduction

of prior automated systems is the difficulty faced in quantifying hand and wrist function.

This is a major component of stroke dysfunction but previously proposed methods such

as the use of instrumented gloves or visual-sensing suffer from limitations in practicality

or hygiene. Other limitations of prior systems which have prevented their clinical up-

take include lack of useful information (beyond predicting a clinical score), extensive time

required for setup, and the narrow range of motor dysfunction levels which may be tested.

Lesion-symptom mapping studies form a key tool in improving the understanding of

functional neuroanatomy of the brain. These studies have been performed in the past

to improve understanding of a number of cognitive processes including spoken language,

somatosensory function, and motor function. The insights possible via lesion-symptom

mapping have greatly increased in recent years due to huge leaps in our ability to image

the brain in-vivo. Despite these advances, measures of motor function are still dependent

on clinical rating scales which have remained unchanged for many years. Since the in-

sights possible via lesion symptom mapping are directly dependent on the quality of the

outcome measures provided; these clinical rating scales presently form one of the major

limitations of these studies.

Sensor systems, such as those proposed to supplement or replace the clinical rating

scales, offer the ability to calculate metrics of motor function which would either be

impossible or prohibitively difficult for a clinician to calculate. For instance, whilst a

clinician may be able to assign an approximate rating for how well a subject may be able

to flex their shoulder, it is possible for a sensor system to instead assign this with a higher

resolution value in terms of degrees rotation. In addition, sensor systems could be used

to record metrics that a clinician cannot freely observe, such as the use of myographic

sensors to measure subject muscle activity. It is expected that novel and higher quality

motor outcome measures which a sensor-based system would offer a whole new domain

of potential insights into lesion-symptom mapping studies. Prior studies which have

already implemented sensors have been limited to simple setups such as the use of a hand

dynamometer. There is clearly room for significant innovation in this field by the use of

more complex derived motor metrics from a sophisticated sensor system.
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1.2 Research Focus

The first study included in this thesis aimed to build on prior systems towards the de-

velopment of an automated system for scoring motor function post-stroke. There are

several key drawbacks of previous works in this field which should be addressed in the

present study to enable clinical validity. The first drawback is the low statistical power

present in the majority of previous studies due to small sample sizes of fewer than 20

subjects. Secondly, poor quantification of arm motion was present in studies which con-

sidered data collected from a single inertial measurement unit attached to the wrist to be

representative of the entire arm motion. Finally, many prior studies have either ignored

or poorly quantified the grasp and hand function of the subject, a major paradigm of

post-stroke weakness. These drawbacks were addressed in the current study by the use

of a large subject pool, full instrumentation of the upper arm, and the use of myographic

sensing respectively. A secondary component of the study was the computation of a se-

ries of fine-grained clinically relevant features which provided additional insight into the

subcomponents of motor function.

The second study presented in this thesis involved the incorporation of the wealth of

information gathered by the sensors proposed in the prior study to perform a lesion-

symptom mapping study. The majority of earlier motor-based lesion-symptom mapping

studies have utilised either clinical rating scales or simplistic sensors. This would be

the first study to utilise motor outcome measures derived from the fusion of sensor data

collected across the upper extremity. Motor outcome measures were selected from the

collection of orientation and myographic features calculated from the different body seg-

ments in the previous study. Features were selected based on a pre-prescribed criteria

including evidence of usefulness as metrics of motor function. Lesions were identified and

boundaries drawn onto subject CT and MRI scans. Finally, a large-scale lesion-symptom

mapping study was conducted by applying these novel motor outcome measures derived

from the sensors in addition to the FMA clinical rating scale, which was used as a baseline

measure. Significant results were considered for regions which were identified as being

statistically significant for the novel motor outcome measures but not for the baseline

FMA. This result would evidence the additional information provided by sensor derived

motor outcome measures than by the FMA alone.
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1.3 Thesis Structure

This thesis is structured into five main chapters as follows:

� Chapter 2 details all the background information required to fully appreciate the

work conducted in the two studies presented in this thesis.

� Chapter 3 follows the development of an automated system for rating upper arm

motor function post-stroke. A literature review is provided to supply details of

prior automated systems developed in this domain. This is followed by the system

development stages and a large clinical study conducted to validate the system.

The motor outcomes produced by the system, composed of a classified FMA-UE

score and a series of fine grained features, will be discussed in depth.

� Chapter 4 details a large motor-based lesion-symptom mapping study utilising the

fine grained features developed in the previous chapter as the motor outcome mea-

sures. A literature review is included which outlines the techniques developed in

prior lesion-symptom mapping studies and their major findings. Next, the major

pieces of software used for processing and analysis within the study are discussed.

Finally, the lesion symptom mapping results are discussed with respect to the find-

ings using motor outcomes provided by the fine grained features (developed in the

previous chapter) as well as the overall FMA-UE (as a baseline measure).

� Chapter 5 presents the conclusion of the thesis. This is structured in terms of the

performance of the automated system and how useful the motor outcomes provided

by the fine grained features translated into the large lesion-symptom mapping study.

Additionally, the novel application of mechanomyographic sensing in a wearable

system for targetting motor function in stroke will be discussed.

� Chapter 6 provides context of the findings of two major studies outlined in this

thesis in terms of the wider literature and real-world applications. Any limitations

of the both the wearable system and the lesion symptom mapping study are dis-

cussed, and suggestions made on how these could be improved upon in the future.

Finally, the author’s opinion on the future direction of such wearable systems will

be summarised.
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CHAPTER

TWO

Background

2.1 Chapter Structure

This chapter covers the required background topics for each of the two major studies

included in this thesis. The novel automated system developed in this paper may be better

understood by reading the included sections on clinical evaluation of stroke, diagnostic

myography, motion tracking, defining orientation, and the use of machine learning in

healthcare. The fundamentals of lesion-symptom mapping are explained via sections on

the pathophysiology of stroke, neuroimaging of stroke, neuroanatomy, and the background

of lesion-symptom mapping.

2.2 Stroke

There are on average over 100,000 incidences of stroke in the UK every year. Improve-

ments in healthcare response of stroke has steadily improved leading to a present survival

rate of over 80% in England, Wales, and Northern Ireland. The has resulted in a large

post-stroke population in the UK of over 1.2 million people. Post-stroke care is a key

component for this population with a third of stroke survivors experiencing depression

post-stroke and two thirds leaving hospital with a disability. The total cost of stroke to

society in the UK is estimated to be around £26 billion per year [22].
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2.2.1 Pathophysiology of Stroke

Stroke is a form of cardiovascular disease which impairs the blood supply to the brain

resulting in regions of brain cell death (lesions). There are several major symptoms which

indicate stroke including deficits in motor function, sensation, cognition, and communi-

cation. The two types of stroke which may occur are ischaemic and haemorrhagic. The

ischaemic type of stroke is most common and is caused by a lack of blood flow to the brain

due to the formation of blood clots. A temporary blockage of blood flow which does not

result in permanent damage is referred to as a Transient Ischaemic Attack (TIA). The

Haemorrhagic type of stroke is less common and is caused by seepage of blood through

a hole in a blood vessel wall into the brain or space around the brain [23]. Both forms of

stroke are illustrated in Figure 2.1.

Figure 2.1: Pathophysiology of Haemorrhagic and Ischaemic Stroke Types. Taken from [1]

2.2.2 Sensorimotor Symptoms of Stroke

Weakness or paralysis is the predominant impairment that contributes to motor dysfunc-

tion post-stroke [24]. This is a consequence of disturbed signal transmission from the

motor cortex to the spinal cord required for the execution of movements. The result of

this is delayed initiation and termination of muscle contraction [25] and a slowness in

developing forces [26]. Weakness may be present in all muscle groups of the upper limb

or may selectively affect some more than others. The symmetrical nature of the motor

pathways in the brain (whereby motor regions of the brain control body segments on the

opposite side) means that it is common for motor dysfunction to be more pronounced on
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one side, in a condition known as hemiplegia.

Sensory loss is common post-stroke across tactile, proprioceptive and high-order sen-

sory modalities such as vision. Sensory loss after stroke is commonly associated with the

degree of motor weakness but may also occur in isolation due to lesion in specific brain

regions (such as the parietal cortex). Sensory loss may also have a knock-on effect on mo-

tor function. This is because the planning and execution of voluntary movement requires

information regarding body positions and the prediction of future positions. This can

only be achieved by integrating a variety of sensory inputs with ongoing and planning

motor activity. Subjects who have lost one or more of their senses may show profoundly

affected motor function even if their motor strength remains unaffected [27].

Another common motor impairment suffered post-stroke is spasticity. This motor

disorder is characterised by a velocity-dependent increase in muscle tone with exagger-

ated tendon jerks, resulting from hyperexcitability of the stretch reflex. This impairment

becomes more common in relation to the time since stroke onset and is a secondary effect

of weakness and mobility on skeletal muscles [28]. Subjects with spasticity exhibit im-

paired functions and decreased quality of life. Another possible consequence is abnormal

postural patterns due to imbalance in agonist and antagonist strength [29].

A final common impairment present post-stroke are abnormal motor synergies. This

describes functional impairment due to abnormal descending motor commands post-

stroke [30]. This impairment is characterised by a difficulty in coordination of different

muscle groups and has been found to be independent of motor weaknesses.

2.2.3 Clinical Evaluation of Upper Extremity Motor Function

Clinical evaluations of motor function post-stroke form a critical component of optimising

rehabilitation programs, managing patient expectations, and assessing outcome measures

for clinical studies. Upper extremity motor function assessments may be assessed at

the bedside and so are often performed as an initial method of gauging motor function

immediately post-stroke. This contrasts with lower extremity assessment which requires

subjects to be able to get out of bed and as such may not always be assessed in the acute

stage of stroke.

There are currently more than 53 pre-existing clinical measures of upper extremity

motor function currently available [31]. These may be broadly placed into three cate-

gories [32]. Firstly, scales which measure impairments to bodily function or structure. A

common example of this is the Modified Ashworth Scale (MAS) which is a measure of
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spasticity. Secondly, there are scales which measure dysfunctions or limitations in per-

forming a given activity. An example of this is the Action Research Arm Test (ARAT),

an upper extremity scale which assesses tasks in the categories of grasp, grip, pinch,

and gross movement. Another example is the Wolf Motor Function Test (WMFT). The

scale assesses upper extremity function via 21 tasks in three categories, time, functional

ability, and strength. Tasks are assessed using an ordinal scale which ranges from 0-5.

Finally, there are scales which define a limitation in general life. An example of this is

the Stroke Impact Scale (SIS), a self-reported questionnaire which evaluates disability

and health-related quality of life after stroke.

One of the most widely adopted clinical scales of impairments to bodily function

post-stroke is the Fugl-Meyer Assessment (FMA) [33]. The FMA is also one of the most

in-depth and well-validated rating scales of sensorimotor function post-stroke. The FMA

contains tasks which covers the function of the entire body, but a shortened version is often

used which only includes upper extremity motor function assessment (FMA-UE). This

section examines each component of the upper extremity in isolation as well as combined

in synergistic and non-synergistic movements. In addition, reflexes and coordination

are recorded. Each task may be scored as a single component or the combination of

multiple subcomponents depending on its complexity [33]. Each component is given a

qualitative rating of either 0, 1, or 2 depending on how well it was performed. A score of 0

represents no movement during the component, a score of 1 indicating partial completion

of the component, and a score of 2 denotes the component to have been performed fully.

The tasks of the FMA-UE may be split into two classes. The first of these involve

gross upper arm motor function involving both the upper and lower arm segments as

well as the torso in some cases. The second is the hand/wrist tasks which predominantly

activate those two regions only. An illustration of how these tasks have been separated

for the present study is shown in Table 2.1.

2.3 Neuroimaging of Stroke

The development of methods to image the brain in vivo has enabled a revolution in post-

stroke diagnosis and care. Two imaging modalities, Computed Tomography (CT) and

Magnetic Resonance Imaging (MRI), have found widespread use in this domain due to

their ease of application, resolution, and sensitivity to tissues pertinent to stroke mecha-

nisms. These two modalities will be discussed in this section with respect to their different
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Table 2.1: Tasks from the FMA-UE clinical rating scales categorised as gross and
hand/wrist tasks. Hand/wrists tasks are further segmented into those which predom-
inantly involve the wrist (red background) and hand (blue background)

Gross motor tasks Hand/wrist motor tasks

Flexor synergy Pronation-supination (elbow at 90)
Extensor synergy Pronation-supination (elbow at 0)
Hand to lumbar spine Stability at 15 dorsiflexion (elbow at 90)
Shoulder flexion (0-90) Repeated dorsi-volar flexion (elbow at 90)
Shoulder abduction Stability at 15 dorsiflexion (elbow at 0)
Shoulder flexion (90-180) Repeated dorsi-volar flexion (elbow at 0)
Coordination-speed Circumduction

Mass flexion
Mass extension
Hook grasp
Thumb adduction
Pincer grasp
Cylinder grasp
Spherical grasp

imaging types and their relative advantages for characterising stroke. In addition, the

optimal time for imaging stroke will be discussed. This is of particular importance for re-

search applications since different imaging modalities may over or under-estimate lesions

based on the stroke stage.

2.3.1 Computed Tomography

CT has historically been and remains the most frequently used imaging modality for

immediate assessment after suspected stroke. CT has the advantage of being readily

available and fast to administer so may be utilised rapidly to assess the early signs of

stroke. In addition, CT is used to exclude the possibility of or to assess the progression

of haemorrhagic stroke due to its high sensitivity to blood. CT may be also administered

with a contrast agent, and as such is known as contrast CT. This may be used to provide

clearer images to identify occluded blood vessels (CT angiogram) or to detect the amount

and speed of blood flow so that salvageable areas of the brain can be detected (CT

perfusion) [34].
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2.3.2 Magnetic Resonance Imaging

The advent of MRI has further improved the potential resolution of brain imaging. MRI

has historical limitations compared to CT, including long assessment times and lack

of availability but these have improved over time making it suitable for most patient

populations. Observed advantages of MRI over CT include the use of non-ionising radia-

tion and the potential for higher resolution imaging. Diffusion-Weighted Imaging (DWI)

techniques, which use the diffusion of water molecules to achieve high image contrast,

are becoming the gold-standard for acute lesion imaging. This is due to this modality

possessing a sensitivity and specificity to acute stroke lesion which is superior to CT [2].

Another common MRI technique is the use of the FLuid Attenuated Inversion Recov-

ery (FLAIR) sequence. This sequence removes the cerebrospinal fluid (CSF) from the

resulting images and has application in imaging a variety of conditions including stroke.

An example of the increased sensitivity to acute lesion which is possible with MRI as

compared to CT is shown in Figure 2.2.

Figure 2.2: Example of CT (left) and DWI MRI (taken afterwards on the same day, right)
taken from the same subject. Large lesion evident on the MRI scan as compared to slight
hypodensity visible on the CT. Taken from [2]
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2.3.3 Time Point of Neuroimaging

Clinical imaging of stroke is typically performed as early as possible in the acute stage to

identify the severity and to exclude factors such as haemorrhage or TIA. When imaging

for research purposes, there is debate about the best time to image. The reason for

this is due to changes in the brain which occur after stroke. During the acute phase,

brain structures are largely unmodified, but this will change in the chronic phase due

to tissue reabsorption which causes structural distortions, sulcal widening, and widening

of the ventricle [35]. One limitation of many prior neuroimaging studies is a failure to

disclose when imaging was administered, or a definition of what time periods relate to

which stroke stage. This is rectified in this thesis by the use of a set of standardised time

periods as selected from the work by Allen et al [36] and presented in Table 2.2. It is

worth noting here that these stages of stroke have been selected on the basis of presenting

defined changes in brain structure as observed via neuroimaging. For behavioural studies,

changes in outcomes generally lag observed changes in brain structure and therefore stroke

stages are defined over significantly different time periods.

Table 2.2: Neuroimaging temporal stages of stroke. Taken from Allen et al [36]

Stroke stage Time period

Hyper-acute 0 - 24 hours
Acute 24 hours - 1 week
Sub-acute 1 - 3 weeks
Chronic > 3 weeks

2.3.4 Time Point of Examination

Another significant factor when conducting a neuroimaging study, and one which varies

markedly between studies [35], is the time point at which behavioural outcome measures

are assessed. This can have significant ramifications in a study since a subject may present

very different behavioural outcomes in the acute as opposed to the chronic phase post

stroke, due to a combination of rehabilitation interventions and the natural plasticity of

the brain. For this thesis subjects stroke stage when assessed was defined using the same

time periods as defined for neuroimaging stage as shown in Table 2.2.
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2.4 Neuroanatomy

A fundamental understanding of neuroanatomy is required to better appreciate the find-

ings of the lesion-symptom mapping study included in this thesis. This includes an

overview of the brain, including the subregions which are primarily responsible for the

generation of signals related to motor function. Secondly the major motor pathways that

help transmit these signals to the spinal cord, and the brain regions that these pathways

travel through will be discussed.

2.4.1 Anatomical Overview

The majority of the brain may be defined in terms three large anatomical regions. The

uppermost section of the brain is known as the cerebrum. This the largest part of the

brain and has a role in a variety of high-level functions including memory, thoughts, the

initiating of voluntary motor activities. The cerebellum lies inferior to the cerebrum.

This region has a variety of functions, many of which are still poorly understood. This

cerebellum is however known to have a significant role in motor and posture control.

Finally, there is the brainstem consisting of the subregions: midbrain, pons, and medulla.

The brain stem is understood to have a role in relaying messages to the spinal cord from

the other brain regions as well as several autonomic functions [37].

The cortex (outer surface) of the cerebrum may be further segmented into different

anatomical lobes. The lobes are understood to approximately correspond to different

base functions. An illustration of the different lobes of the cerebral cortex as well as

the cerebellum and brain stem is shown in Figure 2.3. The frontal lobe is known to

be responsible for a number of cognitive skills such as memory, planning, and language.

The parietal lobe is primarily responsible for receiving and processing sensory input. The

somatosensory cortex is a subset of the parietal lobe and is the main receptive area for the

sense of touch. The temporal lobe has a role in the derivation of visual memory, language

comprehension and emotion association. Finally, the primary role of the olfactory bulb

and occipital lobe are in smell and vision respectively [37].

2.4.2 Motor Cortices

Two important regions of the cortex for motor function are the primary and secondary

motor cortices. These regions combine to generate signals required for the planning and
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Figure 2.3: Basic anatomy of the brain, including brain lobes. Taken from [3]

execution of movements. The primary motor cortex is a subset of the frontal lobe. The

primary motor cortex at each side of the brain contains a motor representation of each

body part of the opposite side of the brain. The secondary cortex is composed of the

premotor cortex (also located in the frontal lobe), posterior parietal cortex, and the

supplementary motor area. The function of the premotor cortex is not well understood

but is believed to have a role in control of the trunk. The posterior parietal cortex plays

a role in planned movements and spatial reasoning. Finally, the supplementary motor

area is understood to have a role in postural stabilisation and coordination of bi-manual

movement [37].

2.4.3 Motor Pathways

Motor function may be defined by the neural pathways which enable motor signals to

be generated and delivered to the muscles of interest. In this subsection several such

pathways which play an important role in normal motor function will be described.

One neural pathway which has been identified as having an important role is the

corticospinal tract (CST). The genus of this pathway is the primary and secondary motor

cortices of the cerebral cortex. Motor neurons which originate at these locations then pass

through the posterior limb of the internal capsule. Next the neurons pass the midbrain,

and then the brain stems (pons and medulla). Finally, the tract reaches the spinal cord
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where neurons synapse directly into alpha motor neurons for muscle control. The primary

role of the CST is understood to be control of the distal extremities (including fine motor

control of the hands) [38]. A diagram of the pathway of this tract is shown in Figure 2.4.

Another pathway which has been identified as having an important role in motor

function is the Corticoreticulospinal Tract (CRST). The CRST is made up of the corti-

coreticular pathway and the reticulospinal tract. The origin of the corticoreticular fibres

is the premotor cortex and supplementary motor area. The fibres descend along with

CST and terminate in the pons. The CRST innervates the proximal extremities and

axial muscles and hence has a role in postural control and locomotor function [38].

Both the CST and the CRST largely follow a common pathway in the brain and play

a critical role in motor function. This means that damage to this pathway rarely affects

only one of these tracts in isolation. As a result lesions which occur to this pathway may

result in a deficit to both the distal and proximal extremities. For this reason, the effect

of lesion load of these pathways on both short- and long-term motor outcomes has been

studied extensively [39, 40, 41].

A final pathway worth mentioning due to its relevance in this thesis is the cortico-

ponto-cerebellar tract (CPCT). This pathway originates in the cerebral cortex and then

descends through the corona radiata and internal capsule before terminating in the pons.

The CPCT is understood to be involved in the communication between the cerebellum

and prefrontal cortex for the coordination and planning of motor tasks.

2.5 Lesion Symptom Mapping

Lesion-Symptom Mapping (LSM) studies are those which seek to form a relationship

between the location or profile of a brain lesion and a given outcome measure. CT or

MRI scans are demarcated to extract lesion maps which define the location and size of

the lesions. Lesion maps are then normalised to a standard brain template. Finally,

statistical analyses are used to detect statistically significant relationships between the

lesion profiles and outcome measures. In this way insights into the functioning of the brain

may be uncovered for the betterment of scientific knowledge and patient rehabilitation.
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Figure 2.4: Corticospinal tract (blue) conveying motor signals from motor cortex to skeletal
muscles. Adapted from [4]

2.5.1 Lesion Demarcation

The clinical evaluation of stroke for treatment typically involves only visual assessment of

the lesions present in the MRI scan slices. For research applications, it is necessary to be

able to demarcate these lesions in a standardised way which would enable comparisons to

be made between subjects. The traditional, and gold-standard, method for demarcation

is manual tracing of the regions of interest. This method requires a trained clinician to

manually identify healthy/ diseased tissue and segment these using suitable software. A

drawback of the manual method is that it is highly time consuming since each slice of the

scan must be demarked. More recently, automated methods of demarcation have been

developed which offer significant time savings. One way this has been implemented is

by using a predefined template which is superimposed onto a brain region to measure

the volume of healthy/ diseased tissue within the template [42]. Although automated
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methods have great potential in this field, currently they do not offer comparable levels of

accuracy to manual methods and may suffer from false detection due to imaging artefacts.

2.5.2 Normalisation

Normalisation in this context refers to the standardisation of either the scan slices or the

demarked lesion map (if lesion maps have already been drawn at this stage). Normalisa-

tion involves the transformation from the native space (coordination frame of the scanner

at data acquisition) to a stereotaxic 3D coordinate frame. This provides a common space

from where comparisons or mapping studies may be made from a variety of different

subjects and imaging modalities. The two requirements for image normalisation are a

pre-defined 3D stereotaxic space, and a mapping function to transform the image into this

space. The stereotaxic space is provided by a template or atlas which defines the target

for the transformation. The mapping function is generated using suitable algorithms and

defines the transformation between the native and stereotaxic space [43].

2.5.3 Analysis Types

Several methods of analysing the relationship between lesions and outcome measures have

been developed. These methods vary significantly in complexity, ranging from simple

overlay of the lesion maps to statistical analyses and machine learning approaches which

are performed on the voxel level.

Overlay and Subtraction

This form of analysis involves the overlay of subtractions of lesion maps from different

subject populations to discover insights about some function. Subjects are grouped by

a certain outcome measure (for instance possession or non-possession a particular be-

havioural deficit). For overlay analysis, all the lesion maps of the deficit group would

be overlaid and the same would be performed for the non-deficit group. A comparison

would then be made between the common areas of infarctions between these two groups

to identify where damage to a particular region corresponds to the behavioural deficit.

For subtraction analysis, the lesion maps for the non-deficit group are instead subtracted

from the deficit group. This results in a lesion map overlay which would only display

lesions present in the deficit group. A limitation of overlay methods is that they may

highlight regions due to increased risk of damage due to vasculature rather than relation-
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ship with the outcome measure [44]. A common limitation for both these methods is that

they do not scale well for non-binary outcome measures. An example of a subtraction

based LSM study by Konczak et al [5] is shown in Figure 2.5.

Figure 2.5: Slices of voxel-based lesion subtraction maps. Subtraction maps generated for
each voxel by subtracting the percentage of unimpaired subjects with damaged voxel from the
percentage of impaired subjects with damaged voxel. Results suggest abnormal kinematic per-
formance strongly associated with damage to the lesions of the cerebral cortex in the paravermal
regions of lobulus IV and V. Image taken from the study by Konczak et al [5]

Region of interest

Region-based Lesion-Symptom Mapping (RLSM) have become one of the popular forms

of LSM studies. Tradition methods of RLSM require subjects separated by region of

damage (unlike overlay which is grouped by outcome measure). A statistical analysis

is then performed to assess whether damage to that region is related to some deficit.

This statistical analysis may be binary (damage present or not) or continuous (volume of

damage to the region). Modern implementations of RLSM use pre-labelled standardised

brain atlas which do not require prior grouping of test subjects. Instead this method

involves multiple statical analyses to identify statistically significant damage in any of

the pre-mapped regions. An advantage of this method is that it is more likely to achieve

statistical significance for lower sample sizes than voxel-based methods. A limitation of

this method is that the brain regions must be defined prior to analysis and therefore

important regions may be overlooked. Related types of analyses are those which use

some other metric of brain damage such as the absolute lesion size, although these have

lost favour due to knowledge of the importance of lesion location.
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Voxel-based

Voxel-based mapping approaches have found widespread use in LSM ever since their

novel application in 2003 by Bates et al [6]. Unlike modern implementations of RLSM,

this method is capable of statistical analyses on the voxel rather than the region scale

enabling unparalleled resolution of analysis. Two of the most common examples of this

approach are Voxel-Based Morphometry (VBM) and Voxel-based Lesion-Symptom Map-

ping (VLSM). The main difference between the two voxel-based techniques is that VBM

defines damage to exist on a continuum whereas VLSM considers damage to be binary.

Since it is not possible for a human to grade lesion damage in a truly continuous manner,

only automated methods of lesion demarcation are suitable for VBM.

Following the demarcation of the affected voxels (either binary or continuous), the

next step is to identify whether any statistical significance exists between these voxels

and the outcome measure. One of the most common approach with the voxel-based

technique is to use a mass univariate approach. This means that each voxel is analysed

independently of the others. For VLSM, this involves a t-test performed at each voxel,

examining the effect of damage to a particular voxel, across all subjects, with change

to a given outcome measure [45]. An example of the results of the first VLSM study

conducted is shown in Figure 2.6. This study investigated the brain regions related to

speech fluency and language comprehension.

Figure 2.6: Slices of VLSM maps computed for fluency (a-c) and auditory (d-f) comprehension.
High t-scores indicating that these voxels have a highly significant effect on the behavioural
measure are indicated in red. Taken from [6]
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Mass univariate voxel-based methods were once considered state-of-the-art but have

lost favour recently due to two main flaws. Firstly, there is the “partial injury problem”

[46] whereby if damage to two exclusive brain regions A and B is required to cause a

deficit in the motor outcome, then statistical power will be low for both regions and

significance may not be found. Secondly, there is the flaw of assuming that each voxel

may be assumed to be independent from all other voxels tested. This assumption does

not prove valid since brain damage after stroke is systemically distributed across the brain

according to the anatomy of the vascular trees [35]. Finally, there is the risk that damage

to a brain region may not cause a deficit in motor outcome, but damage tends to coexist

with damage to a region of the brain which does cause a deficit. In this case the first

region may incorrectly be identified as having a functional role. This is a particularly

pressing concern in stroke studies since disruption to the brain vascular system tends to

cause patterns of damage which include the same brain regions.

Machine Learning-based Multivariate Models

The aforementioned limitations with voxel-based mass univariate approaches have led to

the development of alternative techniques which can study the interaction of multiple

brain voxels or regions (as opposed to assuming independence at each voxel). One new

technique that has been proposed is the use of supervised machine learning models.

These models are trained using features based on the region or voxels of interest and make

predictions of a behavioural outcome measure. This approach holds the potential to learn

the importance of the interaction between multiple regions in a particular behavioural

deficit and as such can be trained to overcome the “partial injury problem” discussed for

the mass univariate approach. One limitation of this method is that the direct relationship

between lesion location and behavioural outcome may not be clear since this information

is learned rather than statistically tested. This is comparison to RLSM or VLSM which

can be designed to provide a clear statistical output of the importance of a region/ voxel

to a behavioural measure. There are also the limitations which are incurred with any

machine learning approach, namely the difficulty identifying the optimal hyperparameters

of the model and the risk of overfitting to the data.
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2.6 Diagnostic Myography

Myography is the application of devices for the recording of signals analogous to muscle

activity in normal and pathological conditions. Common medical applications include

the measurement of the onset of fatigue or diagnosis of muscle or nerve dysfunction. An

emerging research application has been in the assessment of muscle function changes as

a measure analogous to motor dysfunction post-stroke [47].

2.6.1 Electromyography

Electromyography (EMG) refers to the recording of electrical signals generated by motor

neurons in skeletal muscles. There are two forms of administering EMG. Intramuscular

EMG (iEMG) involves an electrode being inserted into the muscle itself. The method

enables a high resolution of measurement but is limited in application by its invasive

nature. It is primarily used for the study of deep muscles or muscles which have a small

cross-sectional area. An alternative and more commonly used configuration is surface

EMG (sEMG). This configuration applies electrodes onto the skin surface and records

the muscle activity produced by aggregate muscle fibre firing. This modality is suitable

for superficial, large, and easily accessible muscles [48].

2.6.2 Mechanomyography

Mechanomyography (MMG) measures the mechanical low frequency vibration that is

produced during muscle contraction [49]. This signal is composed of an initial movement

caused by change in muscle shape at muscle contraction followed by lower amplitude

vibrations caused oscillations of the muscles fibres at the resonant frequency of the muscle

[50]. There as many forms of MMG as there are methods to measure this vibration.

Configurations include microphone, accelerometer, and piezoelectric sensor-based. MMG,

like EMG, is also best suited for the recording of large superficial muscles.

2.6.3 Application in Post-Stroke Populations

One of the emerging applications of myography is as a diagnostic tool to quantify the

motor function in post-stroke populations. A particular application this has been investi-

gated for is in the quantification of motor tasks involving the hand or wrist, a region which
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is notoriously difficult to measure using more conventionally applied inertial sensing. Al-

though neither surface EMG nor MMG is truly capable for measuring the individual small

muscle groups responsible for fine motor tasks, there is evidence that these movements

may still be detected from the aggregate muscle activity, and that a measure of motor

dysfunction may be determined [15].

Myography offers the potential to provide new insight into the motor dysfunction of

these regions than the current purely visual or kinematic procedures can offer. EMG holds

an advantage over MMG for this application in terms of being more widely validated

for diagnostic applications. Conversely MMG possesses the advantages of re-usability,

possessing a robust signal which is more independent to changes of skin impedance,

and ease of application. Both modalities suffer from motion artefacts and the presence

of crosstalk, whereby unwanted signals are picked up from adjacent or deep muscles.

Studies involving these sensors must be designed with configurations and signal processing

methods to minimise these errors.

2.7 Motion Tracking

Motion-based sensors have continued to decrease both in size and cost over the past

few decades. This factor combined with unheralded advances in computer power and

data analysis algorithms have meant that motion capture sensors are being used more

widely than ever before. This includes their newfound application in a healthcare setting,

including pervasive monitoring and as a substitute or complement to the standard clinical

rating scales. Sensors used in motion tracking may be broadly categorised as wearable

motion capture sensors, which instrument the body of interest, and visual motion capture

sensors, which use visual means to record motion remotely from the body of interest.

2.7.1 Wearable Motion Capture

The simplest form of wearable sensor is composed of a single accelerometer or gyroscope.

Accelerometers operate by measuring the acceleration present on a body in the local axis

frame. This reading will include the presence of the gravity vector which may be utilised

or filtered out of the subsequent data. Gyroscopes measure the angular velocity present

on a local axis frame. Both sensor types may be single-axis or tri-axial, measuring values

in or around each of the three principal axes.

21



Chapter 2. Background

More complex wearable systems may include an inertial measurement unit (IMU).

This system is composed of both a triaxial gyroscope and a triaxial accelerometer. In

addition, the IMU may also include a triaxial magnetometer. The function of the mag-

netometer is to measure a magnetic field vector (typically the earth’s magnetic field).

This vector coupled with the gravity vector measured by the accelerometer provide two

global vectors from which a global orientation may be calculated. A diagram of each of

the sensors of the IMU is shown in Figure 2.7.

Figure 2.7: Components of an IMU. The linear components of accelerometer and magnetome-
ter measure local changes as well as the presence of global vectors. The gyroscope measures
local rotation around each of the axes. Taken from [7]

2.7.2 Visual Motion Capture

Visual motion capture systems utilise two or more cameras to triangulate the 3D position

of an object. The traditional and gold-standard method of detecting body locations

is using markers attached to the subject. These markers may then be detected and

accurately tracked by cameras while in the field of vision. Several recent systems have

achieved methods of dynamically tracking surface features of the subject without the

requirement for markers. The method has raised the potential for visual motion capture

systems to be used in a clinical environment by reducing the risk of cross-contamination

and lowering the setup time required for capture.

The Vicon system (Vicon Motion Systems Ltd., Oxford, UK) is one of the most
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sophisticated commercially available visual motion capture systems. Like other high-end

systems, the Vicon requires numerous cameras spaced around a room to be able to fully

capture an individual wearing specially designed markers. The Vicon system has been

applied in a variety of research applications due to its high level of accuracy. However,

the high cost and long setup times mean that it is not always feasible to apply such

systems in a clinical environment.

One of the most commonly available visual motion capture systems is the Kinect

system (Microsoft Corporation, Redmond, WA). The Kinect system uses a VGA video

camera combined with a depth sensor to build up a human skeleton model in 3D space.

The ability to function without the requirement for markers, ease of setup, and ease

of extracting sophisticated orientation data have enabled this system to be commonly

implemented in research. Although this system may not achieve the same level of accuracy

offered by more sophisticated visual motion capture systems, this is compensated by

the low cost and convenience of use in applications where very high accuracy is not

paramount.

2.8 Defining Orientation

A key component of motion tracking is the interpretation of sensor data as an orientation

in 3D space. The quantification of orientation in a human body enables more comprehen-

sive information about human motion than may be discerned from raw sensor data alone.

The includes information about posture, gait, and limb joint angles. This information

also has clinical relevance in a healthcare environment. Common clinical metrics which

may be derived from orientation information include a patient’s range of motion or joint

synergies for instance. Two of the most common ways of defining orientation in a 3D

space are by Euler angles and quaternions respectively.

2.8.1 Euler Angles

Euler angles define the orientation in a 3D space by the composition of three successive

rotations around an axis frame. These rotations may be extrinsic, rotation around a

fixed axis frame, or intrinsic, in which the reference axis frame rotates along with each

successive rotation. Euler angles have the useful property of being simple to visualise

but suffer the limitation of Gimbal Lock. This occurs when the orientation cannot be

23



Chapter 2. Background

uniquely defined by a set of successive rotations and results in an unstable output. An

example of an extrinsic XYZ (defined as rotation in the order of x-axis, y-axis, and then

z-axis) is shown in Figure 2.8.

Figure 2.8: Extrinsic Euler angles defined in the XYZ order

2.8.2 Quaternions

Quaternions are an alternative method of defining orientation. Unlike Euler angles,

quaternions require four dimensions to define a body in the three-dimensional space.

Three of these components are purely imaginary and one component is real. Quater-

nions possess the advantage over Euler Angles of not suffering from Gimbal Lock since

every possible orientation may be representing uniquely by a quaternion and its negative

representation. Another advantage the quaternion form has is the ease of multiplication

between quaternions or vectors to represent successive rotations or vector rotation. This

will be discussed in more depth later in this section. These useful properties have led

to quaternions becoming the preferred means of quantifying orientation in a range of

applications including animation, video games, and research.
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Quaternion Representation

Quaternions are a number system which extends the definition of complex numbers and as

such the rules which apply for this system also apply for quaternions. The four-dimensions

of a quaternion consist of one real dimension and three imaginary dimensions. The gen-

eral form is expressed as:

q = a+ bi+ cj + dk

where : i2 + j2 + k2 = ijk = −1 (2.1)

The quaternion may be represented in its purely imaginary (3-element vector) form or

its purely real form (single element). These representations will be denoted in this thesis

as follows:

qIm = Im(q) = Im(a+ bi+ cj + dk) = [b, c, d] (2.2)

qRe = Re(q) = Re(a+ bi+ cj + dk) = a (2.3)

The quaternion norm is calculated in the way that would be expected for a 4-element

vector. This is an important concept since it can be used to find the normalised quater-

nion which makes subsequent calculations much simpler. The method for calculating the

norm and finding the normalised quaternion respectively are given below:

|q| =
√
a2 + b2 + c2 + d2 (2.4)

qnorm =
q

|q|
(2.5)

The inverse quaternion is an important concept since it represents the inverse rotation.

This concept is required for taring quaternions as well as in vector and quaternion mul-

tiplication. The inverse is equal to the conjugate for normalised quaternion since the

quaternion norm is equal to 1 in this case. The conjugate and inverse quaternion equa-

tions are displayed below:

q∗ = a− bi− cj − dk (2.6)
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q−1 =
q∗

|q|2
= q∗(for normalised quaternions) (2.7)

Quaternion Multiplication

Quaternion multiplication is non-commutative, and the product produces a quaternion

which represent two successive rotations in the same 3D space. In this thesis, multipli-

cation between two quaternions will be represented by the symbol ⊗. The equation for

multiplication between two quaternions is given below:

q1 ⊗ q2 = (a1 + b1i+ c1j + d1k)⊗ (a2 + b2i+ c2j + d2k)

q1 ⊗ q2 = (a1a2 − b1b2 − c1c2 − d1d2) +

(a1b2 + b1a2 + c1d2 − d1c2)i +

(a1c2 − b1d2 + c1a2 + d1b2)j +

(a1d2 + b1c2 − c1b2 + d1a2)k (2.8)

Quaternion multiplication may also be used to apply a rotation to a three-dimensional

vector. For this method, the vector should be formatted as a pure quaternion with zero

real scalar component and the vector as the imaginary components. This can then by

multiplied between the quaternion and the inverse form of the same quaternion to ap-

ply the rotation. The method for rotating a vector (v) by a quaternion (q) is shown below:

v = [v1, v2, v3]

qv = quat(v) = [0 + v1i+ v2j + v3k]

qrot = q ⊗ qv ⊗ q−1

vrot = Im(qrot) (2.9)

Quaternion Swing-Twist Decomposition

Quaternion swing-twist decomposition is a method of decomposing a quaternion into two

concatenated quaternions: swing and twist. Given a twist axis (vT ), this operation can

be used to calculate the quaternion which represents the portion of the rotation that only
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defines the twist around this axis (qtwist). The remaining quaternion represents the swing

portion (qswing) from the defined twist axis. There are several methods of deriving this

output, but the operation selected for this project is as follows. An intermediate pure

quaternion (qvT ) represents the rotation of the twist axis by the original quaternion. The

variable (p) represents the projection of the twist axis.

q = a+ bi+ cj + dk

vT = [v1, v2, v3]

qvT = q ⊗ quat(vT )⊗ q−1

p1 = cross(vT , Im(qvT ))

p2 = dot(vT , Im(qvT ))

qswing = [1 + p2, p1[0], p1[1], p1[2]] (2.10)

qtwist = q−1swing ⊗ q (2.11)

2.8.3 Quaternion Estimation Algorithms

A number of algorithms have been developed to estimate an orientation based upon the

calculation of some combination of different sensor metrics. The traditional method of

estimating orientation from potentially noisy sensor data has been the use of the Kalman

filter. A more recent method of orientation estimation that uses the gradient descent

optimisation procedure will also be discussed.

Kalman Filter

A Kalman filter [51] is an algorithm which uses the combination of statistically noisy

measurements to achieve a prediction of an unknown variable which is more accurate

than possible using any single measurement alone. This is achieved through the use of

an estimated joint probability distribution over the variables for each timeframe. The

Kalman filter is particularly well suited for orientation estimation applications due to

the simplicity of its mathematical derivations and its recursive nature [52]. Non-linear
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implementations of the Kalman filter have been used for orientation estimation, most

commonly the extended Kalman Filter [53] and Unscented Kalman Filter [54].

Madgwick Gradient Descent

The Madgwick Gradient Descent algorithm is a novel orientation algorithm which uses

a low-computational load and can be adjusted to perform well under noisy sensor data.

It utilises the gyroscope measurement to filter out high-frequency errors whilst the ac-

celerometer, and optionally the magnetometer, are used to deal with the integral drift.

The full derivation of this algorithm may be found in this paper by Madgwick et al [55]

but a brief overview is discussed below.

Equations for the differential and non-differential quaternions involving angular ve-

locity may be estimated using the equations below. The differential quaternion equation

may be satisfied by an initial guess of the quaternion, and an updated value of angular

velocity. The second equation may be satisfied using the result of the prior equation in

addition to the time period.

˙qw,t =
1

2
qw,t−1 ⊗ wt (2.12)

qw,t = qw,t−1 + ˙qw,t∆t (2.13)

The quaternions (q) in both the above equations represent estimations of the earth’s

reference frame relative to the sensor reference frame. The gyroscope reading (w) is

defined in the equations as a pure quaternion to enable quaternion multiplication. The

quaternions in the equation below also contain the subscript (w) to represent that they

have been derived from the measure of angular velocity.

Gradient descent optimisation is used for the estimation of a second quaternion from

the accelerometer and magnetometer readings. The objective function for the optimisa-

tion is derived by minimising the difference between a reference vector (d) in the earth

frame rotated into the sensor frame and the same reference vector in the sensor frame

(s). The subscript (∇) present in the following equations denotes that the quaternions

have been derived by gradient descent.

min
q∈<4

f(q∇, d, s)

f(q∇, d, s) = q∇ ⊗ d⊗ q−1∇ − s (2.14)
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This objective function and the respective Jacobian of the optimisation problem sim-

plify considerable when you consider that the acceleration (and magnetometer) reference

vectors in the earth reference frame are not present in each of the principal axes. For

instance, the gravity vector can be considered to only be active in the z-axis while the

earth’s magnetic field is only present in two axes.

Finally, there is a fusion step whereby the information provided by the quaternion

derived from the gyroscope and the quaternion derived from accelerometer and magne-

tometer are combined. Both quaternions are important since: (1) the quaternion derived

from the acceleration and magnetometer readings is based on an initial “guess” measure-

ment, and (2) the quaternion based on the gyroscope will accumulate errors due to sensor

noise. The ideal fusion algorithm should filter out the high-frequency errors in (1) while

compensating for the integral drift subject to (2). The method for optimising the weights

of how these quaternions should be combined is beyond the scope of this thesis but the

general form of the equation is as follows:

qt = γtq∇,t + (1− γt)qw,t, where 0 ≤ γt ≤ 1 (2.15)

The Madgwick Gradient Descent algorithm has been proposed as a less computationally

intensive version of the Kalman filter which makes it more suitable for onboard compu-

tation or for use in large scale analyses (as used in the present study). The performance

of this algorithm has also been benchmarked at comparable values to the Kalman filter

with < 0.8° static RMS error and < 1.7° dynamic RMS error.

2.9 Machine Learning in Healthcare

The exponential growth in data available combined with advances in computer power and

algorithm development has led to unprecedented interest in the application of machine

learning. This is particularly true in the healthcare fields due to several driving forces.

This includes the potential of numerous different healthcare applications which are well

suited for automation, such as the use of machine vision in assessment of patient scans or

analysis of sensor data for monitoring patients. Another factor is the increasing demands

placed on healthcare in many countries due to ageing populations. This has increased the

demand for automation as a means of reducing the workload placed on clinicians. This
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section will outline the machine learning practices required for any high-quality machine

learning study in healthcare.

2.9.1 Feature Selection

Feature selection is an important step in the design of any machine learning study which

possesses a feature set which exceeds the number of data instances. The objective of

feature selection is to remove features which either do not improve the predictive model

or highly correlate with other existing features. One advantage of feature selection is

that it reduces model training time since a reduced subset of features are required for

training. Another advantage is a reduction in the risk of over-fitting due to the reduced

variance and increased generalisability properties of a simpler model. The two main forms

of feature selection are filter methods and wrapper methods.

Filter methods of feature selection compute a ranking list of features based on their

perceived usefulness. Once a ranking has been determined, the top x features may be

selected for further analysis. A common filter method is the use of a correlation measure

such as the Pearson’s correlation coefficient. The method ranks features based on high

a correlation value is achieved between each feature and the labels. Another common

filter method is the Relief algorithm. This method uses a distance metric to find the

nearest same and different class instances for a series of random instances. The distance

of these instances is used to compute a weighting. A high weighting is assigned for close

same class instances and far different class instances to reward features which achieve

high inter and low-intra class separability.

Wrapper methods utilise a form of classification model in the feature selection process.

This is typically permutation-based whereby a set of features is constantly evaluated and

modified to find the feature set which provides the optimal classification performance. A

common wrapper method is the greedy forward search whereby classification performance

is tested with a single feature, and then additional features are only included to the set if

they result in a notable improvement in performance accuracy. Another wrapper method

is the exhaustive search. This method calculates the classification performance for every

single possible combination of features in the set and then selects the combination which

results in the best performance. This method is more likely to find the optimum combi-

nation of features than the greedy forward search but leads to an impractical number of

iterations for high dimensionality features spaces.
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2.9.2 Dimensionality Reduction

Dimensionality reduction, like feature selection, may also be used to reduce the number

of features in the dataset. Dimensionality reduction offers the same advantages of faster

training time and reduced risk of over-fitting. Unlike feature selection, features are trans-

formed into a lower dimension and do not retain their original values. Two of the most

frequently implemented examples of dimensionality reduction are Principal Component

Analysis (PCA) and Linear Discriminant Analysis (LDA).

PCA is used to transform the original feature space to a new space composed of

perpendicular vectors which explain the variance of the data. An advantage of PCA is

that the vectors returned lie perpendicular to each other and therefore do not correlate

with each other. Another advantage of PCA is that a subset of the transform vectors may

be selected while still explaining the vast majority of the variance of the original dataset.

In this way, PCA may be used as a simple way to reduce the number of features while still

preserving the data variance. An example of PCA used to decompose the eigenvectors of

a multivariate Gaussian distribution in 2-dimensional space is shown in Figure 2.9. The

two main methods of performing PCA are by singular value decomposition of a design

matrix and by eigenvalue decomposition of the covariance matrix.

LDA, like PCA, also attempts to lower the dimensionality of the feature space by

projecting the data to a lower dimension. Unlike PCA, LDA also uses information about

the classes assigned to samples to maximise class separability. Standard implementations

of LDA assume that each feature follows a Gaussian distribution. Statistical measures

are then computed for the features to find which features maximise class separability and

minimise intra class variance. Once this has been computed, a function may be developed

to project the feature data into this lower feature-space.

2.9.3 Regression

Regression models have been developed to map real input values (independent variable)

to predict continuous target values (dependent variable). One of the simplest forms

of regression, the linear regression model, assumes that the target values are a linear

composition of input values multiplied by a series of coefficients. The most common form

of determining the optimal coefficients for linear regression is by ordinary least squares.

This method seeks to find the best-fitting line/ plane by minimising the sum of the

squared residuals.
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Figure 2.9: PCA of a multivariate Gaussian distribution in 2-dimensions. The 2 eigenvectors
are illustrated by arrows. The first eigenvector explains the majority of the variance of the
distribution

Regularisation may also be applied to the regression problem to reduce the com-

plexity of the model and therefore reduce the risk of over-fitting. Common examples of

regularisation include Least absolute shrinkage and selection operator (Lasso) and Ridge

regularisation which minimise the absolute sum and the squared absolution sum of the

coefficients respectively. Since Lasso regularisation uses the absolute sum of coefficients,

it will also drive low coefficients down to zero and therefore also acts as a feature selection

step.

2.9.4 Classification

Classification models use a function to map real input values to predict discrete target

values. In this subsection, the function of a few of the most common classification models

will be discussed.

Decision Trees

Decision trees at their simplest form one of the most intuitive classification models. Labels

(leaves of the tree) are selected based on whether certain feature threshold values are met

at each of the branches of the decision tree. Many different methods exist to attempt to
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train the optimal threshold values as well as the overall complexity of the tree to achieve

maximal class separability. A pruning step is also frequently implemented to remove

unnecessary branches of the decision tree and in turn combat over-fitting.

K-Nearest Neighbours

The K-nearest neighbours (KNN) algorithm selects the target value based on the K

nearest training instances to a new test instance in n-dimensional space. For this model,

K refers to the number of neighbours to utilise, and n refers to the total number of

features. The K nearest neighbours to the test instance are calculated using a distance

measure, such as the Euclidean distance. A vote is then performed based on the classes

of the K nearest neighbours with a majority vote representing the class prediction. A

representation of KNN with class assigned based on the 5-nearest neighbours is shown in

Figure 2.10.

Support Vector Machines

The support vector machine (SVM) is an algorithm which seeks to find a hyperplane in

n-1 space (where n is the number of features) which maximally separates the support

vectors representing each class. In this case, the support vectors are instances in n space

which lie close to the hyperplane and therefore will influence the position and orientation

of the hyperplane. Maximal margins refer to the maximum amount of separation achieved

between the hyperplane and the support vectors. An example of the application of SVM

to separate a 2-class problem in 2-dimensional feature space is shown in Figure 2.11

Figure 2.10: Representation of KNN ap-
plied in 2-dimensional space with K set to
the 5 nearest neighbours

Figure 2.11: Representation of SVM hy-
perplane in 2-dimensional space showing
the support vectors and maximal margin
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Artificial Neural Networks

An in-depth description of artificial neural network (ANN) is beyond the scope of this

thesis. However, a fundamental description is outlined here to provide context to similar

studies which have implemented these models. At their simplest ANNs consist of an

input layer, hidden layer, and output layer. Features are provided as the input layer,

and coefficients provided in the hidden layer dictate how much influence these have on

selecting the output (class) to select. More complexity is provided by including more

hidden layers. The optimisation of the coefficients provided in the hidden layer depends

on the type of neural net selected. ANNs can achieve unparalleled performance for large

datasets but may be outperformed by other classification methods for small datasets.

2.9.5 Ensemble Decision Tree Classification

Ensemble learning algorithms determine an output based on the result of numerous

learner models. This aggregate method may use predictions from different classifica-

tion models, feature sets, or samples for instance. This method has been shown to have

the potential to achieve a more accurate classification than possible by a single learner

model alone [56].

Bagging

Bagging is an ensemble method which uses bootstrapping (sampling from a set with

replacement) to enable a fully random selection of instances provided for each classifier.

For each iteration, a selection of bootstrapped samples is selected and fed into a classifier.

This is then repeated for n-1 iterations and the collection of predictions are aggregated

to select the output with the most votes. An image of the bagging method as applied to

a series of decision trees is shown in Figure 2.12.

Random Forest

The random forests ensemble method, like bagging, also implements bootstrapping to

provide random instances to a series of classifiers. Unlike bagging, each decision tree is

trained on a unique and random subset of the total feature set. This results in a series

of decision trees which will develop branches in a unique way depending on the available

features. This method is typically more robust to over-fitting than bagging methods.

The general idea of the structure of the random forest method is shown in Figure 2.12.
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However, the decision trees would be non-identical either in terms of the branches formed

or the thresholds at each branch due to unique feature subsets.

Figure 2.12: Diagram of the structure and prediction of bagging/ random forest type ensemble
classifiers. Taken from [8]

Boosting

The boosting ensemble generic algorithm, like the bagging method, uses bootstrapping to

sample instances from a set and train a series of weak learners. The primary distinction

between the two methods is how the weak learners are trained. For boosting methods,

weak learners are trained in series, rather than parallel, which means that subsequent

weak learners in the chain are dependent on the previous. Another notable property of

the boosting algorithm is that each of the weak learners is assigned their own weighting

based on how well they classify unknown instances in the training stage. This weighting

is subsequently used at the testing stage whereby higher weight is assigned to the weak

learners which performed better in the training stages. An example of the boosting

algorithm, whereby the weakness in a learner can be seen to update the parameters of

each subsequent learner, is shown in Figure 2.13.

AdaBoost

The AdaBoost (Adaptive Boosting) algorithm is a form of boosting algorithm which

modifies the sampling of instances by assigning weights to each instance, which affects its

likelihood of being sampled. A subset of these weights is modified on every iteration in
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Figure 2.13: Boosting algorithm structure whereby subsequent models are trained based upon
the weaknesses of their predecessor. Taken from [9]

which a new decision tree is trained, based on how well instances were classified during the

training step. Instances which are poorly classified are assigned a large weight, meaning

future decision tree models which implement them in their training data and improve the

ability of the ensemble model to classify these instances.

Gradient Boosting

Gradient Boosting algorithms are another form of boosting algorithm. Unlike the Ad-

aBoost algorithm, performance is modified iteratively using a loss function rather than

by applying weights to the data instances. This loss function is a measure of the mis-

classification such as squared error for regression or logarithmic loss for classification.

A gradient-descent like method is used to move towards the minimum amount of loss

for each new decision tree generated by modifying certain classification parameters each

iteration.

Light Gradient Boosting

Light gradient boosting (LightGBM) is a form of gradient boosting which has gained

popularity since its release due to its superior performance and speed compared to other

gradient boosting algorithms. The property which has led to this improvement is the

unique way the LightGBM classifier grows its trees. Whilst typical decision trees grow

by levels up until a certain constraint, the LightGBM classifier grows each decision tree

leaf-wise. This means that it can achieve sufficient model complexity to classify certain

labels while minimising model complexity and reducing the risk of over-fitting when

necessary. A diagram of how this algorithm grows the model leaf-wise (as compared to

standard level-wide growth) is shown in Figure 2.14.
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Figure 2.14: An example of leaf-wise decision tree growth (as opposed to level-wise in which all
branches are grown equally across the level) as implement in the LightGBM algorithm. Taken
from [10]

Performance Measures

An important factor in any classification analysis is how the result is presented. A telling

example of this is if for a two-class problem the vast majority belongs to one class, then a

classifier may achieve high accuracy by continually predicting one class only. In this case,

the classifier may appear to be performing well when in reality the classification is trivial.

To prevent over-estimation of classifier performance or to assess different parameters of

the classifier, there are several other commonly used performance measures other than

just accuracy. Equations for common performance metrics are given below for binary

classification problems (although they may be extended for multi-class problems). An

example of a binary confusion matrix is shown in Figure 2.15.
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Figure 2.15: Confusion matrix for a binary classification problem

The accuracy of a classifier is the most straight-forward measure of classifier per-

formance. It gives a good indication of classifier performance but may give misleading

results if the data is biased or if false positives are particularly undesirable in the analysis:

Accuracy =
TP + TN

TP + FP + TN + FN
(2.16)

Recall is a measure which detects how often a positive result is detected in the data. This

is particularly important in analyses which detection of a measure is critical:

Recall =
TP

TP + FN
(2.17)

Precision measures how often the classifier erroneously gives a positive result. This may

be more important in analyses where false positives are undesirable:

Precision =
TP

TP + FP
(2.18)

Finally, the F1-score is a common metric used in classification analyses which integrates

both the recall and the precision. This results in a score which is more sensitive to false
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positives and false negatives than the accuracy score.

F1-score = 2 ∗ Precision ∗Recall
Precision+Recall

(2.19)
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CHAPTER

THREE

Wearable Fusion System for Automated Rating of Upper-Arm

Motor Function Post-Stroke

3.1 Chapter Introduction

Traditional quantification of post-stroke motor function is performed by clinicians using

one of the standard clinical rating scales. These rating scales are well-validated and

widely used but suffer from drawbacks including low resolution and high subjectivity.

The work conducted in this chapter aimed to develop a wearable sensor system which

combined the validity provided by the standard clinical rating scores, with a number of

novel sensor metrics which are not limited by the low accuracy and resolution of manual

assessment measures.

The system was designed with a combination of kinematic sensors in the form of IMUs,

and myographic sensors in the form of MMG sensors. The kinematic data enabled the

calculation of advanced orientation features and the development of an avatar for online/

offline assessment purposes. The inclusion of myographic sensors enabled measurement

of hand and wrist function which is otherwise difficult to quantify using the inertial- and

camera-based sensors conventionally used in wearable systems.

A prediction of clinical score was achieved by feeding features derived from the kine-

matic and myographic sensor data into a specially developed classification pipeline. A

selection of fine-grained clinical features was also calculated to complement the predicted

score and provide more in-depth information about the sub-components of motor dys-

function.

The quality of the system was determined both by the performance of the classifier
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(as compared to prior studies) and the usefulness of the clinical features (as determined

by correlation with the clinical rating score). A system which can be evidenced to provide

good measures of both these metrics has the potential for use in both clinical applications

and research studies.

3.2 Chapter Outcomes

The novel fusion system developed in this study was used to produce two major outcome

measures. Further clarification of these metrics is stated here to provide justification for

these outcomes as well as the application in the second study included in this thesis.

The first metric produced is a prediction of the FMA-UE clinical rating. This metric

is produced using a boosted machine learning model which makes predictions of clinical

score using new sensor data, based upon historic sensor data as well as previously assigned

clinical ratings. This metric type forms the predominant output of most prior studies of

wearable systems post-stroke.

The second metric produced by the system is a series of clinically relevant fine-grained

features. Features were selected from those which had already been generated for the

above machine learning model based upon a number of useful criteria. The justification

for including these features in isolation (as opposed to just feeding them into the above

machine learning model) is that the resolution of these features is limited only be the

resolution of the sensors themselves as such far exceeds that of the FMA-UE. If these

features can be proven to be intrinsically useful measures of motor dysfunction then they

may be used in isolation of or to complement the FMA-UE as a more “pure” measure of

motor function. Due to the high-resolution nature of these clinical features (as compared

to the FMA-UE), they were introduced into the subsequent lesion symptom mapping

study covered in the next chapter.

3.3 Chapter Structure

This chapter is structured as follows:

� Literature Review- Review of the instrumentation and major processing stages

of prior systems developed for automated scoring of motor function. Prior methods
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for determining motor outcome metrics (generally be machine learning models) will

also be discussed.

� Instrumentation- A description of the in-house instrumentation included in the

wearable system proposed for this study. Described in terms of sensor function,

configuration, and sampling

� Software- The novel software developed for this project comprised of GUIs for the

data collection, data processing, and classification stages

� The fundamental stages of the study in terms of:

– Data Collection

– Data Processing

– Data Visualisation

– Feature Extraction

– Feature Exploration

– Classification Pipeline

– Clinical Feature Set

� Results- Described in terms of the classification performance of the developed

machine learning model, and the calculated usefulness of the derived clinical feature

set

� Discussion- The overall results of the project discussed in terms of meeting the

objectives of the study and how they compare to the prior systems described in the

literature review.
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3.4 Literature Review

This literature review is composed of prior studies which have incorporated sensors into

a system either for the prediction or correlation with a score of motor function in post-

stroke subjects. These systems will collectively be described as “automated” systems

in this thesis. The focus of this review will be on the upper-extremity motor function,

although studies which examined lower-extremity motor function will also be discussed

in less depth.

3.4.1 Instrumentation

The instrumentation used in prior automated systems of motor function post-stroke may

be broadly categorised into four types. Firstly, wearable motion capture systems

are composed of sensors placed on the body segments of the subject being tested and

detect segment activity directly. Secondly, visual motion capture systems which use

visual sensors to detect body segments and calculate body metrics such as acceleration

and joint angle indirectly. Thirdly, robotic motion capture systems which require

the subject to perform movements inside a robotic device. Finally, an emerging modal-

ity which has only recently been trialled in systems of motor function post-stroke are

myographic capture systems, which use sensors to record measurements analogous

to muscle activity.

The instrumentation of most relevance to the present study are those related to wear-

able/ visual motion capture and myographic capture systems. These devices will be dis-

cussed in greater depth within this literature review, including in terms of motor features

which have been calculated from the sensor data in Subsection 3.4.4 Feature Calculation.

Wearable Motion Capture

The use of accelerometers forms the simplest wearable setup adopted for automated

motor function test post-stroke. Accelerometers placed on limb segments offers a low-

cost automated assessment which can provide a usable signal with minimal processing.

The measurement of the gravity vector may be utilised to predict the arm orientation

or may be removed entirely by high-pass filtering of the signal. Disadvantages of this

setup include the lack of any angular velocity or orientation information which would

allow more complex interpretation of task performance. The low fidelity of information
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provided by this modality compared to alternative sensors has meant that it has become

less frequently utilised as a sole measure in clinical systems of motor function. However,

its low power consumption has meant that it is still being trialled in systems of pervasive

tracking of motor recovery [57, 58].

One of the earliest systems developed for measuring post-stroke motor function was

the 2005 study by Knorr et al [59]. The system proposed by Knorr et was composed of

dual-axis accelerometers placed on the hand, forearm, and upper arm. The study was

then extended the following year [60] to include single-axis accelerometers placed on the

fingers of the hand, presumably to better capture hand/grasp tasks. The same system

was utilised again in 2010/ 2011 on a larger population and with a more complex analysis

by Patel et al [16] and by Del Din et al [17]. An image of this system is shown in Figure

3.1. The most recent example of an accelerometer only system was the 2014 study by

Wang et al [61]. The study by Wang et al developed a system comprised of two tri-axial

accelerometer nodes placed on the forearm and upper arm. The application of tri-axial

accelerometers provides information in each local axis (unlike the aforementioned studies)

but the absence of any hand or wrist sensors means there is no information provided

concerning this region.

The introduction of IMU systems in wearable sensing systems has heralded a big

advance in the fidelity of information collected. This is due to the inclusion of a tri-

axial gyroscope (and possibly a magnetometer) sensors in addition to the accelerometer.

Recent developments in computational power and orientation algorithms (Kalman fil-

ter, Madgwick Gradient Descent) have also made it possible to fuse the aforementioned

modalities to produce an approximate orientation of the IMU system relative to a fixed

axis frame. This may be used in isolation to calculate limb orientation or in relation to

other limb segments to compute joint angles.

A common alternative to wearable sensing for capturing kinematic data is by visual

motion capture, of which the Kinect system has been used most frequently for assessment

of post-stroke motor dysfunction. Compared to the Kinect system, systems implementing

a number of IMUs possess several significant disadvantages (limitations of the Kinect

compared to IMUs are detailed in Subsection 3.4.1: Visual Motion Capture). Two such

disadvantages are their relative expense and battery life. Each IMU system may cost as

much as a few hundred pounds and several may be required for fully instrumenting a

section of the body. This is compared to the Kinect sensor which originally retailed for

approximately £100. Secondly, each IMU involves collection of data from several sensing
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modalities which requires a significant power draw. In addition, each IMU typically

requires its own power source (battery) meaning that they need to be recharged often.

This is in contrast to the Kinect sensor which draws its power from a laptop, which in

turn may be connected directly to a power supply. A final major limitation of the IMU

system is noise and drift incurred during orientation calculations.

Orientation drift has historically been a common problem when computing orientation

from wearable sensors due to an accumulation of small errors associated with the gyro-

scope. Advances in orientation algorithms in recent years have lessened this problem by

combining more robust periodic estimations of orientation derived from the accelerome-

ters and magnetometer readings. In cases where a tri-axial magnetometer is not included

in the IMU then measures of orientation are influenced by heading drift around the grav-

ity vector. Even in cases where a magnetometer is included, significant care must be taken

to ensure proper magnetometer calibration and the avoidance of magnetic interference to

achieve reliable measures of orientation.

As far as the author is aware, the first example of a single IMU was the 2010 study by

Parnandi et at [62]. The system developed by Parnandi et al was composed of a single

IMU placed on the wrist to capture movements. A single IMU system has also been im-

plemented in the 2012 study by Zhang et al [63]. A clear limitation of only instrumenting

a single segment is that it provides limited information if movements require the use of

multiple segments in isolation or synergistically.

Subsequent studies have utilised IMUs placed on the torso, upper arm, and lower

arm [12, 64, 65]. The additional information provided by instrumenting these segments

has variously been used for the computation of joint angle, the ratio of energy between

segments, and avatar simulation. One of the earliest examples of a multiple IMU study

is in the 2011 study by Bento et al [12]. The study by Bento et al also implemented an

additional IMU placed on the contralesional side to detect compensatory movements in

the unaffected side. A follow-up study by Cruz et al [65] has also been performed using

the same system. A diagram of the setup used in these two studies is shown in Figure

3.2. Finally, the study by Huang et al [64] placed an additional IMU on the hand which

enabled the wrist joint angle to be computed.
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Figure 3.1: Wearable motion capture sys-
tems as designed by Patel et al [11]. Axes
of single and dual-axis accelerometers rep-
resented by arrows

Figure 3.2: Wearable motion capture sys-
tems as designed by Bento et al [12]. IMUs
are represented by blue rectangles

Visual Motion Capture

The Microsoft Kinect systems was the modality selected for visual motion capture in all

prior automated systems. The main reason given for the selection was the low cost of

the sensor, compared to lab-based motion capture systems, which makes it affordable for

clinical implementation [13, 19, 66, 20, 67]. Another reason is that the Kinect has been

proven to detect limb kinematics with reliable accuracy in a multitude of prior studies

[68]. Lastly, the user-friendly Kinect Software Development Kit (SDK) provides access to

the skeleton data, the video feed, and the microphone directly, which makes the system

valuable for research applications [68].

There are several disadvantages associated with using the Kinect for clinical applica-

tions as compared to wearable sensing such as IMUs. The majority of these disadvantages

stem from operation of limb tracking in the Kinect as compared to IMU systems. Whilst

the IMU sensor is attached directly to the limb segment of interest, the Kinect system has

to make approximations of the motion of limb segments based on particular landmarks.

As a consequence, the Kinect system has difficulty tracking subtle movements as well as

rotations around the bone axis. Secondly, the Kinect system is susceptible to occlusion,

whereby the camera does not have vision of the limb of interest. This may lead to missing

or noisy orientation data. One way in which the limitations of the Kinect system has

been reported in the literature is as inaccuracies when tracking hand position as in the

study by Otten et al [68].
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One of the earliest Kinect-based automated systems was developed for the 2014 study

by Olesh et al [13]. The study by Olesh et al used the Kinect to extract joint angles

from the subject, which were then further derived into scores of motor function. An

image of the setup of this study, with an illustration of tracked points detected by the

Kinect system as compared to a high-end motion capture system, is given in Figure 3.3.

A similar setup has been implemented in several subsequent studies [19, 66, 67].

A few recent studies have supplemented the data from the Kinect system with other

wearable sensors [68, 69, 20]. This has been performed to combat the aforementioned

limitations of Kinect, particularly the risk of occlusion and difficulty detecting hand

movements. The study by Otten et al [68] paired the Kinect sensor with an IMU on the

wrist and a wearable glove fitting with flexion sensors. The IMU enabled better detection

of rotation around the forearm principal axis and tremor while the flexion sensors could

detect grasp tasks. Similarly, the study by Julianjatsono et al [69] also supplemented the

Kinect sensor with a glove. This glove was fitted with both an IMU and flex sensors.

A final study by Lee et al [20] utilised a Force Sensing Resistor (FSR) to detect the

grasp tasks of the FMA-UE. Overall, all these studies demonstrate the potential of fusion

systems involving the Kinect sensor. One drawback of all the aforementioned studies is

that they all required a device to be worn (glove). This method has drawbacks including

fitting and hygiene concerns.

Robotic Motion Capture

Robotic systems offer some of the highest resolution of information possible of all the

different systems discussed. Despite this advantage, these systems suffer from potentially

constraining the subject during motion (leading to unnatural movements) or lacking

the necessary Degrees of Freedom (DOF) to allow all required movements. The biggest

limitation for clinical testing however is that these systems are expensive and often bulky

meaning that they are not practical as a bedside clinical assessment device.

The study by Chongyang et al [70] is one of the earliest studies to assess the application

of robotic devices in the clinical assessment of motor function. The combination of

a hand-wrist rehabilitation and single-joint rehabilitation robot was used to assist or

directly record metrics of motor performance. The main limitation of this study was that

the robots were very limited in range of motion and therefore most movements of the

clinical scale had to be detected using visual motion capture instead. This limitation was

rectified in a subsequent study by Balasubramanian et al [71]. For this study, a specially
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developed 5 DOF wearable exoskeleton was designed to enable measurement of a variety

of different movements. This robot could measure joint angles as well as the forces

output. The first robotic capture system to be implemented in a large clinical trial is the

study by Bosecker et al [14] who tested their system on 111 chronic stroke subjects. This

study used the commercially available shoulder-and-elbow InMotion2 robot (Interactive

Motion Technologies, Inc.) to derive a variety of kinematic metrics from the subjects.

One limitation of the study was that it was not possible to perform all the tasks from

the clinical rating scales with this robotic system. Instead, a combination of custom and

clinical rating tasks were performed, and measures derived from these movements. An

image of the robotic system used in this study is shown in Figure 3.4.

Figure 3.3: Visual motion capture system
implemented by Olesh et al [13]. The low-
cost system represents landmarks detected
by the Kinect sensor

Figure 3.4: The shoulder-and-elbow In-
Motion2 robotic system as used in the
study by Bosecker et al [14]

Myographic Capture

The introduction of MMG in a system of post-stroke motor dysfunction is only justifiable

if it can be shown that there are differences in muscle activity post-stroke and that

these can be meaningfully measured. Support for this is provided by a growing body

of myographic research studies which have indeed detected significant changes between

stroke and healthy subjects. In addition, three prior wearable system studies have already

introduced EMG into their wearable system and have shown improved performance as

compared to inertial sensing alone.
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There has been a significant body of research already conducted to investigate the

presence of statistically significant differences in parameters of EMG post-stroke as com-

pared to healthy subjects. A study by Subramaniam et al [72] found significantly longer

EMG burst duration (total duration of EMG activity) recorded from chronic subjects as

compared to healthy subjects recorded during flexion and abduction tasks. It was postu-

lated that this may be due to a reduced ability to produce optimal levels of neuromuscular

activation post-stroke. Another finding has been a significantly different clustering index

(CI) observed from paretic compared to healthy control subjects, as found in the studies

by Tang et al [73] and Zhang et al [74]. The CI, as originally proposed by Uesugi et

al [75], provides a measure of how “clustered” a signal is based upon the summation of

differences in subsequent windows. Both a significant increase and decrease in CI was ob-

served in the aforementioned studies, depending on which muscle was being investigated.

An abnormal increase in CI is attributed to motor unit loss and changes in motor unit

architecture whereas a reduction in CT is hypothesised to be due to muscle fibre atrophy

[73].

As far as the author is aware, there has only been a single MMG study to investigate

the differences in response between healthy and post-stroke subjects. The study by Hu et

al [76] investigated subjects during isometric voluntary contractions of the biceps brachii

and extracted the metrics of RMS and mean power frequencies (MPF) for analysis. At

close to max voluntary contraction (MVC), the MPF and RMS values of MMG were found

to be significantly lower for stroke as compared to healthy subjects. The explanation

provided for this difference in response was an atrophy of the fast-twitch muscle fibres

and a reduction of the neural input in the stroke-affected muscles [76].

There have thus far been three systems developed for quantifying motor function

post-stroke to incorporate the myographic modality, and all of these systems have used

EMG for this purpose. The study by Li et al [15] developed a combined IMU and EMG

fusion system for the assessment of upper arm function post-stroke. This system utilised

11 EMG sensors and 2 IMU sensors positioned on the upper and lower arm, as displayed

in Figure 3.5. Li et al found that the inclusion of EMG data, as opposed to IMU data

alone, resulted in superior regression analysis of the clinical score. A study by Kim et al

[77] used a simpler version of an IMU and EMG fusion system for the same application.

This study used a MYO sensor (Thalmic Lab), which is composed of 8 EMGs and an

IMU, placed on the lower arm. This was positioned to record kinematic data of this arm

segment as well as myographic data at the brachioradialis muscle. Measurements were
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made of the difference between tension and flexion of different muscles and this feature

was found to be statistically significant between the impaired and less impaired arms. A

final fusion system has been developed by Repnik et al [78]. This study used the MYO

sensor, as used in the previous study, to record myographic data. Additionally, IMU

devices were placed on the dorsal side of the hand, wrist, upper arm, and on the sternum.

Myographic data was recorded to quantify grasp since this could not be captured using

the attached IMU sensors. Muscle activity recorded using these sensors was found to

correlate well with grasping activity as well as the level of grasping forces for stroke and

healthy subjects.

Figure 3.5: Placement of the sensors for the wearable system developed by Li et al [15]. EMG
sensors represented in red and IMUs represented in blue

3.4.2 Data Collection

The majority of automated systems developed thus far have been included in pilot or

proof of concept studies and have therefore been limited to small sample sizes (<15) of

post-stroke subjects [13, 68, 79, 77, 59, 65, 20, 67, 12, 62, 71, 60, 63, 80, 81, 69, 82, 67, 72].

Another potential limitation in subject cohorts has been a reliance on healthy subjects

to mimic levels of impairment [83]. As far as the author is aware, there have only been

a handful of studies conducted with a large sample size (>= 30) of post-stroke subjects

[84, 85, 19, 14] and only two of these have been with the wearable motion capture devices
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of most relevance to the present study [85, 19].

The movements performed by the subject during testing must be selected to reveal

motor impairment and preferably cover multiple components of upper-extremity dysfunc-

tion. For some studies, the choice was made to use an established clinical rating scale for

this purpose including the FMA [13, 63], WMFT [17, 12], and ARAT [13]. An advantage

of selecting tasks from existing rating scales is that these tasks have already been evi-

denced to be valid measures of motor function. A second advantage is that if the study

involves the development of a predictor model, then this may be used to directly predict

the clinical rating scale. This predicted score would therefore possess the validation of the

clinical scale. Alternatively, some studies have instead chosen to use a custom-developed

task such as simulated baseball swings [85] and custom reaching tasks [72]. Features

derived from these tasks could then be correlated with standard clinical rating scales to

prove their validity.

3.4.3 Data Segmentation

The subsection refers to the method by which the sensor data is windowed prior to

the calculation of features. The window selected may have a significant effect on the

usefulness of the resulting features. For instance, whilst most studies chose to window

the data over the entire period of the task, some studies chose to further segment the task

window by the subcomponents of the task. The study by Patel et al [16] chose to further

segment the “lift can” task of the WMFT into the stages of “reach”, “lift”, and “drink”.

This fine segmentation approach was chosen because it was found that some stages of

the task provided higher fidelity of information than others. By isolating these stages,

the overall classification results were improved. An image of this segmentation is shown

in Figure 3.6. The study by Zhang et al [63] went a step further by choosing a “fine-

grained” approach. This involved segmenting each task into small fixed-time windows of

0.2 seconds each. Zhang et al found that this segmentation method enabled the capture of

detailed patterns that standard clinical scales failed to reflect. Unfortunately, the study

required hemiplegia of the subjects since the analysis required a direct comparison of an

affected and non-affected side. Hemiplegia is not always present in stroke subjects and

in cases where it is the “unaffected” arm is rarely truly unaffected. For this reason, the

system presented in this study has limited applications.
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Figure 3.6: Raw accelerometer signal extracted while the subject performs the “lift can” task
of the WMFT. Data segmented into reaching (red), lifting and drinking (blue), and return (red)
stages. Taken from the study by Patel et al [16]

3.4.4 Feature Calculation

Studies which only instrumented a single limb segment with accelerometers or IMUs

were limited to features for that limb and could not calculate composite features across

limb segments. Despite this limitation, multiple sophisticated non-linear and frequency

domain features were calculated for these studies as well as the more fundamental features.

Some of the simpler sensor features which were calculated across most of the studies

include the maximum and minimum, mean, standard deviation, root mean square, energy,

and smoothness. More complex non-linear single sensor features calculated include the

approximate entropy [59, 17], range of autocovariance [60, 17], and jerk metric [17].

Finally, frequency domain features calculated include dominant frequency [60] and the

ratio of energy around the dominant frequency compared to the total energy of the signal

[17]

Studies which utilised multiple IMUs or visual motion capture systems were able to

compute more sophisticated measurements across different segments such as segment ra-

tios and orientation. One feature based on segment ratios calculated was the intensity

ratio of the accelerometers/ gyroscopes recorded across two IMUs [15]. Orientation fea-

tures are a useful means of quantifying complex movements and are generally easier to

interpret than more opaque features derived from the acceleration or gyroscope. Orienta-

tion feature derived in prior systems include joint angles [67, 20], segment rotation [20],
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balance [64], and trajectory accuracy [64].

The have been a selection of myographic features extracted from the prior myographic

kinematic fusion studies. The study by Kim et al [77] calculated a feature of muscle

stiffness by finding the difference in tension of flexor with the tension of extensor at

the brachial muscle. Muscle tension was estimated by standard EMG signal processing

(rectification, amplification, and low-pass filtering). The fusion study by Li et al [15]

calculated an EMG power distribution for the array of EMGs sampled. The Root Mean

Square (RMS) of each EMG channel was first calculated. A percentage was then as-

signed to each EMG channel based on the proportion of the EMG value compared to the

summation of the entire array. A similar method was also utilised for calculating muscle

activity in the study by Repnik et al [78].

3.4.5 Feature Selection and Dimensionality Reduction

Reducing the feature set is an important component of any machine learning study in

which the number of features exceeds the number of instances. The two main methods

of reducing the feature space are by feature selection, whereby algorithmic methods are

used to select existing features, and dimensionality reduction, whereby the feature matrix

is transformed to a new reduced feature space.

The two forms of feature selection, filter and wrapper methods have both been per-

formed in prior automated studies. Filter methods that have been implemented include

the ReliefF algorithm [11, 17, 61] and L1-norm minimisation learning. A wrapper method

that has been implemented is the use of SVR [64] and LASSO [15] for feature selection.

The study by Kim et al [19] utilised PCA as a means of reducing the feature space

before feeding the data into a neural net for classification. The system developed by

Bosecker et al [14] also utilised PCA prior to developing regression models of clinical

score. An alternative application of PCA has been as a scoring method as used in two

prior studies [13, 15]. This method will be discussed in more depth in the following

section.

3.4.6 Feature Set Size

A secondary and oft overlooked consideration in feature selection is the size of the result-

ing reduced feature set. This has great importance since the size of the feature set has

a significant effect on the training time and resulting classification performance. There
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may also be a different optimal size of feature set depending on the task being classified.

There have been three main approaches used to determine the optimal feature set

size. Firstly, there have been studies which have used an arbitrary size, or the same size

as used in the previous studies. Secondly, there have been studies which optimised the

feature set size for one or across several tasks and then used this number of features for

all subsequent feature reduction (fixed feature set). Finally, there have been tasks which

dynamically found the optimal feature set size for each task classified (dynamic feature

set).

For prior systems which have implemented a fixed feature set size, the most common

method of determining an “optimal” set size was by calculating or visualising the best

feature set size across a subset of the total tasks. The number which best suited most of

these tasks was then implemented as the fixed feature set size for predicted of all tasks.

This method has been implemented in several prior automated studies [61, 17, 16, 84].

A plot of this as performed in the study by Del Din et al [17] is shown in Figure 3.7.

Del Din et al found that RMS error did not decrease significantly across tasks when

using more than 20 features so selected 20 as the fixed feature set size for subsequent

feature selection. One drawback of fixed feature set methods is that they make the flawed

assumption that the optimal feature set size for one task will also suit another task. This

is likely incorrect for most clinical rating scales since tasks may be drastically different

in terms of the type of movement captured or limb segments involved.

An improved way of implementing feature selection is to dynamically find the optimal

feature set size for each task being predicted. As far as the author is aware this has only

been implemented in the prior automated study by Kim et al [19]. In this case, PCA was

used to reduce an original feature set of 100 down to between 4 and 10 dimensions for

each assessment task.

3.4.7 Building the Predictive Model

The studies discussed thus far may be categorised depending on whether they sought

to find a correlation with or a prediction of the clinical rating scales. The focus of this

section is on the development of predictive models and as such correlation studies will

be excluded from this section. Prior predictive models have been developed which have

derived a score via classification, regression, or by a novel scoring method. A distinction

is made in this section for studies which used “off-the-shelf” classification models which

may be trained for a variety of functions, as opposed to custom classification models
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Figure 3.7: Graph of the effect of different feature numbers used for predicting the scores of
different tasks of the WMFT. Taken from the study by Del Din et al [17]

which have been created using domain knowledge specifically for the study. These will

be referred to as generalised and custom classification models respectively.

Several different generalised classification models have been implemented in prior

automated systems. These include linear SVM [68, 83], ANNs [68, 19], and logistic

regression [79]. In addition, the ensemble classifier random forests has been applied

[11, 17]. It is difficult to draw any kind of direct comparison between the classification

results of these studies due to widely varying parameters including subject pool size,

instrumentation, and clinical scale evaluated. Ensemble classification methods, such as

random forest, utilise the aggregate result from muscle classification models and have

been found to perform better for small datasets. A common link for all these classification

models is that they are reliant on sufficient training data to find the optimal coefficients

for classification. Many of the stated studies utilised relatively small sample sizes and as

a result, the classification models would be unlikely to generalise well to new data.

Custom classifier models have thus far been implemented in the form of decision

trees [65, 12, 67] and a binary logic classifier [20]. A diagram of the custom decision

tree developed for the study by Bento et al [12] is illustrated in Figure 3.8. Custom

classification models are well suited for clinical rating scales in which the definition of score

is based on specific movement parameters since these parameters may be easily integrated

into the classification model. These systems would also be expected to perform better

than generalised classification models for small datasets since they are not dependent on

a large amount of training data to achieve the optimal parameters. One limitation of

55



Chapter 3. Wearable Fusion System for Automated Rating of Upper-Arm Motor Function Post-Stroke

this method is that it relies on human judgement, in the form of domain knowledge, to

determine optimal features and parameters. This means that there may be useful features

for classifying tasks which are missed because they are beyond the comprehension of the

model designer

Figure 3.8: Custom decision tree for classifying scores from the WMFT, developed by Bento
et al [12]

Regression models have been used to determine a continuous rather than discrete

output of clinical score. Methods implemented include LASSO [15], a form of linear

regression which uses shrinkage to shrink data towards a central point. Other methods

of regression have included linear [60, 14, 69] and ANN [69] based regression models.

An oft stated advantage of these studies is that regression holds the potential to raise

the resolution of the output score. However, the accuracy of the score is still limited by

accuracy of the clinical rating scales which form the labels. Since the clinical rating scales

are based on discrete, ordinal scores, there is unlikely to be any additional accuracy in

the use of regression over classification for this application.

Finally, there have been novel scoring methods whereby the scoring was achieved

independently of a clinical rating score. Thus far these methods have operated based

on a comparison between the affected and unaffected arms post-stroke. In the study

by Zhang et al [63], the same tasks were performed first with the affected and then

the unaffected arms. Dynamic time warping was then used to enable direct comparison

of the features calculated for each arm. Finally, a similarity metric was calculated to

determine the similarity of performance between the two arms, with a low score indicating

impaired performance of the affected arm. In a study by Olesh et al [13], PCA was used

to deconstruct the principal components of averaged healthy joint angles. The same

principal components were then used to construct the temporal joint angle profiles of
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the affected arm. A coefficient of determination was then used to calculate a score

based on how similar the reconstructed affected joint angles were to the original affected

joint angles. This score shows how well the principal components of the unaffected arm

represented the movement of the paretic arm. An advantage of both these studies is that

they determine a score which is independent of the clinical rating score. This means that

the inherent limitations of the clinical rating score are not integrated into the model. This

can however also be considered a limitation since the score produced does not possess

the validation associated with the clinical rating scales. Another limitation is that both

studies draw comparisons based on the affected and unaffected arms of the same subject

and therefore require the presence of hemiplegia. This is not always the case in post-stroke

populations and therefore these systems have limited clinical application.

3.4.8 Review

A final review is made of all the aforementioned automated studies with particular em-

phasis made on any novel implementations or limitations which should be taken into

consideration in the present study. This is discussed with respect to instrumentation,

sample size, feature extraction, and predictive models.

The prevalent instrumentation utilised in early automated systems has been a solely

accelerometer-based setup. This sensor system has low energy requirements which makes

it well suited for pervasive monitoring systems but is less well suited as a clinical quan-

tification system due to the limited motion information provided. The use of IMUs,

particular in multiples, and the Kinect sensor offers much greater fidelity of information

which in turn may improve prediction performance. Additional information that may

be derived includes joint angles which form important parameters in many clinical rat-

ing scales [86]. The Kinect has the advantage over an IMU-based system by being the

more established and well-validated system for the measurement of joint angles. The

Kinect also possesses a low cost and a simple interface for extracting clinical data. Dis-

advantages of the Kinect sensor include high set up time, risk of occlusion, and poor

performance when quantifying rotation around the principal joint axis. The final two

disadvantages mean that the Kinect should be supplemented with a secondary device to

provide sufficient results. When testing a subject population with a wide range of mo-

tor deficits (including bed-bound subjects) multiple IMU systems are likely the superior

sensor modality due to their robustness, lack of occlusion problems, and easy setup and

use in any environment. The Kinect sensor is less practical as a bedside assessment mea-
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sure due to the requirement of cameras being set up and the subject being in an upright

position. For applications where subjects are mobile enough to participate, the Kinect

sensor may be the preferred sensor system due to its high validity and ease of use. Three

recent studies have integrated myographic sensors into their sensor system as a means of

supplementing the kinematic data with information about muscle activity. Early results

are promising with all studies reporting that the inclusion of muscle activity provided

higher performance than kinematic data alone. In addition, myographic sensors hold the

advantage of being able to quantify motor areas which are otherwise difficult to measure

kinematically (such as grasp function).

A small sample size is a persistent limitation in most prior automated studies. Testing

on such a small sample size reduces the scientific significance of any findings and may

provide misleading results. In addition, the majority of studies relied on classification

or regression models to make predictions. A small training set would mean that these

models would be expected to perform less well and would also have to be training on low-

dimensional feature sets to avoid the risk of over-fitting. The presence of small sample

sizes in prior studies is likely due to difficulties encountered recruiting suitable post-stroke

subjects. Now that the field of automated evaluation of motor-function post-stroke has

become more established, there is a requirement for more follow up studies on larger

cohort sizes to better validate the achieved results.

Numerous features have been calculated across automated systems and these are

rarely consistent between studies. This makes evaluation of the most useful feature

subset difficult. Accelerometer and gyroscope metrics alone provide a basis for deriving

a multitude of different features. These features provide useful motion information but

are largely dependent on how the subject chooses to perform the movements. If the

subject elects to perform tasks quickly then these movements will possess more energy,

and this may provide misleading results. An exception to this is jerk, calculated from

the differential of acceleration, which can be used to calculate the jerk metric, a useful

metric of tremor [87]. The jerk metric is normalised using the velocity of the movement

and therefore is not dependent on the speed the subject elects to perform the action.

Orientation-based features are likely to be more useful for classifying clinical score than

accelerometer or gyroscope-based features since they correspond more closely to clinically

relevant parameters such as range of motion, balance, and segment rotation. These

features are also more transparent (correspond to known metrics such as joint angle) and

as such may be more easily understood by both the subject and clinician. Finally, two
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features have so far been derived from EMG data. These have been based on the tension

between different muscles and a power distribution derived from an array of EMG sensors.

Both these features have been shown to provide a useful insight into muscle activity.

Most automated systems applied classification models to predict clinical score. This

method appears preferable to regression models since the labels used for training are dis-

crete and although ordinal, are not linear. This means that a regression model is unlikely

to provide any increased accuracy as compared to classification. Custom classification

models were developed which utilised custom features and thresholds based on existing

clinical rating scales and domain knowledge. These models worked well on small sample

sizes which would have provided insufficient training data to train more complex models.

Lastly, two novel studies developed scores based on comparative metrics based on the

affected and unaffected arms. This resulted in sophisticated scores which go beyond that

offered by the standard clinical rating scales. A major limitation of these studies is that

they are not suitable for most clinical studies due to the requirement for hemiplegia in

the cohort of subjects. This condition is not always present post-stroke and when present

will occur at varying degrees of severity.

In summary, it is the author’s opinion that the optimal sensor system for bedside

automated clinical evaluation be composed of multiple IMUs and supplemented by myo-

graphic sensors. Multiple IMUs would be easy to attach to subjects at all impairment

levels, while the myographic sensing would solve the problem of quantifying the hand and

wrist motor function involved within grasp or manipulation tasks. There have not yet

been any studies which have offered a definitive feature set for such automated systems,

but orientation-based features relate most strongly to existing clinical parameters and

would likely be useful for this application. Finally, novel methods of deriving a score

(independent of the clinical rating score) are promising but are currently dependent on

comparisons between affected and non-affected arms which is a flawed methodology. Typ-

ical methods have involved “off-the-shelf” or custom classification models and both these

methods should be investigated further.
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3.5 Instrumentation

The instrumentation utilised in the present study was composed of multiple in-house data

logger boards (each housing a single IMU) and MMG sensors. These two sensor types

will be discussed within this section in terms of their function, design, configuration, and

synchronisation.

All of the instrumentation discussed in this section was developed in the Biomecha-

tronics lab (Imperial College London). The data logger boards were produced prior to

the start of this PhD project and simply applied in the present study. The MMG sensors

were built as part of the project using a design which has previously been established.

All of the cases and straps used for the devices were designed and printed as part of this

PhD project.

3.5.1 Data Logger Board

The data logger board utilised for the present study has been developed in-house (Biomecha-

tronics Lab, Imperial College London). A diagram of this board is illustrated in Figure

3.9 and highlighted with several key components as listed below:

1. Microcontroller (PIC24FJ64GA104)

2. Wireless Module (BT900)

3. IMU (LSM9DS1)

4. Micro-USB port

5. 8 broken-out Analogue-to-digital converter (ADC) pins for sampling data from ex-

ternal devices

Figure 3.9: Key components of the data logger board
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The primary microcontroller of the data logger board is a 16-bit microcontroller (Mi-

crochip) with a processor speed of 16 Million Instructions per Second (MIPS). This mi-

crocontroller contains several useful peripheral modules including clock, I2C modules,

Universal Asynchronous Receiver Transmitter (UART) modules, and external interrupts.

These modules were all necessary for recording from the IMU chip and transmission of

data over Bluetooth. Another useful property of the microcontroller is that it enables up

to 8 pins to be purposed as ADC pins (see subsequent paragraph on broken-out ADC

pins).

The BT900 wireless module provides dual-mode implementation of Bluetooth version

4.0. This provides a low energy means of Bluetooth communication at a suitable com-

munication range and bandwidth for the present study. Bluetooth streaming directly to

a master device such as a computer is a useful property in research devices for online

visualisation or data logging for instance.

The LSM9DS1 chip was fitted on board for the measurement of inertial data. This

IMU contains triaxial measurement of accelerometer, gyroscope, and magnetometer. This

provides 9 DOFs in total which is optimal for data collection and subsequent orienta-

tion calculations. The miniaturised size and easy configuration of this chip makes it a

straightforward method of implementing onboard wearable sensing.

A micro-USB port is included in the data logger board for charging the battery and

for wired serial communication over USB (as an alternative to Bluetooth communication

for data collection).

The maximum configurable number (for the microcontroller) of 8 ADC pins were

utilised on the data logger board. These pins were broken-out on the boards for this

project by using a 3 x 8 set of female 2.54 mm pitch header pins. These external header

pins enabled the sampling of data from external devices, such as the MMG sensors used

for this study.

3.5.2 Mechanomyogram

The MMG used for this study was developed in-house (Biomechatronics Lab, Imperial

College London). The sensor uses a glue-less design, the structure of which is composed of

three polymer (3D-printed) parts: the housing, sleeve, and clip. The actual microphone

is contained on a small printed circuit board (PCB) and positioned within the housing.

The housing contains a chamber which has been designed to achieve the highest gain of

the MMG signal while maintaining the flattest frequency response [88]. Finally, a mylar
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membrane is fitted over the chamber using the sleeve to create a pressurised chamber.

A diagram of the aforementioned components of the MMG, as well as a photograph, are

displayed in Figure 3.10 and 3.11 respectively.

Figure 3.10: Computer model of the
in-house mechanomyogram model includ-
ing the key components for construction
(Biomechatronics Lab, Imperial College
London)

Figure 3.11: Photograph of the in-house
mechanomyogram (Biomechatronics Lab,
Imperial College London)

The signal that is collected from the microphone of the MMG represents the change

in internal pressure of the chamber caused by the distortion of the membrane. When

placed flat against the surface of the skin above a muscle, the signal is analogous to the

change in pressure caused by muscle vibrations which have propagated through the skin

and mylar membrane. This vibration provides information which relates to an intrinsic

property of muscular contraction [49].

3.5.3 Sensor Configuration

The testing phase of the study required the instrumentation of different body segments.

These sensors would then transmit data while the subject performed a series of pre-

prescribed tasks. For some body segments only inertial data was gathered, which required

only the data logger board to be attached to the segment of interest. For other body

segments both inertial and myographic data was to be gathered. In this case, the MMG

sensors were wired directly to the broken-out ADC pins of the data logger board and

sampled appropriately.

All cases and straps for the data logger boards and MMGs were specially printed for

this study using the Form 2 3D printer (Formlabs). This is a stereolithography (SLA)

type of printer which uses a laser to harden a UV-sensitive layer. This printer was selected
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since it provides a high-resolution (minimum layer height of 25 microns) of printing in a

small form size and offers a wide selection of different resins including the flexible type

(as detailed later).

The MMG and data logger board cases were printed using the tough resin. This resin

was selected since it provided good level of strength (ultimate tensile strength of 55.7 MPa

[89]) in the finished part and could be printed at a high resolution specification. A high

strength case was required to ensure good durability and protection to the electronic

parts, while the high resolution was desirable to ensure attachment parts on the case

would function well. Images of the final printed cases for the data logger board are

shown in Figure 3.12 and Figure 3.13 respectively. A special case had to be designed

for the data logger board positioned on the torso since this could not be attached to a

limb segment (like the other cases). This case was printed to incorporate clip-on buttons

which could easily be attached to an elastic strap.

Figure 3.12: Top-down view of the data
logger 3D printed case. Local axis frame
for the accelerometer/ gyroscope included
where the z-axis points upwards

Figure 3.13: Front view of the data log-
ger 3D printed case. “Wings” visible at the
sides of the case enable fitting of the wear-
able straps

Wearable straps, for the data logger and MMG cases positioned on the limb segments,

were printed with the flexible resin. This resin type was selected since it provided a

comfortable fit but was less prone to failure than the elastic type of resin. A range of

sizes of wearables straps were printed to ensure that the sensor system could be fitted to

a wide range of limb sizes. Wearable straps could be easily switched out prior to clinical

testing to ensure the best possible fit and in turn minimise subject discomfort and sensor
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migration during testing. Velcro was applied to the wearable straps to enable them to

be affixed to the subject limb segments. Images of the straps attached to the data logger

board and MMG sensors are shown in Figure 3.14 and Figure 3.15 respectively.

Figure 3.14: Top-down view of the data logger with flexible polymer straps attached

Figure 3.15: Top-down view of two of the MMG sensors with flexible polymer straps attached

3.5.4 Sensor Synchronisation

The sensor setup implemented in the present study is composed of multiple sensors across

two different modalities (inertial and myographic). This complexity meant that sensor

synchronisation was a primary consideration for this study. In particular, there were

two issues which had to be addressed in this domain. Firstly, the two different sensing

modalities were recorded from different devices and at different frequencies. Secondly,

the data logger boards were not all wired together and as a result clock synchronisation

was a major concern.

The synchronisation of the MMG sensors was achieved by sampling these sensors

directly from a master data logger board. This meant that the MMG signal was collected

in analogue form and then digitised within the data logger board itself. This method

ensured that the same clock would be used both for sampling the MMG sensors and the

on-board IMU. Although the frequency rates differed for the two modalities, the use of
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the same clock meant that these were easily synchronised in post-processing. For the

present study MMG sensors were located on the forearm and as such the data logger

board located on the wrist was selected to sample these sensors. Additional data logger

boards were located on the upper arm and torso, as explained in more detail in Subsection

3.7.2: Instrumenting the Subject

Synchronisation between the different IMUs was more complex since these devices

each had their own clock. This was handled by generating a packet at the data logger

board which included the device ID and the packet number. This enabled any dropped

packets to be detected at the computer-side and provided the exact sampling rates of

each device so that these could be synchronised in post-processing. Finally, each packet

received at the computer-side was assigned a time stamp so that any periods of extended

Bluetooth drop-out could be detected, and data could be synchronised between devices.

An image of the data synchronisation steps is shown in Figure 3.16

Figure 3.16: Project data synchronisation and output. Packet number (provided by the
data logger board) and timestamp (provided at the computer-side) helped ensure the data was
sampled correctly and synchronised between data logger boards

3.6 Software

Multiple custom Graphical User Interfaces (GUIs) were developed to perform the stages

of data collection, processing, and classification. Particular focus was made to ensure

the GUIs were designed to meet the goals of the project while also providing enough
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flexibility to be further adapted for future work. The designed software will be discussed

in terms of their primary functions, programming language, and key libraries. Software is

categorised depending on whether it was involved in the online or offline data collection/

processing stages of the study.

All of the software documented in this section was developed in the Biomechatronics

lab (Imperial College London) by the author specifically for this PhD project. Software

was developed using either the Python or C# programming language using the Qt (The

Qt Company) and .NET (Microsoft) frameworks respectively.

3.6.1 Online

The first major piece of software developed for this study was the “Data Saver” GUI. The

primary function of this GUI was for forming Bluetooth connections with and streaming

data from the data logger boards. The GUI also provides a variety of functions to trans-

form the raw transmitted data into a usable format. Finally, the GUI provides options to

visualise the transformed data or save the data for later processing (see “Offline” section).

The C# programming language and the .NET framework were selected for the GUI

development. The C# language was chosen due to the ease of generating simple and

intuitive user interfaces with the .NET framework, and for its speed for multi-threaded

applications. The latter property was particularly important for the present study since

multiple processes were performed simultaneously including displaying the GUI, main-

taining up to three Bluetooth connections, visualising data, and saving the data. A

number of additional libraries were implemented which are not included in the standard

.NET framework. These were the InTheHand library for forming Bluetooth connections,

OxyPlot for real-time graph visualisation, and OpenTK for real-time avatar and object

visualisation. An image of the connection tab of the Data Saver GUI is shown in Figure

3.17.

The primary function of the online GUI was for directly logging data from the post-

stroke subject and as such it was designed to be used by someone without training in

software development. The idea was that this could be adopted directly by clinicians

assessing the subject or even by a carer for home-based assessment. For this reason, the

GUI was developed with a focus on usability, with large, labelled buttons and an intuitive

design.
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Figure 3.17: Data Saver GUI- Connection tab. Buttons provided for performing a scan to
show all available Bluetooth devices, forming Bluetooth connections, and setting calibration
values for the device

3.6.2 Offline

This subsection covers all the pieces of software which were developed for offline data

processing in this study. All software in this section was developed using the Qt framework

and implemented in the Python language. The Qt framework was chosen for its user

friendly and cross-platform GUI development. The Python language was selected due to

the wealth of libraries it has available both for managing large datasets and visualising

them. A selection of python libraries used in all the python-developed GUIs were Pandas

for large DataFrames, and Matplotlib and Seaborn for graph plotting.

The offline GUIs were developed with a focus on providing a wide range of func-

tionality and to be adaptable enough to modify for use in similar studies. An object

orientation approach to design was taken to allow for easy maintenance and modification

of the code base. The use of the Qt framework meant that the GUI could be operated in a

wide range of operating systems. Even though a visual rather than script-based interface

was chosen for this software, a programming background is recommended for operation

of these GUIs due to the requirement to ensure that any data files imported follow the

correct formatting. For this reason, these GUIs are targetted for use by someone with a

software background and may not be suitable for use by a clinician without significant

training.
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Data Processor GUI

The “Data Processor” GUI was developed for data processing, plotting, and feature

extraction. The additional library SciPy was used for filtering and feature calculation,

and the library SQLAlchemy was used to utilise a mySQL database for data manipulation

when there was insufficient local memory. The import data tab of the Data Processor

GUI is shown in Figure 3.18.

Figure 3.18: Data Processor GUI- Import Tab. Buttons provided for importing trial sensor
data as well as calibration, rating, and task files

Feature Explorer GUI

The “Feature Explorer” GUI was developed for the visualisation and manual removal of

features extracted from the data. Functions of this GUI include the plotting of features

against each other or an independent variable to study their usefulness and the inter-

correlation between features. This GUI also provides functions to enable straightforward

manual dropping of features from the data. This is a requirement for this study since

some of the tasks performed are only captured by a subset of features.
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Feature Classifier GUI

The “Feature Classifier” GUI is the final piece of software developed for this study. This

GUI enabled the creation of custom classification pipelines to generate and test the per-

formance of classification models. This pipeline incorporates all the critical stages of

classification testing including feature standardisation, balancing, selection, and classifi-

cation. A wide variety of feature reductions method and classifiers were made available,

and these different methods could be included as hyper-parameters in a single pipeline

analysis. Lastly, both cross-validation and hold out methods of classification performance

testing were provided.

Additional Python libraries utilised include scikit-learn for feature preparation, selec-

tion and classification, imbalanced-learn for data resampling and creating the classification

pipeline, TensorFlow for the development of ANNs, and lightGBM for the implementa-

tion of the light gradient boosting classifier.

3.7 Data Collection

The section covers all the major components of data collection for this study including

subject recruitment, instrumentation, and testing.

3.7.1 Recruitment

A cohort of 64 subjects was recruited from the acute and hyper-acute wards of Charing

Cross Hospital (London). There were no subject requirements in terms of the minimum

level of required motor function (unlike many prior comparable studies). This meant that

subjects could be included in the study even if they were bed-bound. Cognitive ability

was assessed before testing by the Glasgow Coma Scale (GCS). Subjects were excluded

if they did not achieve a full score to ensure the subject was capable of giving informed

consent to participate in the study and was able to follow verbal commands. Finally, a

questionnaire was completed by the subject prior to assessment to determine if they were

suffering from depression as this may affect their motivation to perform the given motor

tasks. Subjects were excluded who scored below a certain threshold for this scale.

Full subject demographics are given in Appendix A Table 8.2. A summary of these

demographics are as follows:
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� Sex: 33 male, 31 female

� Affected Side: 43 left, 21 right

� Age: range 33-95, mean 66.3, SD 13.8

� FMA-UE Score: range 0-60, mean 42.7, SD 18.1

3.7.2 Instrumenting the Subject

This subsection details how the instrumentation was actually attached to the subject.

Locations are presented with respect to the standard anatomical position for the sake of

clarity.

The data logger boards were attached to the lower arm, upper arm, and torso of the

subject. Each of these body segments was chosen due to their contribution to upper

extremity tasks. In addition, derivation of the orientation at these segments enabled

the calculation of joint angles at the elbow and shoulder. The arm to instrumented was

selected based on which side of the participant’s body demonstrated the most weakness.

The data logger board for the lower arm was placed on the wrist due to the ease of fitting

at this location. The upper arm was instrumented by placing the data logger board just

above the elbow in position in-line with the lower arm data logger. The torso data logger

board was positioned in the centre of the chest using a custom elastic strap. A diagram

of the instrumented subject is shown in Figure 3.19. Fitting of the sensors was optimised

by selecting the flexible straps which best suited the size of the limb segments of the

subject. After testing, all sensor cases and straps were sanitised using alcohol wipes to

avoid the risk of cross-contamination.

Two MMG sensors were placed on the mid-forearm and connected by wires to the

data logger board attached to the wrist. The MMG sensors were located above the

flexors of the fingers (flexor digitorum profundus and flexor digitorum superficialis) and

the flexor carpi radialis. These two muscles groups have actions in finger and wrist

flexion respectively. The recommended layouts for myographic recording from these two

muscle groups are shown in Figure 3.20 and Figure 3.21. It is important to note that

these diagrams were developed for instrumenting the muscle bellies via EMG rather than

MMG. These diagrams were used as guides for the placement of the MMGs regardless

due to a lack of comparable documentation available for MMG, and because the nature of

MMG means that it records a larger aggregate of muscle activity and as such positioning
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Figure 3.19: Diagram of the sensor setup up (assuming lesions on the right-hand side). Body in
the standard anatomical position (left) and the same with the exception that the arm is pronated
instead of supinated (right). Data logger boards are represented in blue and mechanomyographic
sensors represented in red

of these sensors is considered to be less critical than for EMG. By instrumenting these

muscles group it is possible to assess these motor actions they control, which are otherwise

difficult to measure kinematically. An image of the MMG sensors attached to the subject

forearm is shown in Figure 3.23. An image of the wrist data logger board (used for

recording IMU data and sampling from the MMG sensors) attached to the subject is

shown in Figure 3.22.

The two attached MMG sensors were expected to provide measures of flexion of the

wrist and fingers. These are important measurands for both the wrist and hand subsection

of the FMA-UE clinical rating scale that this study is attempting to instrument. It is

worth noting that this study does not measure any information about the complementary

extension muscle activity of the wrist and finger flexors. As a result, it is only possible to

capture partial information relating to certain tasks, such as circumduction and repeated

dorsi-volar flexion, and no information relating to the task of mass extension. This clearly

presents a significant flaw in this study. The omission of this region was due to difficulties

sampling from further MMG sensors with the data logger board. Any future work that
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may be conducted with this sensor system should try to rectify this problem so that both

the flexors and extensors may be fully captured.

Figure 3.20: Recommended layout for
myographic instrumentation of the finger
flexors. Taken from [18]

Figure 3.21: Recommended layout for
myographic instrumentation of the flexor
carpi radialis. Taken from [18]
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Figure 3.22: Data logger board attached
wrist of the subject

Figure 3.23: MMG sensors attached the
forearm of the subject. Note that the sen-
sors are slightly misaligned in this photo
for recording of the finger flexors and flexor
carpi radialis

3.7.3 Clinical Protocol

The clinical protocol for this study instructed subjects to perform a set of pre-prescribed

tasks while wearing the novel instrumentation as discussed in the previous section. The

task set selected was the upper extremity sub-section of the motor function section of the

FMA. The FMA was chosen since it is one of the most widely used and well-validated

clinical scores of motor function post-stroke [90]. In addition, the tasks included cover all

body segments of the upper extremity including grasp and hand function. Movements of

this scale are assessed both in isolation and synergistically to gain a detailed assessment

of motor dysfunction. This provides a rich domain from which to collect sensor data and

extract useful features.

One of the main differences conducting the FMA-UE for this study as compared to

conventional clinical assessment was the additional setup time required for attaching and

connecting to the sensors. Secondly, the subject was instructed to pause before and after

each task to be able to digitally segment the task period. These two requisites meant that
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instrumented testing required more time as compared to conventional clinical testing.

Despite this, the additional time was lower than would be expected for camera-based

setups (such as the Kinect) since this method would require subjects to be transported

or a camera setup before testing. The total assessment time for this study rarely exceeded

20 minutes. This is considered acceptable for clinical research studies but may be too

long for conventional clinical assessment as part of normal post-stroke care.

3.7.4 Clinical Assessors and Training

The nature of the clinical protocol for this study meant that two examiners were required

to assess the subject. One examiner was in charge of applying the instrumentation to

the subject and logging the data. The other examiner was responsible for performing the

actual FMA, including interacting directly with the subject for the tasks which required

this.

For the first batch of subjects tested (∼= 30) a doctor with significant experience

performing the FMA on the stroke ward was on hand to perform the clinical rating

assessment. In this case, the author of this paper was responsible for setting up the

instrumentation and logging the data. Due to the imminent departure of the doctor

to another hospital, it was necessary to find an alternative clinical assessor. A student

undertaking a masters in neuroscience was assigned to the project and was trained by the

doctor to perform the FMA. This involved one to one training as well as being referred

to a number of instructional online videos. There was also phasing in period whereby

the experienced doctor was on hand to observe the performance of the student during

assessment of the next few (∼= 5) subjects to ensure consistency of scoring. Finally, to

minimise discrepancies of scoring between each rater, an avatar visualisation of the tasks

was also produced offline. This was examined in depth to determine whether the second

rater deviated from the first rater. Since the FMA uses quite a broad rating scale (0, 1,

or 2) and because the second rater was trained by the first rater, only a few deviations

in score (< 5) were observed and corrected.

3.7.5 Online Data Collection

The data collection phase required a laptop, running the Data Saver GUI, to be set up

at the subject’s bedside. The laptop was later replaced by a tablet for ease of testing.

The Data Saver GUI was used to form Bluetooth connections with the three data logger
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boards. This enabled a stream of data to be transmitted between the data logger boards

and the laptop/ tablet.

Prior to subject evaluation, important testing parameters were collected and supplied

to the GUI. These include the subject Unique IDentifier (UID), active ADC pins of the

data logger board, and side of the body instrumented. Additional information including

the data logger board number and the sampling rate was provided automatically by the

data logger board following successful Bluetooth connection. An image of the save tab if

the GUI is shown in Figure 3.24.

Figure 3.24: Data Saver GUI- Save Tab

Once the subject was prepared for clinical evaluation, the “Start Save” button of the

GUI was pressed. Digital markers were manually assigned in the data by a button press

during the saving process. These markers served to indicate the start and end of each

task and were later used to segment the data. This is an important step since subsequent

analysis required the data for each individual task so that the rating could be predicted

on a task-by-task basis across all subjects. Once clinical evaluation had been completed,

the “Stop Save” button was pressed. All data was saved locally in the Comma-separated

Values (CSV) format with a single file generated for each trial. In addition to saving

the data, the GUI also exposed functions for displaying plots or a real-time avatar (as

discussed in greater depth later in the chapter).
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The final set of data consisted of a CSV data file for each of the 64 subjects tested.

Each of these files was organised by the task performed using the digital markers. This

was an important step since the classification model discussed later was used to classify

the labels (clinical scores) assigned to the task using the task data only. This meant that

the data corresponding to the same task had to be extracted from each and every subject

tested. CSV files were formatted so that all necessary data about the test (anonymised

patient number, sampling rates, etc) was accessible and data could easily be processed

in subsequent stages.

A summary of all the major components of data collection pipeline is shown in Figure

3.25. Examples of the task segmented data streamed from each axis (and overall) of

the accelerometer and from the MMG sensors are shown in Appendix B Figure 9.1 and

Figure 9.3 respectively.

Figure 3.25: Project data pipeline. Data is sampled from the data logger boards and trans-
mitted via Bluetooth to the computer

3.8 Data Processing

All major data processing steps were conducted using the Data Processor GUI. A dis-

tinction was made between local and global-scale processing for this study depending

on the dataset being operated upon. Local processing defines all operations that were

performed on the individual datasets captured from each subject trial. This includes

operations which were applied to each instrumented limb segment such as filtering and

orientation calculations. Global processing defines the operations that were subsequently
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performed on the concatenated dataset across all subject trials. Concatenation of the

dataset was performed to maximise efficiency and minimise the risks of memory errors.

The importing of the CSV file, generated during data collection, was handled by

the “Select Data” tab of the Data Processor GUI (see Figure 3.18). In addition to

the data CSV files, other files were provided corresponding to the tasks performed, trial

specifications (sampling rates, sensor locations), calibration specifications, and the clinical

rating data.

3.8.1 Local Data Processing

The main stages included in local processing phase were calibration and standardisation

of raw data, quaternion calculation, orientation taring and offset, and data filtering. An

image of the local processing tab of the Data Processor GUI is shown in Figure 3.26.

Figure 3.26: Data Processor GUI- Local Process Tab

The first stage of local processing was the calibration and standardisation of the

data. Bias values for each axis of the accelerometer and gyroscope for each data logger

board were collected by calibration testing prior to any subject testing. Magnetometer

calibration values were collected before testing each subject since the appropriate bias

values tended to drift rather than remain constant. The calculated calibration values

were imported into the GUI and applied to each sensor axis to remove the bias from the
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data. The data was subsequently normalised by converting the inertial and ADC data

recorded into the following standardised units:

� Accelerometer: Gravity (g)

� Gyroscope: Radians per second (rad/s)

� Magnetometer: Gauss (G)

� Mechanomyogram: Voltage (V)

Quaternion data was calculated using a Python coded version of the Madgwick Gradi-

ent Descent Algorithm (see Subsection 2.8.3: Madgwick Gradient Descent for derivation

and performance of this algorithm). A modified version was used which required only the

accelerometer and gyroscope metrics due to issues with the drift of the magnetometer in

this study. Prior to calculating the quaternion values, the sensor axes were rotated to

match the expected axes of the Gradient Descent algorithm (y-axis of each sensor metric

parallel to gravity in a null rotation orientation). Another step was made to flip certain

axes of data recorded on the left-hand side of the subject to simulate recording on the

right-hand side. This meant that it would be possible to directly compare recordings

taken of subjects regardless of the side of the body which was instrumented.

Orientation taring and offset was a necessary step to apply to the calculated quater-

nion data. Magnetometer data was not implemented in the Madgwick Gradient Descent

Algorithm due to bias issues and magnetic interferences. As a result, there were not the

two fixed vectors required by the Gradient Descent algorithm to find a unique orientation,

and this resulted in heading drift. This clearly presented an issue for this study since

this heading drift would increase over time during the trial and eventual result in the

orientation computed for each IMU becoming out of sync. The solution developed for

the study was to take advantage of known, fixed start positions with which to position

the test subject at the beginning of each task. This meant that the orientation could be

tared at the start of each task and as a result there would only be a very small amount of

heading drift over the short time course of a single task. There were two main methods

of taring each task proposed for this study:

1. For tasks which only involved rotation around a single joint axis or minimal dis-

cernible rotation, the orientation was fully tared to simulate the appropriate start-

ing position. This method involved resetting the orientation completely to a known

start position for the given task. All of the tasks included within the hand and

wrist category of the FMA were tared using this method.
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2. For complex tasks involving rotation around multiple joint axes, it was not consid-

ered to be reasonable to assume that every subject would be able to get into the

correct start position. For instance, for the extensor synergy task, it is necessary

for the subject to start with their hand on their ear. This position is clearly not

feasible for many subjects. Since drift was only present around the heading axis,

a solution was reached by only taring around the heading axis (using swing-twist

decomposition). Small manual orientation adjustments were then made to these

tasks using custom heading offset angles to ensure that these heading orientations

were correct.

The final local processing step was the filtering of the data. All prior operations on

the sensor data required it to be unfiltered. For all subsequent operations, the data had

to be filtered to remove the noise present in the signal. All data were filtered using a

Butterworth Infinite Impulse Response (IIR) filter (SciPy Library). Acceleration was

band-pass filtered at 2-15 Hz while the gyroscope was low-pass filtered at 10 Hz. The

MMG signal was band-pass filtered at 10-100 Hz. This frequency range was chosen since

it removes most of the low-frequency motion artefacts and high-frequency noise [91] while

preserving the majority of the useful signal [92].

3.8.2 Global Data Processing

Global processing was administered after raw data had been locally processed and con-

catenated into large dataframes encompassing all trials conducted. The main stages of

global processing were the initial concatenation of trial data, derivation of joint metrics,

calculation of data magnitude, and the calculation of ratios between the different metrics.

An image of the global processing tab of the Data Processor GUI is shown in Figure 3.27.

The first stage of global processing was to concatenate the data collected from each trial

into a single large dataframe. This stage was critical to enable subsequent operations

to be performed in a time-efficient manner. To enable this concatenation, data recorded

from each trial was first resampled to match the lowest sampling rates recorded across

all trials. This corresponded to a sampling rate of 100 Hz for the inertial data and 500

Hz for the MMG data.

Joint metrics for the shoulder and elbow were calculated from the quaternion data

available for each body segment. Joint angle magnitude was calculated by finding the an-

gle between a vertical vector (vo) and the same vector rotated by the joint quaternion (qj).
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Figure 3.27: Data Processor GUI- Global Process Tab

The minimum angle between these vectors was calculated from the 2-argument arctan-

gent of the norm of the cross product and the dot product as shown in the equation below:

vo = [0, 0, 1]

vr = qj ⊗ quat(vo)⊗ q−1j

rmag = arctan2(norm(cross(v0, vr)), dot(vo, vr)) (3.1)

Three additional joint angle metrics were calculated to supplement the joint magnitude.

These were the joint flexion, joint abduction, and joint twist. Shoulder flexion and abduc-

tion were calculated by rotating a vertical vector by the joint quaternion. The degree of

shoulder flexion or abduction could then be determined based on how strongly the vector

aligns with a particular plane (the x or y plane in this case). Joint twist angle for both

the shoulder and elbow was calculated by the use of swing-twist decomposition. This was

used to decompose the twist component of the joint quaternion around a vertical vector.

The rotation may then be quantified as a vector rotation by quaternion multiplication of

an orthogonal vector by this twist quaternion. The twist angle was then found by finding

the minimum angle between the original and rotated vector using the same method as

in equation (3.1). The equations for calculating the joint flexion and joint abduction

are given in equation (3.2) and equation (3.3) respectively. The twist quaternion (qtwist)
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for a particular joint (shoulder or elbow) was found using the swing-twist decomposition

algorithm (equation (2.11)). The equation for the calculation of the twist angle (rtwist)

is shown in equation (3.4). Graphs of the calculated joint metrics for the shoulder and

elbow for the “Shoulder Flexion” task are shown in Appendix B Figure 9.4.

rflex = vr[0] ∗ 90 (3.2)

rabduction = vr[1] ∗ 90 (3.3)

vtwist = qtwist ⊗ quat(vo)⊗ q−1twist

rtwist = arctan2(norm(cross(v0, vtwist)), dot(vo, vtwist)) (3.4)

The magnitude was calculated for both the accelerometer and gyroscope measures. This

provides a measure of the energy over the given metric which is invariant to the direction

the task was performed. This is useful since the subject may perform the task incorrectly

or use compensatory movements which could result in misleading features when deriving

from the axes measures only. This metric may be considered to provide an instantaneous

measure of the intensity with which a subject is performing a given action [63]. The

magnitude over the three axes was calculated using the Euclidean norm across the axes,

as shown below for acceleration:

|a| =
√
a2x + a2y + a2z (3.5)

The ratio between metrics was the final global measure to be calculated. The ratio was

found between the upper arm (UA) and the lower arm (LA) for the magnitude of ac-

celeration and gyroscope as well as the axes of the gyroscope. A simplified version of

the ratio equation for the magnitude of acceleration is shown below. A minimum value

requirement for both operands was implemented to avoid misleadingly high ratio values:

Ratio(|a|UA, |a|LA) =


|a|UA

|a|LA
, if |a|UA ∗ |a|LA ≥ threshold

1, if |a|UA ∗ |a|LA < threshold


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3.9 Data Visualisation

Data visualisation was an important part of this project for both online and offline ex-

ploration of the data. Keys functions were to assess any errors in data collection and

processing, and the identification of useful features. Data visualisation conducted for this

study may be categorised as graph visualisation and avatar visualisation.

3.9.1 Graph Visualisation

Graph visualisation was performed both online (using the Data Saver GUI) and offline

(using the Data Processor and Feature Explorer GUIs) but was predominantly used of-

fline. The Data Processor GUI was used to plot the raw and processed metrics (including

orientation data). Data could be plotted as a whole dataset segmented for each task or

as a plot per task. This enabled a high level of detail when checking for discrepancies

in task segmentation or sensor errors. A range of plotting options are exposed to enable

supplementary metrics to be provided to the plots. These include the addition of a grid

or the RMS lines of the data. An image of the plot settings given in the “Plot Data”

tab of the Data Processor GUI is shown in Figure 3.28. Graph visualisation was also

performed using the Feature Explorer GUI for the purpose of assessing feature correla-

tion and usefulness and discussed later in this chapter. A selection of the plots generated

using the Data Processor GUI are shown in Appendix B.

3.9.2 Avatar Visualisation

Avatar visualisation was developed as a function of the Data Saver GUI for both online

and offline viewing. Model visualisation was performed using the OpenTK library. This

library provides low level C# bindings for OpenGL. Operations for online and offline

visualisation were the same with the exception that for offline visualisation pre-recorded

quaternion data had to be synchronised and curtailed across each limb segment first. In

addition, information had to be provided concerning the location the quaternions were

recorded from (torso, upper arm, or lower arm) as well as the side of the body that was

instrumented. Starting limb locations were selected so that the avatar was in anatomical

position (with the exception that the arm is pronated instead of supinated).

The first quaternion operation was to convert the quaternions, calculated from the

inertial data at each limb segment, from the Madgwick to the OpenGL reference frame
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Figure 3.28: Data Processor GUI- Plot Data Tab

(since this is the axis frame required for visualisation). The equation for this axis trans-

formation is outlined below. Superscripts are used to represents the frame of reference

and include the Madgwick (M) and openGL (GL) axis frames. The subscripts represent

the body segments of the torso (T), upper arm (UA), and lower arm (LA).

qGL
T = qM→GL ⊗ qMT ⊗ (qM→GL)−1 (3.6)

Following the calculation of the orientation for each body segment, the next step was

to find updated body positions (P). An exclusion to this was the torso since this was

considered to be fixed in space for ease of visualisation. The position update equations

for each of the limb segments are as follows, where the superscript “origin” defines the

original position the segments were defined in space.

PT = P origin
T (3.7)

PUA = PT + (qT ⊗ (P origin
UA − P origin

T )⊗ q−1T ) (3.8)
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PLA = PUA + (qUA ⊗ (P origin
LA − P origin

UA )⊗ q−1UA) (3.9)

Once the updated limb segment orientations and positions had been derived, these could

be applied to a series of 3D anatomical models to generate an avatar. Avatar models were

produced for each of the 64 trials conducted. These visualisations were subject to the

taring operations applied to the orientations calculated for each IMU, for instance taring

to a fixed start position or just around the heading axis (see Subsection 3.8.1: Local Data

Processing). The produced avatars were critical for ensuring that orientation calculations

were performed correctly and for ensuring the tasks were tared correctly. Secondly, the

avatars were used to ensure consistency of scores between the two clinicians responsible

for assigning the FMA-UE ratings (see Subsection 3.7.4: Clinical Assessors and Train-

ing). An image of this avatar visualisation taken at the end of the “Flexor Synergy” task

is shown in Figure 3.29.

Figure 3.29: Data Saver GUI- Avatar simulation using pre-recorded data of the “Flexor
Synergy” task of the FMA-UE
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3.10 Feature Extraction

This section outlines the actual features which were extracted from all of the sensor data

collected from the wearable sensor system. This includes the actual processing steps,

the reasoning behind the choice of features, and a more in-depth examination of the

calculation steps.

3.10.1 Protocol

Feature extraction for this study was performed using functions exposed by “Feature

Extraction” tab of the Data Processor GUI (see Figure 3.30). Settings available include

the complexity of the features to output (may be set to None, Simple, or All). This may

be adjusted for the time or frequency-series of the inertial and ADC (MMG) data and

the orientation time-series data. An option was also provided for selecting the export

format (pickle or parquet). This was included due to data errors incurred when using

pickle saving format when the feature sets became prohibitively large. Finally, there

were options provided for how the data should be windowed. For the present study, the

decision was made to window the data over the entire task periods. There were no tasks

present in the FMA-UE task-set which could clearly be further segmented into sub-tasks.

In addition, windowing over the entire task simplified the data collection (for the clinical

and subject) and data processing steps considerably.

3.10.2 Feature Choice

This subsection details the reasoning behind the choice of the inertial, orientation, and

MMG features selected for this study. Features were predominantly selected based on

those shown to be useful in past studies, and as such this subsection will refer to the

papers referenced in the literature review, in particular see Subsection 3.4.4: Feature

Calculation and Subsection 3.4.1: Myographic Capture.

For the inertial data, the first step was to compute a variety of basic (and fast to

calculate) features for both the acceleration and gyroscope data. These features were

the mean, mean absolution value, minimum, maximum, peak to peak, and standard

deviation. It is worth noting a few of the aforementioned features were redundant for

certain metrics and therefore removed. This included the minimum value calculated for

the magnitude of data (since this value generally registered close to zero) and the mean
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Figure 3.30: Data Processor GUI- Feature Extraction tab

value for accelerometer data since this metric has already been high pass filtered. A series

of more sophisticated, higher-order features were computed based on domain knowledge

and the features selected in prior studies. The studies by Huang et al [64] and Bento et

al [12] were particularly informative since they used IMU configurations similar to the

present study.

Orientation features were extracted from the derived quaternion data, as described

in Subsection 3.8.1: Local Data Processing. The study by Lee et al [20] focussed on

the development of orientation features to quantify tasks of the FMA-UE. This study

achieved high classification accuracies by calculating features from joints of the shoulder

and elbow, as well as forearm pronation/supination. These features were range of motion,

mean, and standard deviation. These features were also employed in the present study,

in addition to the minimum and maximum joint angle that the subject could achieve.

Myographic features were calculated from the MMGs placed on the forearm to capture

the finger flexors and flexor carpi radialis. There is a limited body of literature available

on the use of myographic features to classify motor function, and this is even more lim-

ited for the use MMG as opposed to EMG. The clustering index has been found to be

statistically significant in distinguishing post-stroke differences in EMG studies but was

not employed in this study due to lack of testing for MMG, and the computational diffi-

culties of applying this calculation across irregular time windows. Other features which

have shown validity for this application are the RMS and MPF, and both these features
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have been implemented in this study. Finally, a number of additional myographic features

were selected for this study based on those proposed by Phinyomark et al [93]. This work

proposes a large number of time and frequency series features which are considered to

be useful for sEMG classification. These features were chosen despite being designed for

EMG because no similar work exists for MMG and because the EMG envelope signal may

be considered to follow a similar form to that of MMG. One time-series feature proposed

by Phinyomark et al which was found to be particularly useful in the present study is the

absolute standard deviation of the signal. This suggests that the variance of the MMG

signal correlates well with level of impairment of motor function post-stroke.

3.10.3 Feature Computation

Feature extraction was performed on all the base and higher-order metrics calculated over

the course of the study. The base measures are the filtered inertial and myographic data.

Higher order derived metrics have been computed in the form of magnitude, ratio, and

joint orientation. For the sake of brevity, not all features calculated will be covered in this

section, but a subsection of the more interesting and useful features will be discussed.

Inertial Time Series Features

The inertial time-series features for the present study were predominantly selected from

previous automated studies. A sub-selection of the time series features implemented are

as follows:

� Skew: A measure of the skewness of a distribution defined as:

skew =
m3

m
3/2
2

where mi =
1

n

n∑
i=1

(x[i]− x)i (3.10)

� Normalised Median Crossing: The number of times the signal crosses the me-

dian line defined as:

S(x1, x2) =

 1, if (x1 − x̃)(x2 − x̃) < 0

0, if (x1 − x̃)(x2 − x̃) ≥ 0


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mzc =
1

n− 1

n−1∑
i=1

S(xi, xi+1) (3.11)

� Trapezoidal Rule: A measure of approximating the definite integral defined as:

tr = ∆x

(
n−1∑
i=1

xi +
xn + x0

2

)
(3.12)

where ∆x = sample period = 0.01

Inertial Frequency Series Features

A frequency-domain signal complete with frequency bins (b) and amplitude (f) was calcu-

lated by applying the Fourier transform to the time signal. A sub-section of the frequency

series features subsequently calculated were:

� Dominant Frequency: The frequency component of the Fourier transformed data

which contains the highest energy. Defined as:

domfreq = b(f 2
max) (3.13)

� Mean Frequency: An assessment of the centre of the distribution of power across

frequencies defined as:

meanfreq =

∑n
i=1 b(i) ∗ f(i)2∑n

i=1 f(i)2
(3.14)

� Mean Power: The mean power of the frequency transformed signal, defined as:

meanpower =
1

n

n∑
i=1

(f(i)2) (3.15)
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� Power Ratio: The ratio of the power above and below the mean frequency value,

defined as:

overthresh(f, b) =

 f 2, if b > meanfreq

0, if b ≤ meanfreq


underthresh(f, b) =

 0, if b ≥ meanfreq

f 2, if b < meanfreq


powerratio =

∑n
i=1 underthresh(f(i), b(i))∑n
i=1 overthresh(f(i), b(i))

(3.16)

� Power Spectrum Ratio: Calculates the ratio of the power in a window around

the dominant frequency and the power of the rest of the signal. The lower bound-

ary (LB) and upper boundary (UB) define the boundaries of the window. Equation

defined as:

LB = domfreq − window/2

UB = domfreq + window/2

windowpower =
UB∑

i=LB

f(i)2

powerspectrumratio =
windowpower∑n

i=1 f(n)
(3.17)

Orientation Time Series Features

The orientation time-series features for the present study were predominantly selected

from previous automated studies, particular the work by Lee et al [20]. A sub-selection

of the time series features implemented are as follows:

� Range of Motion: Provides an estimate of the joint range of motion in the plane

assessed. Defined as:

ROM = Max(θs,e)−Min(θs,e) (3.18)
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where s, e represent the shoulder and elbow joint respectively

� Range of Pronation-Supination: Provides an estimate of the range of pronation-

supination of the forearm. Defined as:

PS = Max(θfa)−Min(θfa) (3.19)

where fa represents the forearm

Myographic Time Series Features

Myographic feature were largely chosen from the feature set recommended by Phinyomark

et al [93] for EMG signal classification. A subset of the time series features selected for

the MMG signal were:

� Log Detector: Provides an estimate of the muscle contraction force. Defined as:

LOG = e
1
n

∑n
i=1 log(|xi|) (3.20)

� Myopulse Percentage Rate: A calculation of the overall amount of time the

myopulse output exceeds a set threshold. For the present study, a threshold value

of one RMS was set as the threshold for sufficient activity. Equation defined as:

S(x) =

 1, if x ≥ threshold

0, otherwise


MYOP =

1

n

n∑
i=1

[S(xi)] (3.21)

� Slope Sign Change Percentage: The metric provides frequency information by

detecting the number of times the signal changes sign. A smaller threshold value of

0.1 RMS was set to remove false positives from signal noise. Equation defined as:

S(x) =

 1, if x ≥ threshold

0, otherwise


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SSCP =
1

n− 2

n−1∑
i=2

[S[(xi − xi−1) ∗ (xi − xi+1)]] (3.22)

Myographic Frequency Series Features

The frequency-domain signal was calculated from the myographic signal using the same

method as applied to the inertial signal, with frequency bins (b) and amplitude (f). A

feature set was calculated for this domain by once again using the features recommended

by Phinyomark et al [93]. A subset of the selected features is as follows:

� Spectral Moments: The Spectral Moments (SM) may be used as a method to

define the myographic power spectrum. Defined As:

SM0 =
n∑

i=1

fi (3.23)

SM1 =
n∑

i=1

fibi (3.24)

SM2 =
n∑

i=1

fib
2
i (3.25)

SM3 =
n∑

i=1

fib
3
i (3.26)

� Variance of Central Frequency: Variance of the central frequency is an impor-

tant characteristic of the frequency signal and may be defined using the spectral

moments. Equation defined as:

V CF =
SM2

SM0
−
(
SM1

SM0

)2

(3.27)
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3.11 Feature Exploration

Feature exploration for this study was largely performed using the specially designed

Feature Exploration GUI. This application provided functionality for the visualisation

and manual selection of features.

3.11.1 Feature Plotting

A Feature Explorer tab was included in the GUI and enabled the plotting of any combi-

nation of two features onto a 2D graph. In addition, the Pearson’s Correlation coefficient

was displayed in the corner of each plot. This score provided the correlation of each

feature with the given clinical rating score (label) as well as the correlation between the

two features.

One function of the plots was to identify any features which may have been calculated

incorrectly. In addition, plots helped detect any features which were redundant due to low

variance, high correlation with another feature, or very low correlation with the labels.

An image of the Feature Explorer tab complete with a plot for the maximum shoulder

elevation and magnitude of upper arm gyroscope features extracted from the Shoulder

Flexion (90-180) task is shown in Figure 3.31.

Figure 3.31: Feature Explorer GUI- Feature Explorer tab
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3.11.2 Manual Feature Selection

A manual feature selection step was introduced prior to feeding features into the clas-

sification pipeline (see Section 3.12: Classification Pipeline). This step was considered

necessary since there were several hundreds of extracted features compared to only 64

completed trials. This meant that there was a high likelihood of features that are highly

correlated with each other or features that may perform well on the training set by

chance. These types of features may not be well detected by automated feature selection

and could result in feature redundancy or bias in the resulting classification model. All

manual feature selection operations were conducted prior to achieving any classification

information or separation of a training and test set to avoid introducing any bias into the

study.

Manual feature selection was performed using the Heuristic Feature Selection tab

(see Figure 3.32). Options were provided to drop features at any of the four defined

hierarchical levels of the feature set. This made it straightforward to drop specific features

or all features across a particular metric or location. An option was also provided to drop

specific trials from the feature set due to these being recorded incorrectly.

A subset of features was removed based on domain knowledge. This includes the

removal of all MMG features for the gross upper arm tasks (since muscle activity of the

wrist/hand alone was not found to be a useful feature for the larger movements involving

multiple limb segments). For the wrist/hand tasks the features derived from inertial data

were removed since these did not capture these movements. Features were also removed

due to the results of the Feature Explorer tab plotting of data. This includes the removal

of features if they had low usefulness or high correlation with other features (as assessed

using the Pearson’s Correlation coefficient). Finally, data corresponding to entire task

recordings for single subjects were also dropped. This was because some tasks may have

had incomplete or bad recordings due to the data being curtailed, sensor error, or subject

confusion.

3.12 Classification Pipeline

The Feature Classifier GUI was the final piece of software implemented in the present

study. This GUI implemented a classification pipeline that covered all the necessary steps

required to prepare the data, classify the feature set, and evaluate classification perfor-
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Figure 3.32: Feature Explorer GUI- Heuristic Feature Selection tab

mance. These steps are detailed in the following sections of feature preparation, feature

selection, the feature classifier, cross-validation, and evaluation. An image representing

the main steps of the classification pipeline is shown in Figure 3.33.

3.12.1 Feature Preparation

The feature preparation stage of the classification pipeline included feature normalisation.

For the present study, all features were normalised using standardisation. This is the

typical method of feature normalisation and involved subtraction of the mean and division

by the standard deviation for each feature.

Resampling of the feature set was a required step due to the biased class ratings for

some of the tasks performed. Although every effort was made during this project to test

subjects with a wide range of motor function capabilities as possible, imbalances in the

difficulties of certain tasks meant that the scores ended up being skewed. To compensate

for the imbalance in the dataset, oversampling was used so that each of the classes would

be represented equally in the dataset.

3.12.2 Automated Feature Selection

An automated feature selection step was incorporated into the classification pipeline to

avoid over-fitting the model to the training set. There were two primary considerations
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Figure 3.33: Representation of the classification pipeline. Two stages of cross validation
shown. External cross-validation (N=10) is shown with a pink background and used for accuracy
testing. Grid search cross-validation (K=5) is shown with a blue background and used for
optimisation of the hyper-parameters

when optimising the feature selection stage. Firstly, the selection of a feature selection

algorithm. For this study, PCA was chosen as the method of dimensionality reduction

since it outperformed other selection methods on a with-held test set. Secondly, a choice

had to be made on how many features should be preserved. The optimal number of

preserved features following PCA was difficult to estimate since this number likely differed

for each task to be classified. A solution was implemented by embedding the preserved

feature number into the classification analysis as a hyper-parameter. This meant that

the optimal preserved feature number from a given subset could always be found. The

set of values corresponding to the number of preserved features which could be selected

was: [3, 5, 10, 15].

3.12.3 Feature Classifier

The final stage of the classification pipeline was the training, testing, and evaluation of the

classifier. For the analysis, the LightGBM classifier was chosen due to its high accuracy

for low sample datasets, robustness against over-fitting, and quick training time. Data

were split into training and test sets as described in the next subsection. Classifier

performance was evaluated by the accuracy as well as the F1-score for each of the classes.
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The selection of the classification stages of the pipeline (in addition to feature selection)

was incorporated into the Hyper-parameter Classification tab of the Feature Classifier

(see Figure 3.34).

Figure 3.34: Feature Classifier GUI- Hyper-parameter Classification tab

3.12.4 Cross-Validation

For the classification analysis, 10-iterations of 10-fold cross-validation was performed.

This method of validation was chosen since it provides a reliable measure of accuracy

which does not over-fit the data (like n-1 cross-validation) or lack the necessary training

data (such as 2-fold or 5-fold). The folds of cross-validation were stratified to preserve

an equal class distribution in each fold. 10-iterations of cross-validation were performed

to find more representative classification results. Single iteration analyses are prone

to achieving misleading results due to randomness in the way the data may be split

depending on the seed of the analysis.

Hyper-parameter optimisation was integrated into each training fold during cross-

validation to find the optimal number of preserved features and LightGBM parameters

for classification. This was achieved by applying a secondary grid-search cross-validation

(5-fold) across each of the training sets (see Figure 3.33 for illustration). This method

computes a score for each of the hyper-parameters tested and then uses that parameter
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to train and test on the cross-validation train and test sets respectively.

3.12.5 Evaluation

The first goal of the study was to determine the performance of the developed system

when classifying the standard ratings as assigned by a clinician for each task. This is the

predominant method as performed in the literature and provides predicted scores which

are well known and validated. This prediction method was implemented by setting up a

classification pipeline with labels provided by the three scores that make up task ratings

for the FMA-UE clinical scale (0, 1, or 2). For three of the tasks of the FMA-UE (flexor

synergy, extensor synergy, coordination-speed) the combined score of the subcomponents

exceeded these ratings. To ensure it was possible to classify these tasks, scores were

downsampled to the (0, 1, or 2) rating. Unfortunately, several of the hand/wrist tasks

contained very imbalanced datasets due to the typically high ratings achieved for these

tasks. Each of these tasks contained > 32 subjects scoring a rating of 2 as opposed to

< 9 subjects scoring a rating of 0 or 1. This meant that over 50% of the class labels

belonged to the upper class and less than 8% of class labels belong to one of the other

two classes. From this distribution it is clear that the classifier would fail to fully learn

these poorly represented classes and would likely have a strong bias towards the upper

label class. For this reason, the tasks of cylinder grasp, hook grasp, pincer grasp, and

spherical grasp were removed from the classification analysis to avoid giving misleading

results.

A secondary classification goal was to determine how well the model could distinguish

between healthy, and anything from mild to major impairment. This method is less

widely reported in the literature but still holds validity as a lower resolution score of

motor function for applications including home-based assessment. In addition, it was

of interest in the present study how significantly the classification performance could

be improved for the two rather than three-class problem. Prediction was performed by

combining the two lower scores (0, 1) into a single label representing impaired function

(0, 1) ⇒ 0 and the maximum clinical score (2) being used to assign full function 2 ⇒ 1.

This reduced label set (impaired (0) or healthy (1)) was then used to evaluate the two-

class classification performance.

The final evaluation step was to assess the statistical significance of the classification

results to prove that they were not produced by chance. This was performed for the three

class classification model using a repeated permutation method. This method operates by
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assuming a condition of independence between the features and classifier. The labels are

then repeatedly randomised, and the performance of the classifier trained and tested with

the random labels using cross validation. A statistical test is then performed to determine

whether a relationship between the features does actually exist and that the classifier

predicts the labels better than by pure chance. This would be indicated by a low p-value

which would enable rejection of the null hypothesis (that the features and labels are totally

independent). It was not possible to implement permutation testing into the classification

pipeline developed for this study because each model involved several hyper-parameter

optimisation steps and therefore did not have fixed model parameters. A solution is

proposed by performing permutation testing post-classification using the most commonly

selected hyper-parameters. As used in the classification pipeline, PCA was used for

dimensionality reduction and the top five transformed features were preserved. The

LightGBM classifier was once again implemented but the default hyperparameters were

fixed in this case. The scikit-learn library ”permutation test score” was used to perform

the statistical testing. This library uses the implementation for statistical permutation

testing of classification models as proposed by Ojala et al [94].

3.13 Clinical Feature Set

The first stage of this study was to use the novel instrumented system to develop a classi-

fication model capable of distinguishing the rating and impairment level for each task of

the FMA-UE. This method is a valid way of approximately a highly validated rating score

which does not suffer from subjectivity or require a specialist clinician. The disadvantage

of this method is that an approximation of a clinical rating limits the full potential of the

accuracy and resolution offered by the instrumented system. To mitigate this limitation,

the decision was made for this study to supplement the classified score with some unique

features. These features could be used to provide useful feedback to clinician and sub-

ject alike and would also be expected to provide a more fine-grained measure of motor

function than possible with the clinical rating scales. The combination of these outputs

would combine the advantages of reliability and reputation provided by the prediction

of the FMA-UE clinical score with the resolution and wealth of data provided by unique

features derived from the sensor system.

The criteria for the features included in the clinical feature set were as follows:
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1. Transparency: It is important the features be as transparent as possible to provide

useful feedback to both the clinician and subject alike. This means that the features

should correspond to readily understandable aspects of motor function rather than

overly esoteric or complex features whose relevance may not be fully understood

2. Usefulness: A critical component of the feature is that is must be proven to be

a valid and useful measure of motor function. This will be assessed in the present

study by correlation with the FMA-UE, since this score acts as the gold-standard

measure of measuring upper extremity motor function

3. Generability: The feature selected should provide general information about the

subject’s motor dysfunction and not be task-specific, i.e. not only provide informa-

tion about how well the subject can perform a given task

3.13.1 Orientation Features

A series of orientation-based measures were selected as clinical features since they may be

readily understood and provide clinically sensitive parameters of motor function. These

features were based on the maximum or range of joint angles that the subject could

achieve. The list of features selected are as follows:

1. Shoulder Rotation: A measure of the subject’s ability to rotate their shoulder

internally and externally. Measured as the range of shoulder joint rotation exhibited

during the “Pronation-supination” task

2. Shoulder Abduction: A measure of the subject’s ability to achieve full shoulder

abduction. Measured as the maximum shoulder abduction angle recorded during

the “Shoulder Abduction” task

3. Shoulder Flexion: A measure of the maximum shoulder flexion the subject can

achieve. Measured as the maximum shoulder flexion angle recording during the

“Shoulder Flexion (90-180 degrees)” task

4. Elbow Pronation-Supination: A measure of the subject’s ability to pronate and

supinate their elbow. Measured as the range of elbow joint pronation-supination

exhibited during the “Pronation-supination (elbow at 0 degrees)” task
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5. Elbow Flexion: A measure of the overall elbow flexion achieved by the subject.

Measured as the range of elbow flexion recorded during the “Extensor Synergy”

task

3.13.2 Myographic Features

A series of myographic features were chosen which characterised the wrist motor function

of the subject. These features were selected since they give a good characterisation of

hand/wrist motor function which is otherwise difficult to quantify manually or using

conventional wearable sensors. The myographic-based features chosen to supplement the

classification score are as follows:

1. Wrist Flexion-extension: A measure of how well the subject can perform wrist

flexion and extension. Measured as the difference in absolute standard deviation of

the MMG signal during the wrist “Repeated Dorsi/ Volar Flexion” task

2. Wrist Circumduction: A measure of how well the subject can perform wrist circum-

duction. Measured as the difference in absolute standard deviation of the MMG

signal during the wrist “Circumduction” task
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3.14 Results

In this section, the results of the automated system developed for this study are displayed.

The results are categorised by the two output measures provided by the system: the

classified clinical scores and the clinical features. The classified scores have been assessed

based on the performance of the classifier. The clinical features have been evaluated

based on their usefulness as supplementary metrics to the classified score. Usefulness

is determined for the present study by how well the features correlate to the FMA-UE

score, since this score forms one of the gold standard measures of motor function.

3.14.1 Classification Performance

Classification performance for this study was assessed based on the classification accuracy

and the F1-score achieved for each label. This combination of metrics provides a bet-

ter picture of classifier performance (particularly classification bias) than accuracy score

alone. In particular, the F1-score provides a more in-depth examination of misclassifica-

tion for each individual label.

Two separate classification models were developed for this study. The first of these

was designed using the labels provided by the FMA-UE clinical ratings to output a direct

prediction of clinical score. A second classification model was developed which combined

the lower two scores of the rating scale to predict healthy or impaired motor function.

The performance of both classification models was evaluated using 10 iterations of 10-

fold stratified cross-validation. Tasks for these models were separated into gross upper

extremity tasks and those which involve the hand/wrist only.

Three-Class Classification

Presented here are the three-class classification performance results for prediction of the

ratings assigned to each task of the FMA-UE clinical rating scale (0, 1, or 2). The results

for the gross motor tasks and the hand/wrists tasks are shown in Table 3.1 and Table 3.2

respectively.

Two-Class Classification

Presented here are the two-class classification performance results for prediction of im-

paired or healthy motor function (0 or 1). The results for the gross motor tasks and the
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hand/wrists tasks are shown in Table 3.3 and Table 3.4 respectively.

3.14.2 Clinical Features

The clinical features selected to complement the classification score had to be assessed

for their usefulness as metrics of motor function. This was performed for the present

study by determining the correlation between the features and the local (task) and global

(overall) scores of the FMA-UE clinical scale. Since the FMA-UE is the current gold-

standard measure of motor function, a good correlation would suggest that the features

are clinically valid measures of motor function. However, the FMA-UE also has limita-

tions including low resolution and subjectivity which means that a very strong correlation

with this score is unrealistic and potentially undesirable. The correlation results are dis-

played in Table 3.5. Individual scatter plots for each of the selected features against the

global FMA-UE score are shown in Figures 3.35 to 3.41.

Table 3.1: Classification performance results for the novel system as performed on the
gross motor tasks of the FMA-UE. Labels classified to are the three labels assigned to
each task of the FMA-UE

Task F1-score (0) F1-score (1) F1-score (2) Accuracy (p-value)

Flexor synergy 0.8 0.17 0.86 0.75 (< 0.01)
Extensor synergy 0.61 0.26 0.9 0.77 (< 0.01)
Hand to lumbar spine 0.64 0.55 0.83 0.72 (< 0.01)
Shoulder flexion (0-90) 0.74 0.65 0.9 0.81 (< 0.01)
Shoulder abduction 0.62 0.68 0.91 0.81 (< 0.01)
Shoulder flexion (90-180) 0.82 0.24 0.8 0.71 (< 0.01)
Coordination-speed 0.71 0.54 0.82 0.71 (< 0.01)

Mean 0.71 0.44 0.86 0.75
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Table 3.2: Classification performance results for the novel system as performed on the
hand/wrist tasks of the FMA-UE. Labels classified to are the three labels assigned to
each task of the FMA-UE

Task F1-score (0) F1-score (1) F1-score (2) Accuracy (p-value)

Pronation-supination (elb. 90) 0.77 0.5 0.86 0.78 (< 0.01)
Pronation-supination (elb. 0) 0.51 0.24 0.85 0.69 (< 0.01)
Stab. at 15 dorsiflex. (elb. 90) 0.35 0.39 0.75 0.62 (< 0.01)
Rep. dorsi-volar flex. (elb. 90) 0.49 0.27 0.82 0.70 (> 0.1)
Stab. at 15 dorsiflex. (elb. 0) 0.46 0.41 0.77 0.65 (> 0.1)
Rep. dorsi-volar flex. (elb. 0) 0.32 0.18 0.75 0.55 (< 0.05)
Circumduction 0.6 0.42 0.69 0.58 (< 0.01)
Thumb adduction 0.5 0.32 0.79 0.67 (< 0.05)

Mean 0.5 0.34 0.79 0.66

Table 3.3: Classification performance results for the novel system as performed on the
gross motor tasks of the FMA-UE. Labels classified to are subject performance for each
task of the FMA-UE (impaired or healthy)

Task F1-score (impaired) F1-score (healthy) Accuracy

Flexor synergy 0.72 0.86 0.81
Extensor synergy 0.78 0.91 0.87
Hand to lumbar spine 0.78 0.83 0.8
Shoulder flexion (0-90) 0.86 0.9 0.89
Shoulder abduction 0.88 0.91 0.9
Shoulder flexion (90-180) 0.86 0.82 0.84
Coordination-speed 0.82 0.82 0.82

Mean 0.81 0.86 0.85

Table 3.4: Classification performance results for the novel system as performed on the
hand/wrist tasks of the FMA-UE. Labels classified to are subject performance for each
task of the FMA-UE (impaired or healthy)

Task F1-score (impaired) F1-score (healthy) Accuracy

Pronation-supination (elb. 90) 0.8 0.83 0.78
Pronation-supination (elb. 0) 0.75 0.85 0.81
Stab. at 15 dorsiflexion (elb. 90) 0.48 0.75 0.66
Rep. dorsi-volar flexion (elb. 90) 0.57 0.83 0.76
Stab. at 15 dorsiflexion (elb. 0) 0.51 0.75 0.67
Rep. dorsi-volar flexion (elb. 0) 0.65 0.75 0.71
Circumduction 0.81 0.75 0.78
Thumb adduction 0.61 0.79 0.73

Mean 0.65 0.79 0.74
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Table 3.5: Correlation results for the selected features from the novel system. Correlations
are made between the features and the local (task) and global (overall) FMA-UE scores

Feature Corr. with local score Corr. with global score

Shoulder ext-int rotation (range) 0.47 0.56
Shoulder abduction angle (max) 0.66 0.64
Shoulder flexion angle (max) 0.85 0.78
Elbow pronation-sup (range) 0.77 0.66
Elbow flexion (range) 0.78 0.73
Wrist flex-ext muscle activity 0.52 0.56
Wrist circumduction muscle activity 0.68 0.61

Mean 0.68 0.65

Figure 3.35: Scatter plot of the shoulder ext-int rotation feature versus overall FMA-UE score.
Supplemented with Pearson Correlation Coefficient
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Figure 3.36: Scatter plot of the shoulder abduction feature versus overall FMA-UE score.
Supplemented with Pearson Correlation Coefficient

Figure 3.37: Scatter plot of the shoulder flexion feature versus overall FMA-UE score. Sup-
plemented with Pearson Correlation Coefficient
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Figure 3.38: Scatter plot of the elbow pronation-supination feature versus overall FMA-UE
score. Supplemented with Pearson Correlation Coefficient

Figure 3.39: Scatter plot of the elbow flexion-extension feature versus overall FMA-UE score.
Supplemented with Pearson Correlation Coefficient
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Figure 3.40: Scatter plot of the wrist dorsi-volar flexion feature versus overall FMA-UE score.
Supplemented with Pearson Correlation Coefficient

Figure 3.41: Scatter plot of the wrist circumduction feature versus overall FMA-UE score.
Supplemented with Pearson Correlation Coefficient
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3.15 Discussion

For this section, the results of the automated system developed in the present study

will be discussed with respect to meeting the study goals and comparisons with prior

automated systems developed in the wider literature. Results are categorised by the two

main outputs of the sensor system: the classified rating scores, and the novel clinical

features.

3.15.1 Classification Performance

A discussion of the classification results is covered in this section for both the three-

and two-class classification models. This is structured as a brief outline of the major

findings followed by a comparison of these results with the wider literature. Finally, a

more in-depth assessment of the classification findings is discussed with reference to how

the parameters of this study may be improved upon.

Three-Class Classification

These classification results were calculated based on the three-labels of the FMA-UE

assigned to each task. Results are shown for the gross tasks in Table 3.1 and hand/wrist

tasks in Table 3.2. The gross tasks were classified using kinematic and orientation features

whereas the hand/wrist tasks were classified using myographic features only.

The mean classification accuracy for the gross motor tasks was 75%. In addition, there

was a narrow range of results with a minimum value of 71% and a maximum of 81%. For

the hand/wrist tasks, a lower overall classification accuracy of 66% was achieved with a

range of 55% to 78%. The F1-score for both sets of tasks indicates that the mid-score

(score of 1) was the most poorly classified score and as such contributed most to the loss

of accuracy.

There are a limited number of high quality comparable prior automated studies of

upper-extremity motor function to compare with the results of the present study. Previ-

ous studies were excluded for comparison with the present study based on the following

criteria:

� Pilot studies were excluded based on the limited results achievable from a single

subject
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� Studies were excluded if they performed correlation or calculation of a bilateral

metric rather than classification of rating scales due to lack of practical comparison

with the present study

� One study [83] was excluded for using healthy subjects to simulate different levels

of impairment due to lack of real world application

� Several studies were excluded because they used a generic classification algorithm

which was trained with too small a sample size (≤ 15 subjects) to reasonably be

expected to generalise to new data

Following this exclusion criteria, there were three studies [19, 20, 67] remaining which

met the minimum requirements for comparison with the present study. Despite the

suitability of these studies for comparison, there are still several limitations of these

studies as compared to the present study which are worth clarifying. These limitations

include only classifying a subset of rating scale tasks, an exclusion criterion which excludes

bed-bound subjects, and classification results which are generated only over a relatively

small sample size.

Kim et al [19] developed and trialled the application of an automated system of the

FMA-UE in a large (41 hemiplegic stroke subjects) clinical study. The sensor system

utilised was composed of a single Kinect depth-sensing camera. One limitation of the

study was that it selected only 13 items from the total tasks involved in the FMA-UE to

classify. This is presumably because some of the tasks would be poorly classified by the

Kinect sensor such as those involving twist rotation around the bone axis (such as the

pronation-supination task) or those involving fine motor function of the wrist or hands.

This is unlike the present study which utilised a system capable of classifying all tasks.

Another limitation of the work by Kim et al is that only the prediction accuracy is given

which means that the classifier may have been biased for certain scores. This would have

resulted in a misleadingly high classification accuracy if the dataset were imbalanced.

Prediction accuracies achieved ranged from 65% to 87% (see Figure 3.42) although a

mean classification accuracy is not provided. These results are comparable to the present

study which ranged between 71% and 81% for the gross motor tasks, which cover a similar

task set.

The study by Lee et al [20] improved the sensor system set out by Kim et al by the

inclusion of force sensing resistor in addition to the Kinect sensor. This enabled the

hand grasp tasks to also be quantified. Unlike the present study, a limitation of the work
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Figure 3.42: Classification accuracies achieved per task of the FMA-UE using a Kinect-based
system. Figure taken from the study by Kim et al [19]

conducted by Lee et al was that it required subjects to be moved to and seated in an

instrumented room complete with the Kinect sensor and instrumented tools. This clearly

required subjects to be mobile or at least to be able to maintain a seated position which

is not always possible. Lee et al also claimed that the system reduces the clinician’s

time requirement to perform the FMA-UE by up to 85% due to system automation

of all but 7 of the FMA-UE tasks. There are several flaws in this claim. Firstly, the

classifier implemented in the study relied on precise and accurate movements to output

a correct score and as such it seems like the presence of a trained clinician would be a

requirement during testing. Secondly, the time reduction achieved was based on the 30

minutes required to perform the entire FMA [95] but only the upper extremity section

of the FMA is completed in this study. In terms of the classification performance of

the system developed by Lee et al, a rule-based classifier was implemented with features

extracted based on the guidelines of the FMA-UE. This meant that the study was not

limited by the relatively small sample size (9 subjects). Overall, the study showed a very

high level of agreement between the clinician and classifier derived scores with only the
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tasks of shoulder external rotation (T3) and mass flexion (T18) achieving a percentage

agreement of below 70%. The percentage agreement for each task and subtask of the

FMA-UE for this study is shown in Figure 3.43. One caveat of the work performed by

Lee et al is that testing was performed in a very controlled environment which means

that it would be unlikely for these results to be achieved in a normal clinical environment.

Another limitation of the study is that the results are only for a very small sample size

and therefore may not be representative of tests on a large cohort. The present study was

not able to achieve comparably high results but did offer a more robust system in several

respects. This includes the use of a much larger cohort of subjects, a wider range of

motor deficits due to no requirement for sitting position, and a more robust classification

system which can achieve the correct rating even if the task is performed in a slightly

incorrect fashion (as is often the case in clinical practice).

Figure 3.43: Percentage agreement between clinical score and classifier output for 26 task and
subtasks from the FMA-UE Figure taken from the study by Lee et al [20]

A final study, which meets the outlined requirements previously stated, has been

performed to evaluate an automated system developed Seo et al [67]. Like the prior two

studies, the proposed system implemented the Kinect depth camera for motion tracking.

Instead of utilising a secondary instrument to measure hand/wrist tasks as in the study by

Lee et al, the study instead selected a clinical scale that does not require these movements.

The clinical scale chosen was the Mallet classification scale and this is composed of five

gross upper arm tasks. Again, similar to the prior study, a custom classification model

is developed for predictions to avoid the requirement for significant training data (only
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7 subjects tested). The accuracy scores achieved for these tasks ranged from 43% to

100% and averaged 77%. The mean result is comparable to those achieved in the present

study (the range is much larger). The results of the work conducted by Seo et al possess

limited value due to the small sample size implemented. In addition, the Mallet clinical

scale, although useful for classification in terms of only involving gross motor tasks, is

not traditionally used in stroke evaluation so has limited clinical relevance.

An overall examination of the literature indicates that the current classification model

offers a more robust method of classifying clinical score and with a larger cohort size that

most of the prior literature. The classification accuracy results achieved in the present

study were comparable with two out of the three studies evaluated. A third study reported

higher accuracy results, but these were achieved in very constrained conditions which do

not replicate the standard clinical testing environment. Despite the positive results, there

are clearly still limitations in the classifier performance which must be examined in more

detail.

The classification model proposed in the present study performed less well when clas-

sifying a subset of the FMA-UE gross motor tasks. These tasks include those which in-

volved more complex or several stages of movements including the “Coordination-speed”

(71%), “Flexor synergy” (75%), and “Hand to lumbar spine” (72%). The high complex-

ity of these tasks means there is a high degree of variety in the way the subjects chose

to perform these tasks. The difficulty imposed by these tasks also means that subjects

may adopt compensatory movements that are not well predicted by the classifier. The

best way to improve classification of these tasks would be to increase the training set, by

recruiting more subjects for the study, since this would make the classifier more robust to

different movement strategies. It is also possible that there could be better suited kine-

matic or orientation features to capture these movements which were not implemented

in the present study. Another task that was poorly classified (71%), despite being well

captured by orientation features, is the “Shoulder flexion (90-180)” task. Presumably in

this case there was a degree of interpretation in the scoring which was not well captured

by the classifier. For instance, full shoulder flexion may have been achieved by the sub-

ject but there may have been the presence of instability or tremor which led the clinician

to assign this task a lower score. This would decrease the usefulness of the orientation

features in classifying this task since these do not capture these components.

The classification model for predicting hand/wrist tasks performed lower overall (66%)

than the same model for predicting gross motor tasks (75%). One reason for this may be

112



Chapter 3. Wearable Fusion System for Automated Rating of Upper-Arm Motor Function Post-Stroke

because these tasks involve smaller muscle groups and more subtle movements than gross

motor tasks, and as such may be more difficult to classify. Another reason for this finding

may be that the MMG derived features used to classify the hand/wrists tasks provide less

useful information than the kinematic/orientation derived features used to classify gross

motor tasks. Despite this limitation, these tasks are notoriously difficult to classify with

inertial sensing so the novel application of MMG to provide a reasonable classification

accuracy is still valuable. Prior studies have attempted to classify these tasks with the use

of instrumented gloves, but this method has serious sizing and hygiene limitations. Other

studies have attempted to use the Kinect sensor to identify these tasks, but this sensing

modality does not perform well at detecting these fine motor movements. Overall, the

robustness and ease of application suggest that the MMG would be well suited for clinical

applications, but more research should be performed to try to improve the accuracy of

classification, perhaps through the implementation of new features or fusion of different

muscle groups.

Examining the F1-scores across all tasks of the FMA-UE indicates a recurring dif-

ficulty classifying subjects who exhibit motor function somewhere between normal and

fully impaired (score of 1). One reason for this may be because subjects at this motor

function level perform tasks with a wide range of compensatory movements depending

on the region of impairment. This would result in tasks being performed with high

inter-subject variability which would in turn pose a difficulty in any classification model

generalising to new subject data. In contrast, subjects with full impairment (score of

0) or unimpaired (score of 2) would be expected to have lower inter-subject variability

due to the absence of and normal movement of the task respectively. Another reason the

mid-level motor function rating may have been poorly classified is that for many of the

tasks of the FMA this rating may be assigned for a wide range of motor deficits. For

instance, many of the tasks of the FMA define a mid-rating as limited movement/ range

of motion as compared to not being able to maintain the start position at all (score of

0) or being able to complete the movement fully (score of 2). Limited movement/ range

of motion could correspond to a subject having very limited motor control or similarly

having just short of full motor control. This clearly introduces a high level of variability

in the functional ability of subjects that score 1 as opposed to a score of 0 or 2.
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Two-Class Classification

A two class-classification model was proposed as a method of improving upon the afore-

mentioned limitations when classifying the three-classes of the FMA-UE tasks, partic-

ularly the low F1-scores attained for mid-level motor function. This was achieved by

merging the two classes corresponding to no completion (0) or partial completion (1) of

the motor task. This results in two remaining classes that correspond to impaired and

healthy motor function respectively. A summary of results for the gross and hand/wrist

motor tasks are shown in Table 3.3 and Table 3.4 respectively.

The two-class classification model outperformed the three-class model for both gross

motor tasks (85% compared to 75%) and the hand/wrist tasks (74% compared to 66%).

This is a moderate improvement but not as much as may be expected given the clas-

sification of healthy versus impaired function would be expected to be a much simpler

classification problem. The merging of the two classes (0 and 1) has removed the risk of

misclassifying between total and partial motor dysfunction but it is apparent there is still

substantial misclassification between partial (1) and no motor dysfunction (2) classes.

This error is likely due to a combination of the noise in the labels (due to loosely defined

classes) and limitations of the classification model (which would be expected to improve

with more subjects tested). Despite these drawbacks, the two-class classification model

still had a good performance when classifying tasks of the FMA-UE. The resolution of

this model is clearly lower than for the three-class problem but still may have applications

out with the clinical environment, such as a home-based rehabilitative aid.

3.15.2 Clinical Features

A summary of the correlation results of the clinical features extracted from the data

with the local (task) and global (overall) FMA-UE are shown in Table 3.5. Scatter plots

showing values of clinical features for each subject versus global FMA-UE scores are

shown in Figures 3.35 to 3.41.

All the features extracted showed a positive correlation with the local and global

scores. Mean correlation with local rating score was 0.68 (range 0.47 - 0.85) and with

global rating score was 0.65 (range 0.56 - 0.78). As a means to contextualise these findings,

they can be compared to the results of the study by Fu et al [96], which investigated the

concurrent validity of a shortened FMA with other clinical rating scales, also using the

Pearson correlation coefficient. This study considered a correlation coefficient of >0.75 to
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be excellent, 0.5-0.75 to be good, and 0.25-0.5 to be fair. The shortened FMA was found

to have a correlation of 0.57 (good) with the Stroke Impact Scale hand function subscale.

On this basis, the correlation coefficients measured between the clinical features and the

overall clinical score in the present study all range in the good to excellent range (0.56 -

0.78). This suggests high concurrent validity of the extracted features with the FMA-UE

and supports their usefulness as clinical metrics of motor function post-stroke.

The correlation results of this study also compare favourably to the wider literature

on automated systems of motor function post-stroke. The study by Julianjatsono et al

[69] developed a sensor system consisting of a Kinect sensor and wearable glove. This

system was utilised in the development of a regression model of 6 tasks of the FMA-UE.

Six features were extracted (one to define each task) and a linear Pearson’s Correlation

was calculated of the feature compared to the clinical task label for each subject tested.

Correlation coefficients were achieved which ranged from 0.17 to 0.475. This is compared

to the present study which found correlations of 0.47 to 0.85 when correlating to the same

clinical label the feature was extracted from. The study by Julianjatsono et al used a task

set to extract features which differs slightly from the present study (one of the tasks used

was grasp but otherwise the same tasks were assessed). Despite this, these results give

a promising indication of the usefulness of the features extracted in the present study as

measures of motor function as compared to the literature.

The clinical features calculated for the present study show great promise both in terms

of the correlation results achieved in this study and a comparison with the results of the

aforementioned study by Julianjatsono et al. These findings validate the accuracy of the

sensor system, the computation of features, and the potential of the clinical feature set

calculated. The major caveat to the findings is that features were correlated to a clinical

rating scale. The FMA-UE was selected since it forms one of the gold-standard methods

of assessing motor function. However, like all clinical rating scales, the output provided

is not a measure of “pure” motor function and suffers errors including low resolution and

subjectivity. Despite this limitation, the high correlation scores achieved in the present

study still show the potential of the clinical feature set.

An examination of the correlation scatter plots as shown in Figures 3.35 to 3.41 en-

ables correlations to be examined in greater depth. Most of the clinical features extracted

showed a broadly linear distribution with the global rating score evidencing the potential

of these features to be utilised to identify all motor function levels. One exception is the

wrist dorsi-volar flexion feature which showed a broadly inverse exponential distribution.

115



Chapter 3. Wearable Fusion System for Automated Rating of Upper-Arm Motor Function Post-Stroke

For the wrist dorsi-volar flexion feature it is apparent that at the highest motor func-

tion levels, movements are performed with a greater variance of muscle activity. This

is unlikely to pose a large problem when classifying since the low- and mid-level motor

function levels still appear to follow a broadly linear distribution. In the case of quanti-

fying wrist circumduction using the MMG sensors (Figure 3.41), it is apparent that the

variability in response increases proportionally to the FMA-UE total score. This finding

does not match the expectation that subjects with a higher motor score would perform

the movements in a more predictable way (and as such achieve a more consistent sensor

response). A possible reason for this finding is that the subject was not given strict in-

structions on how quickly to perform the circumduction task (as this instruction is not

included in the standard FMA-UE). This may have led to some subjects performing the

task with greater speed (and larger muscle activity) which caused a greater variability in

response. This should be avoided in any future trials by given more detailed instructions

to the subject (such as to perform the task with as much speed as possible).

Inspection of the list of correlation coefficients shown in Table 3.5 may be used to

assess some of the limitations of the extracted features. The two features which corre-

lated least well for the FMA-UE global score were the shoulder external-internal rotation

(R=0.56) and the wrist flexion-extension muscle activity (R=0.56). The most likely rea-

son for the poor correlation of the shoulder rotation feature is that this movement was

captured during the ”forearm pronation-supination” task which primarily involves ro-

tation of the elbow rather than the shoulder. Rotation of the shoulder was captured

regardless to detect any compensatory movements that the subject may perform, but

since these movements are not easily predicted it is reasonable that this feature would

not correlate strongly with the FMA-UE global score. The second feature, wrist flexion-

extension muscle activity, was captured during the ”wrist dorsiflexion/ volar flexion” task

and was expected to have been well captured by the MMG sensors. Possible reasons a

higher correlation was not achieved include that the feature extracted may not be opti-

mal for MMG sensing or that sensors may have shifted slightly during clinical testing.

One feature which performed relatively poorly despite being well captured by the sensor

system was the measure of maximum full shoulder abduction (local correlation R=0.66).

One reason for this may be because the feature only determines the maximum shoulder

abduction present. This means that a high value may be achieved regardless of whether

the subject cannot hold the position for any extended time. In addition, the clinician

may reduce the score assigned for components not detected by the feature, such as tremor
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or instability. This result suggests that while shoulder abduction may be useful as a clin-

ical feature, it is not sufficient in isolation for classification of FMA-UE. Two features

which achieved better correlation scores were maximum shoulder flexion (R=0.85) and

the range of elbow pronation-supination (R=0.77). These two measures are both rel-

atively straightforward to quantify and indicative of clinical motor function. Shoulder

flexion is important in the ability to raise the arm to perform tasks such as writing and

drinking. Similarly, elbow pronation-supination is required for grasp and manipulation

tasks.

Overall, all the clinical features met the prior specifications (set out in Methods sec-

tion) of transparency, usefulness, and generability. The transparency and generability

have already been discussed and the good level of positive correlation achieved by all the

features as compared to the literature demonstrates their usefulness.
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CHAPTER

FOUR

Lesion-Symptom Mapping using the FMA and Novel

Sensor-based Motor Features

4.1 Chapter Introduction

Numerous LSM studies have been performed to better the scientific understanding of

the relationship between motor function and brain anatomy. The state-of-the-art motor

outcome measures used for these studies are derived from clinical rating scales, but these

suffer limitations including low resolution and subjectivity. The work conducted in this

chapter will seek to solve these limitations by the application of a novel set of sensor-

derived fine-grained motor outcome measures. A proof-of-concept study will then be

performed in the form of a large-scale LSM study.

The outcome measures used for this study are derived from the metrics calculated

in the previous chapter. This includes the standard clinical rating scale (to be used as

a base measure) as well as the clinical features computed from the automated system.

These features encompass angles for each of the joints quantified (shoulder, elbow) and

myographic measures of wrist activity. Lesion profiles were manually demarked from a

combination of MRI and CT scans collected from the same subjects as recruited in the

previous chapter. Lesions maps were extracted from brain lesions which were acute or

subacute at the time of motor function evaluation.

The study conducted in the previous chapter illustrated the correlation of the de-

rived clinical features with the FMA clinical rating score and their inherent usefulness

as features within a predictive classification model of motor function. Secondly, because

these clinical features have a resolution which is only limited by the sensors themselves,
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and are independent of the clinical rating scales, it has been theorised that they may

offer a more accurate and targetted assessment of “pure” motor function as compared to

clinical rating scales. The present study aims to investigate these clinical features further

by investigating their usefulness in a large LSM study. More specifically, usefulness of

the clinical features beyond that of the FMA alone would be shown in the present study

in the form of statistically significant regions detected for subregions of motor function

captured by clinical features which are not identified by the respective motor subscales

of the FMA.

4.2 Chapter Outcomes

A large scale LSM study is presented in this chapter. The decision was made to use a

region of interest type statical analysis to find significant regions. A voxel-based mass

univariate approach was considered but then dismissed due to a limited number of suitable

subjects and the limitations of this method as set out in the Background chapter. There

were two main motor outcome measures used to test statistical significance.

The first motor outcome measure employed in the study is the overall FMA-UE score.

This measure was collected from the subjects as part of the study presented in the previous

chapter. The FMA-UE was chosen since it forms the main outcome measure used in many

prior LSM studies [97, 98, 99] and as such serves as a useful baseline measure to compare

to the results found using alternative motor metrics.

The remaining motor outcome measures used in this study are composed of the sec-

ondary features calculated in study presented in the previous chapter. These features

are calculated directly from the sensor data and as such provide a higher resolution score

than possible via the FMA-UE rating scale. Secondly, these features have already been

shown to be useful measures of motor function as proven in the previous chapter. The

primary goal of this study is to determine whether these features provide greater insights

into the present lesion symptom mapping study than the FMA-UE alone.

4.3 Chapter Structure

This chapter structure is as follows:

� Literature Review- Review of the prior LSM studies in terms of the primary

119



Chapter 4. Lesion-Symptom Mapping using the FMA and Novel Sensor-based Motor Features

methods/ software utilised. The findings of several prior motor-based LSM studies

will also be discussed

� Software- A description of the software packages and libraries utilised in the

present LSM study

� The fundamental stages of the project in terms of:

– Subject Recruitment and Imaging

– Lesion Identification

– Lesion Demarcation

– Lesion Map Normalisation

– Lesion Map Transformation

– Analysis

� Results- Statistical results achieved using the prepared lesion maps and motor

outcome measures

� Discussion- Discussion of the findings in terms of how they relate to previous

motor-based lesion-symptom mapping studies, any novel findings, and whether the

sensor system provides any added value to LSM studies
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4.4 Literature Review

This literature review covers the methods implemented over the fundamental stages of

prior LSM studies. This includes the state-of-the-art methodology in addition to any

novel processes which have been tested. The main stages of LSM studies through which

this review is structured are the detection and demarcation of the lesions, normalisation of

the lesion maps, and statistical evaluation of the lesions and outcome measures. Finally, a

number of prior motor-based LSM studies are discussed to provide context to any findings

achieved in the present study.

4.4.1 Lesion Detection and Demarcation

The current state-of-the-art method for lesion demarcation is by manual tracing. This

involves manually demarking the lesion border and is highly time-consuming. In recent

years techniques have been developed to reduce this time burden by automated and

semi-automated methods.

Manual Methods

Manual methods of lesion demarcation, although time-consuming [100], are still con-

sidered the gold standard in terms of accuracy and therefore still implemented in the

majority of recent LSM studies. The software chosen for manual lesion tracing is often

not stated in the literature. When disclosed, the most frequently selected software cited

was MRIcron [97, 101, 102, 103, 104, 5, 105, 106, 107]. Stated reasons for these studies

adopting manual tracing methods include that automated methods fail to determine the

full extent of the lesion with low image intensity or when there is low contrast between

brain tissue and the lesion [108]. There seems to be a general consensus in the literature

that although automated lesion demarcation methods have great potential in the future,

they are currently not up to the required standard [109]. Once an automated method

does become available which offers the same or greater accuracy than manual methods

and does not suffer from imaging artefacts, it will be signal a big advance in mitigating

the high time costs which currently plagues manual methods. In fact, this time cost is

considered to one of the major limiting factors in current large-scale stroke neuroimaging

analyses [110].
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Automated Methods

The time-intensive nature and variable inter-rater reliability of manual demarcation have

led to the development of fully automated methods of lesion demarcation. The stated

advantage of these methods is that they require less user interaction, which should reduce

demarcation time significantly, and are less observer-dependent than manual methods

[21]. A significant disadvantage of many of these methods is that they are less precise

than manual demarcation [111], and are inferior at identifying imaging artefacts [21].

Another disadvantage is that automated methods require a very large training dataset

[21]. A review by Ito et al [109] found three currently available fully automated lesion

demarcation methods. The first of these is the Automated Lesion Identification (ALI)

toolbox which uses an unsupervised method that performs outlier detection to segment

lesions using a fuzzy c-means algorithm. Secondly, there is the Gaussian näıve Bayes

lesion detection method (lesionGnb). This method is a supervised method which uses

Gaussian naive Bayes classification for demarcation of stroke lesions. Finally, there is

the Lesion Identification with Neighbourhood Data Analysis (LINDA) method. This is

a supervised method that uses feature detection and a random forest algorithm to train

and classify lesioned voxels.

Semi-Automated Methods

Semi-automated methods have been proposed as a solution to the drawbacks associated

with manual and automated methods. This method offers the speed of automated meth-

ods with the accuracy and robustness to imaging artefacts of manual tracing. This is

achieved by the combination of fully automated lesion detection, followed by manual

editing step by the user. The editing steps allows the user to have the final decision on

the location and size of the lesion [112]. Haan et al [21] found that the precision of this

semi-automated method is comparable to that of manual methods, and can be performed

significantly faster than the manual method. An example of a semi-automated method

that has been implemented is the Clusterize approach. This method has an automated

preprocessing step which involves the identification of the local intensity maxima on each

image slice. Clusters of voxels are then assigned based on their relative intensity. A

manual cluster selection step is then performed to enable freehand corrections and to

optimise the accuracy. An image of the Clusterize approach [21] compared to manual

demarcation is shown in Figure 4.1.
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Figure 4.1: Example of the results achieved for using both manual and semi-automated (Clus-
terize) methods of lesion segmentation. Taken from [21]

4.4.2 Brain Templates and Atlases

A human brain template defines a standard anatomical scan which has been determined

from the average of multiple overlaid scans. These have application in analyses which

require co-registration or normalisation to a standard template. Brain atlases are de-

termined by similar methods to templates but have been subsequently segmented to

provide information of some parameter of interest in the brain. This may correspond to

anatomical regions of interest, white matter in the brain, or areas of connectivity. These

are of particular use in anatomical exploration and drawing significance from statistical

findings.

Both templates and atlases should be defined to the same brain region to ensure

consistency of findings between studies. This is achieved by using standardised spaces.

Broadly speaking these spaces define how the boundaries of the brain are set based on

distance from a given origin. Common spaces which have defined are the Talairach (rarely
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used in modern applications) and the Montreal Neurological Institute (MNI) space.

A commonly used template is the International Consortium of Brain Mapping (ICBM)

MNI152 NLIN. This defines 152 T1-weighted MRI scans that have been non-linearly

registered in the MNI space. This template has found wide application in normalisation

functions as discussed later in the section.

Two examples of anatomical region of interest MRI atlases that are currently used

are the Atlas of Intrinsic Connectivity of Homotopic Areas (AICHA) [113] and the Au-

tomated Anatomical Labelling (AAL) atlas [114]. AICHA is a functional brain region of

interest atlas based on the resting-state functional MRI (fMRI) data acquired from 281

subject and normalised to the MNI space. This atlas has been developed for connectivity

analyses and provides 192 homotopic region pairs. The AAL brain atlas has a focus on

anatomical identification and is normalised in the MNI MRI single-subject brain space. It

was originally generated with 45 distinct anatomical volumes of interest per hemisphere

although this has now been expanded upon in subsequent iterations. This atlas has been

incorporated into popular LSM software (SPM12, NiiStat) for automated lesion mapping

analysis. An image of the anatomically segmented AAL3 atlas is shown in Figure 4.2.

Figure 4.2: Example of the AAL3 atlas in each orientation and as a rendering. Each different
colour corresponds to a uniquely identified anatomical region

4.4.3 Normalisation

Normalisation operations are required to translate and transform scans or lesion maps

from a local to a normalised template space. This step enables scans to be aligned and
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as such is required to make accurate findings that translate beyond single subject trials.

One of the most common operations of normalisation prevalent in the literature is the

application of functions provided by the SPM12 (Statistical Parametric Mapping 12)

toolkit. This toolkit includes a conclusive set of functions for normalisation as well as

other aspects of neuroimaging, as discussed in the “Software” section of this report.

The normalise function in the software package SPM12 transforms scans into the stan-

dard stereotactic MNI space. The MNI152 NLIN template is implemented as the standard

template used to be normalised to during this process. The procedure for the transfor-

mation is known as “unified segmentation” for spatial normalisation. This procedure is

composed of three steps: segmentation, bias correction, and spatial normalisation. Seg-

mentation refers to the separation of different tissues classes (grey matter, white matter,

cerebrospinal fluid). The bias correction is a procedure for removing smoothly varying

intensity differences across images. Finally, spatial normalisation is the generation of

deformation fields that quantify how the scans should be deformed to transform to the

stereotactic MNI space.

4.4.4 Statistical Evaluation

Historical studies of LSM have predominantly been conducted using lesion overlay or

subtraction methods. Since the introduction of Region of Interest and later VLSM, these

methods have fast become the gold-standard techniques. VLSM has the advantages

of higher resolution and no requirement for pre-labelled anatomical regions. Region of

Interest methods may be more likely to achieve statistically significant results at lower

sample sizes and require less neurological expertise when interpreting results. Common

software packages used for statistical analyses in the literature include SPM12 [102],

NiiStat [102, 97], the Non-parametric Mapping Software (NPM) [101, 115], and SPSS

[116].

4.4.5 Motor-based Lesion Symptom Mapping

The two neural pathways which are understood to be of greatest importance of motor

function are the CST and CRST. The origins and pathways of these tracts are relatively

well known but their mechanisms are still poorly understood. For this reason, LSM stud-

ies have been conducted to try to better understand these mechanisms and the relative

importance of different segments of these pathways for motor function and recovery. A
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subset of relevant motor based LSM studies will be discussed here.

Early brain mapping studies of damage to motor function sought to examine the

relationship with lesion size only (relative or absolute size of brain lesion). The 2000 study

by Chen et al [117] found no or only a weak relationship between relative/ absolute lesion

size and whole body motor outcome/ recovery. A subsequent 2001 study by Binkofski

et al [118] found that the initial lesion size could be used as a predictor of initial hand

motor score, but that this did not hold true for long term motor recovery. The overall

conclusion of these studies is that lesion size alone is a poor predictor of motor function.

This is due to compensatory ability of the brain being much more limited at certain

critical locations. Even small lesions to these locations have potentially large detrimental

effects on motor function. This has led to the emergence of studies that focus on the

lesion profile (a combination of size and location) rather than the size alone.

Subsequent studies have incorporated the location of the lesion in the analysis as per-

formed in RLSM and VLSM studies. An early 2001 study by Shelton et al [119] observed

the highest probability of upper extremity motor recovery associated with isolated lesions

in the cortex, followed by the sub-cortical regions of the corona radiata, and the internal

capsule. This is supported by the 2008 study by Schiemanck et al [120] which found

that lesions of cortex or other sub-cortical regions had a significantly higher probability

of isolated hand motor function as compared to lesions of the internal capsule. The 2010

study by Lo et al [121] identified the junction of the corona radiate leading into the CST

as being the most detrimental region of damage for upper extremity motor function. The

study by Chen et al [122] found that damage to the regions of corona radiata, internal

capsule, and insula all had a statistically significant effect on whole body motor function

as assessed by the modified Rankin Scale. A similar study by Wu et al [123] found statis-

tical significance of worse motor outcomes in the same regions in addition to the external

capsule, superior longitudinal fasciculus, uncinate fasciculus, postcentral gyrus, putamen,

and operculum. The internal capsule has also been indicated to have a significant role in

poor long term upper extremity motor function as shown in a study by Lee et al [99]

One conclusion which may be gathered from all these studies is that cortical lesions

do not appear to lead to the worst motor outcomes. In fact, there is evidence that these

regions may be well compensated for by spared motor cortex areas, such as the pre-motor

cortex [124]. Another conclusion that may be drawn from the aforementioned studies is

that sub-cortical regions that are present in the CST, such as the internal capsule, corona

radiate, midbrain, pons, or medulla, all result in worse motor outcomes. This is likely
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due to several factors including their relative importance of these regions in the CST,

small size or the limited compensatory ability of surrounding tissues.

Several studies have directly studied the relationship between motor function and

damage to the CST and CRST pathways. These studies have centred around reinforcing

and improving existing knowledge that the CST has a primary role in distal extremities

(including hand function) whereas the CRST has a role in axial muscles (including loco-

motion). The 2010 study by Zhu et al [41] found that upper extremity motor recovery

was inversely proportional to the lesion load of the CST. The influence of CST damage

has also been shown to predict the development of hand spasticity in a study by Plantin

et al [97]. A 2014 comparison study by Yoo et al [125] found that subjects who exhibited

damage to the CST did indeed show worse hand function than those with damage to the

CRST. The inverse was also found to be true in terms of gait function. This is supported

by the study by Jang et al [126] which found that the increased fibre volume of the CRST

had a significant effect on chronic stroke subject’s ability to walk.
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4.5 Software

The software utilised in the present study was chosen from established software packages

that have been widely implemented in previous LSM studies. These packages may be

broadly categorised by the stages of imaging and lesion mapping (MRIcron), transforma-

tion and normalisation (SPM12), and statical analysis (NiiStat).

4.5.1 MRIcron

MRIcron is widely used in the neuroimaging field for the visualisation of scans. It provides

functionality for in-depth navigation at the voxel level for each scan plane. Another

commonly used application is the ability to define custom overlays on top of the scans.

This is frequently used by studies as a means of manually demarking lesions or other

features of interest. Additionally, existing overlays or statistical lesion maps may be

added to scans as a well of interpreting the significance of results. A final common

application of MRIcron is the preparation of scans prior to analysis. This is provided

by functionality to convert scans from their native format (.DICOM) to the more usable

.NIfTI format. An example of the MRIcron GUI is shown in Figure 4.3.

Figure 4.3: GUI for the MRIcron software
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4.5.2 SPM12

SPM12 is the latest of a series of SPM software packages developed for the analysis of

structural and functional imaging data. It was developed by the Wellcome Department of

Imaging Neuroscience (University College London) as a toolkit within Matlab. The GUI

provides a wide variety of functionality for the assessment of neuroimaging data. A subset

of these functions required for the present study are as follows. The “Display” function

provided visualisation and manual adjustments (origin and transformation) to be applied

to individual scans. The “Check Reg” command enabled comparisons of multiple scans

to check the performance of any transformation operations. Finally, the “Coregister”

and “Normalisation” commands were used for these respective operations in the present

study. An image of the SPM12 GUI is shown in Figure 4.4.

Figure 4.4: GUI for the SPM12 software package
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4.5.3 NiiStat

NiiStat is a Matlab toolkit that has been developed for the analysis of neuroimaging

data from clinical populations. Statical analyses which may be performed include voxel

and region of interest-based statistical testing. The toolkit requires lesion maps to be

drawn in the MNI space and converted into “.mat” format files. Design files should be

formatted in Excel and these provide information on which lesion maps correspond to

which outcome measures. An image of the NiiStat GUI window is shown in Figure 4.5.

Figure 4.5: GUI for the NiiStat Toolkit

4.6 Subject Recruitment and Imaging

The same cohort of subjects as recruited for the study detailed in the previous chapter

was also recruited for the present study. This cohort consists of 64 subjects recruited from

the acute and hyper-acute wards of Charing Cross Hospital (London). There were no

subject requirements in terms of a minimum level of required motor function. Cognitive

ability was assessed before clinical testing by the administration of the GCS. A full score

was required prior to testing to ensure the subject was capable of giving informed consent
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to participate in the study and was able to follow verbal commands.

CT and MRI scans were already administered to the vast majority of subjects as part

of their standard post-stroke treatment. These scans were subsequently gathered from

the hospital repository system with the subject’s permission. In the case of two subjects,

existing scans were not suitable for this study so additional scans were administered with

the subject’s express consent. The vast majority of scans available for subjects were

taken in the acute/ subacute phase, imaging phases which are defined for the present

study in Table 2.2 of the Background section. A full breakdown of each potential subject

including the neuroimaging modality used is provided in Appendix A Table 8.2.

On clinical review of scans, a total of 13 subjects were found to present with no

discernible acute or subacute lesions and were therefore removed from this study. This

left a remaining 51 subjects available to participate in the study. A total of 41 of the

remaining subjects were imaged with MRI scans while 10 subjects were imaged with CT.

The MRI scanner used for scanning was either the Siemens Avanto 1.5T or Siemens Verio

3T. Scans were selected either from the FLAIR or DWI sequences for further processing.

All CT scanning was performed using the Siemens Definition 128 slice scanner.

As discussed in the Chapter Outcomes section, the motor features utilised in this study

were taken directly from the study discussed in the previous chapter. These subjects were

all assessed on the acute and hyper-acute wards of Charing Cross Hospital. Subjects were

admitted to these wards immediately after the onset of stroke and only present on these

wards for a limited period of time. For this reason, all subjects assessed for this study were

considered to be within the acute and sub-acute stroke phases, as defined in Table 2.2.

The only exception to this were subjects who were admitted with stroke-like symptoms

but could not be considered to be in the acute/ subacute phase since they presented with

no lesion or only chronic lesions on any scans. These subjects were already excluded from

the study on the basis of not presenting with an acute or subacute lesion when imaged.

Scans were originally recorded in the native “.DICOM” format (Digital Imaging and

Communications in Medicine). All files were later converted into the “.NIfTI” format,

using the MRIcron software, for ease of subsequent operations.

4.7 Lesion Identification

Most subjects had several scans available in addition to the one taken immediately post-

stroke. These scans had been taken either historically or as part of their follow-up care. A
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single, primary scan was selected for each subject which would later be used for drawing

the lesion maps. This primary scan was selected as the one taken in the acute or sub-

acute stroke phase. If both MRI and CT scans had both been taken during this period,

the MRI was selected over the CT scan due to the improved resolution offered by this

modality. All subsequent lesion demarcation was performed on the primary scan although

secondary or historic scans were also used as references to identify any previous lesions.

The clinical notes made by neurologists at Charing Cross Hospital were also available

for this study and used to assist in the lesion identification and demarcation stages. These

notes were particularly useful in distinguishing between acute and chronic lesions (when

both were present), and for identifying the appropriate lesion boundaries.

4.8 Lesion Demarcation

The manual method of lesion demarcation was selected for this study. This method was

chosen since it remains the gold standard demarcation method. In addition, different

modalities and sequences of scans were present in the study which may have led to the

inclusion of imaging artefacts if using automated demarcation methods. Secondly, several

subject scans also included the presence of chronic lesions due to prior stroke. The use

of manual lesion demarcation ensured that the chronic lesions were not included in any

subsequent lesion maps.

The software MRIcron was selected for lesion demarcation. This software was selected

due to its widespread application in many prior LSM studies, as discussed in the litera-

ture review. MRIcron also provides several useful features that makes the demarcation

more straight-forward. These include easy navigation of the different scan slices, ease of

drawing and filling the boundaries of drawn lesions, and the use of overlays to compare

different boundary maps that have been drawn.

Lesion demarcation was performed by the author after being trained on the procedure

by a consultant neurologist at Charing Cross Hospital. The lesion boundaries drawn for

the subjects were also verified by the consultant neurologist and assistance provided

for any cases where the lesion boundary could be considered ambiguous. Lesions were

demarked from the primary scan of each subject tested. This involved manually drawing

a boundary around each of the acute/ subacute lesions and then selecting the area as a

lesion for every slice available. An example of the use of MRIcron in the present study

to draw a lesion boundary for a single MRI scan slice is shown in Figure 4.6.
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Figure 4.6: Example of lesion boundary drawn in a single slice using the MRIcron software

4.9 Lesion Map Normalisation

The software package SPM12 was selected for all normalisation operations in the present

study due to its simple interface and the powerful functions provided. The major nor-

malisation steps included in this study were manual transformation, normalisation, and

verification.

Manual transformation methods are recommended to help ensure that subsequent

normalisation operations achieve the optimal transformation, as opposed to transforming

to a local minimum. For the present study, this involved the reorientation and modifica-

tion of the origin of the primary scan. Operations were performed using the “Display”

function on SPM12. This function opens a new window which provides buttons for simple

transformation operations, magnification, and setting of the range of intensity values (see

Figure 4.8). The origin was to be set at the approximate location of anterior commis-

sure (AC) to best match the template scan. This was achieved with the aid of images

of the AC taken from standardised scans with different magnification levels (see Figure

4.7). Once the appropriate transformation values were found, these were applied to the

primary scan and the previously extracted lesion map.

Normalisation was performed in SPM12 using the latest normalisation function. This

operation involved deriving the transform function necessary to transform the primary

scan of each subject to MNI152 NLIN template. Once this function had been derived it
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Figure 4.7: Template reference images
taken from the 15 subject T1 scans in the
MNI reference frame (SPM12) and set at
different magnification levels

Figure 4.8: SPM12- Display function for
manually reorienting and setting the origin
of scans

could be applied to primary scan and lesion map. More in-depth details of the stages of

normalisation in SPM12 are given in the Literature Review.

The default SPM12 parameters were selected for this operation (see Figure 4.9) since

these were found to perform well for all the scans of the study. Two parameters worth

mentioning are the voxel size of the resulting scans and the interpolation method. A voxel

size of 2*2*2 mm was selected for normalisation since this was considered to be a good

compromise between the accuracy of lesion maps (limitations of human error considered

to be higher than this resolution) and size of the resulting dataset. The interpolation

method 4th degree B-spline interpolation was selected. This method is slower than tri-

linear interpolation, but the computation time of this stage was not considered a major

limitation for the present study.
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Figure 4.9: SPM12- New Normalisation Function (default parameters)

Finally, a validation step was performed to ensure that normalisation operations had

been completed successfully for each scan. The “Display” function was once again used

for visualising the orientation and origin of each scan. This was performed for each scan

individually to ensure there were no results that deviated from the norm. Next, MRIcron

was used to overlay all the normalised scans on top of a 15 subject T1 scan MNI space

template image. This was used to ensure that all the scans fit the same boundaries and

alignment. Since the lesion maps were already co-registered to the primary scans, there

was no need to additionally validate the transformation of these maps.

4.10 Lesion Map Transformation

This section refers to transformations that were applied to the lesion maps post-normalisation.

For the present study, the decision was made to flip lesion maps so that lesions were pre-

dominantly present on the left side only. This is a frequent practice in motor function

based LSM studies [127, 115, 97] which takes advantage of the symmetrical nature of

motor pathways in the brain. By flipping lesions onto one side, the statistical analysis

of subsequent operations may be drastically improved. For the present study, each le-
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sion map was inspected individually and flipped, if necessary, so that the majority of

the lesions were on the left-hand side. The decision was made to flip onto the left-hand

side since this is where most of the subject lesions were already present. A heat-map

of the normalised lesion maps projected onto the standard single subject T1 MNI space

template is shown in Figure 4.10.

Figure 4.10: Heat-map of the lesions from all subjects imaged who met the study criteria
(lesions flipped onto the left-hand side). A scale is present which represents the least (dark
blue) and most (dark red) commonly present lesions

4.11 Analysis

The statical portion of this study was performed using the NiiStat statistical software

due to its widespread application in prior LSM studies. A total of eight independent

analyses were selected to be performed. One of these analyses involved the overall FMA-

UE score as assigned by the clinician. The findings of this analysis were to be used as

a base measure for all subsequent results. The remaining seven analyses each involve

one of the sensor-derived clinical features (see Table 3.5) as the predictor. Since each of

the clinical features corresponds to a subcomponent of motor function it was hoped that
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these outcome measures would uncover significant findings beyond the baseline measure.

Design files were produced in Excel corresponding to each analysis. These were set

up with a single predictor corresponding to the motor outcome, as well as reference to

the lesion maps of interest. All the predictor variables were considered to be discrete

and the lesion maps binary (since lesions were drawn as present or not). Permutation

thresholding was selected as the analysis method since this is the gold standard method

in LSM analyses for controlling family-wise error [128]. This method involves running

many iterations of random orders of outcome measures to detect whether observed effects

are unexpected. For this study permutation testing with 3000 permutations was selected.

In addition, a corrected P threshold of 0.05 was used to identify statistical significance.

Finally, only damaged voxels which that present in at least two subjects were included

to avoid false positives in lesions only present in one subject. The settings chosen for the

analysis are shown in NiiStat GUI as shown in Figure 4.11.

Figure 4.11: GUI for the NiiStat Statistical Analysis

A region-of-interest type of analysis was selected. This was chosen due to the relatively

low number of subjects once exclusions had been considered. Region of interest analyses

are also widely used in the literature [102, 129], and have useful properties including high

statistical power and ease of subsequent analysis. The region of interest analysis was com-
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bined with the AAL atlas, to provide all potential regions where statical significance may

be achieved. This atlas was chosen due to the detailed level of anatomical segmentation

offered [130].
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4.12 Results

This subsection will detail the results of the large-scale region of interest analysis per-

formed in the present study. Statistical significance was assessed via permutation testing

using two groups of motor outcomes. Firstly, the overall and subsections of the FMA-UE

were tested for significance to use as baseline results. The statistically significant regions

which were determined for these measures are shown in Table 4.1. Secondly, statistical

significance was tested for seven clinical features and these results are presented in Table

4.2. No statistical significance was found for the shoulder twist rotation, shoulder abduc-

tion, and elbow magnitude clinical features and as such these features do not have any

regions listed within the table.

For the clinical features which achieved statistical significance, the significant regions

overlaid onto the ALL atlas are shown in Figures 4.12 to 4.15. The keys on this fig-

ures represent the z-value and the minimum z-value required for p < 0.05 significance is

included within the figure caption. For overlays that contain multiple statistically signif-

icant regions, the darkest colour represents the minimum threshold for significance while

the brightest colour represents the highest level of significance achieved of all the regions.

Table 4.1: The statistically significant regions on the ALL atlas as detected using permu-
tation testing with the overall and subsets of the FMA-UE rating scores for each subject.
Statistical significance determined by permutation testing with a corrected threshold of
p < 0.05 (one tailed significance test) required for significance

FMA-UE Score Statistically significant regions

Overall score Corticospinal tract, internal capsule
Upper extremity subscale Corticospinal tract, internal capsule
Wrist subscale Corticospinal tract, internal capsule
Hand subscale Corticospinal tract
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Table 4.2: The statistically significant regions on the ALL atlas as detected using permu-
tation testing with the clinical features derived for each subject. Statistical significance
determined by permutation testing with a corrected threshold of p < 0.05 (one tailed
significance test) required for significance

Clinical Feature Statistically significant regions

Shoulder int-ext rotation (range) None
Shoulder abduction angle (max) None
Shoulder flexion angle (max) Pallidum
Elbow pronation-sup (range) Putamen, corticospinal tract, internal capsule
Elbow flexion (range) None
Wrist flex-ext muscle activity Cortico-ponto-cerebellar tract, corticospinal tract,

internal capsule
Wrist circumduction muscle activity Corticospinal tract

Figure 4.12: Region-of-Interest results for the maximum shoulder flexion angle outcome mea-
sure (pallidum found to be statistically significant and is highlighted in the figure). Key at the
top of the figure represents the z-score (z < −2.94 represents p < 0.05 statistical significance)
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Figure 4.13: Region-of-Interest results for the range of elbow pronation-supination outcome
measure (putamen, corticospinal tract, and internal capsule found to be statistically significant
and are highlighted in the figure). Key at the top of the figure represents the z-score (z < −2.46
represents p < 0.05 statistical significance)

Figure 4.14: Region-of-Interest results for the wrist flexion-extension muscle activity outcome
measure (cortico-ponto-cerebellar tract, corticospinal tract, and internal capsule found to be
statistically significant and are highlighted in the figure). Key at the top of the figure represents
the z-score (z < −2.12 represents p < 0.05 statistical significance)
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Figure 4.15: Region-of-Interest results for the wrist circumduction muscle activity outcome
measure (corticospinal tract found to be statistically significant and is highlighted in the figure).
Key at the top of the figure represents the z-score (z < −2.35 represents p < 0.05 statistical
significance)
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4.13 Discussion

For this section, a summary of findings of the present LSM study will be discussed with

respect to how they relate to current anatomical knowledge of motor regions and pathways

of the brain. Next, a comparison will be made with the findings of prior motor-based

LSM studies and the significance of any novel findings discussed. Finally, any limitations

of the present LSM will be discussed in more depth.

4.13.1 Statistical Results

The clinical features implemented in this study may be broadly considered to repre-

sent subcomponents within two different forms of motor function: fine and gross. The

myographic clinical features (flexion-extension and circumduction) describe wrist motor

function. Since the majority of prior LSM studies present results in terms of fine or gross

motor function we will consider these wrist features to be representative of fine motor

function to enable direct comparison with the literature. These movements may not per-

fectly conform to the clinical definition of fine movements, but we make this assumption

since they fit this definition much more than they do gross motor function. The remaining

clinical features may be considered to measure subcomponents of gross motor function.

The first results to be discussed are the LSM statistical findings when selecting the

overall and subscales of the FMA-UE as the outcome measures. The use of a clinical

rating score is the prevalent method used in prior LSM so any findings from this analysis

are important to discuss as a baseline. Next, the statistical results of the clinical features

will be discussed both in terms of the anatomical relevance and in terms of whether these

measures provide a greater depth of findings than possible using the rating scales alone.

FMA-UE Rating Scales

Reviewing the results of permutation testing using the FMA-UE overall and subscales

shown in Table 4.1 shows that only the regions of corticospinal tract and internal capture

showed statistical significance. Both of these regions were also found to be significant for

tasks more closely associated with gross motor function (upper extremity subscale) and

fine motor function (wrist subscale).

The primary role of the CST is discussed in the Background section and is considered

to have a major function within the control of the distal extremities (particularly within
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fine motor control). However, the CST and CRST follow a similar pathway and damage

to one rarely occurs in isolation. Disruption to the CRST is associated with deficits to

gross motor function. For this reason, the finding that damage to the CST (and CRST by

proxy) could result in a motor deficit to the upper extremity, wrist, and hand subscales

is an expected finding.

The internal capsule was also found to be statistically significant for all subscales

except the hand. The internal capsule is a relatively small region and a large part of it is

dedicated to the CST, carrying motor information from the primary motor to the lower

motor neurons in the spinal cord. This supports the finding that damage to this region

may have a large consequence on both gross and fine motor function.

Clinical Features- Components of Gross Motor Function

The clinical features representing subcomponents of gross motor function achieved signif-

icance with several regions of the brain and these results are represented in Table 4.2 and

Figures 4.12 and 4.13. Broadly speaking the regions which were found to be significant

for these clinical features correspond with the current functional understanding of the

brain. These results are discussed in more depth below.

The CST region was statistically significant for the elbow pronation-supination sec-

ondary feature, a movement which forms a major component of many gross motor actions.

The shared pathway of the CRST and CST has already been discussed (and the role of

CRST in gross motor actions) and therefore this finding aligns with the existing knowl-

edge of this region.

The pallidum was found to be statistically significant for the only the shoulder flexion

clinical feature. The pallidum is composed of two regions: the global pallidus and the

ventral pallidum. The global pallidus is understood to have a major role in the motor

system, particularly within the regulation of voluntary movement [131]. The pallidum is

also thought to have a primarily inhibitory action that acts in tandem with the excitatory

action of the cerebellum. Damage to the pallidum has been found to result in movement

disorder characterised by tremors and jerky movement [132]. The shoulder flexion feature

requires a coordinated and sustained movement in a particular plane and as such it is

logical that damage to such a region would be statistically significant.

Finally, the region of the putamen was found to be statistically significant for the

elbow twist feature. The putamen is understood to have an important role in motor

skills which include motor preparation, motor execution, and movement sequences. The
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study by Crutcher et al [133] also found that neurons in the putamen of primates had

activity which was strongly related to the direction of limb movements. This suggests that

the putamen may have a primary role in limb control. The elbow pronation-supination

feature requires coordinated rotation of the upper limb and dysfunction of this movement

relates strongly with the current understanding of the putamen.

These statistically significant regions found with the gross motor outcome measures

also correspond with the findings of prior LSM studies. One of the prevalent findings of

these studies, as discussed in the literature review, was that subcortical lesions correlate

more strongly with motor deficits than cortical lesions [119]. This result is supported

in the present study with no statistically significant regions found in the cortex (despite

this being a commonly affected region in the subject cohort as shown in Figure 4.10).

Regions that were detected for gross motor outcomes were the subcortical regions of the

CST and internal capsule. The CST is a well-known motor pathway and damage in this

tract is known to have a major influence on motor dysfunction [134, 129]. Damage to

the internal capsule has also been found to be a statistically significant region of upper

extremity motor dysfunction as shown in several LSM studies [135, 99, 120]. The study by

Frenkel-Toledo et al [98] also supports the finding between upper extremity dysfunction

and damage to the putamen. Finally, damage to pallidum has been found to relate to

balance problems in a prior LSM study [106] but as far as the author is aware, has not

previously been connected to upper extremity motor function.

The findings detailed in the section align well with the findings of prior LSM studies.

Damage to the CST, internal capsule, and putamen were found to be significantly related

to gross motor dysfunction in the present study and these results are widely presented

in the literature. Although these results do not provide any new scientific information,

they do go some way to validating the usefulness of the clinical features. The pallidum

and putamen are regions that were detected for the clinical features but not for the

overall clinical score. This indicates the potential of the clinical features to provide a

more fine-grained assessment of subcomponents of motor function. The pallidum has

also not previously been identified as a region related to upper extremity motor function

in prior LSM studies. This region was identified to be related to shoulder flexion in

the current study indicating its potential involvement in this subcomponent of motor

function. This novel insight indicates the potential of sensor-derived features to improve

statistical findings in this domain
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Clinical Features- Components of Fine Motor Function

The clinical features representing subcomponents of fine motor function are represented

in Table 4.2 and Figures 4.14 and 4.15. Statistically significant regions were found which

both align with existing novel and potentially offer a novel insight.

The CST was a statistically significant region for both the wrist flexion-extension and

circumduction features. The CST is known to have a major role in fine motor function (as

discussed in the Background section) so it follows that this region would be statistically

significant.

The internal capsule and cortico-ponto-cerebellar tract were also found to be statically

significant for the wrist flexion-extension task. The CST passes through the internal

capsule and as such it is logical that this region would have an important role in both

gross and fine motor function. The cortico-ponto-cerebellar tract is a more novel finding,

and its functions are less well understood. A case study of isolated damage to this

region in a study by Jang et al [136] found that the subject presented with resting and

intentional tremor in both hands. This finding supports the results of the study that the

cortico-ponto-cerebellar tract may have a critical role in hand/wrist motor function.

There are a limited number of LSM studies that have focused on upper extremity

fine motor function which makes direct comparisons of results difficult. The CST was a

region that was statistically significant for both fine motor outcome measures and this

is reflected in the literature [97]. The internal capsule was also found to relate to poor

upper extremity fine motor function and this has region has been demonstrated to result

in poor recovery of hand function in a prior study [120]. Thus far, there have been no LSM

studies that have reported statistically significant regions in the cortico-ponto-cerebellar

tract related to motor function.

The features related to fine motor function in the present study found significance

in the regions of the CST and internal capsule, findings which are widely published in

the literature. The influence of the cortico-ponto-cerebellar tract on fine motor function

is less widely published but is consistent with current knowledge about the function

of this pathway. The influence of this region on fine motor function should be further

investigated in the future. These results serve to both validate and show the potential of

the clinical features to uncover new insights into the influence of certain brain regions on

fine motor function.
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4.13.2 Study Limitations

The early region-of-interest results provided by this novel motor outcome based LSM

study are highly promising. The results indicate both the validity of the sensor-derived

feature set and their potential to uncover more insights in future studies by providing

fine-grained motor outcome measures. Despite this, there were a few limitations of the

present study which should be improved upon in the future.

Three of the clinical features failed to attain statistically significant results. This may

be due to the sample size implemented in the present study or may indicate an intrinsic

fault with the features selected. One feature in particular, the shoulder twist rotation,

did not show high usefulness as a measure of motor function (see Table 3.5) and failed to

detect significance in the present study. As discussed in the prior chapter this movement

is difficult to isolate and as a result this motor function is likely poorly captured. The

two remaining features which failed to find significance in this study scored much higher

in the test of usefulness in the previous chapter. The reason that these two features did

not perform well in the present study is less obvious but is perhaps due to insufficient

presence of damage to regions related to the dysfunction of these motor components.

As mentioned previously, one of the limitations of this study is the limited sample

size (N=51) which is on the lower end of typical LSM studies. Although a larger cohort

of subjects was initially recruited, many of these did not present with acute/ subacute

lesions and as such had to be removed from the study.

One effect of the limited sample size of this study was that it was not possible to

perform a VLSM study. This would have offered the potential to uncover more detailed

information about the statically significant brain regions than was possible using the

region-of-interest analysis in the present study.

Finally, there are the limitations associated with performing all analyses on the region-

rather than voxel-level. This was a consequence of the aforementioned limited sample

size which did not provide the necessary statistical power to compute insights at the

voxel-level. One voxel-based method which could have been performed with a large

sample size is the mass-univariate VLSM method. This approach would have enabled an

investigation of the relationship between the features and specific brain locations (rather

than pre-mapping brain regions) but does suffer from limitations including the ”partial

injury problem” and an assumption of independence between each voxel (as discussed in

greater depth in the Background section). Another voxel-based technique which could

have provided greater insight to the analyses are machine-learning based multivariate
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models. These models offer the ability to utilise voxel-level information while minimising

the limitations associated with the mass univariate approach.
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Conclusions

The overarching goal of this thesis was to develop an automated system capable of pro-

viding a fine-grained assessment of motor function for application in LSM studies. The

first study developed a wearable system composed of IMU and MMG sensors. This

system provided outputs which combined the validity of the clinical rating scale with a

series of fine-grained motor outcome measures. A second study conducted successfully

implemented these outcome measures in a large LSM study.

The success of the developed wearable automated system was evaluated in terms of

improving upon the major limitations of prior studies, the performance of the classifier,

and the usefulness of the clinical feature set. The developed system addressed the draw-

backs of previous automated studies by developing a system which could be used to test

subjects at all motor function levels and could be used to quantify hand/wrist tasks. In

addition, the system was tested on a much larger cohort of subjects than in the vast

majority of prior automated studies.

The classification results achieved (in terms of accuracy and F-score) compared favourably

to prior automated studies. The clinical features extracted from the orientation and

myographic data all showed good correlation scores and are expected to offer a more

fine-grained assessment of motor function than classified scores. The study proposes that

a combination of classified score and clinical features would provide both the validity of

the established clinical rating scores with the accuracy provided by the wearable sensor

system.

A second major contribution provided by the developed automated system was the

novel application of MMG sensors to quantify hand/wrist tasks. This region is a major

contributor to upper extremity motor dysfunction post-stroke but has been ignored or
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poorly quantified in most prior automated systems. Previous kinematic solutions have

either performed poorly when quantifying this region (Kinect sensor) or have sizing and

hygiene concerns (instrumented gloves). Recently myographic solutions have been pro-

posed in the form of EMG sensors and these systems have achieved good results. This is

the first study to implement MMG sensors, which have advantages over EMG including

being more robust and reusable.

The early region-of-interest results provided by this novel motor outcome based LSM

study are highly promising. Several of the features showed their validity for this applica-

tion by the detection of significant regions that are consistent with current neuroscientific

knowledge and the findings of prior LSM studies. This includes the relationship between

gross motor function and damage to the subcortical region of the internal capsule and

the CST. In addition, the clinical features evidenced sensitivity in the detection of re-

gions related to subcomponents of motor function which broad clinical rating scales do

not provide. The features for shoulder flexion and elbow twist detected statistically sig-

nificant regions in the pallidum and putamen respectively, but these same regions were

not detected by the clinical rating scale. Finally, there is some evidence that the fine-

grained nature of the clinical features may lead to new insights not possible with clinical

rating scales. For instance, the feature of wrist flexion-extension (relating to fine motor

function) detected the significant region of the cortico-ponto-cerebellar tract. As far as

the authour is aware, this finding has not been reported in a previous LSM study but

is consistent with the symptoms reported by a case study documenting damage to this

region.
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Future Work

In this chapter, the two major studies reported in this thesis will be discussed with respect

to their limitations and how these should be addressed in any future work. The main

limitations identified are the cohort size, improvements to the clinical feature set, and an

expansion of the sensor system.

One limitation of both studies which could be rectified in the future is the cohort

size. Although a relatively large pool of subjects was recruited (N=64 before exclusions),

an even larger subject size would be expected to improve the analyses of both major

studies presented in this paper. For the validation study of the novel automated system,

an increase in sample size would be expected to solve several of the issues encountered

with the classification model. This includes the bias issue whereby certain tasks of the

clinical rating scale were found present with a large imbalance in class labels. A larger

(and more balanced) training set would be expected to improve classification accuracy

as well as the F-score achieved for each class. For the large-scale LSM study, recruiting

further subjects to the study would enable a voxel- rather than region-level analysis to be

performed. The region-of-interest analysis revealed a number of statistically significant

regions when testing with the clinical score and clinical features. A larger sample size

would enable a subsequent voxel-based analysis to be performed which may provide higher

resolution anatomical information.

Another aspect of the studies which could be improved upon in the future is the

clinical features utilised in both studies. The features were selected from a larger feature

set based on three major criteria of transparency, usefulness, and generability. The

criterion of usefulness was assessed by correlation with the clinical rating score, but the

other two criteria were determined in a somewhat subject manner and this selection
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criteria could certainly be improved in the future. Secondly, the total feature set, from

which the clinical features were selected, is far from exhaustive and there are certainly

other clinically relevant features which could be determined in the future.

A final limitation which could be improved in the future is the sensor system. The

sensor system implemented provided good coverage of the upper arm with inertial sensing

and flexion of the hand/wrist with myographic (MMG) sensing. One important movement

this set up does not cover is wrist and finger extension. These movements are commonly

affected post-stroke and also form a major component of several of the FMA-UE tasks.

One change to capture this movement would be the addition of myographic (MMG)

sensors positioned on the extrinsic extensors for the wrist and hand. Examples of muscles

which could be instrumented in the future include the extensor carpi radialis longus and

extensor digitorum.
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Clinical Implications

The work conducted in this thesis has outlined the development of an automated system

and shown its potential for application in LSM mapping studies. One area in which the

author believes this system (and other prior developed automated systems) are currently

unsuitable is as a replacement for clinical assessment as part of normal post-stroke care.

Although every effort made in the present study to ensure testing was as seamless as

possible, the application of the system still presents an increased time, cognitive, and

physical burden on clinician and subject alike, as compared to standard clinical testing.

This is because these sensor systems require preparation time (such as fitting of sensors)

and require the subjects to perform the tasks correctly in order to be able to collect useful

sensor data. For this reason, it is considered that there is a low likelihood of widespread

uptake by clinicians of such sensor systems for routine clinical evaluation.

The better application for the developed sensor system is in a field whereby more

time may be afforded, and the high resolution provided by the fine-grained motor feature

set may lead to useful insights. This includes the application in LSM studies as already

demonstrated within the thesis. In addition, the developed automated system could be

used to enrich studies of medicinal or rehabilitative interventions by improving the set of

motor outcomes. The clinical features generated by the system offer a higher resolution

measure of motor function than is possible with the standard clinical rating scores. If a

subsequent study can prove, as expected, that this increased resolution translates to the

ability to discriminate more levels of motor dysfunction, then this system could be applied

as a highly sensitive measure of motor function. This could in turn enable intervention

studies post-stroke to achieve statistical significance at smaller sample sizes or with only

modest improvements in motor function.

153



Chapter 7. Clinical Implications

Overall, the results presented in this thesis show significant promise in the developed

automated system as a means to provide higher quality motor outcome metrics than

currently possible using standard clinical rating scales. A novel system was developed

which incorporated new findings in the application and feature extraction within MMG

sensing, and a new measure of motor dysfunction which combines machine learning with

clinically relevant parameters of motor function.
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Appendix A: Subject Demographics

Table 8.1: Clinical demographics for the cohort recruited for the wearable automated
system and lesion-symptom mapping study

UID Sex (M or F) Age (years) Affected side FMA-UE score

2 F 80 RIGHT 40
4 F 68 LEFT 48
5 F 65 LEFT 58
6 M 43 LEFT 0
7 M 53 LEFT 15
8 M 60 RIGHT 30
9 F 85 RIGHT 55
10 M 64 RIGHT 35
11 F 69 LEFT 0
12 M 63 LEFT 40
13 F 78 RIGHT 47
14 F 70 RIGHT 32
15 F 83 LEFT 57
16 F 85 LEFT 34
17 F 95 LEFT 31
18 M 72 LEFT 8
19 M 58 LEFT 58
20 F 78 RIGHT 58
21 M 50 RIGHT 18
22 M 57 RIGHT 59
23 M 52 LEFT 12
24 M 60 LEFT 57
25 M 73 LEFT 60
26 M 44 RIGHT 9
27 M 40 LEFT 57
28 M 33 LEFT 11
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UID Sex (M or F) Age (years) Affected side FMA-UE score

29 F 81 RIGHT 40
30 F 72 LEFT 20
31 F 75 LEFT 54
33 F 90 LEFT 57
34 M 75 LEFT 60
35 M 85 LEFT 54
36 F 42 LEFT 59
37 M 80 LEFT 58
39 M 73 LEFT 38
40 M 74 LEFT 50
41 F 63 LEFT 53
42 M 53 LEFT 56
43 F 80 RIGHT 59
44 M 53 RIGHT 18
45 F 79 RIGHT 11
46 M 54 LEFT 29
47 F 57 LEFT 30
48 M 48 LEFT 54
49 F 51 RIGHT 49
50 F 81 LEFT 2
51 F 82 LEFT 54
52 F 72 RIGHT 57
53 M 66 LEFT 54
54 F 47 RIGHT 59
55 M 54 LEFT 58
56 F 83 LEFT 45
57 F 77 LEFT 55
58 F 76 LEFT 53
59 M 64 LEFT 44
60 M 72 LEFT 51
61 M 60 LEFT 50
62 F 58 RIGHT 50
63 M 63 LEFT 58
64 M 66 LEFT 58
65 F 51 LEFT 43
66 F 75 RIGHT 55
67 M 66 RIGHT 54
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Table 8.2: Clinical demographics and Imaging Specifications for the cohort recruited for
the lesion-symptom mapping study. Stroke phase is determined at the time of motor
outcome measure collection and based on periods specified in Table 2.2. Trials excluded
from the study are indicated in the final column

UID Stroke phase Imaging modality Excluded from the study?

2 ACUTE CT NO
4 SUBACUTE MRI NO
5 ACUTE CT NO
6 SUBACUTE MRI NO
7 SUBACUTE CT NO
8 ACUTE MRI NO
9 ACUTE MRI NO
10 ACUTE MRI NO
11 SUBACUTE MRI NO
12 ACUTE MRI NO
13 ACUTE CT NO
14 ACUTE MRI NO
15 ACUTE MRI NO
16 SUBACUTE MRI NO
17 ACUTE MRI NO
18 ACUTE CT NO
19 ACUTE MRI NO
20 SUBACUTE MRI NO
21 SUBACUTE MRI NO
22 ACUTE MRI NO
23 SUBACUTE CT NO
24 ACUTE MRI NO
25 ACUTE MRI NO
26 SUBACUTE MRI NO
27 ACUTE MRI NO
28 CHRONIC MRI YES

157



Chapter 8. Appendix A: Subject Demographics

UID Stroke phase Imaging modality Excluded from the study?

29 ACUTE MRI NO
30 SUBACUTE CT NO
31 SUBACUTE CT NO
33 CHRONIC MRI YES
34 ACUTE MRI NO
35 SUBACUTE MRI NO
36 ACUTE MRI NO
37 CHRONIC CT YES
39 CHRONIC MRI YES
40 ACUTE MRI NO
41 CHRONIC MRI YES
42 ACUTE MRI NO
43 CHRONIC MRI YES
44 ACUTE MRI NO
45 CHRONIC CT YES
46 SUBACUTE MRI NO
47 ACUTE CT NO
48 CHRONIC MRI YES
49 ACUTE MRI NO
50 ACUTE MRI NO
51 ACUTE MRI NO
52 CHRONIC MRI YES
53 ACUTE MRI NO
54 ACUTE MRI NO
55 CHRONIC MRI YES
56 ACUTE CT NO
57 CHRONIC MRI YES
58 ACUTE MRI NO
59 ACUTE MRI NO
60 ACUTE MRI YES
61 ACUTE MRI NO
62 CHRONIC MRI YES
63 ACUTE MRI NO
64 ACUTE MRI NO
65 ACUTE MRI NO
66 SUBACUTE MRI NO
67 ACUTE MRI NO
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Appendix B: Data Visualisation

Figure 9.1: Data segmentation applied to accelerometer data recorded from the right lower
arm of the subject during testing. Graphs are shown for each axis and magnitude of acceleration.
Legend shows tasks of the FMA-UE clinical scale which have been segmented
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Figure 9.2: Data segmentation applied to gyroscope data recorded from the right lower arm
of the subject during testing. Graphs are shown for each axis and magnitude of acceleration.
Legend shows tasks of the FMA-UE clinical scale which have been segmented

Figure 9.3: Data segmentation applied to mechanomyographic data recorded from the right
lower arm of the subject during testing. Legend illustrates the tasks of the FMA-UE clinical
scale which have been segmented
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Figure 9.4: The simulated avatar and orientation readings of the shoulder and elbow during
the “Flexor Synergy” task of the FMA-UE
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Appendix C: Confusion Matrices from the Wearable Automated

System

Figure 10.1: FMA-UE Confusion Matrix-
“Flexor Synergy” Task

Figure 10.2: FMA-UE Confusion Matrix-
“Extensor Synergy” Task

Figure 10.3: FMA-UE Confusion Matrix-
“Hand to Lumbar Spine” Task

Figure 10.4: FMA-UE Confusion Matrix-
“Shoulder Flexion (0-90 degrees)” Task
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Figure 10.5: FMA-UE Confusion Matrix-
“Pronation-Supination (elbow at 90 de-
grees)” Task

Figure 10.6: FMA-UE Confusion Matrix-
“Shoulder Abduction” Task

Figure 10.7: FMA-UE Confusion Matrix-
“Shoulder Flexion (90-180 degrees)” Task

Figure 10.8: FMA-UE Confusion Matrix-
“Pronation-Supination (elbow at 0 de-
grees)” Task
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Figure 10.9: FMA-UE Confusion Matrix-
“Stability at 15 Degrees Dorsiflexion (el-
bow at 90 degrees)” Task

Figure 10.10: FMA-UE Confusion
Matrix- “Repeated dorsi-volar flexion (el-
bow at 90 degrees)” Task

Figure 10.11: FMA-UE Confusion
Matrix- “Stability at 15 degrees dorsiflex-
ion (elbow at 0 degrees)” Task

Figure 10.12: FMA-UE Confusion
Matrix- “Repeated Dorsi-volar Flexion (el-
bow at 0 degrees)” Task
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Figure 10.13: FMA-UE Confusion
Matrix- “Circumduction” Task

Figure 10.14: FMA-UE Confusion
Matrix- “Thumb Adduction” Task
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“A novel system for automatic classification of upper limb motor function after
stroke: an exploratory study.” Medical Engineering & Physics, vol. 36, no. 12, pp.
1704–10, 2014.

[66] A. Scano, A. Chiavenna, M. Malosio, L. Molinari Tosatti, and F. Molteni, “Kinect
V2 implementation and testing of the reaching performance scale for motor eval-
uation of patients with neurological impairment,” Medical Engineering & Physics,
vol. 56, pp. 54–58, 2018.

170



Bibliography

[67] N. J. Seo, V. Crocher, E. Spaho, C. R. Ewert, M. F. Fathi, P. Hur, S. A. Lum,
E. M. Humanitzki, A. L. Kelly, V. Ramakrishnan, and M. L. Woodbury, “Capturing
upper limb gross motor categories using the kinect® sensor,” American Journal of
Occupational Therapy, vol. 73, no. 4, pp. 1–10, 2019.

[68] P. Otten, J. Kim, and S. H. Son, “A framework to automate assessment of upper-
limb motor function impairment: A feasibility study,” Sensors, vol. 15, no. 8, pp.
20 097–20 114, 2015.

[69] R. Julianjatsono, R. Ferdiana, and R. Hartanto, “High-resolution automated Fugl-
Meyer Assessment using sensor data and regression model,” in IEEE International
Conference on Science and Technology - Computer, 2017, pp. 28–32.

[70] Y. Chongyang, W. Zixi, and J. Linhong, “A research on the feasibility of automatic
Fugl-Meyer assessment for upper limb based on rehabilitation devices,” in Interna-
tional Convention on Rehabilitation Engineering & Assistive Technology, 2008, pp.
126–129.

[71] S. Balasubramanian, R. Wei, R. Herman, and J. He, “Robot-measured performance
metrics in stroke rehabilitation,” in IEEE International Conference on Complex
Medical Engineering, 2009, pp. 0–5.

[72] S. Subramaniam, R. Varghese, and T. Bhatt, “Influence of Chronic Stroke on Func-
tional Arm Reaching: Quantifying Deficits in the Ipsilesional Upper Extremity,”
Rehabilitation Research and Practice, vol. 2019, 2019.

[73] W. Tang, X. Zhang, X. Tang, S. Cao, X. Gao, and X. Chen, “Surface Electromyo-
graphic Examination of Poststroke Neuromuscular Changes in Proximal and Distal
Muscles Using Clustering Index Analysis,” Frontiers in Neurology, vol. 8, p. 731,
2018.

[74] X. Zhang, Z. Wei, X. Ren, X. Gao, X. Chen, and P. Zhou, “Complex Neuro-
muscular Changes Post-Stroke Revealed by Clustering Index Analysis of Surface
Electromyogram,” IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, vol. 25, no. 11, pp. 2105–2112, 2017.

[75] H. Uesugi, M. Sonoo, E. St̊alberg, K. Matsumoto, M. Higashihara, H. Murashima,
Y. Ugawa, Y. Nagashima, T. Shimizu, H. Saito, and I. Kanazawa, “”Clustering
Index method”: A new technique for differentiation between neurogenic and myo-
pathic changes using surface EMG,” Clinical Neurophysiology, vol. 122, no. 5, pp.
1032–1041, 2011.

[76] X. L. Hu, K. Y. Tong, and L. Li, “The mechanomyography of persons after stroke
during isometric voluntary contractions.” Journal of electromyography and kinesi-
ology, vol. 17, no. 4, pp. 473–83, 2007.

[77] B. Kim and C. Winstein, “Can Neurological Biomarkers of Brain Impairment Be
Used to Predict Poststroke Motor Recovery? A Systematic Review,” Neurorehabil-
itation and Neural Repair, vol. 31, no. 1, pp. 3–24, 2017.

[78] E. Repnik, U. Puh, N. Goljar, M. Munih, and M. Mihelj, “Using inertial measure-
ment units and electromyography to quantify movement during action research arm
test execution,” Sensors (Switzerland), vol. 18, no. 9, pp. 1–23, 2018.

171



Bibliography

[79] H. T. Jung, H. Kim, M. Y. Oh, T. Ryu, and Y. Kim, “Learning classifier to evaluate
movement quality in unassisted pick-and-place exercises for post-stroke patients: A
preliminary study,” IEEE Engineering in Medicine and Biology Society, pp. 2490–
2493, 2017.

[80] A. Scano, M. Caimmi, A. Chiavenna, M. Malosio, and L. M. Tosatti, “Kinect
One-based biomechanical assessment of upper-limb performance compared to clin-
ical scales in post-stroke patients,” in IEEE Engineering in Medicine and Biology
Society, 2015, pp. 5720–5723.

[81] K. Leuenberger, R. Gonzenbach, S. Wachter, A. Luft, and R. Gassert, “A method to
qualitatively assess arm use in stroke survivors in the home environment,” Medical
and Biological Engineering and Computing, vol. 55, no. 1, pp. 141–150, 2017.

[82] M. Mace, S. Guy, A. Hussain, E. Diane Playford, N. Ward, S. Balasubramanian,
and E. Burdet, “Validity of a sensor-based table-top platform to measure upper limb
function,” in IEEE International Conference on Rehabilitation Robotics. IEEE,
2017, pp. 652–657.

[83] B. Dehbandi, A. Barachant, D. Harary, J. D. Long, K. Z. Tsagaris, S. J. Bumanlag,
V. He, and D. Putrino, “Using Data from the Microsoft Kinect 2 to Quantify Upper
Limb Behavior: A Feasibility Study,” IEEE Journal of Biomedical and Health
Informatics, vol. 21, no. 5, pp. 1386–1392, 2017.

[84] G. V. Dijck, J. V. Vaerenbergh, and M. M. V. Hulle, “Posterior Probability Profiles
for the Automated Assessment of the Recovery of Stroke Patients,” in Artificial
Intelligence in Medicine, 2007, pp. 347–353.

[85] N. Hesam-Shariati, T. Trinh, A. G. Thompson-Butel, C. T. Shiner, S. J. Redmond,
and P. A. McNulty, “Improved Kinematics and Motor Control in a Longitudinal
Study of a Complex Therapy Movement in Chronic Stroke,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 27, no. 4, pp. 682–691, 2019.

[86] L. Jaasko, I. Leyman, S. Olsson, and S. Steglind, “FMA-UE Protocol,” Tech. Rep.,
2010.

[87] B. Rohrer, S. Fasoli, H. I. Krebs, R. Hughes, B. Volpe, W. R. Frontera, J. Stein, and
N. Hogan, “Movement smoothness changes during stroke recovery,” The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience, vol. 22, no. 18,
pp. 8297–8304, 2002.

[88] A. Posatskiy and T. Chau, “Design and evaluation of a novel microphone-based
mechanomyography sensor with cylindrical and conical acoustic chambers,” Medical
Engineering & Physics, vol. 34, no. 8, pp. 1184–1190, 2012.

[89] FormLabs, “Materials Data Sheet,” Tech. Rep., 2018.

[90] M. Gor-Garcia-Fogeda, F. Molina-rueda, A. Cuesta-Gomez, I. M. Alguacil-diego,
and J. C. Miangolarra-page, “Scales to Assess Gross Motor Function in Stroke
Patients : A Systematic Review,” Archives of Physical Medicine and Rehabilitation,
vol. 95, pp. 1174–83, 2014.

172



Bibliography

[91] M. O. Ibitoye, N. A. Hamzaid, J. M. Zuniga, N. Hasnan, and A. K. A. Wahab,
“Mechanomyographic parameter extraction methods: An appraisal for clinical ap-
plications,” Sensors, vol. 14, no. 12, pp. 22 940–22 970, 2014.

[92] C. Orizio, “Muscle sound: bases for the introduction of a mechanomyographic signal
in muscle studies.” Critical reviews in biomedical engineering, vol. 21, no. 3, pp.
201–243, 1993.

[93] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature reduction and
selection for EMG signal classification,” Expert Systems with Applications, vol. 39,
no. 8, pp. 7420–7431, 2012.

[94] M. Ojala and G. C. Garriga, “Permutation tests for studying classifier perfor-
mance,” Journal of Machine Learning Research, vol. 11, pp. 1833–1863, 2010.

[95] D. J. Gladstone, C. J. Danells, and S. E. Black, “The fugl-meyer assessment of
motor recovery after stroke: a critical review of its measurement properties.” Neu-
rorehabilitation and neural repair, vol. 16, no. 3, pp. 232–40, sep 2002.

[96] T. S. T. Fu, C. Y. Wu, K. C. Lin, C. J. Hsieh, J. S. Liu, T. N. Wang, and P. Ou-
Yang, “Psychometric comparison of the shortened Fugl-Meyer Assessment and the
streamlined Wolf Motor Function Test in stroke rehabilitation,” Clinical Rehabili-
tation, vol. 26, no. 11, pp. 1043–1047, 2012.

[97] J. Plantin, G. V. Pennati, P. Roca, J. C. Baron, E. Laurencikas, K. Weber, A. K.
Godbolt, J. Borg, and P. G. Lindberg, “Quantitative assessment of hand spastic-
ity after stroke: Imaging correlates and impact on motor recovery,” Frontiers in
Neurology, vol. 10, no. JUL, pp. 1–11, 2019.

[98] S. Frenkel-Toledo, G. Fridberg, S. Ofir, G. Bartur, J. Lowenthal-Raz, O. Granot,
S. Handelzalts, and N. Soroker, “Lesion location impact on functional recovery of
the hemiparetic upper limb,” PLoS ONE, vol. 14, no. 7, pp. 1–28, 2019.

[99] K. B. Lee, J. S. Kim, B. Y. Hong, and S. H. Lim, “Clinical recovery from stroke
lesions and related outcomes,” Journal of Clinical Neuroscience, vol. 37, pp. 79–82,
2017.

[100] J. A. Fiez, H. Damasio, and T. J. Grabowski, “Lesion segmentation and manual
warping to a reference brain: Intra- and interobserver reliability,” Human Brain
Mapping, vol. 9, no. 4, pp. 192–211, 2000.

[101] S. Baillieul, C. Elsworth-Edelsten, A. Saj, and G. Allali, “Neural substrates of
reduced walking activity after supratentorial stroke: A voxel-based lesion symptom
mapping study,” Human Movement Science, vol. 67, no. May, p. 102517, 2019.

[102] J. Wilmskoetter, L. Bonilha, B. Martin-Harris, J. J. Elm, J. Horn, and H. S.
Bonilha, “Mapping acute lesion locations to physiological swallow impairments af-
ter stroke,” NeuroImage: Clinical, vol. 22, 2019.

[103] H. I. Moon, H. J. Lee, and S. Y. Yoon, “Lesion location associated with balance
recovery and gait velocity change after rehabilitation in stroke patients,” Neurora-
diology, vol. 59, no. 6, pp. 609–618, 2017.

173



Bibliography

[104] K. M. Oostra, A. Van Bladel, A. C. L. Vanhoonacker, and G. Vingerhoets, “Damage
to Fronto-Parietal Networks Impairs Motor Imagery Ability after Stroke: A Voxel-
Based Lesion Symptom Mapping Study.” Frontiers in Behavioral Neuroscience,
vol. 10, no. February, p. 5, 2016.

[105] L. M. Skipper-Kallal, E. H. Lacey, S. Xing, and P. E. Turkeltaub, “Functional
activation independently contributes to naming ability and relates to lesion site in
post-stroke aphasia,” Human Brain Mapping, vol. 38, no. 4, pp. 2051–2066, 2017.

[106] A. M. Reynolds, D. M. Peters, J. M. Vendemia, L. P. Smith, R. C. Sweet, G. C.
Baylis, D. Krotish, and S. L. Fritz, “Neuronal injury in the motor cortex after
chronic stroke and lower limb motor impairment: A voxelbased lesion symptom
mapping study,” Neural Regeneration Research, vol. 9, no. 7, pp. 766–772, 2014.

[107] S. Vossel, P. H. Weiss, P. Eschenbeck, and G. R. Fink, “Anosognosia, neglect,
extinction and lesion site predict impairment of daily living after right-hemispheric
stroke,” Cortex, vol. 49, no. 7, pp. 1782–1789, 2013.

[108] L. D. Alexander, S. E. Black, F. Gao, G. Szilagyi, C. J. Danells, and W. E. Mcilroy,
“Correlating lesion size and location to deficits after ischemic stroke: the influence of
accounting for altered peri-necrotic tissue and incidental silent infarcts,” Behaviour
and Brain Functions, vol. 6, no. 6, pp. 1–10, 2010.

[109] K. L. Ito, H. Kim, and S. L. Liew, “A comparison of automated lesion segmentation
approaches for chronic stroke T1-weighted MRI data,” Human Brain Mapping,
vol. 40, no. 16, pp. 4669–4685, 2019.

[110] S. L. Liew, J. M. Anglin, N. W. Banks, M. Sondag, K. L. Ito, H. Kim, J. Chan,
J. Ito, C. Jung, N. Khoshab, S. Lefebvre, W. Nakamura, D. Saldana, A. Schmiesing,
C. Tran, D. Vo, T. Ard, P. Heydari, B. Kim, L. Aziz-Zadeh, S. C. Cramer, J. Liu,
S. Soekadar, J. E. Nordvik, L. T. Westlye, J. Wang, C. Winstein, C. Yu, L. Ai,
B. Koo, R. C. Craddock, M. Milham, M. Lakich, A. Pienta, and A. Stroud, “A
large, open source dataset of stroke anatomical brain images and manual lesion
segmentations,” Scientific Data, vol. 5, pp. 1–11, 2018.

[111] M. S. Babu and V. Vijayalakshmi, “A review on acute/sub-acute ischemic stroke le-
sion segmentation and registration challenges,” Multimedia Tools and Applications,
vol. 78, no. 2, pp. 2481–2506, 2019.

[112] M. Wilke, B. de Haan, H. Juenger, H.-o. O. Karnath, B. D. Haan, H. Juenger, H.-
o. O. Karnath, B. de Haan, H. Juenger, H.-o. O. Karnath, B. D. Haan, H. Juenger,
and H.-o. O. Karnath, “Manual, semi-automated, and automated delineation of
chronic brain lesions: A comparison of methods,” NeuroImage, vol. 56, no. 4, pp.
2038–2046, 2011.

[113] M. Joliot, G. Jobard, M. Naveau, N. Delcroix, L. Petit, L. Zago, F. Crivello, E. Mel-
let, B. Mazoyer, and N. Tzourio-Mazoyer, “AICHA: An atlas of intrinsic connec-
tivity of homotopic areas,” Journal of Neuroscience Methods, vol. 254, pp. 46–59,
2015.

174



Bibliography

[114] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Del-
croix, B. Mazoyer, and M. Joliot, “Automated anatomical labeling of activations in
SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain,” NeuroImage, vol. 15, no. 1, pp. 273–289, 2002.

[115] S. S. Kessner, E. Schlemm, B. Cheng, U. Bingel, J. Fiehler, C. Gerloff, and
G. Thomalla, “Somatosensory Deficits After Ischemic Stroke: Time Course and
Association With Infarct Location,” Stroke, vol. 50, no. 5, pp. 1116–1123, 2019.

[116] J. H. Kim, S. H. Oh, H. J. Jeong, Y. J. Sim, D. G. Kim, and G. C. Kim, “Association
between duration of dysphagia recovery and lesion location on magnetic resonance
imaging in patients with middle cerebral artery infarction,” Annals of Rehabilitation
Medicine, vol. 43, no. 2, pp. 142–148, 2019.

[117] C. L. Chen, F. T. Tang, H. C. Chen, C. Y. Chung, and M. K. Wong, “Brain
lesion size and location: effects on motor recovery and functional outcome in stroke
patients.” Archives of physical medicine and rehabilitation, vol. 81, no. April, pp.
447–452, 2000.

[118] F. Binkofski, R. J. Seitz, T. Hackländer, D. Pawelec, J. Mau, and H. J. Freund,
“Recovery of motor functions following hemiparetic stroke: a clinical and mag-
netic resonance-morphometric study.” Cerebrovascular diseases, vol. 11, pp. 273–
281, 2001.

[119] F. de Shelton and M. J. Reding, “Effect of Lesion Location on Upper Limb Motor
Recovery after stroke.” Stroke, pp. 107–112, 2001.

[120] S. K. Schiemanck, G. Kwakkel, M. W. M. Post, L. J. Kappelle, and A. J. H. Prevo,
“Impact of internal capsule lesions on outcome of motor hand function at one year
post-stroke,” Journal of Rehabilitation Medicine, vol. 40, no. 2, pp. 96–101, 2008.

[121] R. Lo, D. Gitelman, R. Levy, J. Hulvershorn, and T. Parrish, “Identification of
critical areas for motor function recovery in chronic stroke subjects using voxel-
based lesion symptom mapping,” NeuroImage, vol. 49, no. 1, pp. 9–18, 2010.

[122] B. Cheng, N. D. Forkert, M. Zavaglia, C. C. Hilgetag, A. Golsari, S. Siemonsen,
J. Fiehler, S. Pedraza, J. Puig, T. H. Cho, J. Alawneh, J. C. Baron, L. Ostergaard,
C. Gerloff, and G. Thomalla, “Influence of stroke infarct location on functional
outcome measured by the modified rankin scale,” Stroke, vol. 45, no. 6, pp. 1695–
1702, 2014.

[123] O. Wu, L. Cloonan, S. J. Mocking, M. J. Bouts, W. A. Copen, P. T. Cougo-Pinto,
K. Fitzpatrick, A. Kanakis, P. W. Schaefer, J. Rosand, K. L. Furie, and N. S.
Rost, “Role of Acute Lesion Topography in Initial Ischemic Stroke Severity and
Long-Term Functional Outcomes,” Stroke, vol. 46, no. 9, pp. 2438–2444, 2015.

[124] R. J. Nudo, “Mechanisms for recovery of motor function following cortical damage,”
Current Opinion in Neurobiology, vol. 16, no. 6, pp. 638–644, 2006.

[125] J. S. Yoo, B. Y. Choi, C. H. Chang, Y. J. Jung, S. H. Kim, and S. H. Jang,
“Characteristics of injury of the corticospinal tract and corticoreticular pathway in
hemiparetic patients with putaminal hemorrhage,” BMC Neurology, vol. 14, no. 1,
pp. 15–18, 2014.

175



Bibliography

[126] S. H. Jang, C. H. Chang, J. Lee, C. S. Kim, J. P. Seo, and S. S. Yeo, “Functional role
of the corticoreticular pathway in chronic stroke patients,” Stroke, vol. 44, no. 4,
pp. 1099–1104, 2013.

[127] H.-O. Karnath and J. Rennig, “Investigating structure and function in the healthy
human brain: validity of acute versus chronic lesion-symptom mapping,” Brain
Structure and Function, vol. 222, no. 5, pp. 2059–2070, 2017.

[128] A. T. DeMarco and P. E. Turkeltaub, “A multivariate lesion symptom mapping
toolbox and examination of lesion-volume biases and correction methods in lesion-
symptom mapping,” Human Brain Mapping, vol. 39, no. 11, pp. 4169–4182, 2018.

[129] C.-H. H. Park, N. Kou, and N. S. Ward, “The contribution of lesion location to
upper limb deficit after stroke,” Journal of neurology, neurosurgery & psychiatry,
vol. 87, no. 12, pp. 1283–1286, 2016.

[130] E. T. Rolls, C. C. Huang, C. P. Lin, J. Feng, and M. Joliot, “Automated anatomical
labelling atlas 3,” NeuroImage, vol. 206, no. August 2019, p. 116189, 2020.

[131] M. J. Gillies, J. A. Hyam, A. R. Weiss, C. A. Antoniades, R. Bogacz, J. J. Fitzger-
ald, T. Z. Aziz, M. A. Whittington, and A. L. Green, “The Cognitive Role of
the Globus Pallidus interna; Insights from Disease States,” Experimental Brain
Research, vol. 235, no. 5, pp. 1455–1465, 2017.

[132] A. Compston, “Progressive atrophy of the globus pallidus (primary atrophy of the
pallidal system). A system disease of the paralysis agitans type, characterized by
atrophy of the motor cells of the corpus striatum. A contribution to the function
of the corpus striatum,” Brain, vol. 140, no. 6, pp. 1808–1813, 2017.

[133] M. D. Crutcher and M. R. DeLong, “Single cell studies of the primate putamen - II.
Relations to direction of movement and pattern of muscular activity,” Experimental
Brain Research, vol. 53, no. 2, pp. 244–258, 1984.

[134] J. M. Rondina, C. H. Park, and N. S. Ward, “Brain regions important for recovery
after severe post-stroke upper limb paresis,” Journal of Neurology, Neurosurgery &
Psychiatry, vol. 88, no. 9, pp. 737–743, 2017.

[135] M. Ernst, A. M. Boers, N. D. Forkert, O. A. Berkhemer, Y. B. Roos, D. W. Dip-
pel, A. Van Der Lugt, R. J. Van Oostenbrugge, W. H. Van Zwam, E. Vettorazzi,
J. Fiehler, H. A. Marquering, C. B. Majoie, and S. Gellissen, “Impact of ischemic
lesion location on the MRS score in patients with ischemic stroke: A voxel-based
approach,” American Journal of Neuroradiology, vol. 39, no. 11, pp. 1989–1994,
2018.

[136] S. H. Jang and H. G. Kwon, “Injury of the cortico-ponto-cerebellar tract in a patient
with mild traumatic brain injury,” Medicine, vol. 96, no. 49, pp. 2–4, 2017.

176


	List of Figures
	Nomenclature
	Introduction
	Motivation
	Research Focus
	Thesis Structure

	Background
	Chapter Structure
	Stroke
	Pathophysiology of Stroke
	Sensorimotor Symptoms of Stroke
	Clinical Evaluation of Upper Extremity Motor Function

	Neuroimaging of Stroke
	Computed Tomography
	Magnetic Resonance Imaging
	Time Point of Neuroimaging
	Time Point of Examination

	Neuroanatomy
	Anatomical Overview
	Motor Cortices
	Motor Pathways

	Lesion Symptom Mapping
	Lesion Demarcation
	Normalisation
	Analysis Types

	Diagnostic Myography
	Electromyography
	Mechanomyography
	Application in Post-Stroke Populations

	Motion Tracking
	Wearable Motion Capture
	Visual Motion Capture

	Defining Orientation
	Euler Angles
	Quaternions
	Quaternion Estimation Algorithms

	Machine Learning in Healthcare
	Feature Selection
	Dimensionality Reduction
	Regression
	Classification
	Ensemble Decision Tree Classification


	Wearable Fusion System for Automated Rating of Upper-Arm Motor Function Post-Stroke
	Chapter Introduction
	Chapter Outcomes
	Chapter Structure
	Literature Review
	Instrumentation
	Data Collection
	Data Segmentation
	Feature Calculation
	Feature Selection and Dimensionality Reduction
	Feature Set Size
	Building the Predictive Model
	Review

	Instrumentation
	Data Logger Board
	Mechanomyogram
	Sensor Configuration
	Sensor Synchronisation

	Software
	Online
	Offline

	Data Collection
	Recruitment
	Instrumenting the Subject
	Clinical Protocol
	Clinical Assessors and Training
	Online Data Collection

	Data Processing
	Local Data Processing
	Global Data Processing

	Data Visualisation
	Graph Visualisation
	Avatar Visualisation

	Feature Extraction
	Protocol
	Feature Choice
	Feature Computation

	Feature Exploration
	Feature Plotting
	Manual Feature Selection

	Classification Pipeline
	Feature Preparation
	Automated Feature Selection
	Feature Classifier
	Cross-Validation
	Evaluation

	Clinical Feature Set
	Orientation Features
	Myographic Features

	Results
	Classification Performance
	Clinical Features

	Discussion
	Classification Performance
	Clinical Features


	Lesion-Symptom Mapping using the FMA and Novel Sensor-based Motor Features
	Chapter Introduction
	Chapter Outcomes
	Chapter Structure
	Literature Review
	Lesion Detection and Demarcation
	Brain Templates and Atlases
	Normalisation
	Statistical Evaluation
	Motor-based Lesion Symptom Mapping

	Software
	MRIcron
	SPM12
	NiiStat

	Subject Recruitment and Imaging
	Lesion Identification
	Lesion Demarcation
	Lesion Map Normalisation
	Lesion Map Transformation
	Analysis
	Results
	Discussion
	Statistical Results
	Study Limitations


	Conclusions
	Future Work
	Clinical Implications
	Appendix A: Subject Demographics
	Appendix B: Data Visualisation
	Appendix C: Confusion Matrices from the Wearable Automated System

