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Abstract

The Hartle-Hawking wave function is known to be the Fourier dual of the Chern-Simons or Ko-
dama state reduced to mini-superspace, using an integration contour covering the whole real line. But
since the Chern-Simons state is a solution of the Hamiltonian constraint (with a given ordering), its
Fourier dual should provide a solution (i.e. beyond mini-superspace) of the Wheeler DeWitt equa-
tion representing the Hamiltonian constraint in the metric representation. We write down a formal
expression for such a wave function, to be seen as the generalization beyond mini-superspace of the
Hartle-Hawking wave function. Its explicit evaluation (or simplification) depends only on the sym-
metries of the problem, and we illustrate the procedure with anisotropic Bianchi models and with
the Kantowski-Sachs model. A significant difference of this approach is that we may leave the tor-
sion inside the wave functions when we set up the ansatz for the connection, rather than setting it
to zero before quantization. This allows for quantum fluctuations in the torsion, with far reaching
consequences.

1 Introduction
Quantum gravity has historically displayed a schism between formalisms giving primacy to the metric,
and those that place the connection at the centre. While classically there is little difference between
these contrasting approaches (at least if torsion vanishes), the fact that quantum mechanics probes the
off-shell phase space suggests that inequivalent quantum theories may follow from them. The attitude in
this paper is that this should not impede communication and cross-pollination between the two frame-
works. Specifically, we will show how the Chern-Simons (Kodama) solution [1, 2, 3, 4, 5] in Ashtekar’s
connection-driven formulation may be used to generalize the Hartle-Hawking metric-based wave func-
tion of the Universe [6]. By “generalizing,” we mean going beyond its mini-superspace origins (see [7]):
we will formally obtain counterparts to the Hartle-Hawking state in any non-perturbative situation, in-
cluding anisotropic and inhomogeneous cosmological models, black holes and exact gravitational waves.
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The Ashtekar formalism is a connection based approach to Quantum Gravity where the Einstein-
Cartan spin connection is re-encoded in an SU(2) complex self-dual connection, leading to an elegant
formulation of Einstein gravity [29]. One motivation of the approach is to establish bridges with non-
perturbative quantization methods used in non-Abelian gauge theories (leading to loop quantum gravity).
However, it is also possible to discuss quantization directly in terms of a representation diagonalizing the
connection. It is in this context that the Chern-Simons state appears as a non-perturbative solution to the
theory. Although this state has attracted significant criticism [2, 8, 9, 10] its reassessment in a formalism
that keeps the action and constraints manifestly real can resolve these issues [12, 13].

Curiously, it was only recently noted [7] that when the Chern-Simons state is reduced to mini-
superspace it becomes the Fourier dual of the Hartle-Hawking wave function of the Universe. In-
deed, in [11] the Fourier transform of the mini-superspace Chern-Simons state was carried out explicitly
(with very interesting phenomenological implications), but the result was not recognized as the Hartle-
Hawking state. This result should have been obvious from the outset, however, given that the connection
and the (densitized inverse) metric are complementary quantum variables, and the Chern-Simons state
and the Hartle-Hawking wave function solve the same constraint equation written in terms complemen-
tary variables.

The starting point of this paper is the remark that the Chern-Simons solution is not confined to mini-
superspace. Furthermore, the Fourier transform between dual variables is also completely general. It is
therefore possible to define a metric representation wave function dual to the Chern-Simons state in a
general setting, and view this as the full non-perturbative, non-symmetry-reduced generalization of the
Hartle-Hawking wave function. Such is the purpose of this paper.

Issues will inevitably appear: foremost, the question of which contour to take in the integration. Here
we take the minimalistic view that all variables to emerge from a canonical framework based on a real
action should be real and cover the whole real line. A straightforward application of the Fourier theorem
is then possible. But it is possible that a more detailed analysis permits forays into the complex domain,
or that truncations of the real line for some variables are possible. This is the reason why we will confine
ourselves to the dual of the Hartle-Hawking state and not the Vilenkin wave function [14, 15]. The matter
can already be understood in mini-superspace [7].

Another issue concerns how to deal with torsion. Torsion is zero by construction in the metric ap-
proach, but not in any approach based on the connection. Of course we may set torsion to zero by hand
in the classical Einstein-Cartan theory (in the absence of spinors), and then quantize, but this is not the
only approach. Indeed it may be desirable to leave the second class constraints forcing the torsion to
zero unsolved until a later stage in the quantum analysis. This is the view advocated in [16] and we shall
follow it in this paper. It will also serve as the basis of a future analysis [17] of the flatness, anisotropy
and singularity problems, as we outline in the conclusions to this paper.

2 The basic idea
For the sake of simplicity, our starting point is a formalism where the Chern-Simons state emerges from
a manifestly real action, Hamiltonian, and phase space [13]. This is possible by differentiating between
the Immirzi parameter used in the definition of the connection (which we take to be γ1 = i) and the one
appearing in the pre-factor of the Holst term (which we set to infinity, i.e. no Holst term added). The
Chern-Simons wave function and the commutator between complementary variables (and consequently
the suggested transform between duals) then have the required properties to fall under the remit of the
Fourier theorem.
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More concretely, given that the Einstein-Cartan action can be written as:

SEC = κ

∫
dt dx3

[
2=ȦiaEa

i − (NH +NaHa +NiG
i)
]

(1)

(where κ = 1/(16πG)) we have the Poisson bracket relations:

{=Aia(~x), Eb
j (~y)} =

1

2κ
δbaδ

i
jδ(~x− ~y) (2)

implying upon quantization: [
=Aia(~x), Eb

j (~y)
]

= il2P δ
b
aδ
i
jδ(~x− ~y) (3)

(where lP =
√

8πGh̄ is the reduced Planck length). Hence, in a representation diagonalizing the
connection (and where <Aia is seen as a parameter), we have ψA(Aia(~x)) = 〈Aia(~x)|ψ〉 as well as
ÂψA(A) = AψA(A) and

Êa
i (~x) = −il2P

δ

δ=Aia(~x)
. (4)

In the complementary representation we have instead ψE(Ea
i (~x)) = 〈Ea

i (~x)|ψ〉, ÊψE(E) = EψE(E),
and:

=̂Âia(~x) = il2P
δ

δEa
i (~x)

. (5)

For any delta-normalizable wave function, it follows that:

ψE =
∏
~x,a,i

∫
d[=(Aia(~x))]√

2πl2P
e
− i

l2
P

Ea
i (~x)=Ai

a(~x)
ψA, (6)

where we assume the integrals are over the real line. It is the last assumption (on the range of integration)
that will pick out the Hartle-Hawking boundary conditions in mini-superspace, rather than Vilenkin’s [7],
as we already alluded. We make that assumption to avoid issues over the reality conditions (we are
working with a theory which is manifestly real from the outset), but also to make sure the Fourier theorem
applies outright.

But we know the general solution to the constraints contained in (1) in the A representation for this
explicitly real theory. It is the modification of the Chern-Simons state described in [13]. The Hamiltonian
constraint equation (i.e. the Wheeler-DeWitt equation) in the connection representation for an explicitly
real theory (with a standard ordering) reads:(

<Bkc − il2PΛ

3

δ

δ=Akc (~x)

)
ψ = 0 (7)

where Bkc = 1
2
εabcF k

ab, and F k
ab is the field strength tensor

F i
ab = ∂aA

i
b − ∂bAia + εijkAjaA

k
b . (8)

A solution of (7) is given by

ψCS(A) = N exp

(
3i

l2PΛ
=YCS

)
, (9)
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with

YCS =

∫
Tr

(
AdA+

2

3
AAA

)
= −1

2

∫
AidAi +

1

3
εijkA

iAjAk. (10)

To see that (9) solves (7), it is convenient to decompose Ai = αi + iβi, with αi and βi real. It is then
straightforward to compute

=YCS = −
∫
dαiβi +

1

2
εijk

(
βiαjαk − 1

3
βiβjβk

)
(11)

where we have integrated by parts and discarded a boundary term to obtain the last expression, whence

δ(=YCS)

δβkc
= −1

2
εabc

[
∂aα

k
b − ∂bαka + εijk(αiaα

j
b − β

i
aβ

j
b )
]

= −<Bkc, (12)

from which it can be easily established that (9) solves (7).
By inserting (9) into (6), we obtain the generalization for metrics with any symmetry (or indeed

without any symmetry at all) of the Hartle-Hawking wave function.

3 Reduction to mini-superspace and the role of quantum torsion
It is straightforward to see that when our proposal is applied to mini-superspace it reduces to [7], where
it is shown that the Chern-Simons state is the Fourier dual of the Hartle-Hawking wave function (with
real domains). However, even at the level of mini-superspace we notice an important difference. If we
impose that the torsion is strictly zero (i.e. even off-shell and quantum mechanically), then we recover
the Hartle-Hawking wave function. Allowing for off-shell torsion, however, changes the situation, a
matter studied in detail in [16].

For simplicity let us set the spatial curvature to zero, k = 0 (although it is not too hard to investigate
the other cases). Then, the general ansatz for the connection consistent with homogeneity and isotropy
is:

Aia = δia(ib+ c) (13)
Ea
i = δai a

2, (14)

where b and c are functions of time. If the torsion is zero, then b ≈ ȧ and c ≈ 0. Otherwise b contains
a parity-even component of the torsion, and c a parity-odd component. The latter, the real part of Ai in
mini-superspace, is Cartan’s spiral staircase [18, 21]. It must be zero as an equation of motion in Einstein-
Cartan theory, but it may be switched on (classically) in quasi-topological theories of gravity [19, 20, 21].

With symmetry reduction (13) and (14) the Chern-Simons state (9) reduces to:

ψCS = N exp

(
i
3Vc
Λl2P

(
b3 − 3bc2)

))
. (15)

Reducing (1) to mini-superspace and inspecting the first (Legendre transform) term, leads to

[ b̂ , â2] = i
l2P
3Vc

(16)

4



where the extra factors of 3Vc result from a trivial integration over space and sum over indices a and i.
Hence (6) reduces to:

ψa2(a
2) =

√
3Vc
lP

∫
db√
2π
e
−i 3Vc

l2
P

a2b
ψb(b). (17)

It is then a simple matter to show that [7]:

ψa2 = N ′Ai(−z), (18)

with:

− z =

(
9Vc
Λl2P

)2/3(
−c2 − Λa2

3

)
. (19)

Had we performed the calculation in a k 6= 0 model, the result would be the same but with:

− z =

(
9Vc
Λl2P

)2/3(
k − c2 − Λa2

3

)
. (20)

As announced, if we force c = 0, we recover the Hartle-Hawking wave function. However, if we do not
force this off-shell, a different picture emerges. The wave function seems to see an effective potential of
the form:

U(a) = 4

(
3Vc
l2P

)2

a2

(
k − c2 − Λ

3
a2

)
, (21)

that is, the usual one in the Wheeler-DeWitt equation, but with

k → k − c2. (22)

This is the crucial property that will allow us elsewhere to formulate a quantum version of the flatness
problem and its possible solution [17].

4 Extension to anisotropic models
We can now reduce the Chern-Simons state under whatever symmetry the problem has, and find the dual
metric representation wave function. We start by illustrating this procedure with anisotropic models.

4.1 Bianchi I
The procedure can be simply illustrated with the Bianchi I model for which the metric is:

ds2 = −dt2 + a2
i (t)dx

2
i . (23)

With standard formulae in the Ashtekar formalism [23] this leads to:

Ea
i =

1

2
δai εijksgn(ai)ajak (24)

Aai = iδai bi (25)
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where on-shell (applying the torsion free condition) bi = ȧi. The expansion rate in one direction is
therefore conjugate to the geometrical average of the expansion rates in the orthogonal plane! We have:

{b1, sgn(a1)a2a3} =
1

2κVc
(26)

and cyclic perms, so that the corresponding quantum operators satisfy:

[bi, pj] = iδij
l2P
Vc
, (27)

with

p1 = sign(a1)a2a3

p2 = sign(a2)a1a3

p3 = sign(a3)a1a2. (28)

This is consistent with mini-superspace results, with a few interesting, but trivial points of note. First,
note that one drops a degeneracy factor (here the 3 equivalent directions in mini-superspace); this must
happen every time one breaks a symmetry. Second, the fact that the conjugate to the Hubble rate is a2

and not a (with well-known implications for the presence of a Euclidean branch) appears to be an artefact
of mini-superspace, since a2 is replaced here by a product of expansion factors.

The modified Chern-Simons state for this solution is:

ψCS = N exp

(
i
3Vc
Λl2P

b1b2b3

)
(29)

(where we will leave the “normalization” constant undefined for the time being) and the Fourier trans-
form implied by (6) is:

ψ(a1, a2, a3) =

(
Vc
l2P

)3/2 ∫
db1db2db3

(2π)3/2
×

×e
−i Vc

l2
P

(b1p1+b2p2+b3p3)
ψCS. (30)

Let us take the integrals over the whole real line, emulating the prescription for Hartle-Hawking.
The integral can be solved as follows: one integral gives a delta function, the second integration is

then trivial, so that one is left with:

ψ = N Λ

3lP

√
Vc
2π

∫ ∞
−∞

dx

|x|
e−i(x+C/x) (31)

with

C =
ΛV 2

c

3l4P
a2

1a
2
2a

2
3sgn(a1a2a3) (32)

(we will assume Λ > 0 throughout). This finally gives:

ψ = −N Λ

3l2P

√
2πVcY0

(
2Vc
l2P

√
Λ

3
a1a2a3

)
(33)
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Figure 1: The “Hartle-Hawking” wave function for the Bianchi I model, ψ(C), for C ∈ [−10, 1000].

Figure 2: The “Hartle-Hawking” wave function, ψ(C) for C ∈ [−10, 10].

if a1a2a3 > 0. If a1a2a3 < 0 the correct solution is:

ψ = N 4Λ

3l2P

√
Vc
2π
K0

(
2Vc
l2P

√
Λ

3
|a1a2a3|

)
(34)

where Yn(z) are the Bessel functions of the second kind and Kn(z) are the modified Bessel functions of
the second kind.

Note that the wave function is real, i.e. it is a stationary wave, just like the Hartle-Hawking. However,
it has a log divergence at the origin. It is also a function of the factor that controls the volume (or in fact
the volume squared).

4.2 Bianchi I with quantum torsion
In the previous examples, we have obtained a quantum state in the metric variables by imposing a torsion-
free condition on the Ashtekar connection from the outset. However, it is worth emphasizing that in
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Ashtekar’s formulation of general relativity, as in Cartan’s formulation, the torsion-free condition on the
connection is imposed as a second-class constraint, rather than as a kinematic restriction on the field
space. While it was useful to impose the torsion-free condition in order to make contact with the Hartle-
Hawking state (as well as the Vilenkin state), it may be propitious in other circumstances (e.g., within the
Gupta-Bleuler formalism) to leave this constraint unsolved and allow for quantum torsion. Therefore,
in this and the following sections, we consider a generalized version of the proposed “Hartle-Hawking”
state where we allow for a possibly non-vanishing quantum torsion. For Bianchi I, this amounts to
including both real and imaginary parts for each of the connection components. While the imaginary
parts are conjugate to the densitized triads, the real parts are simply parameters on which the Hartle-
Hawking state will depend.

We make the following ansatz for the connection:

A1 = (ib1 + c1)dx

A2 = (ib2 + c2)dy

A3 = (ib3 + c3)dz, (35)

where bi and ci depend only on time. Evaluating YCS on a hypersurface of constant time then gives

YCS = −
∫
A1A2A3

I(YCS) = −Vc(−b1b2b3 + b1c2c3 + b2c1c3 + b3c1c2)

(36)

from which we get the modified Chern-Simons state

ψCS = N exp

{
−i 3Vc

Λl2P
(−b1b2b3 + b1c2c3 + b2c1c3 + b3c1c2)

}
. (37)

Taking the Fourier Transform gives the “Hartle-Hawking” state

ψ(a1, a2, a3) =

(
Vc
l2P

)3/2 ∫
db1db2db3

(2π)3/2
×

×e
−i Vc

l2
P

(b1p1+b2p2+b3p3)
ψCS.

= Ñ
∫ ∞
−∞

dx

|x|
e−i(x+C/x)

=

{
−4ÑK0(2

√
|C|), C < 0

2πÑY0(2
√
C), C > 0

(38)

where

Ñ = N Λ

3lP

√
Vc
2π
, (39)

C =
Λ

3

(
Vc
l2P

)2

(p1 +
3

Λ
c2c3)(p2 +

3

Λ
c1c3)(p3 +

3

Λ
c1c2). (40)

It is then clear that the net result of including quantum torsion is to shift the dependence of the wave

function by pi → pi +
3

Λ
cjck, after which it is no longer a function of the spatial volume alone, but
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will also depend on the shape of space. In the context of homogenous, anisotropic models, it is often
convenient to work with the so-called Misner variables (α, β+, β−):

a1 = eα+β++
√

3β− , a2 = eα+β+−
√

3β− , a3 = eα−2β+ (41)

so that e3α = a1a2a3 characterizes the spatial volume density, and the anisotropy parameters β± describe
the shape of space. In terms of the Misner variables, we can express the argument of the wave function
as

C =
Λ

3

(
Vc
l2P

)2 [
e6α +

3

Λ
c1c2c3e

4α

(
1

c1

eβ++
√

3β− +
1

c2

eβ+−
√

3β− +
1

c3

e−2β+

)
+

(
3

Λ

)2

c1c2c3e
2α
(
c1e
−β+−

√
3β− + c2e

−β++
√

3β− + c3e
2β+
)

+

(
3

Λ

)3

c2
1c

2
2c

2
3

]
. (42)

Note that for real values of the Misner variables we must assume ai ≥ 0 so we have dropped the factors
of sign(ai) in the calculation above.

4.3 Bianchi IX with quantum torsion
Let us briefly review the basic features of the Bianchi IX model, focusing on the aspects that are most
relevant to loop quantum cosmology (see, e.g. [24] and [25]). The Bianchi IX model is a homogeneous
but anisotropic generalization of closed FRW cosmology. Each constant time hypersurface Σ is assumed
to have the topology of S3. The metric on Σ is given by dΣ2 =

∑
i

ai(t)
2(ωi)2, where

ω1 = cosψdθ + sinψ sin θdφ

ω2 = sinψdθ − cosψ sin θdφ

ω3 = dψ + cos θdφ (43)

and where ψ ∈ (0, 4π), φ ∈ (0, 2π), and θ ∈ (0, π) are coordinates on S3. It is convenient to note that ωi

are Maurer-Cartan forms satisfying the relations dωI =
1

2
εIJKω

JωK .
The Ashtekar connection is given by

A1 = (ib1 + r1)ω1

A2 = (ib2 + r2)ω2

A3 = (ib3 + r3)ω3 (44)

where ri = −Γi + ci are the real parts of the connection, including both the torsion-free component Γi
and the torsion ci. We can make a convenient choice of physical frame

e1 = a1ω
1, e2 = a2ω

2, e3 = a3ω
3 (45)

from which we can infer the torsion-free part of the spatial connection

Γ1 =
1

2

(
a2

a3

+
a3

a2

− a2
1

a2a3

)
Γ2 =

1

2

(
a1

a3

+
a3

a1

− a2
2

a1a3

)
Γ3 =

1

2

(
a1

a2

+
a2

a1

− a2
3

a1a2

)
(46)
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and the densitized triad

E1 =
p1

16π2
(− sinψ cos θ∂ψ + cosψ sin θ∂θ + sinψ∂φ)

E2 =
p2

16π2
(cosψ cos θ∂ψ + sinψ sin θ∂θ − cosψ∂φ)

E3 =
p3

16π2
∂ψ, (47)

with pi defined as in Bianchi I. Now, the Poisson bracket relations become

{bi, pj} =
1

2κ
δij, (48)

which, upon quantization, lead to the commutations relations

[b̂i, p̂j] = il2P δ
i
j. (49)

We can also express the torsion-free part of the connection in terms of the momenta pi via

Γ1 =
1

2

(
p2

p3

+
p3

p2

− p2p3

p2
1

)
Γ2 =

1

2

(
p1

p3

+
p3

p1

− p1p3

p2
2

)
Γ3 =

1

2

(
p1

p2

+
p2

p1

− p1p2

p2
3

)
. (50)

Computing the Chern-Simons functional now proceeds along the same lines as in Bianchi I, except that
now the term proportional to AIdAI no longer vanishes.

YCS = −
∫

1

2
AIdAI + A1A2A3 (51)

I(YCS) = −16π2[(b1r1 + b2r2 + b3r3) + (52)
+(−b1b2b3 + b1r2r3 + b2r1r3 + b3r1r2)].

We can again form the modified Chern-Simons state

ψCS = N exp

{
−i48π2

Λl2P
[(b1r1 + b2r2 + b3r3) + (−b1b2b3 + b1r2r3 + b2r1r3 + b3r1r2)]

}
. (53)

Taking the Fourier transform gives the “Hartle-Hawking” state, which leads once again to the same
integral

ψ(a1, a2, a3) =
N
l3P

∫
db1db2db3

(2π)3/2
×

×e
− i

l2
P

(b1p1+b2p2+b3p3)
ψCS

= Ñ
∫ ∞
−∞

dx

|x|
e−i(x+C/x)

=

{
−4ÑK0(2

√
|C|), C < 0

2πÑY0(2
√
C), C > 0

(54)
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where we now have:

Ñ =
NΛ

48π2
√

2πlP
, (55)

C =
Λl2P
48π2

[
p1

l2P
+

48π2

Λl2P
(r1 + r2r3)

] [
p2

l2P
+

48π2

Λl2P
(r2 + r1r3)

] [
p3

l2P
+

48π2

Λl2P
(r3 + r1r2)

]
. (56)

We can define Misner variables for Bianchi IX analogous to those used in Bianchi I accounting for the
fact that the scale factors, which were dimensionless in Bianchi I, now have units of length:

a1

lP
= eα+β++

√
3β− ,

a2

lP
= eα+β+−

√
3β− ,

a3

lP
= eα−2β+ . (57)

In terms of these Misner variables, the argument of the Hartle-Hawking wave function becomes

C =
Λl2P
48π2

[
e2α−β+−

√
3β−

8π
+

48π2

Λl2P
(r1 + r2r3)

][
e2α−β++

√
3β−

8π
+

48π2

Λl2P
(r2 + r1r3)

][
e2α+2β+

8π
+

48π2

Λl2P
(r3 + r1r2)

]
.

(58)

5 The Kantowski-Sachs model
Finally, we consider the generalized Hartle-Hawking state for the Kantowski-Sachs model [30], which
may be viewed as a homogeneous, anisotropic cosmological model, or as a reduced phase space for
the interior of a spherically symmetric black hole. Indeed, the Kantowski Sachs model generalizes the
interior of a Schwarzschild black hole, which can be seen by inspecting the line element

ds2 = −dt2 + a1(t)2dx2 + a2(t)2(dθ2 + sin2 θdφ2). (59)

In order to make the connection with Schwarzschild manifest, one can use the function r = a2(t) as a
“radial” coordinate, in which case the line element becomes

ds2 = −A(r)2dr2 +B(r)2dx2 + r2(dθ2 + sin2 θdφ2), (60)

for some functions A(r) and B(r). If one chooses A(r)−2 = B(r)2 =
2m

r
− 1, this becomes the interior

of the Schwarzshild spacetime, where the coordinate x is identified as the time coordinate in the exterior
portion of the spacetime. Now let us return to the line element (59) in the original coordinate system.
The hypersurfaces of constant t have topology S2×R, with (θ, φ) being standard coordinates on S2, and
x a coordinate on R. Since the spatial sections are non-compact, we introduce the fiducial length scale
l0 and restrict x ∈ (0, l0). Following [26] we make a convenient choice of physical frame

e1 = −a2 sin θdφ, e2 = a2dθ, e3 = a1dx, (61)

from which we can find the torsion-free connection

ω1
2 = − cos θdφ, ω1

3 = ω2
3 = 0 (62)

and the densitized triad

E1 = −p1∂φ

E2 = p1 sin θ∂θ

E3 = p2 sin θ∂x, (63)
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where p1 = a1a2 and p2 = a2
2. For the Ashtekar connection, we make the corresponding ansatz

A1 = −(ib1 + c1) sin θdφ

A2 = (ib1 + c1)dθ

A3 = (ib2 + c2)dx+ cos θdφ. (64)

where the cos θdφ term in A3 is the only torsion-free part of the connection and c1, c2 are torsion com-
ponents. From the triad and connection, we deduce the Poisson bracket relations

{b1, p1} =
1

16πκl0
, {b2, p2} =

1

8πκl0
, (65)

where once again, c1, c2 Poisson-commute with all phase space variables. Quantization yields the fol-
lowing commutation relations:

[b̂1, p̂1] = i
l2P

8πl0
, [b̂2, p̂2] = i

l2P
4πl0

. (66)

The Chern-Simons functional for the connection (64) becomes

YCS = −
∫

1

2
A3dA3 + A1A2A3

= 4πl0

(
i

2
b2 + ib2b

2
1 + 2b1b2c1 − ib2b

2
1 +

1

2
c2 + c2b

2
1 − 2ib1c1c2 − c2

1c2

)
, (67)

and taking the imaginary part, we have

I(YCS) = 4πl0

(
1

2
b2 + b2b

2
1 − b2c

2
1 − 2b2c1c2

)
. (68)

We can now form the modified Chern-Simons state for the Kantowski-Sachs model:

ψCS = N exp

(
3i

l2PΛ
I(YCS)

)
= N exp

{
3i

l2PΛ
4πl0

(
1

2
b2 + b2b

2
1 − b2c

2
1 − 2b2c1c2

)}
. (69)

Taking the Fourier transform leads to the Hartle-Hawking state

ψ(a1, a2) =
√

2N 4πl0
l2P

∫
db1db2

2π
exp

{
−i4πl0

l2P
(2b1p1 + b2p2) +

3i

l2PΛ
4πl0

(
1

2
b2 + b2b

2
1 − b2c

2
1 − 2b1c1c2

)}
=

Ñ√
c2

1 − 1
2

+ Λ
3
p2

exp

{
−i8πl0

l2P

(
p1 +

3

Λ
c1c2

)√
c2

1 −
1

2
+

Λ

3
p2

}
, Ñ =

NΛ

3
√

2
. (70)

6 Outlook
The importance of the tool presented in this paper is twofold. Firstly, it allows us to generate solutions
to the Wheeler-DeWitt equation in the metric representation not by solving a differential equation, but
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by computing a Fourier transform. By realizing that the Chern-Simons state is the solution in the con-
nection representation for spaces of any symmetry, and that the metric representation is just the Fourier
transform of the connection representation, we find a shortcut for generating solutions that generalize the
Hartle-Hawking state for any situation. We presented examples related to Bianchi and Kantowski-Sachs
models, but the applications are endless. Inhomogeneous cosmological models, black holes, and exact
gravitational waves spring to mind. In all cases, we have already provided a formal solution: and that is
(6) with (9). All that remains to be done is to simplify and interpret this solution on a case by case basis.
In principle, the methods illustrated in this article should be applicable to more realistic settings for the
early universe wavefunction, including, for example, the case of a gauge field supported wavefunction
for a radiation dominated universe, as studied in [28].

Secondly, by starting from the connection representation, we open up the doors to torsion. Even
if this is eventually found to be zero classically (or “on-shell”), the quantum theory should be able
to probe torsion off-shell. However, torsion degrees of freedom are frozen by construction in the metric
formulation. The fact that we can insert torsion degrees of freedom into ansatze of any symmetry allowed
us to find wave functions in the metric representation which take torsion into account. It is intriguing
that the torsion correction to the wave function modifies the effective potential to correct the curvature,
opening a window for addressing the curvature problem at the quantum level. We leave this prospect
for future investigation [17]. Another avenue concerns singularity avoidance. A close inspection of the
commutation relations for the Bianchi I model, eq (27), reveals that the expansion rate in one principal
direction is conjugate to the geometrical average of the expansion rates in the orthogonal plane. In other
words, in a manner reminiscent of any simple quantum mechanical system, e.g. the harmonic oscillator,
where the quantum mechanical uncertainty in position cannot approach zero unless the uncertainty in
the momentum diverges, the uncertainty of the scale factor will evade going to zero unless the curvature
diverges. It may be that the canonical commutation relations between the scale factors and the connection
variables are precisely what is needed to ensure singularity avoidance at the big bang. In fact, singularity
avoidance in the context of the Bianchi I model has already been studied in [27], but the relationship
between the modified CS state and the generalized Hartle-Hawking state we have explored here may
provide some additional insights in this direction. We leave a more detailed analysis of singularity
avoidance for future work.

Finally, the Chern-Simons state may also represent the Vilenkin wave function, depending on the
choice of contour, should we allow excursions into the complex domain for variables usually taken to
be real [7]. The fact that boundary conditions in one representation translate into contours in the other
is reminiscent of the discussions leading to the Feynman propagator. It would be very interesting to
investigate this matter further, but note that issues of convergence of the Fourier integral necessarily
come into play, making this enterprise non-trivial.

Acknowledgements
We would like to thank Lee Smolin for discussions, and Steve Carlip for helpful feedback. This work
was supported by the STFC Consolidated Grant ST/L00044X/1 (JM).

References
[1] R. Jackiw. Topological investigations of quantized gauge theories. Conf. Proc. C, 8306271:221–

331, 1983.

13



[2] E. Witten. A Note on the Chern-Simons and Kodama wave functions. gr-qc/0306083, 2003.

[3] H. Kodama. Holomorphic Wave Function of the Universe. Phys. Rev. D, 42:2548–2565, 1990.
DOI: 10.1103/PhysRevD.42.2548.

[4] L. Smolin. Quantum gravity with a positive cosmological constant. hep-th/0209079, 2002.

[5] L. Freidel and L. Smolin. The Linearization of the Kodama state. Class. Quant. Grav., 21:3831–
3844, 2004. DOI: 10.1088/0264-9381/21/16/001.

[6] J. B. Hartle and S. W. Hawking. Wave Function of the Universe. Phys. Rev., D28:2960–2975, 1983.
DOI: 10.1103/PhysRevD.28.2960. [Adv. Ser. Astrophys. Cosmol.3,174(1987)].

[7] J. Magueijo. Phys. Rev. D 102, 044034, 2020; arXiv:2005.03381 .

[8] A. Randono, [arXiv:gr-qc/0504010 [gr-qc]].

[9] A. Randono, [arXiv:gr-qc/0611073 [gr-qc]].

[10] A. Randono, [arXiv:gr-qc/0611074 [gr-qc]].

[11] A. Randono, Gen.Rel.Grav.42:1909-1917,2010 DOI: 10.1007/s10714-010-0982-8
[arXiv:0805.2955 [gr-qc]]

[12] J. Magueijo, T. Zlosnik and S. Speziale, Phys. Rev. D 102, 064006 (2020)
doi:10.1103/PhysRevD.102.064006 [arXiv:2006.05766 [gr-qc]].

[13] J. Magueijo, “The real Chern-Simons state”, [arXiv:gr-qc/2012.05847 [gr-qc]].

[14] A. Vilenkin. Quantum cosmology and the initial state of the universe. Phys. Rev. D, 37:888–897,
Feb 1988. DOI: 10.1103/PhysRevD.37.888.

[15] A. Vilenkin. Approaches to quantum cosmology. Phys. Rev., D50:2581–2594, 1994. DOI:
10.1103/PhysRevD.50.2581.

[16] J. Magueijo and T. Zlosnik, “Quantum torsion and a Hartle-Hawking beam” [arXiv:2012.07358
[gr-qc]]

[17] S. Alexander, G. Herczeg and J. Magueijo, “The quantum flatness and anisotropy problems”, in
preparation.

[18] M. Lazar and F. W. Hehl. Cartan’s spiral staircase in physics and, in particular, in the gauge theory
of dislocations. Found. Phys., 40:1298–1325, 2010. DOI: 10.1007/s10701-010-9440-4.

[19] S. Alexander, M. Cortes, A. R. Liddle, J. Magueijo, R. Sims, and L. Smolin. Phys. Rev. D, 100(8):
083506, 2019 DOI: 10.1103/PhysRevD.100.083506.

[20] S. Alexander, M. Cortes, A. R. Liddle, J. Magueijo, R. Sims, and L. Smolin. Phys. Rev. D, 100(8):
083507, 2019 DOI: 10.1103/PhysRevD.100.083507.

[21] J. Magueijo and T. Zlosnik. Phys. Rev., D100(8):084036, 2019. DOI: 10.1103/Phys-
RevD.100.084036.

14

http://arxiv.org/abs/gr-qc/0306083
http://arxiv.org/abs/hep-th/0209079
http://arxiv.org/abs/2005.03381
http://arxiv.org/abs/gr-qc/0504010
http://arxiv.org/abs/gr-qc/0611073
http://arxiv.org/abs/gr-qc/0611074
http://arxiv.org/abs/0805.2955
http://arxiv.org/abs/2006.05766
http://arxiv.org/abs/2012.07358


[22] E. Witten, AMS/IP Stud. Adv. Math. 50, 347-446 (2011) [arXiv:1001.2933 [hep-th]].

[23] T. Thiemann, CUP, Cambridge, doi:10.1017/CBO9780511755682

[24] A. Corichi and E. Montoya, Class. Quant. Grav. 34 (2017) no.5, 054001 DOI: 10.1088/1361-
6382/aa54c5 [arXiv:1502.02342 [gr-qc]].

[25] M.V. Battisti, A. Marciano and C. Rovelli Phys.Rev.D81:064019,2010 DOI: 10.1103/Phys-
RevD.81.064019 [arXiv:0911.2653 [gr-qc]]

[26] A. Joe and P. Singh Class. Quant. Grav. 32 (2015) 015009 DOI: 10.1088/0264-9381/32/1/015009
[arXiv:1407.2428 [gr-qc]]

[27] C. Kiefer, N. Kwidzinski, D. Piontek Eur. Phys. J. C (2019) 79:686 DOI: 10.1140/epjc/s10052-
019-7193-6 [arXiv:1903.04391 [gr-qc]]

[28] O. Bertolami and J.M. Mourao Class. Quant. Grav. 8 (1991) DOI: 10.1088/0264-9381/8/7/005

[29] A. Ashtekar Phys. Rev. Lett., vol. 57 (1986), issue 18 DOI: 10.1103/PhysRevLett.57.2244

[30] R. Kantowski and R.K. Sachs J. Math. Phys. volume 7 (1966), page 443 DOI: 10.1063/1.1704952

15

http://arxiv.org/abs/1001.2933
http://arxiv.org/abs/1502.02342
http://arxiv.org/abs/0911.2653
http://arxiv.org/abs/1407.2428
http://arxiv.org/abs/1903.04391

	1 Introduction
	2 The basic idea
	3 Reduction to mini-superspace and the role of quantum torsion
	4 Extension to anisotropic models
	4.1 Bianchi I
	4.2 Bianchi I with quantum torsion
	4.3 Bianchi IX with quantum torsion

	5 The Kantowski-Sachs model
	6 Outlook

