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Abstract

The Hartle-Hawking wave function is known to be the Fourier dual of the Chern-Simons or Ko-
dama state reduced to mini-superspace, using an integration contour covering the whole real line. But
since the Chern-Simons state is a solution of the Hamiltonian constraint (with a given ordering), its
Fourier dual should provide a solution (i.e. beyond mini-superspace) of the Wheeler DeWitt equa-
tion representing the Hamiltonian constraint in the metric representation. We write down a formal
expression for such a wave function, to be seen as the generalization beyond mini-superspace of the
Hartle-Hawking wave function. Its explicit evaluation (or simplification) depends only on the sym-
metries of the problem, and we illustrate the procedure with anisotropic Bianchi models and with
the Kantowski-Sachs model. A significant difference of this approach is that we may leave the tor-
sion inside the wave functions when we set up the ansatz for the connection, rather than setting it
to zero before quantization. This allows for quantum fluctuations in the torsion, with far reaching
consequences.

1 Introduction

Quantum gravity has historically displayed a schism between formalisms giving primacy to the metric,
and those that place the connection at the centre. While classically there is little difference between
these contrasting approaches (at least if torsion vanishes), the fact that quantum mechanics probes the
off-shell phase space suggests that inequivalent quantum theories may follow from them. The attitude in
this paper is that this should not impede communication and cross-pollination between the two frame-
works. Specifically, we will show how the Chern-Simons (Kodama) solution [1} 2 3,4, 5] in Ashtekar’s
connection-driven formulation may be used to generalize the Hartle-Hawking metric-based wave func-
tion of the Universe [0]. By “generalizing,” we mean going beyond its mini-superspace origins (see [/]]):
we will formally obtain counterparts to the Hartle-Hawking state in any non-perturbative situation, in-
cluding anisotropic and inhomogeneous cosmological models, black holes and exact gravitational waves.



The Ashtekar formalism is a connection based approach to Quantum Gravity where the Einstein-
Cartan spin connection is re-encoded in an SU(2) complex self-dual connection, leading to an elegant
formulation of Einstein gravity [29]. One motivation of the approach is to establish bridges with non-
perturbative quantization methods used in non-Abelian gauge theories (leading to loop quantum gravity).
However, it is also possible to discuss quantization directly in terms of a representation diagonalizing the
connection. It is in this context that the Chern-Simons state appears as a non-perturbative solution to the
theory. Although this state has attracted significant criticism (2, 18, 9} [10] its reassessment in a formalism
that keeps the action and constraints manifestly real can resolve these issues [12, [13]].

Curiously, it was only recently noted [7] that when the Chern-Simons state is reduced to mini-
superspace it becomes the Fourier dual of the Hartle-Hawking wave function of the Universe. In-
deed, in [11]] the Fourier transform of the mini-superspace Chern-Simons state was carried out explicitly
(with very interesting phenomenological implications), but the result was not recognized as the Hartle-
Hawking state. This result should have been obvious from the outset, however, given that the connection
and the (densitized inverse) metric are complementary quantum variables, and the Chern-Simons state
and the Hartle-Hawking wave function solve the same constraint equation written in terms complemen-
tary variables.

The starting point of this paper is the remark that the Chern-Simons solution is not confined to mini-
superspace. Furthermore, the Fourier transform between dual variables is also completely general. It is
therefore possible to define a metric representation wave function dual to the Chern-Simons state in a
general setting, and view this as the full non-perturbative, non-symmetry-reduced generalization of the
Hartle-Hawking wave function. Such is the purpose of this paper.

Issues will inevitably appear: foremost, the question of which contour to take in the integration. Here
we take the minimalistic view that all variables to emerge from a canonical framework based on a real
action should be real and cover the whole real line. A straightforward application of the Fourier theorem
is then possible. But it is possible that a more detailed analysis permits forays into the complex domain,
or that truncations of the real line for some variables are possible. This is the reason why we will confine
ourselves to the dual of the Hartle-Hawking state and not the Vilenkin wave function [14,15]. The matter
can already be understood in mini-superspace [//]].

Another issue concerns how to deal with torsion. Torsion is zero by construction in the metric ap-
proach, but not in any approach based on the connection. Of course we may set torsion to zero by hand
in the classical Einstein-Cartan theory (in the absence of spinors), and then quantize, but this is not the
only approach. Indeed it may be desirable to leave the second class constraints forcing the torsion to
zero unsolved until a later stage in the quantum analysis. This is the view advocated in [16] and we shall
follow it in this paper. It will also serve as the basis of a future analysis [17] of the flatness, anisotropy
and singularity problems, as we outline in the conclusions to this paper.

2 The basic idea

For the sake of simplicity, our starting point is a formalism where the Chern-Simons state emerges from
a manifestly real action, Hamiltonian, and phase space [[13]. This is possible by differentiating between
the Immirzi parameter used in the definition of the connection (which we take to be v; = 7) and the one
appearing in the pre-factor of the Holst term (which we set to infinity, i.e. no Holst term added). The
Chern-Simons wave function and the commutator between complementary variables (and consequently
the suggested transform between duals) then have the required properties to fall under the remit of the
Fourier theorem.



More concretely, given that the Einstein-Cartan action can be written as:
Spe = / dt dz® [QQAgEf — (NH + N“H, + NZ-GZ‘)] 1)
(where k = 1/(16mG)) we have the Poisson bracket relations:
(SAL@), B} = 500187~ ) @

implying upon quantization:

[SAL@), B3] = 02567 — ) G

(where [p = /8mGHh is the reduced Planck length). Hence, in a representation diagonalizing the
connection (and where RA’ is seen as a parameter), we have 4 (A’ (Z)) = (AL(Z)|Y) as well as

Atpa(A) = A(A) and
4)

In the complementary representation we have instead V5 (E*(Z)) = (E*(Z) V), Eyp(E) = Eyp(E),
and:

o 5
SAL(T) = il% 5B %)
For any delta-normalizable wave function, it follows that:
— 5 B ()34, (7)
- P ) (6)
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where we assume the integrals are over the real line. It is the last assumption (on the range of integration)
that will pick out the Hartle-Hawking boundary conditions in mini-superspace, rather than Vilenkin’s [7]],
as we already alluded. We make that assumption to avoid issues over the reality conditions (we are
working with a theory which is manifestly real from the outset), but also to make sure the Fourier theorem
applies outright.

But we know the general solution to the constraints contained in (I]) in the A representation for this
explicitly real theory. It is the modification of the Chern-Simons state described in [[13]]. The Hamiltonian
constraint equation (i.e. the Wheeler-DeWitt equation) in the connection representation for an explicitly
real theory (with a standard ordering) reads:

e BN 6 B
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where B¥ = le®*F% and F% is the field strength tensor

Fiy = 0,AL — 0 Al + 9% AT AF. ®)

A solution of (7)) is given by

@Z)CS(A) == Nexp( 3 \SYCS) (9)

ZA



with
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= —%/AidAi‘f‘%EijkAiAjAk‘ (10)

To see that (9) solves (7), it is convenient to decompose A" = o + 43", with o and /3 real. It is then
straightforward to compute

SYes = —/dalﬂi + %Eijk (5i04j04k — %5iﬁj5k) (11)

where we have integrated by parts and discarded a boundary term to obtain the last expression, whence

5(SY, | I
0(8¥cs) (WCS) = 5™ [oual — Dhal + M ajaf — L)

— _RB* (12)

from which it can be easily established that (9)) solves (7).
By inserting (9) into (6)), we obtain the generalization for metrics with any symmetry (or indeed
without any symmetry at all) of the Hartle-Hawking wave function.

3 Reduction to mini-superspace and the role of quantum torsion

It is straightforward to see that when our proposal is applied to mini-superspace it reduces to [/], where
it is shown that the Chern-Simons state is the Fourier dual of the Hartle-Hawking wave function (with
real domains). However, even at the level of mini-superspace we notice an important difference. If we
impose that the torsion is strictly zero (i.e. even off-shell and quantum mechanically), then we recover
the Hartle-Hawking wave function. Allowing for off-shell torsion, however, changes the situation, a
matter studied in detail in [[16]].

For simplicity let us set the spatial curvature to zero, £ = 0 (although it is not too hard to investigate
the other cases). Then, the general ansatz for the connection consistent with homogeneity and isotropy
is:

Al = §i(ib+c) (13)
EY = 6%, (14)

where b and c are functions of time. If the torsion is zero, then b =~ a and ¢ ~ 0. Otherwise b contains

a parity-even component of the torsion, and c a parity-odd component. The latter, the real part of A in

mini-superspace, is Cartan’s spiral staircase [[18,21]. It must be zero as an equation of motion in Einstein-

Cartan theory, but it may be switched on (classically) in quasi-topological theories of gravity [19} 20, 21].
With symmetry reduction (13)) and (14)) the Chern-Simons state (9) reduces to:

3Ve
Yos = Nexp | i— (b — 3bc%)) ). (15)
Reducing () to mini-superspace and inspecting the first (Legendre transform) term, leads to
[b,a%] =i U (16)
Y - 3‘/'6



where the extra factors of 3V, result from a trivial integration over space and sum over indices a and 7.
Hence (6)) reduces to:

v 3V, db %%a%

2(a?) = e b). 17
It is then a simple matter to show that [7]]:
ez = N'Ai(—2), (18)

with:

9V, \ , Ad?
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Had we performed the calculation in a & # 0 model, the result would be the same but with:

9V, \ */* ,  Ad?

As announced, if we force ¢ = 0, we recover the Hartle-Hawking wave function. However, if we do not
force this off-shell, a different picture emerges. The wave function seems to see an effective potential of

the form: )
A
Ula) = (3—‘2/5) a? <k —c® - —a2) ) (21)
% 3

that is, the usual one in the Wheeler-DeWitt equation, but with
k—k—c. (22)

This is the crucial property that will allow us elsewhere to formulate a quantum version of the flatness
problem and its possible solution [[17]].

4 Extension to anisotropic models

We can now reduce the Chern-Simons state under whatever symmetry the problem has, and find the dual
metric representation wave function. We start by illustrating this procedure with anisotropic models.

4.1 Bianchil

The procedure can be simply illustrated with the Bianchi I model for which the metric is:

ds® = —dt* + a (t)dx} (23)

e

With standard formulae in the Ashtekar formalism [23]] this leads to:

1
E! = §5feijksgn(a,~)ajak (24)
A? = 6, (25)



where on-shell (applying the torsion free condition) b; = ;. The expansion rate in one direction is
therefore conjugate to the geometrical average of the expansion rates in the orthogonal plane! We have:

1
b = 26
{01, sgn(a1)azas} 2V, (26)
and cyclic perms, so that the corresponding quantum operators satisfy:
l2
[bi, p;] = 5%] A (27)
with
P11 = sign(al)agag
pa = sign(as)aias
Ps = sign(ag)alag. (28)

This is consistent with mini-superspace results, with a few interesting, but trivial points of note. First,
note that one drops a degeneracy factor (here the 3 equivalent directions in mini-superspace); this must
happen every time one breaks a symmetry. Second, the fact that the conjugate to the Hubble rate is a?
and not a (with well-known implications for the presence of a Euclidean branch) appears to be an artefact
of mini-superspace, since a? is replaced here by a product of expansion factors.

The modified Chern-Simons state for this solution is:

31,
Yos = N exp ( NG blbgbg) (29)

(where we will leave the “normalization” constant undefined for the time being) and the Fourier trans-

form implied by (6) is:
312 dbydbydb
Y(ar,az,a3) = E —— 2 X
12 (27)3/2

—i—£ (b1 p1+b2p2+b3p3)
xe 7 Yes. (30)

Let us take the integrals over the whole real line, emulating the prescription for Hartle-Hawking.
The integral can be solved as follows: one integral gives a delta function, the second integration is
then trivial, so that one is left with:

A iz +C/2)
o=Nava [ i e

AV?
3l4 —C atasazsgn(aazas) (32)

(we will assume A > 0 throughout). This finally gives:

A
312 —/27V.Y, < \/;alaga;g) (33)
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Figure 1: The “Hartle-Hawking” wave function for the Bianchi I model, ¢/(C'), for C' € [—10, 1000].
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Figure 2: The “Hartle-Hawking” wave function, ¢(C) for C' € [—10, 10].

if ajaqas > 0. If a;aza3 < 0 the correct solution is:

4N |V, 2V, |A
w = N?)? %Kg (ZT g\a1a2a3|> (34)
P P

where Y,,(z) are the Bessel functions of the second kind and K, (z) are the modified Bessel functions of
the second kind.

Note that the wave function is real, i.e. it is a stationary wave, just like the Hartle-Hawking. However,
it has a log divergence at the origin. It is also a function of the factor that controls the volume (or in fact
the volume squared).

4.2 Bianchi I with quantum torsion

In the previous examples, we have obtained a quantum state in the metric variables by imposing a torsion-
free condition on the Ashtekar connection from the outset. However, it is worth emphasizing that in
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Ashtekar’s formulation of general relativity, as in Cartan’s formulation, the torsion-free condition on the
connection is imposed as a second-class constraint, rather than as a kinematic restriction on the field
space. While it was useful to impose the torsion-free condition in order to make contact with the Hartle-
Hawking state (as well as the Vilenkin state), it may be propitious in other circumstances (e.g., within the
Gupta-Bleuler formalism) to leave this constraint unsolved and allow for quantum torsion. Therefore,
in this and the following sections, we consider a generalized version of the proposed ‘“Hartle-Hawking”
state where we allow for a possibly non-vanishing quantum torsion. For Bianchi I, this amounts to
including both real and imaginary parts for each of the connection components. While the imaginary
parts are conjugate to the densitized triads, the real parts are simply parameters on which the Hartle-
Hawking state will depend.
We make the following ansatz for the connection:

Al = (ib1+01)d$
A2 = (le—I—CQ)dy

A® = (ibsg + c3)dz, (35)
where b; and ¢; depend only on time. Evaluating Y on a hypersurface of constant time then gives
Yos = — / AtA2A3
J(Yes) = —Vi(=bibabs + bicacs + bacics + bscica)
(36)
from which we get the modified Chern-Simons state
3V
Yos = N exp Nz (=b1babs + bicacs + bacics + bgcica) ¢ (37)
P
Taking the Fourier Transform gives the “Hartle-Hawking” state
o ) ANE / dbydbydbs
ay,az,a3) = | = —
1,42, U3 lQP (271')3/2
Xe—i%(blpl-ﬁ-bzm-&-bsps)
cs-
= ./’\‘“/-/OO ﬁeii(x+c/x)
oo |]
_ | -aNEK(2y/1C), ¢ <0 38)
2mNY(2VC), C >0

where

_ AV,
N:N%\/%, (39)

WAAS 3 3 3
¢ = 3 (g) (p1 + KCQCZ’))(pQ + Kclcg)(pg + K0102)- (40)
It is then clear that the net result of including quantum torsion is to shift the dependence of the wave

. 3 o . .
function by p; — p; + —c;cy, after which it is no longer a function of the spatial volume alone, but

A



will also depend on the shape of space. In the context of homogenous, anisotropic models, it is often
convenient to work with the so-called Misner variables («, 84, 5_):

— potBrtV3A- — B —V3A-

ay a9 ag = ¥ 28+ 41)

so that €3® = a,asa3 characterizes the spatial volume density, and the anisotropy parameters /35 describe
the shape of space. In terms of the Misner variables, we can express the argument of the wave function
as

2
¢ = é e ™ + 3616203640‘ ieer‘/gﬁ‘ + iem*‘/gﬁ‘ + 16*25+
3\0% A o o o

3\’ 3\°
+ <K) C1CoC3€%% (cle’ﬁﬂ“*‘/gﬁ‘ + CQe’mJ“/gﬁ‘ + Cg€2ﬁ+) + (K) c%cgcg]. 42)

Note that for real values of the Misner variables we must assume a; > 0 so we have dropped the factors
of sign(a;) in the calculation above.

4.3 Bianchi IX with quantum torsion

Let us briefly review the basic features of the Bianchi IX model, focusing on the aspects that are most
relevant to loop quantum cosmology (see, e.g. [24] and [25]). The Bianchi IX model is a homogeneous
but anisotropic generalization of closed FRW cosmology. Each constant time hypersurface ¥ is assumed
to have the topology of S*. The metric on X is given by d¥? = Y a;(t)?*(w")?, where

w' = costdh + sinpsin Ode
w? = sinydh — cosp sin Ode
wd = dip + cosfdo (43)

and where 1) € (0,47), ¢ € (0,27), and 6 € (0, 7) are coordinates on S°. It is convenient to note that w*

are Maurer-Cartan forms satisfying the relations dw! = 561 srw! Wk,

The Ashtekar connection is given by

Al = (Zbl + 7’1) wl
A2 = (Zbg + 7"2) w2
A3 = (Zb3 + Tg) w3 (44)

where r; = —I'; 4 ¢; are the real parts of the connection, including both the torsion-free component I';
and the torsion ¢;. We can make a convenient choice of physical frame

el = qwt, € =aw? € =az’? 45)

from which we can infer the torsion-free part of the spatial connection
1 /a a a?
r, - 1 (_2 C _1>
2 as a9 203
1 /a a a’
2 as ay ai1as

1 2
s = _(24_%_&) (46)



and the densitized triad
D1

B, = 622 5 (—sine cos 00y + cos 1 sin 60 + sin1pdy)
s

Ey = 15 5 (cos 1) cos 00y, + sin ) sin 00y — cos 0y)

Ps3
FE, = — 4

s = 1e0 @7)
with p; defined as in Bianchi I. Now, the Poisson bracket relations become
i L

which, upon quantization, lead to the commutations relations
N o o
0", p;] = ilpo";. (49)

We can also express the torsion-free part of the connection in terms of the momenta p; via

1
p1:_<@+@_@@>

2\p3 P2 p%
1
pzz_(&+@_&§>
2\p3 m1 2
1
ry = —(@Jr@—p—”f). (50)
2\p2 m D3

Computing the Chern-Simons functional now proceeds along the same lines as in Bianchi I, except that
now the term proportional to A’d A’ no longer vanishes.

Yeg = — / %AIdAI + A A% A3 (51)
j(YCS) = —1677'2[(()17“1 + bQT’Q + b37”3) + (52)
+(—b1b2b3 + b17’27”3 + b2T17”3 + b37’1T2)].

We can again form the modified Chern-Simons state

2

—Z—ﬂ- [(blrl + b2r2 + b37’3) + (—b1b2b3 —+ b17"27’3 + b2?"17’3 + bgrlrg)]} . (53)

A48
Yos = N exp { A

Taking the Fourier transform gives the “Hartle-Hawking” state, which leads once again to the same
integral

N [ dbydbadbs

Y(ar, a,a3) = ZT WX
(b1p1+b2p2+bsps)¢cs
Y / AT _i@rc/a)
ool
CANK(24/]C]), C <0
~ (54)
2rNYy(2/C), C >0
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where we now have:

~ NA
N2 55
4872/ 2lp (53)
A% [py 4872 py  48m? ps 483
= 48752 g A—ZIQ_-,<T1 + 7’2T3):| |:g + A—l%g<r2 + 7’1T3):| lg + A—Z%(Tg -+ 7’17’2) . (56)

We can define Misner variables for Bianchi IX analogous to those used in Bianchi I accounting for the
fact that the scale factors, which were dimensionless in Bianchi I, now have units of length:

@ — €a+6++\/§ﬁ, az — ea+5+—\/§,37 as — 26+ (57)
lp " p " p

In terms of these Misner variables, the argument of the Hartle-Hawking wave function becomes

A2, | et PeV38- 48n? g2 V30 482 e 20+ 482
C =
Z R AR s T (2t { sr T AB st
(38)

5 The Kantowski-Sachs model

Finally, we consider the generalized Hartle-Hawking state for the Kantowski-Sachs model [30], which
may be viewed as a homogeneous, anisotropic cosmological model, or as a reduced phase space for
the interior of a spherically symmetric black hole. Indeed, the Kantowski Sachs model generalizes the
interior of a Schwarzschild black hole, which can be seen by inspecting the line element

ds® = —dt* + ay(t)*da® + as(t)?(d6* + sin® Odp?). (59)

In order to make the connection with Schwarzschild manifest, one can use the function r = ay(t) as a
“radial” coordinate, in which case the line element becomes

ds* = —A(r)*dr* + B(r)*dz® + r*(d6* + sin® 6d¢?), (60)

2
for some functions A(r) and B(r). If one chooses A(r)™2 = B(r)? = an 1, this becomes the interior

of the Schwarzshild spacetime, where the coordinate x is identified as the time coordinate in the exterior
portion of the spacetime. Now let us return to the line element (59)) in the original coordinate system.
The hypersurfaces of constant ¢ have topology S? x R, with (6, ¢) being standard coordinates on S?, and
x a coordinate on R. Since the spatial sections are non-compact, we introduce the fiducial length scale
lo and restrict x € (0, y). Following [26] we make a convenient choice of physical frame

el = —aysinfdg, €* = axdh, e = adx, (61)

from which we can find the torsion-free connection

wly = —cosfdp, w's=w?3=0 (62)
and the densitized triad
Ey = —pi0y
E2 = D1 sin 089
E3 = D2 sin 9035, (63)
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where p; = aqas and py, = a%. For the Ashtekar connection, we make the corresponding ansatz

Al = —(iby + ¢1) sin0dg
A2 = (Zbl + C1)d9
A® = (iby + c3)dx + cos 0dé. (64)

where the cos fd¢ term in A3 is the only torsion-free part of the connection and c;, ¢, are torsion com-
ponents. From the triad and connection, we deduce the Poisson bracket relations

1 1
b = —— b = —
{ 1,]91} 167r/<:lo’ { 2,172} 87ml0’ (65)

where once again, ¢;, co Poisson-commute with all phase space variables. Quantization yields the fol-
lowing commutation relations:

2 l2

~

%
b =i—— [b 66
[ 17]91] Z8 lo [ 27}72] 47rl0 (66)

The Chern-Simons functional for the connection (64) becomes
1
Yos = — / §A3dA3 + AtA%A3
) 1
= 47Tl() (%bz + Zbgb% + 2b1b201 — ’ngb% + §C2 + CQb% - 2ib1€102 - C%Cg) s (67)
and taking the imaginary part, we have
1
3<Y05) = 47Tl0 (§b2 + be? - bgC% - 2b26102> . (68)
We can now form the modified Chern-Simons state for the Kantowski-Sachs model:
31
Yes = Nexp| 5+I(Yos)
l5A
31
= NeXp { l2 A47Tlo ( b2 + b2b2 bQC% — 2[)26102) } . (69)

Taking the Fourier transform leads to the Hartle-Hawking state

47l dbdb 47l 31 1
Y(ar,az) = \/5/\/[70 S exp {—Z—O (2b1p1 + bapo) + 4l (552 + be% - bch - 2510102) }
P

27 12 %A
N 8l 3 1 A ~  NA
= exp {—ZZTO <p1 + K6102> C% - § + gpz} s N = m (70)
C% — % + %pz P

6 Outlook

The importance of the tool presented in this paper is twofold. Firstly, it allows us to generate solutions
to the Wheeler-DeWitt equation in the metric representation not by solving a differential equation, but
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by computing a Fourier transform. By realizing that the Chern-Simons state is the solution in the con-
nection representation for spaces of any symmetry, and that the metric representation is just the Fourier
transform of the connection representation, we find a shortcut for generating solutions that generalize the
Hartle-Hawking state for any situation. We presented examples related to Bianchi and Kantowski-Sachs
models, but the applications are endless. Inhomogeneous cosmological models, black holes, and exact
gravitational waves spring to mind. In all cases, we have already provided a formal solution: and that is
(6) with (9). All that remains to be done is to simplify and interpret this solution on a case by case basis.
In principle, the methods illustrated in this article should be applicable to more realistic settings for the
early universe wavefunction, including, for example, the case of a gauge field supported wavefunction
for a radiation dominated universe, as studied in [28]].

Secondly, by starting from the connection representation, we open up the doors to torsion. Even
if this is eventually found to be zero classically (or “on-shell”), the quantum theory should be able
to probe torsion off-shell. However, torsion degrees of freedom are frozen by construction in the metric
formulation. The fact that we can insert torsion degrees of freedom into ansatze of any symmetry allowed
us to find wave functions in the metric representation which take torsion into account. It is intriguing
that the torsion correction to the wave function modifies the effective potential to correct the curvature,
opening a window for addressing the curvature problem at the quantum level. We leave this prospect
for future investigation [[17]. Another avenue concerns singularity avoidance. A close inspection of the
commutation relations for the Bianchi I model, eq (27), reveals that the expansion rate in one principal
direction is conjugate to the geometrical average of the expansion rates in the orthogonal plane. In other
words, in a manner reminiscent of any simple quantum mechanical system, e.g. the harmonic oscillator,
where the quantum mechanical uncertainty in position cannot approach zero unless the uncertainty in
the momentum diverges, the uncertainty of the scale factor will evade going to zero unless the curvature
diverges. It may be that the canonical commutation relations between the scale factors and the connection
variables are precisely what is needed to ensure singularity avoidance at the big bang. In fact, singularity
avoidance in the context of the Bianchi I model has already been studied in [27], but the relationship
between the modified CS state and the generalized Hartle-Hawking state we have explored here may
provide some additional insights in this direction. We leave a more detailed analysis of singularity
avoidance for future work.

Finally, the Chern-Simons state may also represent the Vilenkin wave function, depending on the
choice of contour, should we allow excursions into the complex domain for variables usually taken to
be real [7]. The fact that boundary conditions in one representation translate into contours in the other
is reminiscent of the discussions leading to the Feynman propagator. It would be very interesting to
investigate this matter further, but note that issues of convergence of the Fourier integral necessarily
come into play, making this enterprise non-trivial.
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