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Joint Optimization of Radar and Communications
Performance in 6G Cellular Systems

Mateen Ashraf, Bo Tan, Dmitri Moltchanov, John S. Thompson, Fellow, IEEE, and Mikko Valkama, Fellow, IEEE

Abstract—Dual functional radar communication (DFRC) is
a promising approach that provides a viable solution for the
problem of spectrum sharing between communication and radar
applications. This paper studies a DFRC system with multiple
communication users (CUs) and a radar target. The goal is to
devise beamforming vectors at the DFRC transmitter in such
a way that the radar received signal-to-clutter-plus-noise-ratio
(SCNR) is maximized while satisfying the minimum data rate
requirements of the individual CUs. With regard to clutter, we
consider two scenarios based on the possibility of clutter removal.
Even though the formulated optimization problems are non-
convex, we present efficient algorithms to solve them using convex
optimization techniques. Specifically, we use duality theory and
Karush-Kuhn-Tucker conditions to show the underlying struc-
ture of optimal transmit precoders. In the proposed solution, it
is observed that there is no need to transmit separate probing
signal for the radar detection in both the considered scenarios.
This results in reduction in the number of optimization variables
in the problem. Moreover, we make use of the asymptotic
equivalence between Toeplitz matrices and Circulant matrices to
further reduce the complexity of the proposed algorithm. Finally,
numerical results are presented to demonstrate the effectiveness
of the proposed algorithms.

Index Terms—Detection probability, dual functional radar
communication, integrated sensing and communication, resource
allocation.

I. INTRODUCTION

With the wide roll-out of commercial fifth generation (5G)
mobile systems, the research communities have shifted the
focus to identifying the enabling technologies and defining the
key features of the sixth generation (6G). Unlike the previous
generations, the 6G will penetrate all sectors and become
a pervasive infrastructure resulting in massive network and
end-user devices deployment. Consequently, the number of
connected mobile devices is predicted to grow from 8B to
11.6B. Ericsson estimates the total mobile data traffic to reach
around 65Exabytes (EB) per month, which is projected to grow
by a factor of around 4.4 and reach 288EB per month by
2027 [1]. The wireless ICT systsems are estimated to cause
about 4% of all electricity consumption and 2% of the CO2
emissions globally [2]. In the worst-case scenario, up to 51%
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of the global energy consumption could be due to ICT by
2030 [3] (the expected time for the launch of commercial
6G systems). Thus, energy efficiency (EE) becomes intrinsic
requirement of 6G. Achieving high EE in radio networks
requires the synergy of diverse techniques, including energy-
efficient radio frequency (RF) components and circuits, novel
signal processing and waveform designs, and optimized device
and network operations. The first category includes several
improvements in the components or hardware design like
doherty power amplifier [4], high-isolation balun [5], epsilon
negative-transmission line based antenna [6]. The second cat-
egory incorporates efficient signal processing techniques like
digital protestation [7], crest factor reduction [8], and hybrid
beamforming [9].

Beside forecited approaches, cooperation based on mutual
context-awareness among the network and user equipments
(UEs) will help both sides optimize the transceiving schemes
to save energy. In this scenario, new techniques that capture
and model the location, motion status and environmental
context, have become an emerging topic. Examples of such
techniques include mobile computing, sensing, localization
etc. In the same vein, recent research efforts are exploring
the possibilities of joining wireless communications with radar
systems. These efforts have led to a fascinating research field
which is now known as integrated sensing and communication
(ISAC) [10], [11]. In legacy mobile communication systems,
the sensing functionality has been primarily achieved by
using auxiliary information, for example, the global navigation
satellite system (GNSS) or inertial sensor on devices. In 5G
systems, various reference signals [12] are defined in uplink
and downlink radio frames, which can be used for estimating
the angle and distance of the transmitter [13] and even used
for imaging [14] purpose. Moreover, 6G wireless networks
aim to provide sensing as a service [15], where the quality
of service (QoS) and EE are anticipated to be drastically
improved compared to traditional systems. Therefore, con-
ventional mechanisms to obtain sensing information may not
meet expected performances. Specifically, the anticipated 6G
wireless networks are required to support various emerging
applications with low energy consumption, such as connected
autonomous vehicles (CAV), connected everyday devices,
drone monitoring and smart manufacturing, etc. The natural
embedding of the sensing function in the mobile system is of
utmost importance in these applications.

The sensing information can play a pivotal role in the
communication systems, for example, to improve EE. With
location information of the UE, the access point can direct
beam toward the UE to improve the data rate for a fixed
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emitting power or reduce energy consumption for a fixed data
rate requirement. Hence, it is expected that the communi-
cation performance will be greatly improved if UEs can be
detected, localized and tracked [15]. Therefore, dual functional
radar communication (DFRC) systems have been envisaged
to deal with the feasibility of using the same access point
for transmitting information to communication users (CUs)
and detecting radar targets, resulting in integration gain and
coordination gain [15]. This paper studies a DFRC system
and optimizes the detection performance of the radar target
while simultaneously satisfying the essential communication
performance requirements.

Similarly to 5G systems, where low (< 1 GHz), mid (1 ∼ 6
GHz, so-called, sub-6 GHz band) and high (> 20 GHz,
millimeter wave (mmWave) band) frequency bands are defined
[16], 6G will likely utilize multiple bands for communications
[17]. Based on the recent research in [18]–[20], the higher
frequency signals have more pronounced benefits on sensing
resolution, EE via frequency, waveform and waveform sharing
mechanisms becasue of the ample specturm resorces.However,
in this paper, we still focus on exploiting legacy sub-6 GHz
band that is available for 5G system and will likely be
available in 6G as well. The rationale is that although mmWave
or terahertz (THz) frequency bands in 5G/6G will utilize
much wider bandwidth, their propagation properties are greatly
affected by attenuation and blockage from static objects [21],
[22] such as buildings and dynamic objects such as humans,
vehicles, etc [23], [24]. To avoid these impacts, we concentrate
on sub-6 GHz band, that is characterized by smaller bandwidth
but blockage impairments are limited to 2 ∼ 4 dB [21] in our
study.

This paper considers a DFRC with multiple CUs and a radar
target. The aim is to maximize the radar detection probability
whilst satisfying the minimum data rate requirements of CUs.
We consider the following two scenarios with regard to the
treatment of clutter in the environment.

• First scenario: We assume that the radar has the capabil-
ity to suppress all reflections received from environmental
clutter. In the case of imperfect cancellation, this scenario
also deals with the possibility where the residual inter-
ference caused by the clutter at the radar receiver can be
modeled as a zero-mean complex wide-sense stationary
Gaussian process [25].

• Second scenario: We assume that no suppression is used
for reflections received from the clutter. Hence, it may not
be possible to approximate the interference caused by the
clutter with a zero-mean complex wide-sense stationary
Gaussian process.

The sensing function is performed via beamforming as the
previous literature [26]. Different from the estimation based
performance evaluation metrics in [27], we adopt the detection
rate as performance metrics in this work. The maximization
of the radar detection is achieved by properly designing
transmit beamforming vectors. Specifically, it is observed that
in both considered scenarios there is no need to transmit a
separate probing signal for target. This observation reduces
the complexity of the optimization algorithm and the feedback

requirements of the system. Otherwise, the information related
to probing signal would be required at the CUs to perform
interference cancellation. In summary, the main contributions
of the paper are listed as follows:

• We provide the globally optimal solution for the problem
of detection probability maximization in ISAC systems
with perfect clutter suppression. Specifically, closed-form
expressions for optimal transmit beamforming vectors for
individual CUs are provided. These expressions provide
an insight on the solution structure for optimal beam-
forming.

• Then, the system model is extended to the scenario with-
out clutter suppression. We solve the detection probability
maximization problem through an iterative algorithm and
for each iteration, we provide closed-form expressions for
the globally optimal transmit beamformors.

• For both scenarios, there is no need to transmit a dedi-
cated precoding signal for target detection. This observa-
tion has two implications. First, it reduces computational
complexity of the algorithm by reducing the number of
optimization variables. Secondly, this observation leads
to reduced overhead exchange which may be required
otherwise to cancel the interference caused by the dedi-
cated probing signal. Moreover, in order to further reduce
the complexity in each iteration for the second scenario,
we propose a low complexity algorithm which utilizes an
important property of the reflected signal from the clutter.

Our motivation is to reduce algorithm complexity when
large number of optimization variables are involved in the opti-
mization problems due to high number of antennas and down-
link CUs. Moreover, the desire for having low-complexity
algorithms in ISAC system is compounded by the fact that
in a practical system target detection may be performed in
various directions successively due to the absence of apriori
information about the target direction and the motion of the
target. Therefore, it is highly desirable to obtain the optimal
beamforming solutions for any specific direction with least
possible delay. To achieve this objective, in this paper we use
the convex optimization theory to obtain closed-form solu-
tions for the optimal transmit beamforming vectors. Hence,
the proposed approach has considerably less computational
complexity. Additionally, the availability of the closed-form
solutions provides the optimal solution structures which are
highlighted through remarks in Section IV.

The rest of this paper is organized as follows. Section
II provides a literature review of related works. Section III
discusses the system model and assumptions. The optimization
framework and proposed algorithms are provided in Section
IV. Section V presents a low complexity algorithm for solving
the optimization problem in second scenario, where clutter
cannot be suppressed. Numerical results are presented in
Section VI. Finally, the paper is concluded in Section VII.

Notations: The notations used in this paper are given
as follows. The sets of complex, real numbers are rep-
resented by C,R, respectively. Vectors and matrices are
represented by bold small and capital letters, respectively.
AH ,A−1,Tr(A), rank(A) are the hermitian transpose, in-
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verse, trace, rank and Frobenius norms of the complex matrix
A, respectively. A ⪰ 0 means that A is positive semidefinite.
The magnitude of a scalar a and a vector x are represented by
|a|, ∥x∥, respectively. E(x) denotes the expectation of random
variable x.

II. RELATED WORK AND MOTIVATION

When embedding the sensing functions in the communica-
tions system, the performance metrics of ISAC are different
from conventional communication systems. The commonly
used performance metrics in ISAC system are Crámer-Rao
bounds (CRBs) for sensing parameters estimations and the
probability of detection. Specifically, for localization purposes,
the goal is to devise the transceiving schemes approach
to CRB. The goal of detection is to allocate transmission
resources in such a way that the detection probability is
maximized.

In terms of localization performance, recent works [28]–[32]
provided CRB minimization schemes under different system
setups. In [28], a hybrid approach with known/unknown place-
ments of multiple sensors is presented to estimate locations of
multiple targets. Various detectors based on the minimization
of the CRB are presented in [29]. The works in [28], [29] do
not consider the joint operation of sensing and communication.
In terms of ISAC, a CRB minimization scheme is proposed
in [30]. Specifically, the CRB is used as a performance metric
for target angle estimation, and then a CRB minimization
beamforming design is proposed which guarantees a pre-
defined level of signal-to-interference-plus-noise ratio (SINR)
for each CU. This work is further extended in [31] to design
an energy efficient ISAC system with the help of antenna
selection. In particular, the l0 norm is used to select the number
of active antennas to reduce the energy consumption at the
DFRC. [32] investigated an over-the-air computation aided
DFRC with a beamforming scheme to encompass different
performance aspects of the integrated sensing, communication
and computation system.

For detection probability maximization, it is well known
that detection probability is an increasing function of the
radar received signal-to-clutter-plus-noise ratio (SCNR) [33].
Much effort is devoted to guarantee the constant modulus
and similarity properties of radar waveforms which include
sequential optimization algorithms (SOAs) [34], the succes-
sive quadratically constrained quadratic programming (QCQP)
[35], the block coordinate descent (BCD) framework [36],
and the general majorization minimization (MM) framework
[37]. In works [33]–[37], authors make assumption on the a
priori information of the target, which is difficult to obtain in
practice. Hence, an efficient beamforming design is proposed
in [38] where no such assumption is made. It is concluded
in [38] that using dedicated probing signal can improve the
detection performance of the radar in presence of clutters when
interference cancellation for radar signal is applied at CUs.
To reap the benefits of orthogonal frequency division multiple
(OFDM) access in ISAC systems, a joint OFDM waveform
design is proposed in [39] to increase the reflected signal
power under interference and auto-correlation constraints. In

CU 3

CU 1

Target

Base
station

Clutter

CU 2

Communications
beam

Rx beamformer

,
Tx beamformers ,

Fig. 1. The presumed multiuser downlink integrated communications and
sensing scenario with K = 3 CUs.

TABLE I
IMPORTANT SYSTEM PARAMETERS AND THEIR NOTATION.

Parameter Notation
Transmit antenna NT

Receive antenna NR

kth CU channel vector hk

kth CU data rate requirement rk
channel attenuation for target |α0|2

channel attenuation for jth clutter |αj |2
transmit steering vector at angle θ at(θ)
transmit steering vector at angle θ ar(θ)

receive combining BF w
kth CU transmit beamforming vector uk

radar probing beamforming vector v
maximum transmit power Pmax

order to reduce the complexity of this work, a low complexity
design is proposed in [25] for a single CU.

III. SYSTEM MODEL AND ASSUMPTIONS

This section presents the main system parameters, underly-
ing assumptions and the important metrics of the considered
radar and communication system. We divide this section into
multiple subsections on deployment scenario, and performance
metrics for communication/radar systems.

A. Deployment scenario

The system model comprises of a multi-antenna DFRC, K
single antenna CUs, a radar target located at an angle θ0
from the DFRC, and J clutter elements where j-th clutter
element is located at angle θj from the DFRC. A pictorial
representation of the considered system model is provided in
Fig. 1 and the important system parameters are provided in
Table I. The DFRC uses Nt antennas for transmission to
the CUs and Nr antennas for reception of target and clutter
reflections. The beamformer, and information symbol for k-
th CU are denoted by uk ∈ CNt×1, sk with E[|sk|2] = 1,
respectively. Furthermore, we consider the possibility that the
DFRC employs a probing signal with beamforming vector
v ∈ CNt×1. Hence, the overall transmitted symbol from the
DFRC is x =

∑K
k=1 uksk + vs0, where s0 with E[|s0|2] = 1

is the symbol for probing signal. The channel between the
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DFRC and k-th CU is represented by hk ∈ CNt×1. Next, we
present the performance metrics for communication and radar
systems, respectively.

B. Communication system performance metric

With the above assumptions, the received signal at the k-th
CU can be written as

yk = hH
k uksk +

K∑
i=1,i̸=k

hH
k uisi + hH

k vs0 + ωk, (1)

where ωk ∈ C is the additive white Gaussian noise (AWGN)
at CU k with zero mean and variance N0. Therefore, the
corresponding SINR is given as

γI
k =

|hH
k uk|2∑K

i=1,i̸=k |hH
k ui|2 + |hH

k v|2 +No

. (2)

To meet the essential communications performance rk of the
k-th CU, the data rate for the k-th CU can be obtained through
Shannon formula as follows

Rk = log2
(
1 + γI

k

)
. (3)

Therefore, the data rate requirement of the k-th CU can be
mathematically represented as

γI
k =

|hH
k uk|2∑K

i=1,i̸=k |hH
k ui|2 + |hH

k v|2 +No

≥ Γk, (4)

where Γk = 2rk − 1.

C. Radar system performance metric

We present the radar system performance metric for the two
scenarios. In the first scenario, we assume that reflected signals
from the clutter components can be perfectly removed from
the received signal. For this scenario, the radar performance
metric is the radar signal to noise ratio (SNR). In the second
scenario, we assume that the clutter component cannot be
removed from the radar received signal. For this scenario, the
radar performance metric is the SCNR.

1) Radar SNR with perfect clutter removal: In the consid-
ered system model, the received signal at the radar after the
clutter removal can be written as

rcr = α0ar(θ0)at(θ0)
Hx+ n = α0A(θ0)x+ n, (5)

where A(θ) = ar(θ)at(θ)
H ∈ CNr×Nt , α0 ∈ C is complex

channel between target and radar which is independently dis-
tributed from hk’s, n ∈ CNr×1 is AWGN with n ∼ CN (0, I),
aj(θ) ∈ CNj×1 is the transmit are receive steering vectors
for j ∈ {t, r}, respectively. The dependencies of the steering
vectors at(θ),ar(θ) on the angle θ are given as

at(θ) =
1√
Nt

[1, e−j2π∆sin(θ), · · · , e−j2π(Nt−1)∆ sin(θ)]H ,(6)

ar(θ)=
1√
Nr

[1, e−j2π∆sin(θ), · · · , e−j2π(Nr−1)∆ sin(θ)]H ,(7)

where ∆ = λ
2 , and λ = (c/fc) is the carrier wavelength.

The radar performs receive beamforming with vector w on

the received signal, then the output of the radar receiver is
given as

yr = wHr = α0w
HA(θ0)x+wHn. (8)

Subsequently, the radar SNR can be written as

γcr
r (w) =

|α0w
HA(θ0)x|2

wHw
. (9)

The optimal receive beamforming vector that maximizes the
radar SNR, is given as

w∗ =
A(θ0)x

xHAH(θ0)A(θ0)x
. (10)

Putting (10) into (9) we get

γcr
r (w∗) = |α0|2xHAH(θ0)A(θ0)x, (11)

and the corresponding average radar SNR is given as

γ̄cr
r = |α0|2E

[
xHAH(θ0)A(θ0)x

]
,

=

K∑
k=1

uH
k Φ(θ0)uk + vHΦ(θ0)v, (12)

where Φ(θ) = |α0|2AH(θ)A(θ) with largest eigenvalue ζmax

and corresponding eigenvector ϕ.
2) Radar SCNR without clutter removal: For this scenario,

the radar received signal with a total of J clutter components
can be written as

r = α0ar(θ0)at(θ0)
Hx+

J∑
j=1

αiar(θj)at(θj)
Hx+ n,

= α0A(θ0)x+

J∑
j=1

αjA(θj)x+ n, (13)

where the target is located at angle θ0 and the j-th clutter
element is located at angle θj . Then, after performing the
received combining, the radar SCNR can be written as

γr(w) =
|α0w

HA(θ0)x|2

E
[
wH

(∑J
j=1 |αj |2A(θj)xxHAH(θj) + I

)
w
] .(14)

Hence, after performing the expectation operation, we can
write γr(w) as

γr(w) =
|α0w

HA(θ0)x|2

wH
(∑J

j=1 |αj |2A(θj)
(∑K

k=1 ukuH
k +vvH

)
AH(θj)+I

)
w

.

(15)

The optimal value of w which maximizes (15) is given as

w∗ =
(W({uk,v}))−1

A(θ0)x

xHAH(θ0) (W({uk,v}))−1
A(θ0)x

, (16)

where

W({uk,v})=
J∑

j=1

|αj |2A(θj)

(
K∑

k=0

uku
H
k +v

)
AH(θj) + I.

(17)
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Putting (16) into (15), we get

γr(w
∗) = |α0|2xHAH(θ0)W

−1({uk,v})A(θ0)x, (18)

with the corresponding average SCNR given as

γ̄r(w
∗)= |α0|2

[ K∑
k=1

uH
k AH(θ0)W

−1({uk,v})A(θ0)uk

+vHAH(θ0)W
−1({uk,v})A(θ0)v

]
. (19)

The detection probability (PD) of the radar is monotonically
increasing with the radar received SNR and SNCR [25], [33],
and their mathematical relationship is given as

PD(γr) = Q
(√

2γr,
√
−2 lnPFA

)
, (20)

where PFA is the probability of false-alarm and Q(., .) is the
Marcum Q function. It is clear from equations (4), (12), (19)
and (20) that beamformers uk,v determines the communica-
tion and radar performance. In the next section, we formulate
optimization problems to find the optimal values of uk,v.

IV. OPTIMIZATION FRAMEWORK

We are interested in maximizing the detection probability
of the radar. As noted in (20), the radar detection probability
is directly proportional to either the radar SNR or the SCNR,
depending on the availibility of clutter removal. Our aim is
to maximize the radar SNR or SCNR whilst satisfying the
SINR requirements of the CUs. The optimization problem for
finding the appropriate beamformer for perfect clutter removal
scenario is given as follows:

P1:

maximize
uk,v

K∑
k=1

uH
k Φ(θ0)uk + vHΦ(θ0)v

subject to C1 :
|hH

k uk|2∑K
i=1,i̸=k |hH

k ui|2 + |hH
k v|2 +No

≥ Γk,

C2 :

K∑
k=1

|uk|2 + |v|2 ≤ Pmax,

(21)
and without clutter removal we have:

P2:

maximize
uk,v

|α0|2
K∑

k=1

uH
k AH(θ0)W

−1(x)A(θ0)uk

+ |α0|2vHAH(θ0)W
−1(x)A(θ0)v

subject to C1, C2.

(22)

The objective of P1, P2 is to maximize the average SNR,
SCNR of the radar system, respectively. The constraints C1
guarantee that data rate requirements of the CUs are met and
C2 ensures that the total transmitted power is no more than the
maximum allowed transmit power. For P1, the objective is a
convex function and the constraints C1 are non-convex which
make P1 a non-convex optimization problem and hence diffi-
cult to solve. For P2, the constraints are non-convex. Although
both problems P1, P2 are non-convex, in the following we

show that problem P1 can be solved optimally and the globally
optimal solution can be presented in closed-form. On the other
hand, an iterative algorithm with guaranteed convergence is
proposed to find a suboptimal solution for problem P2.

A. Proposed solution for problem P1
To solve P1, we use the semidefinite relaxation (SDR)

technique. In this regard, we introduce the following variables
Uk = uku

H
k ,V = vvH , and constants Hk = hkh

H
k . Then,

P1 can be equivalently written as
P1-equ:

maximize
Uk,V

K∑
k=1

Tr(ΦUk) + Tr(ΦV)

subject to C̃1 :
Tr(HkUk)

Tr

(
Hk

(
K∑

i=1,i̸=k

Ui +V

))
+No

≥ Γk,

C̃2 :
K∑

k=1

Tr(Uk) + Tr(V) ≤ Pmax,

C̃3 : Uk ⪰ 0,

C̃4 : V ⪰ 0,

C̃5 : rank(Uk) ≤ 1,

C̃6 : rank(V) ≤ 1,
(23)

where for simplicity of notation, we have used Φ(θ) = Φ.
P1-equ is non-convex as constraints C̃5, C̃6 are non-convex.
However, if we remove the constraints C̃5, C̃6, the relaxed
problem is a semi-definite program (SDP), whose solution can
be easily found through tools such as CVX.

After relaxing the constraints C̃5, C̃6 in P2, we denote the
new problem as P2-rel given as

P1-rel:

maximize
Uk,V

K∑
k=1

Tr(ΦUk) + Tr(ΦV)

subject to C̃1 :
Tr(HkUk)

Tr

(
Hk

(
K∑

i=1,i̸=k

Ui +V

))
+No

≥ Γk,

(24)

C̃2 :

K∑
k=1

Tr(Uk) + Tr(V) ≤ Pmax,

C̃3 : Uk ⪰ 0,

C̃4 : V ⪰ 0

Then, Lemma 1 below provides a useful result about P1-rel.

Lemma 1. The optimal solution of P1-rel has following
properties

• rank(U∗
k) = 1,

• V∗ = 0.

Proof. Please see Appendix A for the proof.

Remark 1. Lemma 1 shows that the obtained solution for
P1-rel is the optimal solution for P1. This lemma also helps
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in reducing the complexity of finding solution by reducing the
number of optimization variables through noting that V∗ = 0.
According to Proposition 1, the idea is to avoid that part of
the interference at the CUs which is caused by the probing
signal. This is because the probing signal cannot be cancelled
at the CUs as they do not have the a priori information
about the radar probing signal waveform. Thus, the optimal
transmission strategy is to adjust the beamforming for the CUs
only in such a way that the radar SNR is maximized.

In the rest of this subsection, we assume that v∗ = 0 based
on Lemma 1. Next, we use results presented above to find
a closed-form solution for the optimization problem P1. The
Lagrangian of P1 with v∗ = 0 can be written as

L(uk, ηk, ω)=−
K∑

k=1

uH
k Φuk+ω(

K∑
k=1

|uk|2−Pmax)

+

K∑
k=1

ηk

(
Γk

K∑
i=1,i̸=k

|hH
k ui|2+ΓkNo−|hk

Huk|2
)
,

(25)

and the corresponding dual problem can be written as
P1-d:

maximize
ηk, ω

min
uk

L(uk, ηk, ω). (26)

The following lemma presents a useful result for the prob-
lem P1, P1-d.

Lemma 2. The optimal values of P1, P1-d are equal i.e. the
duality gap for problem P1 is zero.

Proof. Please refer to Appendix B for the proof.

Based on Lemma 2, we can solve P1-d to obtain the solution
of P1 in closed-form. Then, we present an important property
of the solution for problem P1 in the following lemma.

Lemma 3. Problem P1 has following property.
• If u∗

k,∀k ∈ {1, · · ·K} is the optimal solution of problem
P1, then u∗

ke
jθk is also an optimal solution for problem

P1.

Proof. The proof is given in Appendex C.

With the help of Lemma 2 and Lemma 3, we can obtain
the optimal solution of the problem minuk

L(uk, ηk, ω) in the
following lemma.

Lemma 4. The optimal solution of minuk
L(uk, ηk, ω) for

any given ω, ηk is

u∗
k(ω, {ηk}) =

√
pk

[
ωI−Φ+

∑K
i=1,i̸=k ηihih

H
i

]−1

hk∥∥∥∥ [ωI−Φ+
∑K

i=1,i̸=k ηihihH
i

]−1

hk

∥∥∥∥ ,
(27)

where

pk =
Γkh

H
k

(∑K
i=1,i̸=k piûiû

H
i

)
hk + ΓkN0

|hH
k ûk|2

, (28)

and

ûk =

[
ωI−Φ+

∑K
i=1,i̸=k ηihih

H
i

]−1

hk∥∥∥∥ [ωI−Φ+
∑K

i=1,i̸=k ηihihH
i

]−1

hk

∥∥∥∥ . (29)

Proof. Please refer to Appendix D for the proof.

Remark 2. There is an intuitive explanation associated with
the transmit beamforming expression for k-th CU in (27).
First, it is expected that the transmit beamforming for k-th CU
should be aligned with hk. This is reflected by the presence of
hk in the numerator of (27). Second, the transmit beamforming
of the k-th CU is expected to reduce interference to other CUs.
This is reflected by the term

∑K
i=1,i̸=k hih

H
i within the inverse

matrix in the numerator. Thirdly, the transmit beamforming
for the k-th CU must try to direct energy toward the target
direction. This is achieved by the inclusion of −Φ within the
inverse matrix in the numerator of (27).

Remark 3. The relationship depicted in (28) also alludes
to another important characteristic of the proposed solution.
Specifically, (28) reflects the fact that if the problem P1 is
feasible, then only minimum required power to satisfy the
SINR constraints of CUs will be directed toward CUs. Thus,
the remaining power is available for directing towards the
target as explained in Remark 1. This behavior suggests that
proposed schemes efficiently use the available power for full
filling both radar and communication performances.

Also, we can use the gradient descent method to find the
optimal values of ω, {ηk} as follows

ωi+1 = ωi + Ξω(

K∑
k=1

|uk(ω
i, ηik)|2 − Pmax), (30)

ηi+1
k = ηik + Ξηk

(
Γk

K∑
i=1,i̸=k

|hH
k ui(ω

i, ηik)|2 + ΓkNo

−|hk
Huk(ω

i, ηik)|2
)
, (31)

where Ξω , and Ξηk
are step sizes for update of ω, ηk in

subgradient algorithm, respectively. With above analysis, the
proposed algorithm for solving P1 is given as Algorithm
1. Furthermore, to assess the computational simplification of
Algorithm 1, we consider its computational complexity and
compare it against that of SDR technique. The computational
complexity of the SDR technique for solving P1 is propor-
tional to O(max(K,Nt)

4N
1
2
t ) [40]. Since the Algorithm 1

uses gradient descent method to calculate dual variables, the
complexity is dominated by the matrix inversion operation.
Thus, Algorithm 1 needs to perform O(N3

t ) operations for
matrix inversion to calculate (27), and therefore the computa-
tional complexity of Algorithm 1 is O(N3

t ).
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Algorithm 1: Proposed alternating optimization algorithm for
solving P1.

1: Initialize: i = 0, ϵ, imax,Φ, hk,∀k ∈ {1, · · · ,K},
A(θ0),A(θi),∀i ∈ {1, · · · , I}, ηik, ωi,.

2: Calculate uk(η
i
k, ω

i) using (27).
3: Calculate f(i) = uH

k (ηik, ω
i)Φuk(η

i
k, ω

i).
4: while i ≤ imax do
5: Set i = i+ 1
6: Update the values of ηik through subgradient method.
7: Update the value of ωi through subgradient method.
8: Calculate f(i) = uH

k (ηik, ω
i)Φuk(η

i
k, ω

i)
9: if f(i)− f(i− 1) ≤ ϵ then

10: u∗
k = uk(η

i
k, ω

i),
11: Break
12: end if
13: end while

B. Proposed solution for problem P2
When clutter removal is not possible, the objective function

becomes more complex than that of problem P1 due to the
involvement of

W({uk,v})=
J∑

j=1

|αj |2A(θj)

(
K∑

k=1

uku
H
k +vvH

)
AH(θj)+I.(32)

To address this issue, we use an iterative approach
where in each iteration the optimization variables {uk,v}
in W({uk,v}) are replaced by optimal values of {uk,v}
computed in the previous iteration. Hence, in the l + 1-th
iteration we set

Φ′ = AH(θ0)(W({uk,v})−1A(θ0)

= AH(θ0)(W({ul
k,v

l})−1A(θ0), (33)

where {ul
k,v

l} is the optimal solution achieved in the l-th
iteration. The iterative procedure is repeated until a sufficient
convergence criteria is met or the maximum number of iter-
ations is reached. Therefore, during the l + 1-th iteration the
optimization problem P2 is modified as

P2’:

maximize
uk,v

|α0|2
K∑

k=1

uH
k Φ′uk + |α0|2vHΦ′v

subject to C1 :
|hH

k uk|2∑K
i=1,i̸=k |hH

k ui|2 + |hH
k v|2 +No

≥ Γk,

C2 :

K∑
k=1

|uk|2 + |v|2 ≤ Pmax,

(34)
with the corresponding SDR relaxation given as

P2’-SDR:

maximize
Uk,V

K∑
k=1

Tr(Φ′Uk) + Tr(Φ′V)

subject to C̃1− C̃4.

(35)

In each iteration, optimal solutions depend on the channel
gains hk’s of the CUs, which can cause dependence of Φ′ on
the channel gains. Thus, the independence argument used in

the proof of Lemma 1 cannot be used here for showing that
rank(U∗

k) = 1. In this case, the following lemma presents the
solution structure for problem P2’-SDR.

Lemma 5. There exists an optimal solution for P2’-SDR such
that

• V∗ = 0,
• rank(U∗

k) = 1.

Proof. Please see the Appendix E for proof.

Therefore, we can use v∗ = 0. Hence, the objective function
for problem P2’ becomes |α0|2

∑K
k=1 u

H
k Φ′uk. Also using

the arguments similar to Lemma 2, it can be established that
the duality gap between P2 and P2-d is zero, where P2-d
is the dual problem corresponding to the primal problem P2.
Then, the closed-form solution for problem P2 is given as

v∗ = 0,

u∗
k(ω

′,{η′k})=
√
pk

[
ω′I−Φ′+

∑K
i=1,i̸=k η

′
ihih

H
i

]−1

hk∥∥∥∥ [ω′I−Φ′ +
∑K

i=1,i̸=k η
′
ihihH

i

]−1

hk

∥∥∥∥ ,(36)

where

p′k =
Γkh

H
k

(∑K
i=1,i̸=k p

′
iû

′
iû

′H
i

)
hk + ΓkN0

|hH
k û′

k|2
, (37)

û′
k =

[
ω′I−Φ′ +

∑K
i=1,i̸=k η

′
ihih

H
i

]−1

hk∥∥∥∥ [ω′I−Φ′ +
∑K

i=1,i̸=k η
′
ihihH

i

]−1

hk

∥∥∥∥ , (38)

and ω′, {η′k} are the dual variables corresponding to the
maximum transmit power constraint and the SINR constraints
in problem P2.

Remark 4. The mathematical formulation of the transmit
beamforming of the k-th CU can be intuitively explained as
follows. First, the transmit beamforming of k-th CU should
align with hk. This is reflected by the term hk in the numerator
of (36). Second, the transmit beamforming of the k-th CU
should reduce interference to other CUs. This is reflected
by the term

∑K
i=1,i̸=k hih

H
i within the inverse matrix in the

numerator. Thirdly, the transmit beamforming of k-th CU
must try to direct energy toward the target direction. This
is achieved by the inclusion of −Φ′, and its dependence on
A(θ0), within the inverse matrix in the numerator of (36).
Lastly, the transmit beamforming of the k-th CU should avoid
directing energy toward the clutter. This is reflected by the
presence of (W({uk}))−1, and its dependence on A(θi),
within Φ′ in the inverse matrix.

The iterative algorithm for solving P2 is presented in
Algorithm 2. Moreover, the optimal values of ω′, {η′k} can
be found in an iterative manner using update rules suggested
in (30), (31).

To assess the computational savings of Algorithm 2, we
consider its worst case situation and compare it against that
of SDR. In worst case, we assume that the outer iteration in



8

Algorithm 2: Proposed alternating optimization algorithm for
solving P2.

1: Initialize: i = 0, j = 0, ϵ1, ϵ2, imax, jmax, uk,hk,∀k ∈
{1, · · · ,K}, A(θ0),A(θi),∀i ∈ {1, · · · , I}, η′jk , ω′j .

2: Calculate uk = uk(η
′j
k , ω

′j) using (36).
3: Calculate Φ′(i) using (33).
4: Calculate f(i, 0) = uH

k Φ′(i)uk.
5: while i ≤ imax do
6: Set i = i+ 1
7: while j ≤ jmax do
8: Set j = j + 1
9: Update η′jk through subgradient method.

10: Update ω′j through subgradient method.
11: Calculate f(i, j) = uH

k (η′jk , ω
′j)Φ′(i)uk(η

′j
k , ω

′j)
12: if f(i, j)− f(i, j − 1) ≤ ϵ1 then
13: Set ui∗

k = uk(η
′j
k , ω

′j),
14: Set j = 0
15: Break
16: end if
17: end while
18: if uHi∗

k Φ′(i)ui∗
k −uH(i−1)∗

k Φ′(i−1)u
(i−1)∗
k ≤ ϵ2 then

19: u∗
k = ui∗

20: Break
21: end if
22: end while

Algorithm is run imax times and the inner iteration is run
jmax times. For both techniques, in each outer iteration, first
a matrix inversion is required to compute Φ′ which needs
O(N3

t ) operations. Then, in each inner iteration, the com-
putational complexity is proportional to O(max(K,Nt)

4N
1
2
t )

[40] for the SDR technique. For Algorithm 2, the complexity
is dominated by the matrix inversion. Thus, Algorithm 2 needs
to perform O(N3

t ) operations for matrix inversion to calculate
the values of uk through (36), and therefore the complexity
of Algorithm 2 in each inner iteration is O(N3

t ). Therefore,
the worst case complexity for the SDR based technique is
O
(
imax

(
N3

r + jmax

(
max(K,Nt)

4N
1
2
t

)))
, while for Al-

gorithm 2 it is O(imax

(
N3

r + jmaxN
3
t

)
.

The above algorithm works in the iterative manner, the
complexity for finding the solution in each iteration determines
the total algorithm complexity. The main computationally
extensive operation is finding the inverse matrix for W({uk}),
in the calculation of Φ′, for which the complexity increases
in cubic fashion with its size. Specifically, for a square
matrix of size N the computational complexity for finding its
inverse is O(N3). For large number of antennas, this results
in significant complexity rise. The next section provides an
iterative low complexity algorithm.

V. LOW COMPLEXITY ALGORITHMS FOR SOLVING THE
OPTIMIZATION PROBLEM

As mentioned above, the main bottleneck of finding solution
lies in finding the inverse matrix of W({uk}). In this section,
we provide approximation for this matrix which helps in

reducing the complexity for finding its inverse. To this end,
we make use of the following lemma.

Lemma 6. Matrix W({uk}) is a Toeplitz matrix, where a
general square Topelitz matrix S of size N has following form:

S =


s(0) s(−1) s(−2) · · · s(−(N − 1))
s(1) s(0) s(−1)

s(2) s(1) s(0)
...

...
. . .

s(N − 1) · · · s(0)

 ,

(39)
or S[m,n] = s(m− n);m,n ∈ {0, 1, · · · , N − 1}.

Proof. The proof is given in Appendix F.

Next, since Toeplitz matrices can be efficiently approxi-
mated by Circulant matrices, we represent W({uk}) by its
Circulant matrix approximation C where the top row entries
of C are obtained as follows

c1 = W1,1, ci = W1,i +WN−i+2,1,∀ i ∈ {2, · · ·N}.
(40)

Next, we state an important property of the Hermitian Circu-
lant matrices in the following lemma.

Lemma 7. If X is a Hermitian Circulant matrix then its
inverse X−1 is also a Hermitian Circulant matrix.

Proof. The proof is provided in Appendix G.

Then, we can use the following lemma to approximate the
objective function of P2.

Lemma 8. The objective function of P2,
|α0|2

∑K
k=1 u

H
k Φ′uk, can be approximated as

|α0|2
K∑

k=1

uH
k Φ′uk ≃ |α0|2

K∑
k=1

ũH
k Λ̃ũk, (41)

where a ≃ b means limNr→∞(a − b) ≤ 0 ⇒ limNr→∞(a −
b) = 0, Λ̃ is a diagonal matrix and

ũk = FA(θ0)uk, (42)

with F being the unitary DFT matrix.

Proof. Please refer to the Appendix H for the proof.

With the help of Lemma 8, we can modify P2 as follows:
P2’:

maximize
uk,v

|α0|2
K∑

k=1

ũH
k Λ̃ũk + ṽHΛ̃ṽ

subject to C1, C2,

(43)

where ṽ = FA(θ0)v.
Using the results discussed in the previous section, we can

devise an iterative algorithm for solving P2’. The optimal
solutions in each iteration are given in the following corollary.

Corollary 1. The optimal solution for P2’ in the i-th iteration
is given as

ṽ∗ = 0, (44)
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TABLE II
SIMULATION PARAMETERS.

Parameter value Parameter value
fc 3.5 GHz Bandwidth 100 MHz
N0 −94 Propagation UMi [22]
Nt {8, 12, 16, 24, 32} NR {8, 12, 16, 24, 32}
K 4 Γk [5, 25] dB

Pmax 30 dBm dCU
1 10 m

dCU
2 15 m dCU

3 20 m
dCU
4 25 m J 2

|α1|2 .01 |α2|2 .001
θ0

π
4

θ1 0

θ2
π
2

PFA {10−5, 10−6}

ũ∗
k(ω̃, {η̃k}) =

√
pk

[
ω̃I− Φ̃+

∑K
i=1,i̸=k η̃ihih

H
i

]−1

hk∥∥∥∥ [ω̃I− Φ̃+
∑K

i=1,i̸=k η̃ihihH
i

]−1

hk

∥∥∥∥ ,
(45)

where

p̃k =
Γkh

H
k

(∑K
i=1,i̸=k p̃iũiũ

H
i

)
hk + ΓkN0

|hH
k ûk|2

, (46)

ũk =

[
ω̃I− Φ̃+

∑K
i=1,i̸=k η̃ihih

H
i

]−1

hk∥∥∥∥ [ω̃I− Φ̃+
∑K

i=1,i̸=k η̃ihihH
i

]−1

hk

∥∥∥∥ , (47)

Φ̃ = AH(θ0)F
HΛ̃−1FA(θ0), (48)

and ω̃, {η̃k} are the dual variables corresponding to the
maximum transmit power constraint and SINR constraints in
problem P2’.

Proof. The proof follows similar reasoning as described in
Section V and hence omitted.

We can use Algorithm 2 for solving P2’ by exchanging Φ′

with Φ̃. In finding Φ̃ we need to find the eigenvalues of a
Circulant matrix. Thus, the main complexity in the outer loop
is due to the calculations needed for eigenvalue computations.
It is known that the eigenvalue computation for a Circulant
matrix of size Nr need O(Nr log(Nr)) operations. Therefore,
the computational complexity for solving problem P2’ in the
worst case is O(imax

(
Nr log(Nr) + jmaxN

3
t

)
).

VI. NUMERICAL RESULTS

In this section, we provide example simulation results. The
important simulation parameters are provided in Table II. For
performance comparison with other schemes, we consider two
baseline schemes: (i) radar centric and (ii) communication
centric.

A. Radar centric scheme

In the radar centric scheme, the objective is to maximize
the radar SCNR, while neglecting the SINR constraints of

the communication users. Mathemtically, the optimization
problem for radar centric scheme can be written as follow

maximize
v

|α0|2vHAH(θ0)W
−1(v)A(θ0)v

subject to ∥v∥2 ≤ Pmax.
(49)

The problem (49) is solved by using the proposed iterative
algorithm but without consideration of the CUs’ SINR con-
straints. Henceforth, this scheme is referred to as the radar
SCNR maximization (RSM) scheme.

B. Communication centric scheme

On the other hand, in the communication centric scheme,
the objective is to minimize the total consumed power while
satisfying the SINR requirements of all the CUs. Mathemati-
cally, the communication centric optimization problem can be
written as

minimize
uk

K∑
k=1

∥uk∥2

subject to
|hH

k uk|2∑K
i=1,i̸=k |hH

k ui|2 +No

≥ Γk.

(50)

In the following, this scheme is termed as communication
power minimization (CPM) scheme. The achieved radar SCNR
for the CPM scheme is obtained as

SCNRCPM = |α0|2
K∑

k=1

uH
k,cA

H(θ0)W
−1(uk,c)A(θ0)uk,c,

(51)

where the vector uk,c’s is the optimal transmit beamformer
of CU k for problem (50). For (50), the optimal solution for
CPM problem satisfy the SINR constraints with equality [41].

In the following, first we show the effect of clutter removal
on the radar SCNR for different number of Nt, Nr. Second, we
compare the proposed scheme with RSM and CPM schemes.
Then, we compare the proposed scheme and the proposed low
complexity algorithm.

C. Results

Fig. 2 presents the effect of clutter removal on the SCNR
maximization of the proposed algorithms. It can be observed
that the clutter removal operation at the DFRC BS can sub-
stantially enhance the SCNR for radar. This behavior can be
understood through optimal solution expressions for transmit
beamformers of CUs, where it is noted that the optimal
beamformers for clutter removal scenario does not take clutter
into account while assigning beamforming weights for CUs.
Thus, less power being directed toward CUs may satisfy their
SINR requirements which effectively allows more power to
be directed toward the target. This leads to a higher SCNR as
compared to the no clutter removal scenario. Moreover, it can
be observed that for higher values of required SINR for CUs,
the radar SCNR reduces. It is due to the higher directional
gain requirement toward the CUs to meet their larger SINR
constraints. These effects are in agreement with the statements
made in Remark 2 and 3.



10

5 10 15 20 25

CUs SINR (dB) threshold

5

10

15

20

25

30

S
C

N
R

 (
d
B

)

With clutter, N
t
 = N

r
 =8

With clutter, N
t
 = N

r
 =12

With clutter, N
t
 = N

r
 =16

With clutter suppressed, N
t
 = N

r
 =8

With clutter suppressed, N
t
 = N

r
 =12

With clutter suppressed, N
t
 = N

r
 =16

Fig. 2. Effect of clutter suppression.
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Fig. 3. Comparison with CPM and RSM.

In Fig. 3, we compare radar SCNR performances of the
proposed scheme, RSM and CPM schemes. First, we can
see that RSM outperforms other schemes. This is expected
since every feasible solution of problem P2 obtained through
the proposed iterative algorithms is also a feasible solution
for the RSM problem. Thus, the feasible region of solutions
for the RSM problem is larger, which results in a higher
achievable SCNR for the RSM scheme as compared to the
proposed scheme. However, we can see that for lower SINR
region of CUs, the performance of the proposed scheme is
identical to the RSM scheme. This is due to the fact that
at lower SINR region, a smaller power directed toward the
CUs can satisfy their SINR requirements thus leaving a higher
portion of transmit power available for the target detection.
Although the RSM scheme outperforms the proposed scheme
with regard to the achieved objective value, it is observed
in the simulation results that the solution for RSM does not
satisfy the SINR constraints of the CUs with probability 1.
Second, the performance of the proposed scheme is better
than the CPM scheme. Moreover, the performance of CPM
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different PFA.
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Fig. 5. Improvement in radar SCNR as a result of increased total transmit
power.

scheme first improves with the increase in SINR thresholds
and then degrades. The initial improvement results due to
rising transmit power requirements for satisfying the SINR
constraints. On the other hand, the later degradation is caused
by highly directional beamforming toward the CUs to meet
the SINR constraints.

The detection probabilities are provided in Fig. 4 for dif-
ferent false alarm rates. The detection performance for the
proposed scheme drops with the increase in SINR threshold re-
quirements of CUs. The reason is that meeting a higher SINR
requirement of CUs will result in more focused beamforming
towards CUs which subsequently degrades the radar detection
performance. The detection rate of the CPM scheme can be
explained through a similar manner as Fig. 3 results.

Next, we compare the observed SCNR improvement caused
by the extra transmit power as compared to the CPM scheme.
When the total transmit power for the proposed scheme is
equal to the optimal objective value of CPM scheme, then
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the SCNR for the proposed scheme and the CPM scheme
is same. However, by increasing the available total transmit
power, significant improvement in SCNR, such as from 2.5
dB to about 9 dB when Nt = Nr = 8,Γk = 4 dB when the
total transmit power is increased by 1 dB to 3 dB as compared
to CPM scheme, are observed in Fig. 5. This is due to the fact
that the proposed scheme efficiently allocate the extra power
in the direction of the target. Thus, improve the EE in the
considered ISAC system.

Finally, in Fig. 6, we compare the performance of the
proposed and the proposed low complexity schemes. It is
observed that the performance of the low complexity scheme
is inferior to the proposed scheme. However, the performance
gap decreases with the increase in number of antennas. Spe-
cially, at higher SINR requirements of CUs, the performance
of both proposed schemes is almost identical. Thus, the low
complexity scheme is more attractive for the case when more
number of antennas are involved, such as millimeter wave or
THz communications of 6G, and higher communication QoS
is needed.

VII. CONCLUSIONS

This work focuses on beamforming optimization at the
DFRC transmitter where the objective was to maximize the
radar detection probability while satisfying the communication
data rate requirements of CUs. Two scenarios for dealing
with the clutter reflections were considered. Although the for-
mulated optimization problems for both scenarios were non-
convex, it was shown that global optimality can be achieved
for clutter removal scenario and an iterative algorithm was
proposed to solve the formulated problem for the scenario
where clutter removal was not possible. The optimal solutions
were obtained in closed-form, thus reducing the computational
complexity of the algorithms. It was also concluded that
there is no need to transmit separate probing signal for target
detection in both scenarios. Numerical results revealed that the
proposed scheme achieves order of magnitude (about 2.5 dB

to 9 dB) improvements in terms of radar SCNR as compared
to baseline communication power minimization scheme.

APPENDIX

A. Proof of Lemma 1:

Proof. First, we note that P1-rel is a convex SDP, and hence
the duality gap is zero. Therefore, we consider the Lagrangian
of P1-rel:

L(Uk,V, ηk, ω) = ωPmax +Tr

(
K∑

k=1

UkMk +TV

)

−N0

K∑
k=1

ηk,(52)

where ηk is the dual variable associated with the k-th SINR
constraint, and ω is the dual variable corresponding to the sum
power constraint. Furthermore, Mk,T are defined as follows:

T = Φ− ωI−
K∑

k=1

ηkHk, (53)

and

Mk = Φ− ωI+
ηk
Γk

Hk −
K∑

i=1,i̸=k

ηiHi. (54)

Hence, the dual problem of P1-rel can be written as

minimize
ω, ηk

max
Uk,V

L (Uk,V, ηk, ω)

subject to C̃8 : ω ≥ 0, ηk ≥ 0,
(55)

with the corresponding optimality conditions given as

Tr(M∗
kU

∗
k) = 0, Tr(T∗V∗) = 0, (56)

where M∗
k,T

∗ are the corresponding values for η∗k, ω
∗. The

problem (55) can be written as
P4:

minimize
ω, ηk

ωPmax −N0

K∑
k=1

ηk

subject to C̃9 : Mk⪯0,T⪯0,ω≥0,ηk≥0.

(57)

We have following proposition for P4 when the optimal
values of all the ηk’s in P4 are zero.

Proposition 1. If none of the ηk > 0 in the optimal solution
of P4, then we can set V∗ = 0,U∗

k = Pmax∑K
i=1 pi

pkϕϕ
H

to maximize the objective value of P1-rel, where pk’s are
obtained from solving the following linear constraints

pk Tr(HkUk) ≥ Γk

 K∑
i=1,i̸=k

pi Tr(HkUi) +N0

 , (58)

K∑
k=1

pk ≤ Pmax. (59)

Proof. First note that when ηk = 0 ∀ k, then the optimal
value of P4 is ζmaxPmax. Now, if we use V∗ = 0,U∗

k =
Pmax∑K
i=1 pi

pkϕϕ
H , we will have same objective value for P1-rel
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and the guarantee to satisfy the rate constraints and sum power
are satisfied due to the choice of the values for each pk through
(58), (59). Thus, the proposition is proved.

Since for the special case of ηk = 0, ∀ k, we have
rank(U∗

k) = 1, rank(V∗) = 0, and thus the Lemma 1 is
proved for this special case when all the ηk’s are zero.

Next, we consider the possibility that there exists a subset
K such that η∗

k̂
> 0,∀ k̂ ∈ K. From (56) and using the

fact that rank(U∗
k) ≥ 1 due to the SINR constraints, it can

be easily deduced that rank(M∗
k) ≤ Nt − 1. Also, based on

Tr(T∗V∗) = 0 we have that

η∗
k̂

(
1+

1

Γk̂

)
Tr(Hk̂V

∗)+Tr(T∗V∗)=Tr(M∗
k̂
V∗)≤0,(60)

where the last inequality is a result of the fact that M∗
k̂
⪯ 0

and V∗ ⪰ 0. This means Tr(Hk̂V
∗) = 0 which implies

Hk̂V
∗ = 0, (61)

since both Hk̂,V
∗ are positive-semidefinite matrices. It fol-

lows that

(Φ− ω∗I−
∑
k∈K

η∗kHk)V
∗ = Tr(T∗V∗) = 0, (62)

which means (Φ−ω∗I)V∗ = 0. Thus, V∗ must be orthogonal
to Hk as well as (Φ − ω∗I). In what follows, we make use
of the following identities about the rank of matrices

rank(AB) ≤ min(rank(A), rank(B)), (63)

rank(−A) = rank(A). (64)

Then, it can be established that rank(Φ) = 1, rank(Hk) =
1, rank(Φ − ω∗I) ≥ Nt − 1. Since we have assumed that
Hk and Φ are independent, the combined dimensions of Φ−
ω∗I, Hk are Nt. Hence, we conclude that V∗ = 0 since it
is orthogonal to the total number of dimensions Nt. Hence,
the second property in the Lemma 1 is proved for all possible
cases.

To prove the first property in Lemma 1, we note that in
order to satisfy (56), V∗ must be a zero matrix. Therefore,
T∗ must be full rank, i.e. rank(T∗) = Nt. Also, we have

T∗ = M∗
k − η∗k

(
1 +

1

Γk

)
Hk. (65)

Multiplying U∗
k on both sides of (70) and using (61) we get

T∗U∗
k = −η∗k

(
1 +

1

Γk

)
HkU

∗
k, (66)

and since T∗ is full rank, we must have rank(T∗U∗
k) =

rank(U∗
k) and hence from (66) we have

rank(U∗
k) = rank

(
−η∗k

(
1 +

1

Γk

)
HkU

∗
k

)
≤ 1, (67)

where we have used (68), (69) and the fact that rank(Hk) = 1.
Combining (67) with the earlier observation that rank(U∗

k) ≥
1 to satisfy the SINR constraint of k-th CU, we conclude
rank(U∗

k) = 1. This completes the proof of the first property
in Lemma 1.

B. Proof of Lemma 2:

Proof. Let us denote the optimal value of P1 as x∗ and that
of P1-d as y∗. It is clear that y∗ ≥ x∗ due to the fact that the
optimal value of the dual of a maximization problem provides
an upper bound to the optimal value the problem.

In order to show that y∗ ≤ x∗, note that the duality gap
between SDR of P1, denoted as SDRP1 with optimal value
x∗
SDRP1, and its dual, denoted as SDRP1D with optimal value

y∗SDRP1D, is zero since its a convex optimization problem and
the Slater conditions [42] are satisfied. Hence, we must have
x∗
SDRP1 = y∗SDRP1D ≥ y∗. Also from Lemma 1, we have that

SDR relaxation of P1 is tight i.e. x∗ = x∗
SDRP1. Therefore,

we conclude that x∗ ≥ y∗. This completes the proof.

C. Proof of Lemma 3

Proof. We note that if uk is an optimal solution, then u∗
ke

jθk

is also an optimal solution since it does not violate any
constraints of P1 and achieves the same objective value. This
means we can apply any phase rotation to uk to make sure
that hH

k uk is a real positive value.

D. Proof of Lemma 4

Proof. Taking the derivative of (25) and putting it equal to
zero, we get

uk =

ωI−Φ+

K∑
i=1,i̸=k

ηihih
H
i

−1

ηkhkh
H
k uk. (68)

Now according to Lemma 3, without loss of generality
hH
k uk is a positive scalar value. Therefore, the optimal value

of uk is parallel to
[
ωI−Φ+

∑K
i=1,i̸=k ηihih

H
i

]−1

hk since
ηk ≥ 0. Hence, we have

uk =
√
pk

[
ωI−Φ+

∑K
i=1,i̸=k ηihih

H
i

]−1

hk∥∥∥∥[ωI−Φ+
∑K

i=1,i̸=k ηihihH
i

]−1

hk

∥∥∥∥ . (69)

Hence, (27) is proved. In order to find the values of {pk},
first we note that none of the values ηk is zero and all of the
ηk’s are bounded from above. This statement can be proved
with the help of (68) as follows. From (68) we can conclude

ηk =
N0Γk

hH
k

(
ωI −Φ+

∑K
i=1,i̸=k ηihihH

k

)−1

hk

. (70)

Now recall from the discussion in the proof of Lemma 1
that rank(ωI − Φ) ≥ Nt − 1 and since hk’s and steering
vectors are independent, ωI−Φ+

∑K
i=1,i̸=k ηihih

H
i is a full

rank positive definite matrix. Therefore, from (70) we have
ηk > 0 and these values are bounded from above. Using this
observation, and the existence of zero duality gap, it is easy
to see that the SINR constraints must be met with equality

Γk

K∑
i=1,i̸=k

|hH
k ui|2 + ΓkNo = |hk

Huk|2. (71)

From (71) we can obtain the values for {pk} and the proof
is completed.
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E. Proof of Lemma 5
Proof. First we assume that the optimal solution for the dual
problem of P2’-SDR has all η∗k = 0, where η∗k is the optimal
dual variable corresponding to the k-th SINR constraint. Then,
we can use an argument similar to Proposition 1 to show that
we can obtain a new optimal solution where V∗ = 0 and U∗

k =
Pmaxp

′
k∑K

i=1 p′
i

ϕ′ϕ′H where ϕ′ is the eigenvector corresponding to the
largest eigenvalue of Φ′. Moreover, p′k are the solution to the
following linear inequalities

p′k Tr(HkUk) ≥ Γk

 K∑
i=1,i̸=k

p′i Tr(HkUi) +N0

 , (72)

K∑
k=1

p′k ≤ Pmax. (73)

Hence, the proof is complete for the special case when
η∗k = 0, ∀k ∈ {1, · · · ,K}. Next, we consider the possibility
that at least one of η∗k ̸= 0. To prove that V∗ = 0, assume
that the optimal solution to P2’-SDR is {U∗

k}, and V∗ ̸= 0.
Then, we can obtain another solution {U′∗

k},V′∗ = 0 of P2’-
SDR such that U′∗

k̂ = U∗
k + V∗ for some k ∈ {1, · · · ,K},

U′∗
k = U∗

k,∀k ∈ {1, · · · ,K} \ k̂ and V′∗ = 0. By doing so,
we can easily observe that the optimal value for the modified
solution {U′∗

k},V′∗ = 0 is exactly the same as that achieved
by {U∗

k},V∗ ̸= 0. Furthermore, it is easy to verify that all the
constraints in P2’-SDR are satisfied for the modified solution.
This proves the first statement of Lemma 5 for the case when
at least one of η′k is positive. In order to proceed further, we
set V = 0 in P2’-SDR. Then P2’-SDR can be written as

P2’-SDR:

maximize
Uk

K∑
k=1

Tr(Φ′Uk)

subject to C̃1− C̃3.

(74)

Using a well known result in [43, Theorem 3.2], it can be
shown that there exist rank one solutions for all Uk’s for P2’-
SDR.

F. Proof of Lemma 6
Proof. In order to prove this lemma, first we note that
the sum of Toeplitz matrices is also a Toeplitz matrix.
Also, I is a Toeplitz matrix. We only need to show that
A(θi)uku

H
k AH(θi) is a Toeplitz matrix for each i ∈

{1, · · · , I} and k ∈ {1, · · · ,K}. Note that

A(θi)uku
H
k AH(θi) = |aHt (θi)uk|2︸ ︷︷ ︸

positive scalar

ar(θi)a
H
r (θi), (75)

where we have used the definition of A(θ) = ar(θ)a
H
t (θ).

Furthermore, note that ar(θ)aHr (θ) has following form

Ξ(θi) =



1 zi z2i · · · zNr−1
i

z−1
i 1 zi

. . .
...

z−2
i z−1

i 1
. . . z2i

...
. . . . . . . . . zi

z
−(Nr−1)
i · · · z−2

i z−1
i 1


, (76)

where zmi = e−jπmλ sin(θi),∀ m ∈ {0, · · · , Nr − 1}. Since
Ξ(θi) follows the general Toeplitz structure, S, hence Ξ(θi)
is a Toeplitz matrix. Combining this fact with the additive
property of Toeplitz matrices, we conclude that W({uk}) is
a Toeplitz matrix.

G. Proof of Lemma 7

Proof. This lemma follows from the fact that any Hermitian
Circulant matrix has a eigenvalue decomposition where the
eigenvectors are the columns of discrete Fourier transform
(DFT) matrix. Hence, we can write X−1 =

(
FHDF

)−1
=

FH , where D is the diagonal matrix whose diagonal ele-
ments are the eigenvalues of X. Thus, we have X−1 =
FHD−1F.

H. Proof of Lemma 8

Proof. In order to proof this lemma, first we show that

uH
kA

H(θ0)W
−1A(θ0)uk≃uH

kA
H(θ0)G

−1A(θ0)uk, (77)

where G denotes the Circulant matrix approximation of W
and Λ is a diagonal matrix in which the diagonal elements are
the eigenvalues of matrix G. Then, we extend this result over
the summation for k ∈ {1, · · · ,K} by noting the inequality∑K

k=1 yk ≤
∑K

k=1 |yk|. Hence, we need to show that

lim
Nr→∞

∣∣∣∣Tr(A(θ0)uku
H
kA

H(θ0)W
−1

)
−Tr

(
A(θ0)uku

H
kA

H(θ0)G
−1

)∣∣∣∣ ≤ 0. (78)

Toward this end, we use the matrix trace inequality to get∣∣∣∣Tr(A(θ0)uku
H
kA

H(θ0) W
−1

)
−Tr

(
A(θ0)uku

H
kA

H(θ0)G
−1

)∣∣∣∣
≤Tr (Φk)Tr

(
W−1−G−1) , (79)

where Φk = A(θ0)uku
H
kA

H(θ0). Also, from the maximum
power constraint we have

Tr (Φk) ≤ Pmax. (80)

Therefore, the inequality (79) can be written as∣∣∣∣Tr(A(θ0)uku
H
kA

H(θ0) W
−1

)
−Tr

(
A(θ0)uku

H
kA

H(θ0)G
−1

)∣∣∣∣
≤ Pmax Tr

(
W−1−G−1

)
. (81)

Assume that n-th eigenvalue of W and G are denoted by
cmin ≤ τn ≤ cmax and cmin ≤ ιn ≤ cmax, respectively.
Then, we have

Tr
(
W−1−G−1

)
= Tr

(
W−1

)
− Tr(G−1)

=
1

cmax

(
Nr∑
n=1

1

τ̂n
−

Nr∑
n=1

1

ι̂n

)
, (82)

where τ̂n = τn
cmax

and ι̂n = ιn
cmax

. After simplifications, we
can write the right hand side (RHS) of (82) as

Nr∑
n=1

1

τ̂n
−

Nr∑
n=1

1

ι̂n
=

(∏Nr

n=1 ι̂n

)(∑Nr

j=1

∏Nr

l=1,l ̸=j τ̂l

)
(∏Nr

n=1 ι̂n

)(∏Nr

n=1 τ̂n

)
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−

(∏Nr

n=1 τ̂n

)(∑Nr

j=1

∏Nr

l=1,l ̸=j ι̂l

)
(∏Nr

n=1 ι̂n

)(∏Nr

n=1 τ̂n

) . (83)

Next, without loss of generality1, we assume
∏Nr

n=1 τ̂n ≥∏Nr

n=1 ι̂n then we can derive the following upper bound on
(83)
Nr∑
n=1

1

τ̂n
−

Nr∑
n=1

1

ι̂n
≤
∑Nr

j=1

∏Nr

l=1,l ̸=j τ̂l −
∑Nr

j=1

∏Nr

l=1,l ̸=j ι̂l∏Nr

n=1 ι̂n

≤

∣∣∣∑Nr

j=1

∏Nr

l=1,l ̸=j τ̂l −
∑Nr

j=1

∏Nr

l=1,l ̸=j ι̂l

∣∣∣∏Nr

n=1 ι̂n
.(84)

Furthermore, using the Triangle inequality on the RHS of (84),
we can write

Nr∑
n=1

1

τ̂n
−

Nr∑
n=1

1

ι̂n
≤

Nr∑
j=1

∣∣∣∏Nr

l=1,l ̸=j τ̂l −
∏Nr

l=1,l ̸=j ι̂l

∣∣∣∏Nr

n=1 ι̂n
. (85)

Before proceeding further, we note that

|t1t2 − s1s2| ≤ |t1 − s1|+ |t2 − s2|, (86)

for all |t1| ≤ 1, |s1| ≤ 1, |t2| ≤ 1, |s2| ≤ 1, which can be
expanded to∣∣∣∣∣

N∏
n=1

tn −
N∏

n=1

sn

∣∣∣∣∣ ≤
N∑

n=1

|tn − sn|, ∀ |tn| ≤ 1, |sn| ≤ 1,

(87)
for all n ∈ {1, · · · , N} by induction. Consider a single term
on the RHS of (85) for j = 1. Then, with the help of (87),
we can write∣∣∣∏Nr

l=1,l ̸=1 τ̂l −
∏Nr

l=1,l ̸=1 ι̂l

∣∣∣∏Nr

n=1 ι̂n
≤
∑Nr

l=2 |τ̂l − ι̂l|∏Nr

n=1 ι̂n
≤
∑Nr

l=1 |τl − ιl|
cmax det (G)

(88)
where det (G) denote the determinant of the matrix G.
Next, using the following result about the Circulant matrix
approximation of Teoplitz matrix from [44, Theorem 1]

lim
Nr→∞

max
n∈{1,2,··· ,Nt}

|τn − ιn| = 0, (89)

we can write

lim
Nr→∞

∣∣∣∏Nr

l=1,l ̸=1 τ̂l −
∏Nr

l=1,l ̸=1 ι̂l

∣∣∣∏Nr

n=1 ι̂n
≤ 0. (90)

The result in (90) can be obtained for all the terms on the
RHS of (85). Thus, we have

lim
Nr→∞

Nr∑
n=1

1

τ̂n
−

Nr∑
n=1

1

ι̂n
≤ 0. (91)

Combining the result in (91) with (82) and (81), we get (92),
shown at the top of next page. Finally, summing (92) over
all k ∈ {1, 2, · · · ,K} we get (93), (94). This completes the
proof.

1Note that, the procedure can also be applied for the other case, since we
are using the absolute values in our proof subsequently. Hence, we consider
only one case to save space.
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lim
Nr→∞

∣∣(Tr (A(θ0)uku
H
kA

H(θ0)W
−1
)
−Tr

(
A(θ0)uku

H
kA

H(θ0)G
−1
))∣∣≤ 0. (92)

lim
Nr→∞

|α0|2
K∑

k=1

uH
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ũH
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