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Abstract: The development of new renewable energy technologies is generally perceived as a critical
factor in the fight against climate change. However, significant difficulties arise when estimating
the future performance and costs of nascent technologies such as wave energy. Robust methods
to estimate the commercial costs that emerging technologies may reach in the future are needed to
inform decision-making. The aim of this paper is to increase the clarity, consistency, and utility of
future cost estimates for emerging wave energy technologies. It proposes a novel three-step method:
(1) using a combination of existing bottom-up and top-down approaches to derive the current cost
breakdown; (2) assigning uncertainty ranges, depending on the estimation reliability then used, to
derive the first-of-a-kind cost of the commercial technology; and (3) applying component-based
learning rates to produce the LCOE of a mature technology using the upper bound from (2) to
account for optimism bias. This novel method counters the human propensity toward over-optimism.
Compared with state-of-the-art direct estimation approaches, it provides a tool that can be used to
explore uncertainties and focus attention on the accuracy of cost estimates and potential learning
from the early stage of technology development. Moreover, this approach delivers useful information
to identify remaining technology challenges, concentrate innovation efforts, and collect evidence
through testing activities.

Keywords: emerging technology; future cost projection; learning rate; uncertainty propagation;
wave energy

1. Introduction

According to Rubin [1], a technology can be defined as emerging if is not yet deployed
or ready for purchase on a commercial scale. The design details of an emerging technology
are still preliminary or incomplete, performance has not been sufficiently validated, and
it may require new components and subsystems that are not available off-the-shelf. Its
current stage of development may range from concept to single device demonstration. On
a technology readiness level (TRL) scale [2], emerging technologies encompass a TRL of
2 to 7, which is usually the main focus of research and development programmes. This is
the case for wave energy technologies, which are still at the validation phase, or TRL 5 [3].

A common evaluation criterion to assess the feasibility and competitiveness of emerg-
ing renewable technologies is the future cost of the commercial-scale version once the
technology is mature and widely deployed. The affordability metric typically used is the
levelized cost of energy (LCOE) [4]. The LCOE provides a complete picture of technology
development in the market by accounting for all lifetime costs and energy production.
However, this is not a simple task for prototype technologies due to a lack of previous
experience and various uncertainties and unknows. In fact, the direct quantification of the
LCOE for single prototypes yields unsuitable results, and therefore a future projection is
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needed. The LCOE estimate thus represents the future commercial cost that the emerging
technology could achieve with sufficient replication provided its technical performance
goals are met. The aim of such estimation is twofold: to allow comparison with other
technologies currently exploited in the market and to benchmark different cost reduction
targets or alternative technology concepts.

The estimation of future costs of wave energy has attracted great interest in order to
demonstrate the potential of this renewable energy technology. Various studies have been
published providing projections for the entire sector. The OES Technology Collaboration
Programme by the IEA developed a study of the international levelized cost of energy
for ocean energies in 2015 [5], which directly questioned developers on current costs and
future targets. The estimations were updated in 2020 following the same methodology.
Although the full report is not accessible, public results show that wave technologies will
be able to reach the cost targets defined in the European Strategic Energy Technology Plan
(SET-Plan) [6]. These targets are EUR 150/MWh by 2030 and EUR 100/MWh by 2035 for
wave energy.

The Joint Research Centre (JRC) periodically publishes ocean energy status reports
with cost estimations [3]. Cost are mainly based on the energy technology reference indica-
tor (ETRI) projections for 2010–2050 [7] and the scenario-based cost trajectories to 2050 [8].
These in turn are derived from open literature (both primary and secondary sources), expert
judgements, information from other similar technologies, and the application of learning
curves with the cumulative capacity foreseen. The higher and lower cost estimates vary
significantly due to a lack of a dominating technology and the associated uncertainties
related to unproven technologies. Nonetheless, the limited data available from technologies
currently under development suggest an LCOE in line or below the SET-Plan targets by
2030 in good resource sites after 1 GW installed capacity [3].

In the UK in 2018, ORE Catapult analysed the cost reduction pathway for wave
energy [9]. Single devices reported a cost in excess of GBP 300/MWh together with key
cost reductions to GBP 100/MWh after 1GW of deployment through learning by doing,
process optimisation, engineering validation, and improved commercial terms. However,
again, the lack of data, particularly energy generation, made it hard to accurately estimate
the future cost of energy.

Although these studies provide a helpful tool to track the progress of the wave
energy sector, they cannot be used to benchmark alternative technology options or assist in
decision-making during the different stages of technology development. In this respect,
various approaches have been recently proposed to assess wave energy technologies at
early stages of development.

The detailed bottom-up techno-economic approach is the most common costing
method used for energy technologies. Some future LCOE projections found for wave
energy technologies are Oscilla Power’s Triton [10], M3 Wave [11], UGEN [12], or Sandia’s
Reference Model Project [13]. In this approach, the design of the wave energy device
and balance of plant and array layout, together with the corresponding technical and
operational performance parameters, are specified. Based on this information, the capi-
tal expenditure (CAPEX) and operational expenditure (OPEX) costs are estimated for a
particular deployment site. This cost is then aggregated with other costs such as project
development, insurance, and decommissioning costs, and, as a result, an LCOE is obtained.
However, this direct method of estimating the future cost of a commercial-scale technology
is only suitable for technologies that are close to commercialisation and whose design is
well defined. Experience demonstrates that cost estimates for emerging technologies tend
to be rather optimistic and significantly lower than the actual cost of the first commer-
cial plant deployed [14]. As the design is further detailed and unforeseen technological
issues uncovered in the development process, the estimated costs of these technologies
tend to escalate. Subsequently, the relatively high cost of early deployments declines as
the technology is replicated and learning is capitalised through more efficient designs
and processes.
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Alternatively, Têtu [15] proposed a top-down approach based on the target LCOE for
the specific market and a technology-agnostic breakdown of costs to derive thresholds for
the different cost centres. Various ranges of uncertainties are suggested per development
stage as described in [16]. Developers can use this approach internally to inform their
technical decisions, but the method lacks transparency where the cost estimation and the
allocation of different levels of uncertainty to the detailed breakdown are concerned. A
similar approach based on a reverse cost calculation was developed by Pennock [17] for
emerging technologies. In this case, the current cost thresholds for early-stage devices
are calculated in order to reach the 2030 SET-Plan levelised cost targets [6]. Component-
based learning curves are applied, and the resultant breakdown of costs is compared with
cost estimates for current devices to identify areas where further cost reduction is still
needed. This method provides more clarity but still requires the external assumption of a
standard breakdown of costs for the particular class of device (e.g., point absorber), which
might differ for the wave energy concept considered. Moreover, uncertainties in the initial
estimations are not embedded, but only a sensitivity to the learning rates applied.

To overcome the limitations of the previous methods, this paper proposes a combina-
tion of both the bottom-up and top-down approaches. Starting from the current breakdown
of costs, uncertainty ranges are assigned depending on the reliability of the estimation and
used to derive the first-of-a-kind cost of the commercial technology. Component-based
learning rates are then applied to produce the LCOE of a mature technology after achieving
installation of a certain capacity through various commercial projects. Learning rates are
also subjected to varying uncertainty.

This paper provides a transparent method for estimating of the future costs of wave
energy technologies at early stages of development that counters the propensity toward
over-optimism. It supplements the IEA-OES international evaluation framework [18],
which prescribes the LCOE as the highest-level affordability metric but fails to provide the
specific procedures to perform such an estimation. This novel approach is illustrated with
the assistance of a case study. The Reference Model Project [13] provides the underlying
information to implement this approach. Future LCOE estimations will be compared with
direct methods and overall estimations based on expert judgements.

The proposed method is mainly intended for wave energy technology developers.
The ultimate goal is to assist them in reducing the high development cost, time, and risk
of wave energy technologies. This is quite relevant since there are 87 active wave energy
developers, 60% of which are still in the early phases of technology development [19].

2. Methodology

As explained before, the direct quantification of the LCOE is highly unsuitable for
prototype technologies. The affordability assessment of an emerging technology requires
the future projection of costs with regard to the commercial technology and a first-of-a-kind
commercial deployment. To be precise, this farm project should be the smallest size of a
wave energy array for the LCOE to yield a meaningful value.

The proposed approach for estimating future costs of emerging wave energy technolo-
gies is an indirect method which consists of three main steps as shown in Figure 1:

• Step 1: Estimation of current cost and performance based on a standardised cost and
performance breakdown. The emerging technology is assessed with reference to a
first-of-a-kind commercial deployment.

• Step 2: Cost escalation to account for uncertainties in the estimations. Uncertainty
ranges (lower and upper bounds) are assigned based on the reliability of the input
data at each stage of development. Incorporation of standardised contingencies allows
for the estimation of costs for the evolving technology with regard to the same first-of-
a-kind commercial deployment.

• Step 3: Projection of the future cost based on technology replication. Component-
based learning rates are then applied to the upper bound obtained in the previous step.
The upper bound is used to counterbalance the inherent optimism bias in early-stage
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estimates. The technology is assessed in its mature format and when it has been
widely deployed.
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Figure 1. Proposed 3-step approach for estimating the future cost of an emerging wave energy
technology at different stages of technology development, with an illustrative LCOE estimate and
uncertainty at each stage.

The reader should note that the stages of technology development are not drawn in a
time scale in Figure 1. In fact, time is not evenly distributed through the development stages.
More time and effort should be allocated to the initial stages, and the overall development
time depends on the selected development trajectory [20].

2.1. Step 1: Estimation of Current Cost and Performance

The first step of this approach involves the bottom-up estimation of the LCOE for
the emerging technology at its current state of development. Wave energy technology
is decomposed into major cost centres. For emerging technologies which are at lower
TRLs, this can include a simplified list of subsystems and cost centres. Further granu-
larity (more breakdown levels) can be added as the technology moves up the TRL scale.
Parametric modelling is used to identify functional relationships between physical and per-
formance characteristics of an item and its costs, derived from experience and engineering
judgement [21].

The standardised cost and performance breakdown used in this work is shown in
Figure 2 to the fourth level of detail. It builds upon several published guidance documents
and tools such as the US Department of Energy reporting guidance [22], BVGA ocean
energy value chain study [23], the COE Calculation Tool commissioned by the Danish
Transmission System Operator [24], or the DTOceanPlus design tools [25]. These guidance
documents are useful to avoid omitting any relevant cost centre.

For the estimation of future costs, a wave energy farm model is created representing an
illustrative first commercial project of 50 units. Considering that rated capacity for utility-
scale wave energy technologies usually ranges 200–1500 kW [26], this means between
10 and 75 MW in total. The array size lies in the range of the capacity used for cost
estimation of commercial farms [27]. The wave farm model should describe deployment
site characteristics, water depth, distance to the shore, and other design parameters used.
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Figure 2. Standard cost and performance breakdown for an illustrative commercial project (adapted
from [22–25]).

The first breakdown level fully aligns with the general LCOE equation. Due to the
emerging nature of this technology, it is assumed that the annual O&M costs and annual
energy production will remain constant during its lifetime. This is a common hypothesis in
most techno-economic models and is reasonable provided the long-term average system
uptime and site resource are used for the calculation of energy. In this case, the simplified
LCOE can be represented using the following expression [28]:

LCOE =
CAPEX× FCR + OPEX

AEP
(1)

where

• CAPEX, capital expenditure, represents all capital costs associated with the farm
development, manufacturing, installation, and decommissioning at the end of the
project’s life.

• FCR, fixed charge rate, is the annual return, that is the fraction of the CAPEX needed
to meet investor revenue requirements,

• OPEX, annual operating expenditures, include all routine maintenance, operations,
and monitoring activity,

• AEP, annual energy production, represents the average net annual energy generated
(after accounting for availability) and delivered to the grid.

A brief description of this breakdown is provided in the sections below.
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2.1.1. CAPEX

CAPEX can be broken down into farm development costs, financial costs, and all the
expenditures associated with the manufacture, installation, and commissioning of both the
wave energy converters (WEC) and the balance of plant (BoP).

Development costs comprise engineering (e.g., project management, design engi-
neering, planning, and certification) and permitting services (e.g., environmental studies,
consenting, and licenses). Financial costs include insurance during construction and de-
commissioning bonds.

The generic WEC system breakdown [29] has been used to structure the costs of WEC
and BoP manufacture. The WEC contains:

• A hydrodynamic system, comprising structural elements, ballast, and ancillary sys-
tems (e.g., navigation lights, bollards, and deck crane).

• Power take-off (PTO), including the prime mover (either mechanical, pneumatic, hy-
draulic, or direct drive), electrical generator, short-term storage, and power electronics.

• Instrumentation, control, and safety systems, ranging from sensors, comms, control
software, cooling, lubrication, firefighting, and back-up power.

On the other hand, the BoP includes all the supporting infrastructure and auxiliary
systems of the wave farm needed to deliver the energy other than the WEC itself [30], i.e.:

• Station-keeping, including the foundation (e.g., anchors and piles), mooring lines for
compliant systems, or substructure for rigid systems.

• Grid connection, comprising the umbilical, intra-array, and export power cables.
• Offshore substation and switchgear.

The installation and commissioning cost of the WEC and the different subsystems
comprising the BoP are considered.

A basic estimate of some of these costs, such as development and financial costs, can
be expressed as a percentage of total CAPEX costs. Guidance can be found in [31], where
Têtu and Fernandez Chozas performed a comprehensive literature review in order to build
a cost database for wave energy projects. However, as we will see in Section 2.2, whenever
feasible, it is much better to use more sophisticated techno-economic methods to increase
the accuracy of the cost estimations.

2.1.2. OPEX

OPEX is usually measured on an annual basis. These costs can be broken down
into operation and maintenance (O&M) costs, as well as site leases and insurance during
operation. Costs related to site leases and insurance are self-evident. Insurance transfers
the risks associated with the replacement of faulty components during the underwritten
period of time (usually 5 years).

O&M costs include servicing of the WECs and BoP. Depending on the ability to plan
the activities, these costs can be split between:

• Scheduled maintenance, which includes periodic inspections and preventive actions.
• Unscheduled maintenance, which comprises all corrective actions to restore the op-

erational capabilities of the farm and the logistical cost of waiting for a suitable
weather window.

Again, when data is scarce, OPEX can be estimated as a percentage of CAPEX [31].
This is a basic estimate with high uncertainty. As the technology developer starts designing
operational plans, techno-economic estimations based on the failure rate of components
and subsystems, vessel cost, operation time, and the cost of spares should be a more
appropriate tool to improve the accuracy.

2.1.3. Financial Assumptions

A key consideration for utility-scale renewable energy technologies is the impact of
the availability and cost of capital on LCOE values. The discount rate (a proxy of the cost
of capital) and the project lifetime are the two main parameters.
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Assumptions of discount rates are crucial for the assessment of wave energy tech-
nology and investment decisions. However, they are subject to a significant degree of
uncertainty since the expectations and risk perceptions of investors and project sponsors
differ significantly. Discount rates are often estimated based on the weighted average
cost of capital (WACC) [32]. The WACC gives an estimate of the cost of raising capital,
which is equivalent to the approximate return required by potential creditors (debt) and
investors (equity).

The simplified LCOE expression uses the fixed charge rate (FCR) [33]:

FCR =
d[

1− (1 + d)−n
] (2)

where d is the discount rate and n is the project lifetime in years.

2.1.4. AEP

Calculating net AEP should closely follow the IEC’s technical specification 62600-
100, “Electricity producing wave energy converters—Power performance assessment” [34].
Assumptions regarding the wave energy resource at the intended deployment site and
the numerical method for estimating performance should be documented and justified.
Particularly, the estimations should account for losses due to directionality, shallow water,
and array interaction effects, together with WEC ancillary energy consumption needs.

The AEP is the product of the rated power of the array, the capacity factor, and
the availability

AEP = 8766× P× CF× AF (3)

where:

• 8766 is the average total hours in a year.
• P is the rated power of the farm.
• CF is the capacity factor.
• AF is the availability factor.

CF represents the ratio of the energy produced by the technology continuously operat-
ing over a year compared to the energy that could have been produced at the rated power
during the same period. In turn, CF can be computed as the product of the device capture
efficiency (i.e., the ratio of absorbed and rated power), the conversion efficiency (i.e., the
ratio of converted and absorbed power), and the transmission-to-grid efficiency (i.e., the
ratio of grid and device output power).

AF is the fraction of time in a year that the wave energy technology is capable of
producing energy [35]. By convention, the zero production periods (i.e., wave resources lie
below or above certain limits) are counted against the CF but not against the AF.

2.2. Step 2: Cost Escalation to Account for Uncertainties

For commercial technologies, the costs of a farm project are commonly calculated based
on quotes or published data, and when costs are not readily available, they can be estimated
using engineering handbooks and numerical models. However, for emerging technologies
that have not yet been built at a commercial scale, the direct estimation method might be
misleading due to the associated uncertainty in making the cost appraisals. The importance
of estimating initial costs is paramount since it will determine the total additional spending
required for an emerging technology to be cost competitive in the market.

Actually, LCOE estimates of wave energy technologies can vary widely across studies
depending on the external properties and the complexity of the analysis methods uti-
lized [21]. Both aspects were highlighted in the previous step. For a correct interpretation
of results, it is essential to undertake a careful examination of the underlying assumptions
of farm size, deployment site characteristics, cost of capital, materials, and service vessels.
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The current step of the method deals with a third source of variability, namely the
uncertainty of the input data for the wave energy farm model. Assigning a range with a
nominal confidence band is a good practice that provides much more useful information for
decision-making. However, emerging technologies imply that little experience is available
to assign ranges of uncertainty to costs.

Several strategies can be used to allocate expected ranges of accuracy to the estimations
based on expert judgement. Previsic [16] assigns uncertainty ranges as a double function
of the stage of technology development and the source of input data for the estimation
for wave energy technologies. Hence, estimation accuracy may vary from −30% to +80%
for simplified estimations and technologies at the concept stage and from −5% to +5%
for detailed estimates of mature technologies. Fernandez-Chozas [24] applies Previsic’s
uncertainty ranges to the AEP data for each development stage and source of performance
estimates (i.e., power matrix and standard sea states). Likewise, organisations including
EPRI [36], the DOE [37], and the Association for the Advancement of Cost Engineering
International (AACE) [38] have defined several cost estimate classes ranging from “sim-
plified” to “finalised”. Parsons performed an exhaustive review and comparison of cost
contingency practices and standards to conclude that AACE represents best industry prac-
tices [39]. Cost estimation should require increasing levels of effort (and expense) as the
technology moves from concept and preliminary design to demonstration and replication.

The ability to properly combine uncertainties from different cost factors is crucial.
The individual estimates and their uncertainties can be combined statistically provided
they can be calculated with statistical techniques. Rothwell [40] shows that the current
engineering guidelines are consistent with contingencies equal to the standard deviation
of the cost estimate. He derives the standard deviation from an 80% confidence level
using a lognormal probability distribution, since most cost estimate accuracy ranges are
non-symmetric. This is because final costs are usually higher than those estimated, and
there is no probability that the final cost will ever be less than zero (which is a possibility
with the normal distribution).

Table 1 presents the suggested contingencies and expected accuracy ranges used
by current engineering guidelines for the different types of cost estimates as well as the
corresponding lognormal property fit of the uncertainty ranges. Statistical properties have
been normalised by the mode, the most likely estimate. The median represents the 50%
probability, which is an indication of the basic uncertainty factor. The standard deviation
(Std) has been adjusted with reference to the upper bound in AACE guidelines for an
80% confidence level interval. It can be noted that the statistical fit results in a Std within
the range of the expected accuracy values except for the final estimate, in which it is
slightly lower.

Table 1. Suggested contingencies and lognormal properties of uncertainty ranges normalised by
mode (adapted from [40]).

Type of Estimate
AACE Statistical Properties

Class Contingency Accuracy Range Median Mean Std 80% Confidence

Concept Class 5 50% −50% to +100% 1.159 1.249 43% −33% to +101%
Simplified Class 4 30% −30% to +50% 1.068 1.104 27% −24% to +51%
Preliminary Class 3 20% −20% to +30% 1.031 1.047 18% −18% to +30%
Detailed Class 2 15% −15% to +20% 1.017 1.025 13% −14% to +20%
Final Class 1 5% −10% to +15% 1.005 1.007 7% −8% to +10%

Assuming independence of each factor, the probability distributions can now be
combined. This is particularly simple if each distribution can be treated as lognormal.
In such instances, the final distribution is also lognormal, with the logarithmic standard
deviation given by the square root of the sum of squares of the individual geometric
standard deviations. Moreover, the error propagation technique can be used to combine
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uncertainties from multiple variables in the techno-economic expressions of the wave
energy LCOE model.

Propagation of error (or uncertainty) is a calculus-derived statistical calculation de-
signed to combine uncertainties from multiple quantities to another quantity. It is based
on a set of simple mathematical rules. The standard deviations are used to calculate the
resulting uncertainty. Furthermore, provided variables are independent, covariances will
be avoided. The general formula for error propagation is given by:

δq =

√(
∂q
∂x

δx
)2

+ . . . +
(

∂q
∂z

δz
)2

(4)

where q is a function that depends on the estimated quantities, x, . . . , z and their associated
uncertainties, δx, . . . , δz.

The process for error propagation involves:

1. Identifying the uncertain variables in the techno-economic expression for cost estimation.
2. Taking partial derivatives with respect to each of the variables identified in the previ-

ous step.
3. Multiplying the partial derivatives by the associated uncertainty to calculate the error

contribution from each variable.
4. Adding the contributions in quadrature.

The uncertainty estimation in the LCOE is not direct, but it is calculated by means of its
formula involving CAPEX, OPEX, FCR, and AEP. In turn, each of these factors were derived
in Step 1 using basic parametric relationships. Error propagation is used to calculate the
aggregated uncertainty in a cascading manner from the lowest level of the standard cost
and performance breakdown. For instance, the structural cost of the hydrodynamic system
can be calculated from three techno-economic variables: the unit cost of the main raw
material (EUR/kg), a coefficient to account for the manufacturing complexity (-), and the
structural weight (kg). Ranges of uncertainty in the material unit cost (exogenous factor),
maturity of manufacturing processes (suppliers’ capability), and estimation of the structural
weight (design accuracy) will determine the aggregated uncertainty in the estimation of the
hydrodynamic system cost, in this case, the geometric mean of the standard deviations. This
estimate in turn will be combined with other capital expenditures to derive the uncertainty
in the WEC, farm CAPEX, and finally the LCOE.

2.3. Step 3: Projection of the Future Cost with Technology Replication

The third and final step of the methodology involves the application of learning curves
to project the future costs of wave energy technology once it has been sufficiently replicated
and the estimation of uncertainties in the forecast due to learning. Different learning
mechanisms have been described in the literature, such as in [41–43]. The most important
mechanism is technological learning. Other learning factors may include:

• Economic learning, i.e., shifting production to low-wage countries.
• Social learning; as stakeholders become more familiar, they increase trust in one another.
• Financial learning; as banks and investors gain confidence in a new technology, they

reduce the expected interest rates.

These exogenous factors have a significant impact on the LCOE estimation, but un-
fortunately, they can only be accounted for within the initial assumptions or through
sensitivity analysis.

Technological learning is an endogenous factor that encompasses learning by research
in the early stages due to R&D investments, learning by doing during the production stage
due to higher efficiency of manufacturing processes, learning by using in the initial stage of
introduction of the technology into the market, and learning by interaction in the diffusion
of the technology incidentally reinforcing the previous factors. Scale effects are also part
of the technological learning mechanism, both upsizing (i.e., the increase in rate power)
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through technology redesign leading to lower unit costs, and economies of scale (i.e., mass
production) through standardisation allowing upscaling of production facilities.

The analysis presented in this paper uses the learning curve method as the most
applied approach. The commonly used formulation originates from empirical observations
across diverse energy technologies that often evidence a log-linear relationship between
cost reductions driven by manufacturing, standardisation, scale of production and use,
and cumulative installed capacity or production [44]. In the simplest form, it can be
expressed as:

Y = axb (5)

where Y is the cost of the technology and x represents the cumulative experience (often
characterised by the installed capacity in MW). The constants a and b denote the cost of
the first commercial deployment and the rate of cost reduction, respectively. Note that b
represents the slope in a log-log scale in Equation (5). The cost reduction associated with
duplication of experience is referred to as the learning rate (LR).

LR = 1− 2b (6)

The independent variable x in Equation (5) reflects all the factors that influence the cost
trajectory of the technology. Often, combinations of technological learning occur at each
stage, and their contributions may change during the development of a technology over
time. Furthermore, single-factor learning curves do not necessarily describe the underlying
factors of cost reduction [44]. Some components and subsystems in wave energy farms,
such as electrical infrastructure and offshore operations, are not entirely new to the market.
They build on the experience gained from more mature sectors, a disaggregated approach
that can account for individual learning effects at the component level leading to improved
cost reduction estimations for emerging technologies which lack historical data. This can
take advantage of past learning rates for direct comparable technologies in order to build a
composite learning rate. In addition, it can break apart the impact of raw material spending
(an exogenous parameter) from other cost reductions due to cumulative experience.

Learning rates found in the literature for wave energy technologies mainly rely on
expert judgements, expectations, and assumptions. They tend to differ widely even at
the subsystem level [8]. Overall LRs range from a low 9% [45] to an optimistic 30% [5].
Component-based learning rates range 1% to 12% [27]. Similarly, SI Ocean [46] included a
learning rate of 3% for the capacity factor in its LCOE projections.

Since there is little empirical evidence to establish the learning rates for WEC tech-
nologies, the component-based learning approach used in this work allocates them de-
pending on the stage of development of the individual components. Three main categories
are defined:

• Mature components. These are technologies already established in the market that
have well-known characteristics and limited potential for cost reduction due to learn-
ing. Low learning rates of 0–5%. E.g., export power cables.

• Evolving components. These have niche market commercialisation and have the
potential for significant cost reductions due to learning. Medium learning rates of
5–10%. E.g., prime mover.

• Emerging components. These have not been commercialised yet, but their potential learn-
ing cost reductions are high. High learning rates of 10–20%. E.g., maintenance operations.

The upper bound of learning rates is consistent with analyses such as the PelaStar cost
of energy [47] and WaveBoost [48]. In these studies, the technological maturity of each
major cost item is categorised as “mature”, “emerging”, or “nascent/emerging 2” with 5%,
10%, and 15–20% learning rates, respectively. The lower bound refer to more conservative
analyses such as NEMS [49]. Technologies classified as “conventional”, “evolutionary”,
and “revolutionary” are assigned 1%, 5%, and 10% learning rates, correlatively.
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Assigning error margins to LRs is recommended to avoid overrepresentation in cost
reduction estimates [50]. Forecasts are highly sensitive to uncertainties in the progress ratio.
As in the previous step, the error can be calculated from the error propagation theory [43]:

δLR =
∂
(

1− 2−b
)

∂b
δb = ln2·2−b·δb = ln2·LR·δb (7)

where δb is the uncertainty in the experience parameter and δLR is the resulting uncertainty.
Moreover, the cost reduction for a technology cannot be realised continually. There

will be a bare minimum or baseline cost necessary to build a technology. As suggested in
Section 2.2, segregating the price of raw materials from the estimation of manufactured
component costs is a recommended strategy to prevent this situation.

3. Case Study and Results

The application of the proposed cost estimation methodology is illustrated with the
help of one of the reference models (RMs) for wave energy technologies [13]. The RM
project team, led by Sandia National Laboratories (SNL), included a partnership between
the US Department of Energy (DOE), the National Renewable Energy Laboratory (NREL),
and other US laboratories. The RMs provide a non-proprietary, open-source instrument
for technical and economic assessment and validation of design tools, as well as the
identification of cost reduction pathways and research priorities to meet the affordability
targets. The wave energy models [51] reproduce three common archetypes, namely, a
point absorber (RM3), an oscillating wave surge converter (RM5), and an oscillating water
column (RM6).

The present case study is based on the RM5, a floating oscillating wave surge converter
(OWSC) designed for a wave site near Eureka in Humboldt County, California. The
OWSC is one of the most promising wave energy technologies in terms of its energy
absorption capabilities [52]. It basically consists of a vertical flap that faces the waves
and articulates in its lower part for rotation. The surge motion of waves creates a back-
and-forth movement from which energy is extracted [53]. Several OWSC designs have
been proposed, including Aquamarine Power’s Oyster [54], AW-Energy’s WaveRoller [55],
Resolute Marine’s Wave2O [56], and Langlee’s Robusto [57]. The floating version of OWSCs
tackle the potential environmental restrictions of nearshore shallow waters, at the same
time opening the way to harness the higher wave energy resource in deep-water sites [58].

Figure 3 shows a schematic of the floating OWSC device. The flap rotates against the
supporting frame to convert wave energy into electrical power from the motion induced
by incoming waves. An oleo-hydraulic PTO with two rams, high pressure accumulators,
electrical generator, and corresponding switchgear is used to transform the oscillation in
electrical power. The device is tension-moored to the seabed in deep waters (50 to 100 m)
through four tendons.
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NREL created a techno-economic model for the assessment of the LCOE with multiple
scenarios ranging from a single RM5 device to arrays of 10, 50, and 100 units [59]. For
the estimation of future costs, this case study uses the cost breakdown of the 50-unit farm
model, which can be considered representative of the first commercial project. The RM5
has a rated capacity of 360 kW, which results in an 18 MW wave energy farm.

The array configuration is depicted in Figure 4. A staggered configuration with
600 m spacing between the devices to accommodate moorings is considered to avoid
collisions with vessels and produce negligible hydrodynamic losses. Groups of 10 devices
are interconnected by umbilical cables as shown in the figure. Electricity is then transmitted
to a junction box. Intra-array cables connect the five junction boxes. Lastly, a three-
phase AC export cable delivers energy to the shore. Cable landing is accomplished using
directional drilling. Close to the deployment site, there is a port with facilities well-suited
for installation and maintenance activities and a 60 kV onshore substation.
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Figure 4. 50-unit farm array layout (not drawn to scale).

The key design parameters and main assumptions are included in Table 2. Further
details of RM5 design can be found in [58].

Table 2. Case study specifications.

Category Parameter Specification

Site

Water depth 70 m
Seabed Soft sediments (sand and clay)
Wave resource 30 kW/m, unidirectional
Distance to shore 500 m

Device

Rated power 360 kW
Hydrodynamic system Flap (25 m × 19 m), shaft (∅3 m); fiberglass and steel
PTO Oleo-hydraulic (2 rams, HP accumulators, hydraulic motor, generator)
Control Optimal velocity-dependent damping per see state

Balance of Plant
Station keeping Steel frame (45 m × 29 m), four polyester lines and suction anchors
Grid connection Umbilical, inter-array, and export (30 kV); terminators and connectors

Array Device spacing 600 m

Performance

Capture efficiency 37%
Conversion efficiency 82%
Transmission efficiency 95%
Availability 98%

Financial
Discount rate 8.8%
Project lifetime 20 years

3.1. Step 1: Cost and Performance of the 50-Unit Farm

NREL’s model for the 50-unit farm results in an estimated LCOE of USD 0.78/kWh [59].
The proposed method yields a slightly lower estimate (USD 0.72/kWh) due to the 10%



Sustainability 2023, 15, 215 13 of 25

contingency in CAPEX costs included in NREL’s model. Contingency is a consequence of
the propagation of uncertainties, and consequently it is accounted for in Step 2.

The detailed breakdown of CAPEX and OPEX costs, financial assumptions, and annual
energy production taken directly from the RM5 model are presented in Table 3. The last
column outlines the modelling basis directly extracted from [59]. The resulting percentage
contribution to the lifetime costs of the main cost centres is shown in Figure 5.

Table 3. Detailed breakdown of cost and performance (adapted from [59]).

ID Breakdown 50-Unit Farm Basis (Equations Refer to Subsequent Row IDs)

1 CAPEX (USD) 240,016,908 = 1.1 + 1.2 + 1.3 + 1.4 + 1.5 + 1.6

1.1 Development 10,558,725 = 1.1.1 + 1.1.2
1.1.1 Engineering 4,589,164 Percentage of CAPEX (2%)
1.1.2 Permitting 5,969,561 Average of PNNL estimates
1.2 Financial costs 0 = 1.2.1 + 1.2.2 + 1.2.3
1.2.1 Insurance (during construction) 0 Not considered
1.2.2 Decommission 0 Percentage of installation cost (70%), depreciation
1.2.3 Other 0 Percentage of CAPEX (0%)
1.3 WEC 109,478,032 = 1.3.1 + 1.3.2 + 1.3.3
1.3.1 Hydrodynamic system 86,670,989 Weight (499 t), unit cost (UDS 3161/t), subsystem integration (10%)
1.3.2 PTO 22,561,677 = 1.3.2.1 + 1.3.2.2 + 1.3.2−3 + 1.3.2.3 + 1.3.2.4 + 1.3.2.5

1.3.2.1 Prime mover 19,208,071 Mass (32,920 kg), unit cost (USD 10.61/kg), subsystem
integration (10%)

1.3.2.2 Generator 1,467,120 Mass (908 kg), unit cost (USD 29.38/kg), subsystem integration (10%)
1.3.2.3 Storage 0 Included in the hydraulic prime mover
1.3.2.4 Power electronics 1,143,890 Mass (1200 kg), unit cost (USD 17.32/kg), subsystem integration (10%)
1.3.2.5 Transformer 742,597 Mass (1590 kg), unit cost (USD 8.49/kg), subsystem integration (10%)
1.3.3 Instrumentation and control 245,366 Unit cost (USD 4461), subsystem integration (10%)
1.4 BoP 91,009,936 = 1.4.1 + 1.4.2 + 1.4.3 + 1.4.4
1.4.1 Station-keeping 81,681,936 = 1.4.1.1 + 1.4.1.2 + 1.4.1.3 + 1.4.1.4 + 1.4.1.5
1.4.1.1 Anchors and piles 14,500,828 No./device (8), weight (13 t), unit cost (USD 2789/t)
1.4.1.2 Mooring lines 15,789,988 No./device (4), length (80 m), unit cost (USD 987/m)
1.4.1.3 Substructure 44,087,621 Weight (301 t), unit cost (USD 2663/t), subsystem integration (10%)
1.4.1.4 Buoyancy 2,700,000 Bulk discount factor (0.9), unit cost (USD 60,000)
1.4.1.5 Connecting hardware 4,603,500 Bulk discount factor (0.9), unit cost (USD 102,300)
1.4.2 Grid connection 9,328,000 = 1.4.2.1 + 1.4.2.2 + 1.4.2.3 + 1.4.2.4
1.4.2.1 Umbilical 4,400,000 Length (40,000 m) and unit cost (USD 110/m)
1.4.2.2 Inter-array 2,880,000 Length (14,400 m) and unit cost (USD 200/m)
1.4.2.3 Export 1,200,000 Length (6000 m) and unit cost (USD 200/m)
1.4.2.4 Connectors 848,000 Percentage of cable cost (10%)
1.4.3 Offshore substation 0 Not considered
1.4.4 Onshore infrastructure 0 Not considered

1.5 Transp, install, and
commission 23,320,215 = 1.5.1 + 1.5.2 + 1.5.3 + 1.5.4

1.5.1 Transport 1,487,500 Unit cost (USD 29,750)
1.5.2 Installation WEC 3,854,375 Days (55 days), rate (USD 70,080/day)
1.5.3 Installation BoP 14,123,965 = 1.5.3.1 + 1.5.3.2 + 1.5.3.3 + 1.5.3.4
1.5.3.1 Station-keeping 8,852,950 Days (127 day), rate (USD 69,483/day)
1.5.3.2 Grid connection 4,503,815 Days (50 day), rate (USD 90,949/day)
1.5.3.3 Offshore substation 0 Not considered
1.5.3.4 Onshore infrastructure 767,200 Cable landing distance (500 m), unit cost (USD 1534/m)
1.5.4 Commissioning 3,854,375 Percentage of WEC installation (100%)
1.6 Dedicated O&M vessels 5,650,000 Number (1), vessel cost (USD 5.65 mo)
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Table 3. Cont.

ID Breakdown 50-Unit Farm Basis (Equations Refer to Subsequent Row IDs)

2 Annual OPEX (USD) 5,870,427 = 2.1 + 2.2 + 2.3

2.1 Site lease and insurance 2,414,582 Lease cost (USD 120,000), percentage of CAPEX (1%)
2.2 Environmental monitoring 1,785,000 Data taken from PNNL study
2.3 O&M 1,670,845 = 2.3.1 + 2.3.2
2.3.1 Scheduled 1,009,692 Staff (6.5), salary (USD 51,491/year), consumables (USD 13,500)

2.3.2 Unscheduled 661,153 Days (109 days), rate (USD 5680/day), cost spares (USD 24,830), no.
(1.75)

3 Financial assumptions (FCR,
%) 0.11 = 3.1/(1 − 1/(1 + 3.1) ˆ 3.2)

3.1 Discount rate (%) 0.09 = 3.1.1 + 3.1.2
3.1.1 Debt (%) 0.05 Return on debt (9.5%), percentage (50%)
3.1.2 Equity (%) 0.04 Return on equity (8.1%), percentage (50%)
3.2 Project lifetime (years) 20 n/a

4 AEP (kWh) 44,101,201 = 8766 × N × 4.1 × 4.2 × 4.3

4.1 Rated power (kW) 360 n/a
4.2 Capacity factor (%) 0.29 = 4.2.1 × 4.2.2 × 4.2.3
4.2.1 Capture efficiency (%) 0.37 Average extracted power (132 kW)
4.2.2 Conversion efficiency (%) 0.82 NREL’s assumption
4.2.3 Transmission efficiency (%) 0.95 NREL’s assumption
4.3 Availability (%) 0.98 NREL’s assumption

5 LCOE (USD/kWh) 0.72 = (1 × 3 + 2)/4
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3.2. Step 2: Cost Escalation to Account for Uncertainties

The RM5 model has inherent uncertainties regarding performance, design, and eco-
nomics. NREL carried out a qualitative uncertainty assessment of both design and per-
formance [58]. Levels of uncertainty, from low to very high, were assigned to various
components of the model depending on whether this facet was assessed using test/field
data (low), modelled data (medium), or engineering judgment (high). Aspects that were
not addressed were assigned a “very high” level of uncertainty.

The qualitative assessment has been mapped to the AACE’s uncertainty classes and
corresponding quantitative standard deviation (Std). Sometimes “low to medium” and
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“medium to high” levels of uncertainty were used. In these two cases, an average value
between the two adjacent classes is assumed as shown in Table 4. None (0%) is only used
whenever the parameter has no implicit uncertainty.

Table 4. Uncertainty categories, associated standard deviation, and 80% confidence intervals.

Uncertainty AACE Std 80% Confidence

Very high Class 5 43.0% −33% to +101%
High Class 4 27.0% −24% to +51%
Med/High - 22.5% −21% to +40%
Medium Class 3 18.0% −18% to +30%
Low/Med - 15.5% −16% to +25%
Low Class 2 13.0% −14% to +20%
Very low Class 1 7.0% −8% to +10%
None - 0.0% –

Uncertainty is propagated upwards in the breakdown structure using the generic
Equation (4) until a final LCOE is was obtained. The method comprises four specific
categories of functions:

• Addition of several components (applicable to CAPEX and OPEX cost centres). The
absolute uncertainty is the geometric mean of individual absolute uncertainties.

δq =

√
(δx)2 + . . . + (δz)2 (8)

• Multiplication or division of several components (applicable to AEP). The relative
uncertainty is the geometric mean of the individual relative uncertainties.

δq
|q| =

√(
δx
|x|

)2
+ . . . +

(
δz
|z|

)2
(9)

• Financial uncertainty with a variable discount rate (d) and constant lifetime (n) and
differentiation of the FCR with respect to the discount rate.

δq =
(1 + d)n−1((1 + d)n + d

(
(1 + d)n − n− 1

)
− 1
)(

(1 + d)n − 1
)2 δd (10)

• Uncertainty in LCOE. A sequential combination of multiplication (CAPEX × FCR),
addition (OPEX), and division (AEP) computed with the help of Equations (8) and (9).

The detailed results are presented in Table 5. Following this procedure, the LCOE
results in an upper and lower bound of USD 1.33/kWh and USD 0.50/kWh, respectively.
The Std of the LCOE uncertainty is 38.2%, which gives an indication of the contingency
to be considered. It can be noticed that the AEP is the greatest contributor to the global
uncertainty. The rest of the components in the LCOE (Equation (1)) are slightly above 10%,
which fairly matches the aforementioned assumption of contingency in the NREL’s model.
Figure 6 displays the resulting uncertainties for the high-level components in the LCOE
equation. It is also worth mentioning that the NREL’s model estimates USD 1.44/kWh for
a small array of 10 units [59].
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Table 5. Propagation of uncertainties and corresponding costs. For assigned uncertainties, the
associated Std and 80% confidence interval in Table 4 is used. Propagated uncertainties use
Equations (8)–(10) as appropriate. Units of upper/lower bound as per breakdown.

ID Breakdown Uncertainty Std 80% Conf Interval Lower Bound Upper Bound

1 CAPEX (USD) Propagated 11.4% −12% 17% 210,033,907 281,374,854

1.1 Development Propagated 17.3% −18% 29% 8,704,876 13,563,431
1.1.1 Engineering High 27.0% −24% 51% 3,468,629 6,928,178
1.1.2 Permitting Med/High 22.5% −21% 40% 4,690,419 8,348,819
1.2 Financial costs Propagated 0.0% 0% 0% 0 0
1.2.1 Insurance (during construction) None 0.0% 0% 0% 0 0
1.2.2 Decommission None 0.0% 0% 0% 0 0
1.2.3 Other None 0.0% 0% 0% 0 0
1.3 WEC Propagated 21.6% −21% 38% 86,709,892 150,851,161
1.3.1 Hydrodynamic system High 27.0% −24% 51% 65,508,563 130,845,643
1.3.2 PTO Propagated 15.4% −16% 25% 18,948,422 28,125,143
1.3.2.1 Prime mover Medium 18.0% −18% 30% 15,730,180 24,951,644
1.3.2.2 Generator Medium 18.0% −18% 30% 1,201,478 1,905,817
1.3.2.3 Storage Medium 18.0% −18% 0% 0 0
1.3.2.4 Power electronics Medium 18.0% −18% 30% 936,773 1,485,934
1.3.2.5 Transformer Medium 18.0% −18% 30% 608,139 964,647
1.3.3 Instrumentation and control Medium 18.0% −18% 30% 200,939 318,735
1.4 BoP Propagated 14.7% −15% 23% 77,004,901 112,141,127
1.4.1 Station-keeping Propagated 16.3% −17% 26% 68,002,855 103,257,710
1.4.1.1 Anchors and piles High 27.0% −24% 51% 10,960,166 21,891,640
1.4.1.2 Mooring lines High 27.0% −24% 51% 11,934,552 23,837,862
1.4.1.3 Substructure High 27.0% −24% 51% 33,322,761 66,558,293
1.4.1.4 Buoyancy High 27.0% −24% 51% 2,040,742 4,076,142
1.4.1.5 Connecting hardware High 27.0% −24% 51% 3,479,465 6,949,822
1.4.2 Grid connection Propagated 10.5% −12% 16% 8,239,279 10,793,785
1.4.2.1 Umbilical Medium 18.0% −18% 30% 3,603,318 5,715,683
1.4.2.2 Inter-array Medium 18.0% −18% 30% 2,358,536 3,741,174
1.4.2.3 Export Medium 18.0% −18% 30% 982,723 1,558,823
1.4.2.4 Connectors Medium 18.0% −18% 30% 694,458 1,101,568
1.4.3 Offshore substation None 0.0% 0% 0% 0 0
1.4.4 Onshore infrastructure None 0.0% 0% 0% 0 0
1.5 Transp, install, and commission 11.0% −12% 17% 20,485,546 27,191,364
1.5.1 Transport Med/High 22.5% −21% 40% 1,168,762 2,080,365
1.5.2 Installation WEC Med/High 22.5% −21% 40% 3,028,470 5,390,594
1.5.3 Installation BoP Propagated 15.9% −16% 26% 11,808,255 17,734,310
1.5.3.1 Station-keeping Med/High 22.5% −21% 40% 6,955,964 12,381,426
1.5.3.2 Grid connection Med/High 22.5% −21% 40% 3,538,749 6,298,877
1.5.3.3 Offshore substation Med/High 22.5% −21% 0% 0 0
1.5.3.4 Onshore infrastructure Med/High 22.5% −21% 40% 602,806 1,072,979
1.5.4 Commissioning Med/High 22.5% −21% 40% 3,028,470 5,390,594
1.6 Dedicated O&M vessels High 27.0% −24% 51% 4,270,441 8,529,704

2 Annual OPEX (USD) Propagated 9.0% −10% 13% 5,271,888 6,642,826

2.1 Site lease and insurance Low 13.0% −14% 20% 2,079,003 2,897,679
2.2 Environmental monitoring Low/Med 15.5% −16% 25% 1,498,118 2,227,544
2.3 O&M Propagated 19.5% −19% 33% 1,349,152 2,223,782
2.3.1 Scheduled High 27.0% −24% 51% 763,156 1,524,314
2.3.2 Unscheduled High 27.0% −24% 51% 499,720 998,132

3 Financial assumptions (FCR, %) Propagated 12.1% −13% 18% 0.09 0.13

3.1 Discount rate Propagated 19.1% −19% 32% 0.07 0.12
3.1.1 Debt High 27.0% −24% 51% 0.04 0.07
3.1.2 Equity High 27.0% −24% 51% 0.03 0.06
3.2 Project lifetime None 0.0% 0% 0% 20 20
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Table 5. Cont.

ID Breakdown Uncertainty Std 80% Conf Interval Lower Bound Upper Bound

4 AEP (kWh) Propagated 35.6% −29% 76% 31,118,603 77,555,818

4.1 Rated power (kWh) None 0.0% 0% 0% 360 360
4.2 Capacity factor (%) Propagated 23.3% −22% 42% 0.22 0.40
4.2.1 Capture efficiency (%) Medium 18.0% −18% 30% 0.30 0.48
4.2.2 Conversion efficiency (%) Low 13.0% −14% 20% 0.71 0.98
4.2.3 Transmission efficiency (%) Very low 7.0% −8% 10% 0.87 1.00
4.3 Availability (%) High 27.0% −24% 51% 0.74 1.00

5 LCOE (USD/kWh) 38.2% −31% 84% 0.50 1.33
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3.3. Step 3: Projecting the Future Cost of the Mature Technology

The last step of the methodology involves the optimisation of the current version of the
technology through learning by doing and economies of scale (endogenous factors) leading
to cost reduction. Learning is proportional to the installed capacity, having impact on the
CAPEX, OPEX, and to a certain extent on the AEP. Component-based learning rates are
applied to the upper bound obtained in the previous step. In this case study, LCOE results
are projected once 1 GW of the emerging technology has been deployed. Selection of 1 GW
installed capacity allows comparison with JRC forecasts [3]. The NREL’s model provides
component-based learning rates for the PTO. For other cost centres, they only provide a
qualitative indication depending the predicted innovation potential [58]. A baseline cost
has also been included marking a hard threshold beyond which no more learning would
be possible. This baseline is based on the 100-unit model, which corresponds to a fully
commercial project.

The component-based learning rates are classified in three main categories according
to the technology type as shown in Table 6. Learning rates of mature technologies are
matched with low uncertainty, whereas evolving and emerging technologies are assumed
to have medium and high uncertainties, respectively. The same standard deviations as in
Table 4 are used.

Detailed results are shown in Table 7. Component-based projections are combined
using the same basis as in Table 3 to derive the corresponding LRs at the immediate
upper level. This process is repeated until the aggregated LR, 10.6%, is finally obtained.
Figure 7 displays the resulting LR for the high-level components in the LCOE equation.
The proposed method estimates the future cost of energy at USD 0.69/kWh. The baseline
cost suggested is USD 0.62/kWh, which is higher than the lower bound of USD 0.50/kWh
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identified in Step 2. Finally, the NREL’s 100-unit model results in exactly the same estimate
of USD 0.69/kWh [59].

Table 6. Component-based LR, uncertainty and standard deviation.

Technology Type
Learning Rate (LR)

Uncertainty Std
From Up to

Mature 0.0% 5.0% Low 13%
Evolving 5.0% 10.0% Medium 18%
Emerging 10.0% 20.0% High 27%

Table 7. Component-based learning and future cost projections. Upper bound from Table 5. Units of
projection and baseline as per breakdown.

ID Breakdown Upper Bound Learning Rate Category Projection Baseline

1 CAPEX (USD) 281,374,854 Aggregated 3.9% Mature 223,023,237 210,412,696

1.1 Development 13,563,431 Aggregated 8.0% Evolving 8,389,156 5,399,407
1.1.1 Engineering 6,928,178 Assigned 7.5% Evolving 4,409,418 2,414,626
1.1.2 Permitting 8,348,819 Assigned 12.0% Emerging 3,979,737 2,984,781
1.2 Financial costs 0 Aggregated 0.0% Mature 0 0
1.2.1 Insurance (during construction) 0 Assigned 5.0% Mature 0 0
1.2.2 Decommission 0 Assigned 6.0% Evolving 0 0
1.2.3 Other 0 Assigned 5.0% Mature 0 0
1.3 WEC 150,851,161 Aggregated 6.7% Evolving 100,817,663 96,237,347
1.3.1 Hydrodynamic system 130,845,643 Assigned 8.0% Evolving 80,700,943 76,546,193
1.3.2 PTO 28,125,143 Assigned 5.9% Evolving 19,833,205 19,472,556
1.3.2.1 Prime mover 24,951,644 Assigned 8.0% Evolving 16,708,154 16,708,154
1.3.2.2 Generator 1,905,817 Assigned 3.7% Mature 1,531,727 1,284,397
1.3.2.3 Storage 0 Assigned 5.0% Mature 0 0
1.3.2.4 Power electronics 1,485,934 Assigned 20.0% Emerging 831,920 831,920
1.3.2.5 Transformer 964,647 Assigned 4.0% Mature 761,404 648,084
1.3.3 Instrumentation and control 318,735 Assigned 2.0% Mature 283,516 218,599
1.4 BoP 112,141,127 Aggregated 4.1% Mature 88,247,013 84,640,133
1.4.1 Station-keeping 103,257,710 Assigned 4.5% Mature 78,919,013 75,312,133
1.4.1.1 Anchors and piles 21,891,640 Assigned 7.0% Evolving 14,375,068 13,281,286
1.4.1.2 Mooring lines 23,837,862 Assigned 7.0% Evolving 15,789,988 15,789,988
1.4.1.3 Substructure 66,558,293 Assigned 8.0% Evolving 41,050,790 38,937,360
1.4.1.4 Buoyancy 4,076,142 Assigned 6.0% Evolving 2,847,752 2,700,000
1.4.1.5 Connecting hardware 6,949,822 Assigned 6.0% Evolving 4,855,416 4,603,500
1.4.2 Grid connection 10,793,785 Assigned 2.5% Mature 9,328,000 9,328,000
1.4.2.1 Umbilical 5,715,683 Assigned 6.0% Evolving 4,400,000 4,400,000
1.4.2.2 Inter-array 3,741,174 Assigned 5.0% Mature 2,880,000 2,880,000
1.4.2.3 Export 1,558,823 Assigned 5.0% Mature 1,200,000 1,200,000
1.4.2.4 Connectors 1,101,568 Assigned 6.0% Evolving 848,000 848,000
1.4.3 Offshore substation 0 Assigned 6.0% Evolving 0 0
1.4.4 Onshore infrastructure 0 Assigned 2.0% Mature 0 0
1.5 Transp, install, and commission 27,191,364 Aggregated 4.4% Mature 20,937,816 20,045,808
1.5.1 Transport 2,080,365 Assigned 6.0% Evolving 1,487,500 1,487,500
1.5.2 Installation WEC 5,390,594 Assigned 7.0% Evolving 3,763,500 3,763,500
1.5.3 Installation BoP 17,734,310 Assigned 6.6% Evolving 11,920,737 11,031,308
1.5.3.1 Station-keeping 12,381,426 Assigned 10.0% Evolving 6,723,055 6,622,419
1.5.3.2 Grid connection 6,298,877 Assigned 6.0% Evolving 4,400,641 3,641,689
1.5.3.3 Offshore substation 0 Assigned 6.0% Evolving 0 0
1.5.3.4 Onshore infrastructure 1,072,979 Assigned 5.0% Mature 797,040 767,200
1.5.4 Commissioning 5,390,594 Assigned 6.0% Evolving 3,766,079 3,763,500
1.6 Dedicated O&M vessels 8,529,704 Assigned 10.0% Evolving 4,631,589 4,090,000
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Table 7. Cont.

ID Breakdown Upper Bound Learning Rate Category Projection Baseline

2 Annual OPEX (USD) 6,642,826 Aggregated 3.9% Mature 5,270,454 4,478,928

2.1 Site lease and insurance 2,897,679 Assigned 8.0% Evolving 1,787,185 1,102,959
2.2 Environmental monitoring 2,227,544 Assigned 4.0% Mature 1,785,000 1,785,000
2.3 O&M 2,223,782 Aggregated 4.5% Mature 1,698,269 1,590,969
2.3.1 Scheduled 1,524,314 Assigned 7.0% Evolving 1,000,935 952,317
2.3.2 Unscheduled 998,132 Assigned 6.0% Evolving 697,334 638,652

3 Financial assumptions (FCR) 0.13 Aggregated 2.0% Mature 0.11 0.11

3.1 Discount rate 0.12 Aggregated 3.5% Mature 0.10 0.09
3.1.1 Debt 0.07 Assigned 10.0% Evolving 0.05 0.05
3.1.2 Equity 0.06 Assigned 10.0% Evolving 0.04 0.04
3.2 Project lifetime 20 Aggregated 0.0% Mature 20 20

4 AEP (kWh) 31,118,603 Aggregated −6.2% Evolving 44,071,015 44,071,015

4.1 Rated power 360 Assigned 0.0% Mature 360 360
4.2 Capacity factor 0.22 Aggregated −4.4% Mature 0.29 0.29
4.2.1 Capture efficiency 0.30 Assigned −10.0% Evolving 0.37 0.37
4.2.2 Conversion efficiency 0.71 Assigned −6.0% Evolving 0.82 0.82
4.2.3 Transmission efficiency 0.87 Assigned −2.0% Mature 0.95 0.95
4.3 Availability 0.74 Assigned −5.0% Mature 0.98 0.98

5 LCOE (USD/kWh) 1.33 Aggregated 10.6% Emerging 0.69 0.62
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Based on Table 6, a 10.6% LR implies a medium uncertainty of 18.5% in the cost
reduction exponent (δb). Using Equation (7), the LR uncertainty is rescaled to 12.8% (low).
Now taking an 80% confidence interval as per Table 4 would result in an LCOE within USD
0.60/kWh and USD 0.83/kWh.

4. Discussion

The implementation of this novel method for estimating costs of the RM5 WEC leads
to an initial LCOE (Step 1) for this emerging technology of USD 0.72/kWh. The application
of uncertainties (Step 2) shows that the LCOE could be as high as USD 1.33/kWh in its
first commercial deployment. Finally, the projection of future costs using component-
based learning rates (Step 3) forecasts that LCOE could be reduced to USD 0.69/kWh
after 1 GW of cumulative capacity has been deployed (USD 0.60–0.83/kWh accounting for
uncertainties in the learning rate). These results follow the cost progress pattern of a wave
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energy technology along the development stages depicted in Figure 1. Moreover, results
align with the NREL’s direct estimation method for 50-unit, 10-unit, and 100-unit farms,
respectively. The reader should note that while the NREL’s model envisages a progressive
cost reduction with the increase in farm size, the proposed method follows the development
cost pattern peaking at an intermediate stage.

Despite the significant cost reduction that can be achieved through learning, the
projection of future commercial costs for the RM5 technology is still far from the SET Plan
EUR 0.15/kWh target for 2030, since the starting cost for this emerging technology is well
above this target. A closer look at the case study results unveils two main factors for the
discouraging result leading to a very high projection of costs.

On the one hand, the AEP is subjected to large uncertainty (35.7%) penalising the
LCOE from which learning can start to happen. In fact, the lowest bound in Step 2, USD
0.50/kWh, remains far distant from the SET Plan target for wave technologies. On the
other hand, the baseline costs are established for the 100-unit farm which limit the ability to
capitalise cost reductions through component-based learning beyond a certain deployment
level. This outcome reinforces the recommendation to technology developers of deploying
R&D activities aimed at collecting evidence that can reduce uncertainty with regard to the
availability factor, capture efficiency, and baseline costs, since they will significantly lower
the overall uncertainty in the LCOE and open the way to a starker cost reduction.

The case study results only illustrate one of the possible trajectories that an emerging
technology can experience in connection with the estimation of future costs. The method-
ology described before can be repeated with several other wave energy archetypes such
as reference models RM3 and RM6 [13] leading to potentially dissimilar results. Actually,
three scenarios, depicted in Figure 8, can be envisaged through combining different levels
of uncertainty (U) and learning capacity (L).
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and learning capacity (L). Numbers 1© 2© 3© reference methodology steps, illustrated in Figure 1.

(a) Uncertainty overshadows potential learning (U > L). This trajectory leads to a long-
term projection of cost in Step 3 higher than the initial LCOE. The LCOE calculated in
Step 1 should be much below the energy price in the addressed market. Otherwise,
radical changes must be implemented in the emerging technology. Provided technol-
ogy development is continued, efforts should be driven to collecting evidence that
lowers the cost estimation uncertainty in Step 2. If successful, the LCOE reassessment
should lie in either scenario (b) or (c) at the next development stage.

(b) Uncertainties in the same range of learning capacity (U ≈ L). This scenario leads to a
similar future projection of costs as the initial LCOE estimation in Step 1. For emerging
technologies with a high uncertainty level, such as the RM5, there is still room to fill
up the critical cost and performance knowledge gaps. Again, if efforts are successful,
the LCOE reassessment at the next development stage should lie in scenario (c).
Nevertheless, technologies that combine relatively low levels of uncertainty and
learning capacity should exhibit an LCOE in Step 1 below the energy price in the
addressed market, or else technology breakthroughs should be implemented to meet
the commercial goals.

(c) Learning potential dominates uncertainty (U < L). A higher learning capacity provides
a more favourable scenario for the emerging technology. The future projection of costs
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will be lower than the initial estimation in Step 1. If the long-term estimation in Step 3
is below the energy price in the addressed market, the technology can pass to the
next development stage without major changes. However, care must be taken that
the emerging technology is not stuck in scenarios (a) or (b) above when a new LCOE
assessment is performed.

The affordability of emerging wave energy technologies could be improved thanks to
a combined exploitation with other marine-space activities. Shared infrastructure will effec-
tively reduce future cost estimations. The cost centres involved could be either structural
elements for fixed devices integrated in breakwaters and existing platforms, or electrical
components, if connected to the same onshore grid point. Although this strategy can offset
the LCOE, it is worth noting that the global uncertainty of the cost estimation will not be
significantly altered since the AEP is the greatest contributor.

The error propagation method proved to be a useful tool to identify the greatest
contributors to uncertainty in the standardised breakdown of CAPEX, OPEX, FCR, and AEP.
The addition of several components as per Equation (8) decreases the relative uncertainty,
which suggests that expanding the breakdown levels in the CAPEX and OPEX is a useful
strategy to improve the quality of future LCOE projections. However, the product of
components as per Equation (9), such as AEP, will always enlarge the relative uncertainty,
which indicates that the emerging technology should strive to enhance the accuracy of the
performance estimations and keep to a minimum the number of energy transformation
stages in the PTO design.

The statistical fit of lognormal properties with an 80% confidence interval, borrowed
from previous research in other engineering applications, led to quantitative results in
line with the NREL’s cost model assumptions for the CAPEX. The propagated uncertainty
obtained with the proposed method (11.4%) is close to the 10% contingency for the 50-unit
RM5 farm assumed by the NREL’s cost model. It matches the AACE’s Class 2 estimate (i.e.,
detailed estimate, project definition between 30% and 75%). Additionally, the proposed
cost estimation method points out other sources of uncertainty in the OPEX and in the
financial assumptions, which can carry out similar contingencies (i.e., 9% for OPEX and
12.1% for the FCR), but not considered by the NREL. Furthermore, the overall uncertainty
in AEP matches the equivalent of a simplified estimate (Class 4).

Component-based learning rates and baseline costs are also useful to avoid over-
optimism. LRs between 2% (mature) and 20% (emerging) were assigned to the standardised
breakdown resulting in an aggregated LR of 10.6%. Although the method of quantification
is highly qualitative, this indirect estimation helps identify inherent limitations in cost
reduction that could be hidden if considered in the LR of the emerging WEC as a whole.

The main merit of this cost estimation method is to provide a transparent and traceable
way to assess the future affordability of wave energy technologies under development.
It focuses the attention on the accuracy of the cost estimates at an early stage. Instead of
oversimplifying the LCOE quantification when there are still many knowledge gaps, the
approach includes these unknowns in the form of uncertainties to counter any optimism
bias for the first commercial deployment. The method delivers useful information to iden-
tify remaining technology challenges, concentrate innovation efforts, and collect evidence
through testing activities. The importance of estimating first commercial farm costs is
paramount since it impacts the total additional spending required for an emerging technol-
ogy to be cost competitive in the market and achieve long-term LCOE projection. Starting a
cost reduction from an over-optimistic point will ultimately yield highly unrealistic figures
of LCOE for mature technology.

The consideration of a first commercial deployment is useful for tracking the evolution
of costs in the development cycle of the emerging technology, but it cannot be used to
estimate the learning investment or the timescales to achieve future LCOE. The wave
energy sector needs to achieve certain deployment level before consistent cost reduction
occurs, as the wind industry has shown. This will offset the forecasts by some years and
increase the amount of learning investment required to converge to this cost.
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This method contains some limitations:

• The statistical treatment of cost centres, and particularly the assumption of indepen-
dence, will tend to underestimate the overall uncertainty and therefore the resulting
LCOE. For instance, the failure rate correlates both the availability and the unsched-
uled maintenance cost. To counterbalance, this method takes the conservative upper
bound of the 80% confidence interval. Alternatively, Monte Carlo methods could
be implemented to combine the individual uncertainties, provided the technology
developer can build a fully parametric model of the emerging technology.

• Some costs do not scale linearly with the installed capacity, such as grid connection. As
the array gets bigger in subsequent projects, the share of grid connection in the LCOE
will be reduced. This method considers a constant size of the farm, but economies of
scale (larger farms) can be included in the learning rates to account for these situations.

• The uncertainty in learning rates follows the same engineering guidelines as costs due
to a lack of previous experience.

• Learning by research, innovation, and upscaling leading to performance and reliability
increase is not considered in the future LCOE projection. The cost estimation method
can also be used in the next iteration of the technology and the results compared. Note,
however, that the innovations introduced in the emerging technology should bring
greater benefits than the corresponding uncertainty increase due to lower maturity in
order to lead to a more attractive cost projection.

5. Conclusions

This paper presents a novel method to estimate future costs of emerging wave energy
technologies that counters the human propensity to over-optimism. Compared with
state-of-the-art direct estimation methods, it provides a tool that can be used to explore
uncertainties and focus attention on the accuracy of the cost estimates and potential learning
from the early stage of technology development. Moreover, this approach delivers useful
information to identify remaining technology challenges, concentrate innovation efforts,
and collect evidence through testing activities.

A case study was used to illustrate this method. Results show that the uncertainties
are in the same range of potential future learning, leading to a future projection of costs
similar to the initial LCOE estimation. Technology development efforts should be driven to
fill the critical cost and performance knowledge gaps.

The quantitative results are very specific to this case study. Actually, three possible cost
trajectories have been discussed in this paper, depending on how the learning potential of
the emerging technology weights against the inherent uncertainties. The most favourable
scenario is when the learning potential of the emerging technology dominates the inherent
uncertainties, and hence the technology can pass to the next development stage without
major changes.

While this method has been demonstrated for wave energy technologies, the approach
is fully transferrable to any nascent electricity generation technology without any loss
of generality.

Future work could apply this approach to a state-of-the-art wave device which is
currently undergoing full-scale demonstration, as well as improve the quantification of
component-based learning rates and the propagation of corresponding uncertainties. Com-
plementary to this research stream, further work could also pinpoint promising innovation
strategies to overcome the challenges that have been identified through this approach.
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