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A geometric look at momentum flux and stress in fluid mechanics
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2School of Mathematics and Maxwell Institute for Mathematical Sciences, University of
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Abstract

We develop a geometric formulation of fluid dynamics, valid on arbitrary Riemannian
manifolds, that regards the momentum-flux and stress tensors as 1-form-valued 2-forms, and
their divergence as a covariant exterior derivative. We review the necessary tools of differen-
tial geometry and obtain the corresponding coordinate-free form of the equations of motion
for a variety of inviscid fluid models – compressible and incompressible Euler equations,
Lagrangian-averaged Euler-α equations, magnetohydrodynamics and shallow-water models
– using a variational derivation which automatically yields a symmetric momentum flux.
We also consider dissipative effects and discuss the geometric form of the Navier–Stokes
equations for viscous fluids and of the Oldroyd-B model for visco-elastic fluids.

1 Introduction

The equations of fluid dynamics are traditionally presented in coordinate forms, typically using
Cartesian coordinates. There are advantages, however, in geometrically intrinsic formulations
which highlight the underlying structure of the equations, apply to arbitrary manifolds and,
when the need arises, are readily translated into whatever coordinate system is convenient.
The most straightforward geometric formulations rely on the advective form of the momentum
equation, with the advective derivative expressed in terms of Lie or covariant derivatives (Arnold
and Khesin 1998; Frankel 1997; Schutz 1980; Holm, Schmah and Stoica 2009). One benefit of
the Lie-derivative form is that the metric appears only undifferentiated, in the relationship
between advected momentum and advecting velocity. It is in this form that the Euler equations
and more general inviscid fluid models emerge from variational arguments as so-called Euler–
Poincaré systems (Arnold 1966; Salmon 1988; Morrison 1998; Arnold and Khesin 1998; Holm,
Marsden and Ratiu 1998; Webb 2018).

An alternative to the advective form of the momentum equation is the conservation form,
in which the material advection term is replaced by the divergence of the momentum flux. The
conservation form is particularly useful for its close relationship to the global conservation law
of (volume-integrated) momentum, when such a law holds. It is also useful in the context of
Reynolds averaging and its extensions, where the effect of unresolved fluctuations naturally
emerges as the divergence of the Reynolds stress, the fluctuation-averaged momentum flux. In
Euclidean space and for the Euler equations, it is straightforward to switch between the two
forms and to derive global conservation laws for momentum in each spatial direction. It is less
straightforward on other manifolds, where global momentum conservation laws exist only in the
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presence of spatial symmetries, and for fluid models more complicated than the Euler equations.
This points to the benefits of formulating fluid models in conservation form in a geometrically
intrinsic way. This is the first objective of this paper. The second is to discuss the geometric
nature of the Cauchy stress tensor (associated with pressure and irreversible effects) and of
its divergence, noting that the momentum-flux and stress tensors enter the equations of fluid
mechanics on a similar footing.

A first question concerns the geometric interpretation of these tensors. We follow Kanso
et al. (2007) and regard them fundamentally as 1-form valued 2-forms (equivalently, co-vector
valued 2-forms), related to the more familiar twice contravariant tensors through operations
involving the metric. In this formulation, the divergence of the momentum flux and stress tensors
becomes the covariant exterior derivative of the associated 1-form valued 2-forms. Defining and
manipulating these objects requires some differential-geometric machinery which we introduce
in §2. The interpretation of momentum flux and stress as 1-form valued 2-forms (or their
close relatives, namely vector valued 2-forms) is advocated by Frankel (1997) who points to
its origin in the work of Brillouin (1919) and Cartan (1925). It has both conceptual and
practical benefits. First, 1-form valued 2-forms arise naturally when the stress is regarded as a
force, to be paired with a velocity field and integrated over a surface to obtain a rate of work.
Second, it enables a simple coordinate-free formulation that makes minimal use of the metric and
associated connection. The computations, of the covariant exterior derivative in particular, are
then straightforward when carried out at the level of differential forms rather than coordinates.
We illustrate this by computation in spherical geometry in appendix A (see also Frankel (1997)
for similar computations using vector valued forms in the context of solid mechanics). Third,
the formulation proves useful for the derivation of momentum-conserving discretisations of the
Navier–Stokes equations (Toshniwal, Huijsmans and Gerritsma 2014; Gerritsma 2014).

We note that form-, vector- or, more generally, vector-bundled-valued differential forms
appear in various guises in continuum mechanics. In the metric-free formulation of continuum
mechanics and other field theories developed by Segev (see Segev 2013, 2016), for instance, stress
is a 2-form with values dual to the first jet space of vector fields, so that the pairing involved
in the construction of power is with both the velocity vector and its spatial derivatives. In
the theory of elasticity, stress is usually defined as the variational derivative of the energy with
respect to a deformation tensor; it then naturally is a rank-2 tensor, twice contravariant is the
case of the Cauchy stress (e.g. Marsden and Hughes 1983). In more general formulations, which
describe the configuration of a deformed body as a surface in the 6-dimensional space of joint
reference and deformed positions (e.g. Giaquinta, Modica and Soucek 1998), deformation and
stress can be encoded in rank-3 fully antisymmetric tensors (a 3-form in the case of the stress)
(see Giaquinta, P. M. Mariano and Modica 2015). The formulation that we describe remains
at a less abstract level, using differential forms to recast in a convenient, coordinate-free form
fluid dynamical equations that are, conceptually, identical to those of standard fluid dynamics
texts.

We consider the derivation of fluid equations in their conservation form, starting with the
Euler equations for compressible perfect fluids in §3. We follow two routes. The first takes
the Euler equations in their advective form as starting point, and uses a relation between
Lie derivative and covariant exterior derivative to deduce the conservation form. The second
relies on a variational formulation of the Euler equations: we show that the stationarity of the
relevant action functional, when combined with an infinitesimal condition for the covariance
of the action (that is, for its invariance with respect to arbitrary changes of variables), leads
directly to the Euler equations in their conservation form. The variational route has the benefit
of being systematic and of automatically yielding the momentum flux as a symmetric 1-form
valued 2-form. We follow this route to derive the conservation form of further inviscid fluid
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models: the incompressible Euler equations in §4.1, the Lagrangian-averaged Euler α-model in
§4.2 and the magnetohydrodynamics (MHD) equations in §4.3. Analogous derivations for the
shallow-water model and its MHD extension are sketched in Appendix C. We emphasise that,
for models such as the Euler-α model, the form of the momentum flux does not follow readily
from the advective form of the equations, even in Euclidean geometry, making the variational
derivation valuable.

In §5 we examine the interpretation of the Cauchy stress tensor as a 1-form valued 2-
form for Newtonian and viscoelastic fluids. In the Newtonian case, we give an expression for
the viscous stress tensor in terms of the Lie derivative of the metric tensor along the fluid
flow, and we emphasise the significance of this derivative as a natural measure of the rate
of deformation of the fluid. In the conservation form of the Navier–Stokes equations which
emerges by taking a covariant exterior derivative, the viscous term involves the Ricci Laplacian
of the momentum. This Laplacian differs from both the Laplace-de Rham operator and the
rough Laplacian by terms proportional to the Ricci tensor. Its appearance is consistent with
physical arguments (Gilbert, Riedinger and Thuburn 2014). For viscoelastic fluids, we discuss
models whose constitutive laws involve the transport of the stress tensors and sketch a geometric
derivation of the constitutive law of one standard representative of this class, the Oldroyd-B
model. The formulation in terms of 1-form (or vector) valued 2-forms sheds light on the reasons
underlying the appearance of a particular type of material derivative of the stress tensor (the
upper-convected derivative in this instance).

Many of the concepts and techniques presented in this paper are standard and discussed
in existing literature on differential geometry and on geometric mechanics. Their use in fluid
dynamics is, however, not well established. By introducing them in the context of familiar fluid
models we aim to promote their adoption more broadly in fluid dynamics and its applications.

2 Machinery

We will be using techniques of differential geometry and work on a smooth, orientable Rie-
mannian manifold M, with or without a boundary ∂M. We take M to be three-dimensional,
although formulae and arguments are easily modified for the two-dimensional case. To avoid
unnecessary complications we assumeM has a straightforward topology, so that all curves and
surfaces in M may be contracted to a point. The manifold is equipped with a metric g and
we also need the compatible volume form µ and covariant derivative ∇. We assume that the
reader is familiar with the fundamental constructions of differential geometry including vectors,
p-forms, the interior product y, the Lie derivative L, the exterior derivative d, the Hodge star
operator ?, and the musical raising and lowering operators ] and [ (see for example Frankel
(1997); Schutz (1980); Hawking and Ellis (1973); Besse and Frisch (2017); Gilbert and Vanneste
(2018)). Note that we prefer to use the term 1-form rather than covector in what follows. As
well as this machinery we will need the notions of 1-form-valued 2- and 3-forms: we will define
these from scratch, following closely Kanso et al. (2007) and Frankel (1997), in order to establish
notation and properties, and because they may be unfamiliar to some readers, although such
objects arise naturally in the discussion of continuum mechanics for the treatment of stress.
While, as indicated above, our aim is to use purely geometrical constructions where possible,
it is sometimes awkward to represent complicated contractions of objects using coordinate-free
notation, and in some calculations we will use indexed objects. Both approaches have benefits
and the maximum utility is obtained by switching between them fluidly.
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2.1 Momentum flux

We recall that in a traditional treatment of fluid flow in Euclidean space (Batchelor 1967),
the stress on an element of surface with normal vector n at a point (x, t) is a vector force
f(x, t,n) per unit area. It can be established that f depends linearly on n and so we can write
fi = σij(x, t)nj , where the stress tensor σ is symmetric. Then, the divergence of the stress
tensor ∂jσij gives the net force per unit volume, and appears in the Navier–Stokes equation
which in conservation form is

∂t(ρui) + ∂j(ρuiuj) = ∂jσij . (2.1)

This form highlights the role of the momentum flux ρuiuj as a tensor of a nature similar to that
of σ. For a compressible Newtonian fluid, the stress tensor is given by

σij = −p δij + ς(∂jui + ∂iuj) + λ div u δij , (2.2)

where p is the pressure field, and ς and λ denote the dynamic and bulk viscosities.
In our more general setting for flow on an arbitrary three-dimensional manifold M, the

appropriate geometrical object to represent the stress is a 1-form valued 2-form τ which can be
defined by

τ = 1
2τijk dx

i ⊗ dxj ∧ dxk. (2.3)

This can be thought of as an object with two legs; the first leg, given by the i index, has the
nature of a 1-form or covector, while the second leg, given by indices j and k, has the nature
of a 2-form. The interpretation of τ is as follows: if we have a surface element given by vectors
v and w at a point in the fluid, and the fluid has velocity u there, then the rate of working of
the stress force by flow through that element of surface, per unit area, is given by contracting
τ with u on the first leg and v ⊗ w on the second leg:

τ(u, v, w) = τijk u
ivjwk. (2.4)

Note that in a geometric setting momentum is a 1-form, and so it is natural to work with 1-form
valued objects such as τ ; its value (when contracted on the second leg) is not the force on the
surface element itself, but the rate of working or power of the force when contracted with the
vector fluid velocity u on its first leg. Nonetheless for brevity in the discussion below we refer
to this 1-form value τ(·, v, w) as the force. Vector valued 2-forms, with components τ ijk, may be
defined similarly but we will not need these.

2.2 Exterior covariant derivative

Given that a 1-form valued 2-form τ is the appropriate description of the force on surface
elements in a fluid flow, we need to obtain its divergence, in other words calculate a net force
on elements of volume. This divergence is a 1-form valued 3-form given by dτ , where d is the
exterior covariant derivative defined by (Kanso et al. 2007)

(u, dτ) = d(u, τ)−∇u
·
∧ τ. (2.5)

Here u is any vector field, (u, τ) denotes u contracted into the first leg of τ , likewise (u, dτ) is u

contracted into the first leg of dτ . In ∇u
·
∧ τ the u is contracted into the first leg of τ and the

covariant derivative is wedged with the second leg of τ . In the general use of
·
∧, the first legs

of the two sides are contracted, the second legs are wedged: for example for 1-forms α and β,
a 2-form γ and a vector u,

(u⊗ α)
·
∧ (β ⊗ γ) = (u, β)α ∧ γ. (2.6)
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Consistent with this, we adopt the (somewhat awkward) convention that the first leg of ∇u is
taken to be u and the second to be ∇ and write

∇u = ∇jui ∂i ⊗ dxj = ui ;j ∂i ⊗ dxj , (2.7)

with a semicolon as alternative notation for a covariant derivative (Kanso et al. 2007).
Using components the definition of d amounts to

(u, dτ)ijk = um(dτ)mijk = 3(umτm[ij);k] − 3τm[ij∇k]um = 3umτm[ij;k] (2.8)

and so we have
(dτ)mijk = 3τm[ij;k], (2.9)

with square brackets denoting full antisymmetrisation (see Schutz (1980) for the formulation of
exterior derivatives and wedge products in terms of antisymmetrised tensors). The definition
is thus independent of the choice of u. The resulting object dτ has the physical interpretation
that the net force on a volume element supplied by vectors u, v and w is the 1-form obtained
as the first leg of dτ , when we take the contraction dτ(·, u, v, w) on the second leg. We note
that the appearance of the covariant derivative in this definition is natural, since computing the
net force on a volume element involves the differences between forces on the various faces and
taking these differences requires parallel transport. The metric-free theory of Segev (2013, 2016)
constructs a more general divergence that does not involve the covariant derivative by having
the stress tensor act on both u and its spatial derivatives in an arbitrarily chosen manner.

The general definition (2.5) of dτ in fact holds for 1-form valued p-forms for any p and is
easily extended to p-forms with values in other vector bundles. The theory of these ‘valued’
forms and the exterior covariant derivative d was developed by E. Cartan as the natural language
for discussing curvature, gauge theories, and stress in elasticity and fluid flow (Frankel 1997;
Kanso et al. 2007).

The usual operations such as raising and lowering indices with ] and [, and the Hodge star ?
operator can be applied to either leg of τ , with a numeral subscript used to indicate which leg.
With this notation, we can relate τ to the usual definition of the (twice contravariant) stress
tensor T = T ij∂i ⊗ ∂j through

τ = ?2[2[1 T, (2.10)

or in components
τijk = gil T

lm µmjk. (2.11)

We also need to relate the exterior covariant derivative of τ to the usual divergence of the tensor
T . We have that

(dτ)mijk = 3(gml T
ln µn[ij);k] = 3gml µn[ij T

ln
;k], (2.12)

as the covariant derivatives of g and µ vanish. A short computation shows this reduces to

(dτ)mijk = gml T
ln
;n µijk. (2.13)

This is precisely dτ = α⊗ µ with αm = gml T
ln
;n, giving the natural relation between the 1-form

valued 3-form dτ and the usual divergence T ij;j of T ij .

The symmetry of the stress tensor, easily expressed as T ij = T ji or T (α, β) = T (β, α)
for arbitrary 1-forms α and β, can be rewritten in terms of the 1-form valued 1-form ?2τ =
Tijdx

i ⊗ dxj as
?2τ(u, v) = ?2τ(v, u) (2.14)
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for arbitrary vectors u and v. It can equivalently be stated in terms of τ itself as

(α] ⊗ β)
·
∧ τ = (β] ⊗ α)

·
∧ τ, (2.15)

for arbitrary 1-forms α and β, by applying the property that for any 2-form γ,

β ∧ γ = (β], ?γ)µ, (2.16)

to the second leg of ?2τ .

2.3 Interpretation

For a useful physical interpretation of the definition (2.5) of dτ , consider the work done by the
stress τ on the surface of a volume V moving with a velocity field u. The rate of work, that is
the power generated, is given by

P =

∫
∂V

(u, τ) =

∫
V
d(u, τ) =

∫
V

(u, dτ) +

∫
V
∇u

·
∧ τ, (2.17)

where, as usual, the contraction in (u, τ) is into the first leg of τ . The first term on the
right-hand side corresponds to the work done by the force dτ on the moving volume V and is
associated with a change in kinetic energy; the second term corresponds to an internal work
and is associated with the deformation of V and the resulting change of internal energy. This
is better seen by rewriting the second term as∫

V
∇u

·
∧ τ = 1

2

∫
V

(]1Lug)
·
∧ τ = 1

2

∫
V
〈〈Lug, ?2τ〉〉µ, (2.18)

where Lu denotes the Lie derivative along u and 〈〈·, ·〉〉 denotes the contraction of tensors defined,
using the metric twice, as 〈〈σ, τ〉〉 = gijgklσikτjl. We have also used the result

1
2Lug = ∇u[ + 1

2du[ = 1
2

(
∇u[ + (∇u[)T

)
, (2.19)

that is, 1
2Lug is the symmetrisation of ∇u[. This follows from the computation

(Lug)(v, w) = Lu(g(v, w))− g(Luv, w)− g(v,Luw) = ∇u (g(v, w))− g(Luv, w)− g(v,Luw)

= g(∇uv − Luv, w) + g(v,∇uw − Luw) = (∇vu[)(w) + (∇wu[)(v)

= 2(∇wu[)(v) + (∇vu[)(w)− (∇wu[)(v) = 2(∇u[)(v, w) + du[(v, w), (2.20)

for arbitrary vectors v, w, using that ∇ug(v, w) = g(∇uv, w)+g(v,∇uw) and Luv = ∇uv−∇vu.
We emphasise that Lug provides a natural measure of the deformation induced by u, consistent
with the interpretation of (2.18) as the power associated with the deformation of V.

For vector fields u that satisfy ∇u = 0, and so are parallel-transported across M, (2.17)
reduces to ∫

V
(u, dτ) =

∫
V
d(u, τ) (∇u = 0), (2.21)

which gives a metric-independent weak form of dτ that can be exploited for momentum-
preserving discretisation (Toshniwal, Huijsmans and Gerritsma 2014; Gerritsma 2014).
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2.4 Properties of d

We conclude this section with properties of the exterior covariant derivative d useful for our
purpose. We first note that we can regard any 3-form ω as a 1-form valued 2-form by simply
using the formula (2.4), and with this in mind it is easy to establish that when multiplied by a
scalar function f we have

d(fω) = df ⊗ ω + f dω. (2.22)

In addition, when ω is the metric-induced volume form µ on M it follows from ∇µ = 0 that

dµ = 0. (2.23)

In writing the equations of fluid mechanics in a general setting, Lie derivatives naturally
emerge that express transport of quantities. For example in the Euler equation (3.1a) below, a
Lie derivative Luν appears to express transport of momentum, in place of the traditional u ·∇u
in Euclidean space. Thus crucial to any analysis is a link between the divergence d of a quantity
and an appropriate Lie derivative. We use the following key identity, which holds for any vector
field u, 1-form field α and 3-form field ω,

Lu(α⊗ ω) = d(α⊗ uyω) + (∇u, α)⊗ ω, (2.24)

and links a Lie derivative of the 1-form valued 3-form α⊗ω and the exterior covariant derivative
of the 1-form valued 2-form α ⊗ uyω. In the term (∇u, α) the inner product is taken between
the u and the α, leaving behind a 1-form. To prove this identity we contract the left-hand side
with an arbitrary vector field v on the first leg only, so that for example (v, α ⊗ ω) = (v, α)ω,
writing first

(v,Lu(α⊗ ω)) = Lu(v, α⊗ ω)− (Luv, α⊗ ω)

= d(v, α⊗ uyω)− (Luv, α⊗ ω), (2.25)

using Cartan’s formula
Luβ = d(uyβ) + uydβ, (2.26)

and noting that (v, α⊗ω) is a 3-form and so vanishes under the action of d. We can now apply
(2.5) and Luv = ∇uv −∇vu to write

(v,Lu(α⊗ ω)) = (v, d(α⊗ uyω)) +∇v
·
∧ α⊗ uyω − (∇uv, α⊗ ω) + (∇vu, α⊗ ω). (2.27)

Since
β ∧ uyω = (β, u)ω (2.28)

for any 1-form β, letting ∇ take the place of β, we observe that the second and third terms of
(2.27) cancel and the last can be rewritten to give

(v,Lu(α⊗ ω)) = (v, d(α⊗ uyω)) + (v, (∇u, α)⊗ ω). (2.29)

The vector field v is arbitrary and so the result (2.24) follows.
We finally observe that for practical computations, it may be preferable to avoid using the

full coordinate expression (2.9) for dτ . Instead, a convenient expression emerges by expanding
τ as a sum

τ = dxi ⊗ α(i), (2.30)

where the α(i) are 2-forms. The exterior covariant derivative is then given by

dτ = ∇dxi ⊗∧ α(i) + dxi ⊗ dα(i). (2.31)
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Here, ⊗∧ denotes a Cartesian product with the first leg of ∇dxi and a wedge product with the
second leg, with as above, the covariant derivative treated as the second leg (that is, ∇dxi =
∇j(dxi)⊗ dxj), so that ∇dxi⊗∧ α(i) is the 1-form valued volume form ∇j(dxi)⊗ dxj ∧α(i). We
can check (2.31) from the coordinate-free definition of d:

(u, dτ) = d(ui α(i))−∇u
·
∧ (dxi ⊗ α(i)) (2.32a)

= ui,j dx
j ∧ α(i) + ui dα(i) − (∇ju, dxi) dxj ∧ α(i) (2.32b)

= ui,j dx
j ∧ α(i) + ui dα(i) − (ui,j − (u,∇j dxi)) dxj ∧ α(i) (2.32c)

= (u, dxi ⊗ dα(i) +∇j(dxi)⊗ dxj ∧ α(i)), (2.32d)

where we use that (∇ju, dxi) = ∇j(u, dxi) − (u,∇jdxi) and ∇j(u, dxi) = ∇jui = ui,j . We
illustrate the application of this formula and, more broadly, manipulations of the 1-form valued
τ with explicit computations in spherical geometry in appendix A.

3 Application to compressible perfect fluid

Having set up the necessary machinery and linked the divergence d to Lie derivatives, we now
use this to write systems of fluid equations on a general manifoldM in conservation form. The
most fundamental case is the compressible Euler equation, which takes the coordinate-free form

ρ[∂tν + Luν − 1
2d(u, ν)] + dp = 0, (3.1a)

∂t(ρµ) + Lu(ρµ) = 0, (3.1b)

where ρ is the density, u is the velocity (vector) field, ρν = ρu[ is the corresponding (1-form)
momentum and p is the pressure field (Gilbert and Vanneste 2018). For the maximum flexibility
to write a variety of fluid systems in conservation form, we develop this for the Euler equation
using two distinct lines of argument.

In the first, we simply apply identities obtained in §2 to (3.1a). From (3.1) we can form an
equation for the momentum, now thought of as the 1-form valued 3-form ρν ⊗ µ,

(∂t + Lu)(ρν ⊗ µ)− 1
2ρ d(u, ν)⊗ µ+ dp⊗ µ = 0. (3.2)

We then apply (2.24) together with

(∇u, ν) = 1
2∇(u, ν) = 1

2d(u, ν), (3.3)

as ν = u[ and the covariant derivative of the metric vanishes, ∇g = 0, to obtain

∂t(ρν ⊗ µ) + d(ρν ⊗ uyµ) + dp⊗ µ = 0. (3.4)

We can also use (2.22)–(2.23), Cartan’s formula and note that uyµ = ?ν to write both the
momentum and continuity equations in the desired conservation form

∂t(ρν ⊗ µ) + d(ρν ⊗ ?ν + pµ) = 0, (3.5a)

∂t(ρµ) + d(ρ ?ν) = 0. (3.5b)

This identifies the momentum flux as the 1-form-valued 2-form ρν ⊗ ?ν and the mass flux as
the 2-form ρ ?ν.
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The second line of argument starts from an action principle (Gotay and Marsden 1992; Hawk-
ing and Ellis 1973) and provides a direct variational derivation of the Euler equations in conser-
vation form, as an alternative to the Euler–Poincaré derivation which yields (3.1a) (Newcomb
1962; Salmon 1988; Holm, Marsden and Ratiu 1998; Webb 2018; Gilbert and Vanneste 2018)
and which we record in Appendix B for completeness. We suppose that the time-dependent
family of diffeomorphisms φt :M→M moves the fluid elements, together with the mass 3-form
ρµ and the scalar entropy s, from some initial configuration. If we let the internal energy be
e(ρ, s) per unit mass, the action is given by

A[φ] =

∫
dt

∫
M
L[φ], where L[φ] =

[
1
2g(u, u)− e(ρ, s)

]
ρµ (3.6)

is the Lagrangian 3-form, that is the Lagrangian density multiplied by µ. Here we abbreviate
φ for φt and

u = φ̇ ◦ φ−1, ρµ = φ∗(ρ0µ), s = φ∗s0, (3.7)

where φ∗ is the push forward under the map φ from the initial conditions, with ρ0 as the initial
density, s0 the initial entropy.

We require the action to be stationary under any variation φ 7→ ψε ◦φ, where ψε is a family
of mappings with ψ0 the identity, so that

d

dε

∣∣∣
ε=0
A[ψε ◦ φ] = 0. (3.8)

We can take the family ψε to be generated by a vector field w at ε = 0. We can choose w to
vanish except between some initial and final time, and to vanish outside some local region of
M, meaning that we can freely integrate by parts in time or onM in what follows. Under such
a variation we obtain variations in the fields, labelled fleetingly by ε, with

d

dε

∣∣∣∣
ε=0

uε = ∂tw + Luw = ∂tw − Lwu, (3.9a)

d

dε

∣∣∣∣
ε=0

ρεµ = −Lw(ρµ) = −div(ρw)µ, (3.9b)

d

dε

∣∣∣∣
ε=0

ρε = −div(ρw), (3.9c)

d

dε

∣∣∣∣
ε=0

sε = −Lws = −(ds, w). (3.9d)

Requiring the action (3.6) to be stationary, (3.8), then gives∫
dt

∫
M

[
g(u, ∂tw − Lwu) ρµ− 1

2g(u, u)Lw(ρµ)+(ρe)ρ Lw(ρµ)+ρes(Lws)µ
]

= 0, (3.10)

with the ρ and s subscripts denoting partial derivatives.
The standard derivation in Appendix B uses integration by parts to write each term in

(3.10) as a pairing with the undifferentiated w before invoking the arbitrariness of w to obtain
the Euler equations in the form (3.1). To obtain the conservation form instead, we return to
the action integral (3.6) and note that ψε :M→M, so that we can write schematically

A[φ] =

∫
dt

∫
ψεM

L[φ] =

∫
dt

∫
M
ψ∗εL[φ], (3.11)
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with ψ∗εL the pull back of the Lagrangian 3-form. Differentiating with respect to ε at ε = 0
replaces the pull back by a Lie derivative with respect to the vector field w and gives∫

dt

∫
M
LwL[φ] = 0. (3.12)

This key equation expresses the principle of covariance – the invariance of laws of motion under
change of variables – at an infinitesimal level; it allows us to reformulate the result of applying
the action principle and to obtain an equivalent form for the resulting equation of motion
(Hawking and Ellis 1973). Applying (3.12) to the action integral (3.6) gives∫
dt

∫
M
Lw[12g(u, u) ρµ− ρe(ρ, s)µ] =

∫
dt

∫
M

[
1
2(Lwg)(u, u) ρµ+ g(u,Lwu) ρµ (3.13)

+ 1
2g(u, u)Lw(ρµ)− [(ρ e)ρ Lwρ+ ρes Lws]µ−ρeLwµ

]
= 0.

Both this equation and (3.10) must hold; adding them together leaves∫
dt

∫
M

[
1
2(Lwg)(u, u) ρµ+ g(u, ∂tw) ρµ+ pLwµ

]
= 0, (3.14)

after simplifying and using p = ρ2eρ. This equation gives the momentum equation in a weak
form, suitable for finite element discretisation; see Toshniwal, Huijsmans and Gerritsma (2014)
and Gerritsma (2014).

We can now use integration by parts, and so discard total time derivatives or total space
derivatives dω, where ω is any 2-form, by applying∫

M
dω =

∫
∂M

ω = 0, (3.15)

given that ω vanishes on the boundary ∂M. This typically requires boundary conditions on the
fields, here that u be parallel to ∂M, and using that w, as the flow generating a diffeomorphism
from M to M is also parallel to ∂M. We do not consider boundary conditions in detail since
they are well established for the fluid models under consideration in this paper. We denote the
equivalence up to total time and space derivatives by '. For the last two terms in (3.14) we
find

g(u, ∂tw) ρµ = (∂tw, ν ⊗ ρµ) ' −(w, ∂t(ρν ⊗ µ)), (3.16a)

pLwµ ' −µLwp =− (w, dp)µ = −(w, dp⊗ µ), (3.16b)

on using that Lwp = (w, dp). For the first term we claim that

1
2(Lwg)(u, u) ρµ ' −(w, d(ρν ⊗ ?ν)). (3.17)

Substituting into (3.14) then gives∫
dt

∫
M

[(w, d(ρν ⊗ ?ν)) + (w, ∂t(ρν ⊗ µ)) + (w, dp⊗ µ)] = 0, (3.18)

and as the vector field w is arbitrary (albeit parallel to ∂M), the conservation form (3.5a)
must hold, completing the derivation directly from the action principle. We remark that the
covariance of the action (3.12) merely encodes an identity, namely (2.24), in the form used to
go from the advective to the conservation forms of the momentum equation. Its benefit lies in
the cancellations of terms that arise when it is added to the stationarity condition of the action,
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that is, when (3.10) and (3.13) are added together. These cancellations are a generic feature of
the approach, as the consideration of an abstract model in §4.4 demonstrates.

We now need to prove the identity (3.17). First we use the identity (2.19) contracted with
the symmetric tensor u⊗ u to write

1
2(Lwg)(u, u) = (∇w[)(u, u) = (u,∇uw[) = (ν,∇uw), (3.19)

using that ∇g = 0. Then we have, applying (2.28) to the contraction between the u and the ∇,

1
2(Lwg)(u, u) ρµ = (ρν,∇uw)µ = ∇w

·
∧ ρν ⊗ uyµ = ∇w

·
∧ ρν ⊗ ?ν. (3.20)

Hence by the definition of d, and discarding the resulting divergence term (as per integration
by parts), we have

1
2(Lwg)(u, u) ρµ = −(w, d(ρν ⊗ ?ν)) + d(w, ρν ⊗ ?ν) ' −(w, d(ρν ⊗ ?ν)), (3.21)

which establishes (3.17).

4 Other fluid models

The above calculation establishes the principle that allows us to obtain equations in conservation
form by playing off the terms gained from the variational principle in (3.8) with those obtained
by an infinitesimal change of variables in the integral, the limiting Lie derivative action of
a pull back, in the covariance condition (3.12). This systematic method can be applied to
other systems, with varying level of complexity in the resulting calculations. We consider three
important specific systems, namely incompressible fluid flow, the Euler-α model and MHD
before illuminating the overall structure by examining an abstract model of Euler–Poincaré
type.

4.1 Incompressible perfect fluid

We commence with the Euler equations for an incompressible fluid. The action in this case
takes the form

A[φ, π] =

∫
dt

∫
M

[
1
2g(u, u)µ− π(φ∗µ− µ)

]
, (4.1)

where −π is a Lagrangian multiplier enforcing the volume-preservation constraint φ∗µ = µ.
Under variation of the path, we obtain

d

dε

∣∣∣
ε=0
A[ψε ◦ φ, π] =

∫
dt

∫
M

[g(u, ∂tw − Lwu)µ+ πLw(φ∗µ− µ) + πLwµ] = 0, (4.2)

while the covariance condition (3.12) gives∫
dt

∫
M

[
1
2(Lwg)(u, u)µ+ g(u,Lwu)µ+ 1

2g(u, u)Lwµ− (Lwπ)(φ∗µ− µ)
]

= 0, (4.3)

which holds for any map φ and field π. We now impose the incompressibility condition φ∗µ = µ
(as follows from variations of (4.2) in π) in the integrals above which become∫

dt

∫
M

[g(u, ∂tw − Lwu)µ+ πLwµ] = 0, (4.4)∫
dt

∫
M

[
1
2(Lwg)(u, u)µ+ g(u,Lwu)µ+ 1

2g(u, u)Lwµ
]

= 0. (4.5)
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As before we add these two equations to obtain∫
dt

∫
M

[
1
2(Lwg)(u, u)µ+ g(u, ∂tw)µ+ (π + 1

2g(u, u))Lwµ
]

= 0. (4.6)

If we set p = π + 1
2g(u, u), we recover (3.14) with ρ = 1 and, following the compressible case,

the incompressible equations in the form

∂t(ν ⊗ µ) + d(ν ⊗ ?ν + pµ) = 0, (4.7a)

div u = 0, (4.7b)

with µdiv u = d ?ν.

4.2 Euler-α model

We next consider the Lagrangian averaged Euler-α model first introduced by Holm (1999).
The model is a generalisation of the Euler equations for incompressible perfect fluids that
accounts for the averaged effect of small-scale fluctuations (see Holm (2002), Marsden and
Shkoller (2003), Oliver (2017) and Oliver and Vasylkevych (2019) for increasingly sophisticated
heuristic derivations); it has been formulated on Riemannian manifolds (Marsden, Ratiu and
Shkoller 2000; Shkoller 1998, 2000; Gay-Balmaz and Ratiu 2005; Oliver and Vasylkevych 2019).
We now show that the variational route enables a relatively straightforward derivation of the
conservation form of the Euler-α model on manifolds, which otherwise would be difficult to
obtain.

The Euler-α action for an incompressible flow u is

A[φ] =

∫
dt

∫
M

[
1
2g(u, u)µ+ 1

4α
2|Lug|2 µ− π(φ∗µ− µ)

]
(4.8)

where α is a parameter and |Lug|2 = 〈〈Lug,Lug〉〉 is the square of the deformation of u (cf.
(2.19)). This action is identical to Euler action (4.1) except for the addition of the middle term,
which we denote by α2A2. We note that other forms for this term – equivalent in Euclidean
geometry but distinct on curved manifolds – have been proposed originally (Marsden, Ratiu and
Shkoller 2000; Shkoller 1998) and that (4.8) follows the more recent literature (Shkoller 2000;
Gay-Balmaz and Ratiu 2005; Oliver and Vasylkevych 2019). We focus on α2A2 since we have
dealt with the other two terms in the treatment of the Euler equations above. For simplicity,
we assume that the manifoldM has empty boundary to avoid unnecessary complications when
discarding integrals over M that are the derivative d of a 2-form (see Shkoller (2000) for a
careful treatment of the boundary conditions). We have

A2[φ] = 1
4

∫
dt

∫
M
〈〈Lug,Lug〉〉µ = 1

2

∫
dt

∫
M
〈〈∇u[,Lug〉〉µ (4.9a)

= 1
2

∫
dt

∫
M
∇u

·
∧ ?2Lug = −1

2

∫
dt

∫
M

(u, d(?2Lug)) = −1
2

∫
dt

∫
M

(u,∆Rν)µ (4.9b)

on using (2.5), (2.19) and (2.29). In the last equality, we have introduced the Ricci Laplacian
of 1-forms via

∆Rν ⊗ µ = d(?2 Lug), (4.10)

recalling that ν = u[. This is related to the Laplace–de Rham operator ∆ν = −(?d?d+ d?d?)ν
and the analyst’s (or rough) Laplacian (∆̃ν)i = gjk∇j∇kνi through

∆Rν = ∆ν + 2R(u) = ∆̃ν +R(u), (4.11)
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where R is the Ricci tensor given by, in general, R(u)i = Riju
j = ∇j∇iuj −∇i∇juj . The latter

equality in (4.11) is kown as the Weizenböck formula (Frankel 1997); we check the former.
Setting temporarily Sij = (Lug)ij , (2.13) shows that we need to compute ∇jSij , which gives

∇jSij = gik gjl∇j(Lug)kl = gik gjl∇j(∇kul +∇luk) (4.12a)

= gik [∇j∇kuj + (∆̃ν)k] = gik (R(u) + ∆̃ν)k, (4.12b)

using incompressibility, div u = ∇iui = 0.
The Euler–α momentum equation is obtained by extremising the action (4.8) under vari-

ations of the form (3.9a). The contribution of A2 is readily obtained from (4.9b) using the
self-adjointness of ∆R (as used in Oliver and Vasylkevych (2019)) to find

d

dε

∣∣∣∣
ε=0

A2 = −
∫
dt

∫
M

(∂tw − Lwu,∆Rν)µ. (4.13)

Adding this to the variation obtained for the Euler equation in (4.4) and requiring the sum to
vanish for arbitrary w yields the Euler–α equations in the advective form

∂tυ + Luυ + dπ = 0, div u = 0, where υ = ν − α2∆Rν. (4.14)

It is not obvious how to put (4.14) into conservation form by inspection and so we proceed to
use the pull back of the action according to (3.12). We focus again on A2 since the contributions
of the other terms are as in (4.5). The variation of A2 can be written as the sum of three terms
proportional to Lwu, Lwg and Lwµ. It is convenient to use the form (4.9b) of A2 for the first
and (4.9a) for the other two. This leads to∫

dt

∫
M
LwL2[φ] =

∫
dt

∫
M

[
(−Lwu,∆Rν)µ+ 1

4 L̃w|Lug|
2 µ+ 1

4 |Lug|
2 Lwµ

]
, (4.15)

where the tilde in L̃w indicates a Lie derivative at fixed u. We work out the second term in
coordinates, noting that, as gij g

jk = δki ,

Lu(gij) = −gik glj (Lugkl) = −gik glj (Lug)kl ≡ −(Lug)ij , (4.16)

to obtain

L̃w|Lug|2 = L̃w
[
gik gjl (Lug)ij (Lug)kl

]
= −2(Lwg)ik gjl (Lug)ij (Lug)kl + 2gik gjl (LuLwg)ij (Lug)kl

' −2(Lwg)ik (Lug)ij (Lug)kj + 4(Lwg)ij (Lug)ik (Lug)jk − 2(Lwg)ij g
ik gjl (LuLug)kl

= 2 〈〈Lwg, T 〉〉, (4.17a)

where we introduce the twice covariant tensor

T = (Lug)2 − LuLug, i.e. Tij = gkl (Lug)ik (Lug)jl − (LuLug)ij . (4.18)

Adding together the variations (4.2), (4.3), (4.13) and (4.15) then leads to∫
dt

∫
M

[
1
2(Lwg)(u, u)µ+ g(∂tw, u)µ+ pLwµ

−α2(∂tw,∆Rν)µ+ 1
2α

2〈〈Lwg, T 〉〉µ+ 1
4α

2|Lug|2 Lwµ
]

= 0. (4.19)
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Integrating by parts, in particular using that

1
2〈〈Lwg, T 〉〉µ = ∇w

·
∧ ?2T ' −(w, d ?2T ), (4.20)

and requiring (4.19) to vanish for arbitrary w gives the conservation form of the Euler–α equa-
tion,

∂t(υ ⊗ µ) + d
[
ν ⊗ ?ν + α2

(
?2T + 1

4 |Lgu|
2µ
)

+ pµ
]

= 0. (4.21)

A direct check that this can be expanded to give (4.14) is tedious but confirms the result. We
emphasise that the momentum flux tensor that emerges as the argument of d is not simply
υ ⊗ ?ν = υ ⊗ uyµ, namely transport of the momentum υ by the velocity u, as might have been
expected naively. The latter tensor is not symmetric, whereas the tensor we obtain in (4.21) is
symmetric by construction (Hawking and Ellis 1973; Gotay and Marsden 1992). Note that the
pressure is augmented by the fluctuations giving the total effective pressure as p+ 1

4α
2|Lgu|2.

4.3 Magnetohydrodynamics

Finally we consider magnetohydrodynamics (MHD) and outline a derivation of the conservation
form of the governing equation of ideal MHD which generalises (3.5) by including the Lorentz
force; see the classic study by Newcomb (1962) and also Gilbert and Vanneste (2021). The
general procedure is already established, but because the flow u and and magnetic field b have
distinct transport properties, there are notable differences, and one effect is that a magnetic
pressure term emerges from the analysis.

The MHD action is given by A − B where A is the compressible perfect fluid action (3.6)
and

B[φ] =

∫
dt

∫
M

1
2g(b, b)µ (4.22)

is the magnetic energy. Here b is the magnetic vector field, and we again allowM to have a non-
empty boundary with the boundary condition b ‖ ∂M. The most fundamental representation
of the magnetic field is perhaps not the vector field b itself but the associated magnetic flux
2-form, β = byµ Frankel (1997). The absence of magnetic monopoles, that the flux across any
closed surface is zero, is simply expressed by β being closed, dβ = 0 and hence div b = 0. The
flux 2-form is transported by the flow so that

∂tβ + Luβ = 0, (4.23)

or equivalently pushed forward from the initial condition according to β = φ∗β0. The magnetic
vector field b obeys a more complicated equation (and in fact may be considered as a tensor
density; see Roberts and Soward 2006),

∂tb+ Lub+ bdiv u = 0. (4.24)

Let us now consider the effect of a variation in the path φ 7→ ψε ◦ φ on B (Newcomb 1962).
We have using (4.24) that b is transported according to

d

dε

∣∣∣∣
ε=0

bε = −Lwb− (divw) b, (4.25)

and so making the total action A− B stationary introduces new integral terms:

d

dε

∣∣∣∣
ε=0

B[ψε ◦ φ] =

∫
dt

∫
M

[−g(b,Lwb)µ− g(b, b)Lwµ]. (4.26)
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Combining with dA/dε|ε=0 in (3.10), and using the integration by parts identities (B.1) and
similar, gives the momentum equation

∂t(ν ⊗ ρµ) + Lu(ν ⊗ ρµ)− 1
2d(ν, u)⊗ ρµ+ dp⊗ µ = Lb(?β ⊗ µ)− dg(b, b)⊗ µ, (4.27)

noting that b[ = ?β.
To obtain the conservation form of (4.27), we use the covariance of the action (3.12), adding

to (4.26) the term∫
dt

∫
M

[
1
2(Lwg)(b, b)µ+ g(b,Lwb)µ+ 1

2g(b, b)Lwµ
]

= 0. (4.28)

This gives
d

dε

∣∣∣∣
ε=0

B[ψε ◦ φ] =

∫
dt

∫
M

[
1
2(Lwg)(b, b)µ− 1

2g(b, b)Lwµ
]
. (4.29)

Subtracting this from (3.14) and following the now usual manipulations we obtain the conser-
vation form

∂t(ρν ⊗ µ) + d(ρν ⊗ ?ν + pµ) = d(?β ⊗ β − 1
2g(b, b)µ). (4.30)

The magnetic pressure term 1
2g(b, b) emerges naturally in the derivation, and its origin may

traced back to the term bdiv u in the transport equation (4.24) for b. In a compressible fluid,
whereas the fundamental magnetic flux β is simply Lie transported in the flow map, and so
conserved, the magnetic vector field b with byµ = β is intensified where the fluid is locally
compressed, and this contributes to increased energy density 1

2g(b, b) in (4.22) and a resulting
restoring force in (4.30). In an incompressible fluid, the magnetic pressure can simply be
absorbed in the pressure p. In appendix C, we also derive the shallow-water and MHD shallow-
water equations in conservation form.

4.4 Abstract model

The variational derivations above and in appendix C indicate that combining the stationarity of
the action with its covariance leads to a number of cancellations and, as a result, relatively simple
expressions for the conservation and weak forms of the governing equations. To understand how
these cancellations come about and illuminate the underlying structure, it is useful to consider
a general, abstract fluid model of the Euler–Poincaré type examined by Holm, Marsden and
Ratiu (1998) and governed by the action

A[φ] =

∫
dt

∫
M
L[u, g, a], (4.31)

where the Lagrangian 3-form depends on the velocity field u and metric g, and on tensorial
fields a that are advected by the flow, that is, satisfy a = φ∗a0, with a0 the initial fields. The
stationarity of the action reads

d

dε

∣∣∣∣
ε=0

A[φε] =

∫
dt

∫
M

((
δL

δu
, ∂tw − Lwu

)
−
(
δL

δa
,Lwa

))
= 0 (4.32)

using (3.9a) and that daε/dε|ε=0 = −Lw a. Its covariance reads∫
dt

∫
M
Lw L[u, g, a] =

∫
dt

∫
M

((
δL

δu
,Lwu

)
+

(
δL

δg
,Lwg

)
+

(
δL

δa
,Lwa

))
= 0. (4.33)
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Note that δL/δg should be interpreted as a 3-form whose value (on a triple of vectors) is a twice
contravariant tensor. Adding the conditions yields the compact expression∫

dt

∫
M

((
δL

δu
, ∂tw

)
+

(
δL

δg
,Lwg

))
= 0. (4.34)

We can now integrate by parts and exploit the arbitrariness of w. Defining the bilinear diamond
operator � by ∫

M
(S,Lwg) = −

∫
M

(S � g, w) (4.35)

for any tensor-valued 3-form S (Holm, Marsden and Ratiu 1998; Holm 2002), we obtain the
governing equation in the form

∂t
δL

δu
+
δL

δg
� g = 0. (4.36)

It turns out that the diamond operator �, when applied to a pair of symmetric tensor-valued
3-form and tensor as is the case here, is equivalent to the covariant exterior derivative d. To see
this, define the twice contravariant tensor M (dual to g) by

δL

δg
= M ⊗ µ. (4.37)

Using the symmetry of M , (2.19), (2.16) and the definition (2.5) of d, we have, for any vector
field w,∫

M

(
δL

δg
� g, w

)
= −

∫
M

(
δL

δg
,Lwg

)
= −

∫
M

(Lwg,M)µ = −
∫
M

(∇w[,M)µ (4.38a)

= −
∫
M
∇w

·
∧ ?2[1[2M =

∫
M

(w, d(?2[1[2M)) . (4.38b)

Hence δL/δg � g = d(?2[1[2M) and the governing equation (4.36) can be rewritten in the
conservation form

∂

∂t

δL

δu
+ d(?2[1[2M) = 0. (4.39)

While this expression is general and pleasantly compact, obtaining the explicit form of M often
requires intricate computations, as our treatment of specific models illustrates, because of the
complex dependence of the Lagrangian L on the metric g, including through the volume form.
Eq. (4.39) shows that ?2[1[2M is the general formula for the stress, including the contribution
from the momentum flux, represented as a 1-form valued 2-form. Eq. (2.10) then implies that
M itself is this stress in the conventional (twice-contravariant) tensorial form T .

5 Viscosity and viscoelasticity

5.1 Newtonian fluids

We now turn to the geometric representation of the viscous stress tensor given in (2.2) for
ordinary Euclidean space. The construction involves the Lie derivative of the metric which,
according to (2.19), is given by

(Lug)ij = ∇iνj +∇jνi = νj;i + νi;j , (5.1)

since ν = u[. It is then natural to replace the terms ∂iuj+∂jui in (2.2) by Lug, both following the
general rule of replacing ordinary derivatives by covariant derivatives, but more importantly as
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in our understanding of Newtonian fluids, it is the deformation of fluid elements that generates
viscous stresses, and deformation corresponds precisely to non-zero transport of the metric
under a flow u. With this, the geometric version of the stress tensor as a 1-form valued 2-form
is

σ = −pµ+ ς ?2Lug + λ(div u)µ, (5.2)

and then the Navier–Stokes momentum equation in conservation form is

∂t(ρν ⊗ µ) + d(ρν ⊗ ?ν + pµ) = d
[
ς ?2 Lug + λ(div u)µ

]
. (5.3)

In the incompressible case, this simplifies as

∂t(ν ⊗ µ) + d(ν ⊗ ?ν + pµ) = ς∆Rν, (5.4)

when (4.10) is used to substitute the Ricci Laplacian for d(?2 Lug) in the sole remaining viscous
term. We emphasise that the Ricci Laplacian is the proper choice of Laplacian, rather than
the Laplace–de Rham operator or the analyst’s Laplacian, on a manifold with non-zero Ricci
tensor. This choice ensures that velocity fields that leave the metric invariant, and hence do
not cause any deformation, are not dissipated, for example solid body rotation on the surface
of the sphere M = S2 (Gilbert, Riedinger and Thuburn 2014; Lindborg and Nordmark 2022).

The total energy in the system is E =
∫
M
[
1
2g(u, u) ρµ+ e(ρ, s) ρµ

]
. Following the develop-

ment in (2.17)–(2.18), we can write

dE

dt
=

∫
M

[(u, dσ)− (ρe)ρ Lu(ρµ)− ρes (Lus)µ] =

∫
M
d(u, σ′)−

∫
M
∇u

·
∧ σ′

= −
∫
M

1
2(]1Lug)

·
∧ σ′ = −

∫
M

1
2〈〈Lug, ?2σ

′〉〉µ, (5.5)

where σ′ = σ+ pµ denotes the viscous part of the stress tensor. To obtain this we observe that
the momentum flux makes no contribution to dE/dt, and that the terms involving the internal
energy e cancel out the pressure term −(u, dp)µ (after integration by parts, as in (B.1c)–(B.1d),
and following the argument below (B.4)). Using the form (5.2) of the viscous stress, we obtain

dE

dt
= −

∫
M

[
1
2 ς〈〈Lug,Lug〉〉+ λ(div u)2

]
µ, (5.6)

as 〈〈Lug, ?2µ〉〉 = 2 div u. Note that this derivation requires the additional no-slip boundary
condition u = 0 on ∂M so that the term d(u, ?2Lug) in d(u, σ) integrates to zero.

5.2 Viscoelastic fluids

In models of viscoelastic fluids such as polymer solutions, the stress σ often appears as a
dynamical variable, obeying a transport equation of the form (∂t+Lu)σ = · · · , where the right-
hand side captures the rheology of the fluid. The type of tensor chosen for σ determines the
meaning of Lu, leading to different physical models depending on the choice made; standard
choices take σ as a twice covariant or a twice contravariant tensor, with the corresponding Lie
derivatives termed ‘lower-convected’ or ‘upper-convected’ derivatives (see, e.g., Marsden and
Hughes (1983)). In the context of this paper, a natural alternative takes σ to be a 1-form
valued 2-form, σ = 1

2σijk dx
i ⊗ dxj ∧ dxk. A coordinate expression for its Lie derivative is

readily computed: since Lu and d commute, we have

2Luσ = Lu(σijk) dx
i ⊗ dxj ∧ dxk + σijk dLu(xi)⊗ dxj ∧ dxk

+ σijk dx
i ⊗ dL(xj) ∧ dxk + σijk dx

i ⊗ dxj ∧ dLu(xk)

=
[
ul σijk,l + σljk u

l
,i + σilk u

l
,j + σijl u

l
,k

]
dxi ⊗ dxj ∧ dxk, (5.7)
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where the comma indicates differentiation (see Frankel (1997) for the analogous computation
for a vector valued 2-form). This derivative can be rewritten in terms of the the twice con-
travariant tensor T = ]1]2?2σ (cf. (2.10)) but differs from the upper convected derivative by
terms proportional to Lug that result from the lack of commutativity of Lu with the operators
] and ?.

While it is tempting to postulate an evolution equation for the 1-form valued σ of the
form (∂t + Lu)σ = · · · with the right-hand side containing only rheological terms, physical
considerations dictate the type of the tensor that is transported by the flow and hence the form
of the evolution equation. We illustrate this with a brief geometric derivation of the Oldroyd-B
model Oldroyd (1950) and its formulation in terms of σ. The derivation considers a solution
of polymers modelled as small dumbbells whose ends are connected by springs and which move
under a combination of flow motion (through Stokes drag), spring force, and thermal noise
(Bird et al. 1977; Degond, Lemou and Picasso 2002). We follow closely the presentation in
Morozov and Spagnolie (2015). In a continuum description, the dumbbell extension is naturally
represented by a vector field, r say, measuring the total extension per unit volume. The balance
of the three forces then reads

ζ(∂t + Lu)r = −f(r) +
√

4kBT ζ Ẇ , (5.8)

where ζ is the drag coefficient, f(r) is the elastic force in the dumbell, a vector aligned with r,
kB the Boltzmann constant, T the temperature, and Ẇ a (possibly spatially dependent) vector-
valued white noise with 〈dW i dW j〉 = gij dt. The noise in (5.8) is the sum of two independent
white noises acting on each end of the dumbbells, each with strength

√
2kBT ζ as determined by

the fluctuation–dissipation theorem. The force exerted by the dumbbells on a surface element
is the spring extension Kr multiplied by the number of dumbbells crossing the surface. A
geometrically intrinsic representation of this is simply f ⊗ryµ. The stress is proportional to the
average 〈f ⊗ ryµ〉 over realisations of the white noise and can be written as the 1-form valued
2-form

σ = 〈f[ ⊗ ryµ〉 − 〈f[ ⊗ ryµ〉eq, (5.9)

where the equilibrium value is subtracted to retain only the stress induced by the flow.
In general, σ does not satisfy a closed equation. A Fokker–Planck equation governing the

probability distribution of r need to be solved to carry out the average in (5.9) (e.g. Degond,
Lemou and Picasso 2002). However, for a linear (Hookean) spring, with f(r) = Kr, (5.8) is
linear and a closed equation for σ is readily obtained, as we now detail. Using Itô’s formula and
assuming incompressibilty, Luµ = 0, we obtain from (5.8) that

(∂t + Lu)〈r ⊗ ryµ〉 = −4K

ζ
〈r ⊗ ryµ〉+

4kBT
ζ

g−1yµ. (5.10)

At equilibrium, the left-hand side vanishes, leading to

〈r ⊗ ryµ〉eq =
kBT
K

g−1yµ. (5.11)

We now consider the representation of the stress in (5.9) as the vector-valued 2-form

σ̃ = ]1σ = K〈r ⊗ ryµ〉 −K〈r ⊗ ryµ〉eq. (5.12)

Applying (∂t + Lu) and using (5.10) and (5.11) we obtain

λ(∂t + Lu)σ̃ + σ̃ = ς ]1?2 Lug, (5.13)
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on noting that that Lug−1 = −g−1(Lug)g−1 (see (4.16)), and that contraction with g−1yµ
amounts to an application of ?. Here λ = ζ/4K and ς = kBT ζ/4K are the relevant rheological
parameters.

Eq. (5.13) is the desired evolution equation for the stress in the Oldroyd-B model on a
manifold, expressed here in terms of σ̃. It takes a more familiar form using the usual twice
contravariant stress tensor T = ]2?2 σ̃, namely

λ(∂t + Lu)T + T = ς ]1]2 Lug, (5.14)

using that the operator ]2?2 involves only the volume form and hence commutes with Lu for
incompressible flows. The Lie derivative in (5.14) can be identified as the upper-convected
derivative. Finally, the 1-form valued 2-form obeys the slightly more complicated equation

λ(∂t + Lu)σ + σ = ς ?2Lug + λLugy]1σ, (5.15)

where (Lugy]1σ)ijk = (Lug)il g
lm σmjk in coordinates.

6 Concluding remarks

We conclude with three remarks. First, one of the benefits of the conservation form of the fluid
equations is that it makes the derivation of conservation laws arising from spatial symmetries
according to Noether’s theorem straightforward. On a manifold M, a spatial symmetry is
identified with a Killing vector field, that is, a vector field k that carries the metric without
deformation,

Lk g = 0, (6.1)

or ki;j + kj;i = 0. For example, if the domain M is R3 or a periodic domain (flat torus), these
are translations; for a sphere M = S2 these are rotations. The associated conservation law is
obtained by noting that

(k, dτ) = d(k, τ)−∇k
·
∧ τ = d(k, τ), (6.2)

where the vanishing of the term ∇k
·
∧ τ follows from the symmetry of τ as in (2.14) and use

of (2.28). Contracting k with the first leg of the dynamical equation for the 1-form valued
momentum

∂t(ρν ⊗ µ) + dτ = 0 (6.3)

then leads to the conservation law

∂t((k, ρν)⊗ µ) + d(k, τ) = 0. (6.4)

For instance, in the case of viscous compressible fluids, contracting k with (5.3) gives

∂t((k, ρν)⊗ µ) + d [(k, ρν)⊗ ?ν + pkyµ− ς(k, ?2 Lug)− λ(div u) kyµ] = 0. (6.5)

The density of the conserved quantity, the k-directed momentum, is then (k, ρν) while the flux
(k, τ) consists of the terms within the square brackets. Integrating (6.5) over any subregion N
of M relates the time derivative of the integral of (k, ρν) to the transport of (k, ρν) across the
boundary ∂N and the k-directed pressure and viscous stress on the boundary, using Stokes’
theorem. In the case of R3 and S2, (k, ρν) corresponds to linear and angular momenta.

Second, it is well known that, in the variational derivation of the equations for motion for
inviscid fluids, the statement of the stationarity of the action directly gives a weak form of the
equations – with the vector field w generating an arbitrary diffeomorphism regarded as a test
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function – which can provide the starting point for a finite-element discretisation. The weak
forms we obtain by exploiting the covariance of the action (namely (3.14), (4.6) and (4.18) for
the compressible, incompressible and Euler-α equations, and (4.29) for the additional magnetic
term) are particularly simple and well suited for discretisations that preserve discrete analogues
of the conserved global momenta (Toshniwal, Huijsmans and Gerritsma 2014; Gerritsma 2014).

Third, we return to one of the motivations for using the conservation form of the equations
of momentum, namely the suitability of this form when carrying out an average over fluctu-
ations. Eulerian (Reynolds) averaging is straighforward; for the incompressible Navier–Stokes
equations it leads to the 1-form valued 2-form Reynolds stress −ν ′ ⊗ ?ν ′, where ν ′ = ν − ν is
the momentum fluctuation and the overbar denotes averaging. The situation is more complex
for averages that are performed at moving rather than fixed Eulerian position, such as the
thickness-weighted average used in oceanography Young (2012). The derivation of thickness-
weighted average equations, leading to a geometric interpretation of the Eliassen–Palm tensor
(the relevant generalisation of the Reynolds stress; see Maddison and Marshall (2013)) is the
subject of ongoing work (Gilbert and Vanneste 2023).

A Computations in spherical geometry

We consider the 1-form valued stress τ on the sphere S2. In terms of the polar and azimuthal
angles θ and ϕ, the standard metric and associated volume (in fact area) form read

g = dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ and µ = sin θ dθ ∧ dϕ. (A.1)

On this two dimensional manifold the stress τ becomes a 1-form valued 1-form (rather than the
1-form valued 2-forms used earlier for three dimensions). We write it as

τ = τθθ dθ ⊗ dθ + τθϕ dθ ⊗ dϕ+ τϕθ dϕ⊗ dθ + τϕϕ dϕ⊗ dϕ. (A.2)

The symmetry of the stress tensor implies a relationship between its components. Using (A.1),
we find that

?dθ = (dθ)]yµ = ∂θyµ = sin θ dϕ, (A.3a)

?dϕ = (dϕ)]yµ =
1

sin2 θ
∂ϕyµ = − 1

sin θ
dθ, (A.3b)

hence

?2τ = sin θ τθθ dθ ⊗ dϕ−
1

sin θ
τθϕ dθ ⊗ dθ + sin θ τϕθ dϕ⊗ dϕ−

1

sin θ
τϕϕ dϕ⊗ dθ. (A.4)

The symmetry condition in the form (2.14) therefore implies that

sin θ τθθ = − 1

sin θ
τϕϕ. (A.5)

We compute the exterior covariant derivative dτ using (2.31). This requires the covariant
derivatives of dθ and dϕ. The (Levi–Civita) connection on the sphere is determined by the
relations

∇∂θ = cot θ ∂ϕ ⊗ dϕ and ∇∂ϕ = cot θ ∂φ ⊗ dθ − cos θ sin θ ∂θ ⊗ dϕ. (A.6)

Using that ∇ applied to contractions of basis 1-forms and basis vectors vanishes, we find the
counterparts

∇dθ = cos θ sin θ dϕ⊗ dϕ, ∇dφ = − cot θ (dθ ⊗ dϕ+ dϕ⊗ dθ). (A.7)
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With these expressions, the computation of dτ from (2.31) is straightforward:

dτ = cos θ sin θ τθθ dϕ⊗ dϕ ∧ dθ + τθθ,ϕ dθ ⊗ dϕ ∧ dθ + τθϕ,θ dθ ⊗ dθ ∧ dϕ
− cot θ (τϕθ dθ ⊗ dϕ ∧ dθ + τϕϕ dϕ⊗ dθ ∧ dϕ)

+ τϕθ,ϕ dϕ⊗ dϕ ∧ dθ + τϕϕ,θ dϕ⊗ dθ ∧ dϕ
= (τθϕ,θ − τθθ,ϕ + cot θ τϕθ) dθ ⊗ dθ ∧ dϕ

+ (τϕϕ,θ − τϕθ,ϕ − cos θ sin θ τθθ − cot θ τϕϕ) dϕ⊗ dθ ∧ dϕ
= (τθϕ,θ − τθθ,ϕ + cot θ τϕθ) dθ ⊗ dθ ∧ dϕ+ (τϕϕ,θ − τϕθ,ϕ) dϕ⊗ dθ ∧ dϕ, (A.8)

using the symmetry property (A.5) to simplify the penultimate line.
It is interesting to verify explicitly the property (6.2) that contraction of the first leg of dτ

with a Killing vector field k yields the (metric-independent) pairing (k, τ). The sphere S2 has
the three Killing fields

k1 = − sinϕ∂θ − cot θ cosϕ∂φ, k2 = cosϕ∂θ − cot θ sinϕ∂φ and k3 = ∂φ, (A.9)

corresponding to rotation about the x, y and z axes. We have

(k1, dτ) = [− sinϕ (τθϕ,θ − τθθ,ϕ + cot θ τϕθ)− cot θ cosϕ (τϕϕ,θ − τϕθ,ϕ)] dθ ∧ dϕ, (A.10a)

(k2, dτ) = [cosϕ (τθϕ,θ − τθθ,ϕ + cot θ τϕθ)− cot θ sinϕ (τϕϕ,θ − τϕθ,ϕ)] dθ ∧ dϕ, (A.10b)

(k3, dτ) = (τϕϕ,θ − τϕθ,ϕ) dθ ∧ dϕ, (A.10c)

while

(k1, τ) = (− sinϕ τθθ − cot θ cosϕ τϕθ) dθ + (− sinϕ τθϕ − cot θ cosϕ τϕϕ) dϕ, (A.11a)

(k2, τ) = (cosϕ τθθ − cot θ sinϕ τϕθ) dθ + (cosϕ τθϕ − cot θ sinϕ τϕϕ) dϕ, (A.11b)

(k3, τ) = τϕθ dθ + τϕϕ dϕ. (A.11c)

A direct computation using (A.5) gives (ki, dτ) = d(ki, τ) for i = 1, 2, 3, as expected from (6.2).
This implies conservation laws of the form (6.4) for the angular momenta (ki, ρν⊗µ), explicitly

∂t(sin θ sinϕρνθ + cos θ cosϕρνϕ) + ∂θ (sinϕ τθϕ + cot θ cosϕ τϕϕ)

− ∂ϕ (sinϕ τθθ + cot θ cosϕ τϕθ) = 0, (A.12a)

∂t(sin θ cosϕρνθ − cos θ sinϕρνϕ) + ∂θ (cosϕ τθϕ − cot θ sinϕ τϕϕ)

− ∂ϕ (cosϕ τθθ − cot θ sinϕ τϕθ) = 0, (A.12b)

∂t(sin θ ρνϕ) + ∂θτϕϕ − ∂ϕτϕθ = 0. (A.12c)

B Variational derivation of (3.1)

We detail the variational derivation of the Euler equations in (3.1) from the action (3.6). Starting
with condition (3.10) for the stationarity of the action, we use integration by parts to rewrite
each term as a pairing with the undifferentiated w. The first term is given in (3.16a); the others
are

g(u,Lwu) ρµ = (−Luw, ν ⊗ ρµ) ' (w,Lu(ρν ⊗ µ)), (B.1a)
1
2g(u, u)Lw(ρµ) ' −ρµLw 1

2g(u, u) = −(w, 12ρ dg(u, u)⊗ µ), (B.1b)

(ρe)ρ Lw(ρµ) ' −ρµLw[(ρe)ρ] = −(w, ρ d(ρe)ρ ⊗ µ), (B.1c)

ρes (Lws)µ = ρes (w, ds)µ = (w, ρes ds⊗ µ), (B.1d)
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on using that, for any scalar field f , Lw(fµ) = d(fwyµ) ' 0 by Cartan’s formula. To explain,
as an example, one of these in more detail, consider (B.1a). We write first

(Luw, ν ⊗ ρµ) = Lu[(wyν) ρµ]− wyLu(ν ⊗ ρµ). (B.2)

We have from Cartan’s formula (2.26) applied to the term we wish to remove, Lu[(wyν) ρµ] =
d[(wyν)uyρµ], and then on integrating over M we find∫

M
d[(wyν)uyρµ] =

∫
∂M

(wyν)uyρµ = 0, (B.3)

using (3.15) and the boundary condition that u ‖ ∂M: if a surface element is defined by vectors
a and b at a point, then uyµ(a, b) = µ(u, a, b) vanishes as u is contained in the vector space
spanned by a and b.

Introducing the various formulae (B.1) into (3.10) gives∫
dt

∫
M

[
−(w, (∂t + Lu)(ρν ⊗ µ)) + (w, 12ρ dg(u, u)⊗ µ)−(w, [ρ d(ρe)ρ − ρes ds]⊗ µ)

]
= 0.

(B.4)
We use the thermodynamic definitions that T = ∂se is the temperature and h = (ρe)ρ = e+p/ρ
is the enthalpy, together with dh = ρ−1 dp + T ds to simplify the last terms. Requiring this
integral to be zero for arbitrary w recovers the equation of motion as precisely (3.2).

C Shallow water equations in conservation form

In this appendix, we derive conservation forms for the shallow water and MHD shallow water
models. We consider a two-dimensional manifold M supporting a (two-dimensional) fluid flow
u and scalar height field h; flows and magnetic fields are taken parallel to any boundary of M.
The shallow water action is given by

A[φ] =

∫
dt

∫
M

(12hg(u, u)− 1
2h

2)µ, (C.1)

where the height field transport is governed by conservation of mass,

(∂t + Lu)(hµ) = 0, (C.2)

or equivalently hµ = φ∗(h0µ), where h0 is the initial height. When the flow map is varied we
have

d

dε

∣∣∣
ε=0

(hεµ) = −Lw(hµ) = −div(hw)µ. (C.3)

Varying the action (C.1) gives

d

dε

∣∣∣∣
ε=0

A[ψε ◦ φ] =

∫
dt

∫
M

[hg(u, ∂tw + Luw)µ− (12g(u, u)− h)Lw(hµ)] = 0, (C.4)

and so we gain
∂t(hν ⊗ µ) + Lu(hν ⊗ µ) + d(−1

2g(u, u) + h)⊗ hµ = 0. (C.5)

Given (C.2) we can write this equation in the usual form

∂tν + Luν − 1
2dg(u, u) + dh = 0. (C.6)
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If on the other hand we apply the covariance of the action (3.12), we have∫
dt

∫
M

[12(Lwg)(u, u)hµ+g(u,Lwu)hµ+(12g(u, u)−h)(Lwh)µ+(12hg(u, u)− 1
2h

2)(Lwµ)] = 0.

(C.7)
Combining with (C.4) and tidying gives∫

dt

∫
M

[12(Lwg)(u, u)hµ+ g(u, ∂tw)hµ+ 1
2h

2 Lwµ] = 0, (C.8)

with the conservation form easily derived as

∂t(hν ⊗ µ) + d(hν ⊗ ?ν + 1
2h

2µ) = 0. (C.9)

Magnetic fields can also be incorporated into shallow water systems and the resulting mod-
elling is relevant to the Solar tachocline and other stratified MHD systems in astrophysics
(Gilman 2000; Dellar 2002). In our setting, given any two points x and y of our two-dimensional
M, what is key is the magnetic flux between these points and so we define a scalar magnetic
potential a (up to a constant) so that this flux is a(y) − a(x). Since these points, i.e. these
columns of fluid in the real system, move as Lagrangian markers in the flow, the flux between
them is conserved and so a evolves according to

(∂t + Lu)a = 0. (C.10)

We then set hβ = da where the magnetic flux β is now a 1-form such that the total flux through
a 1-dimensional surface element in M , that is integrated over the fluid layer from base to h, is
given by hβ. This satisfies d(hβ) = 0 and also

(∂t + Lu)(hβ) = 0. (C.11)

The corresponding magnetic vector field b is related to β through byµ = β or, equivalently
?β = b[. It satisfies div(hb) = 0 and, from (C.2) and (C.11),

(∂t + Lu)b = 0. (C.12)

Note that there is no bdiv u term present, in contrast to (4.24): the effects of non-zero divergence
of the flow u are absorbed into the height field h.

The action is A− B, with A the shallow-water action (C.1) and B the magnetic term

B[φ] =

∫
dt

∫
M

1
2hg(b, b)µ. (C.13)

When the path is varied we have (C.3) and

d

dε

∣∣∣∣
ε=0

bε = −Lwb, (C.14)

(contrast (4.25)). Hence we find that

d

dε

∣∣∣∣
ε=0

B[ψε ◦ φ] =

∫
dt

∫
M

[−g(b,Lwb)hµ− 1
2g(b, b)Lw(hµ)]. (C.15)

Integrating by parts and using the arbitrariness of w we obtain the equation of motion

∂t(hν ⊗ µ) + Lu(hν ⊗ µ) + d(h− 1
2g(u, u))⊗ hµ = Lb(h?β ⊗ µ)− 1

2dg(b, b)⊗ hµ. (C.16)
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Using (C.2) and noting that Lb(hµ) = d(byhµ) = µdiv(hb) = 0, we can write this as

∂tν + Luν + d(h− 1
2g(u, u)) = Lb?β − 1

2dg(b, b). (C.17)

If instead we apply the covariance (3.12) the terms associated with B are∫
dt

∫
M

[12(Lwg)(b, b)hµ+ g(b,Lwb)hµ+ 1
2g(b, b)Lw(hµ)]. (C.18)

Combining this with the path variation (C.15) leaves only

d

dε

∣∣∣∣
ε=0

B[ψε ◦ φ] =

∫
dt

∫
M

1
2(Lwg)(b, b)hµ, (C.19)

giving the conservation version of shallow water MHD as

∂t(hν ⊗ µ) + d(hν ⊗ ?ν + 1
2h

2µ) = d(h?β ⊗ β). (C.20)

Note that there is no magnetic pressure term here, that is the term −1
2dg(b, b)µ present in

(4.30). Although shallow water dynamics has many attributes of compressible fluid flow, with
the height field h playing the role of pressure, the underlying fluid dynamics is incompressible
and the magnetic pressure does not emerge in the resulting equations (Gilman 2000; Dellar
2002).
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