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Impact of granular inclusions on the phase behavior of colloidal gels

Yankai Li,a John R. Royer,b Jin Sun,a and Christopher Ness∗a

Colloidal gels formed from small attractive particles are commonly used in formulations to keep larger
components in suspension. Despite extensive work characterising unfilled gels, little is known about
how the larger inclusions alter the phase behavior and microstructure of the colloidal system. Here
we use numerical simulations to examine how larger ‘granular’ particles can alter the gel transition
phase boundaries. We find two distinct regimes depending on both the filler size and native gel
structure: a ‘passive’ regime where the filler fits into already-present voids, giving little change in the
transition, and an ‘active’ regime where the filler no longer fits in these voids and instead perturbs
the native structure. In this second regime the phase boundary is controlled by an effective colloidal
volume fraction given by the available free volume.

1 Introduction
Dispersions of attractive colloids can form solid-like gels char-
acterized by a system-spanning network of arrested particles1–3.
These colloidal gels are ubiquitous, encountered in disparate in-
dustries ranging from food and personal care products to building
materials and catholyte slurries4–7. While there has been con-
siderable progress in understanding the formation, structure and
rheology of ‘model’ colloidal gels formed from (nearly) uniformly
sized spheres8–11, most practical gels are more complex. In par-
ticular, colloidal gels frequently serve as a carrier for larger, non-
Brownian ‘granular’ components (typical size & 10µm). In such
composites, the gel often acts as a rheology modifier to prevent
sedimentation. In some applications the gel network itself may
be desired, for example catholyte slurries for battery manufactur-
ing rely on a conductive carbon black gel to provide connectivity
between the active Li-ion ‘grains’.

It is thus critical to understand how granular inclusions alter
the colloidal gel phase. Recent work examining the influence of
inclusions on gel rheology suggests they have a significant im-
pact12,13, even introducing new phenomena such as rheologi-
cal bi-stability in these filled systems14. This previous work has
largely focused on systems deep into the gel state, so it remains
unclear how granular inclusions alter the gel transition and phase
behavior (but see Jiang and Seto 15).

For uniformly-sized colloidal spheres, the gelation phase
boundaries depend on the colloid concentration and attraction
strength, and there has been extensive work mapping these
boundaries in a variety of systems11,16–25. In depletion gels there
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is good agreement between gelation and the gas-liquid spinodal
boundary26, though there remains some debate concerning the
generality of this agreement and the relative roles of percolation
and clustering at the gel transition23–25,27.

The inclusion of larger grains introduces additional control pa-
rameters which can potentially alter these phase boundaries. For
simple ‘hard’ grains interacting solely through their excluded vol-
ume, their influence will be set by the filler concentration and the
size ratio rL/rS between the large (L) grains and the smaller (S)
colloids. These granular inclusions reduce the free volume avail-
able to the colloids relative to the total volume, but the interplay
between the inclusions and gel structure is non-trivial, as colloidal
gels can be heterogeneous on length scales� rS

3,28,29.

Here we characterise the influence of hard granular inclusions
on the colloidal gel phase boundaries using numerical simula-
tions, where the particle sizes, interactions and volume fractions
can all be precisely varied. We find that the relative sizes of the
inclusions and the void spaces present in the unfilled gels is the
key parameter governing the phase behavior of the filled systems.

2 Methods

We simulate the trajectories of 104 colloidal and a smaller num-
ber of granular spheres in a periodic box (volume V), using
LAMMPS30. Motion is governed by the Langevin equation, which
for particle i reads midUi/dt = FH

i +FB
i +FP

i , with mi = (4/3)πr3
i ρ

and Ui the particle mass and velocity respectively (we assume
density ρ matching between all particle species and the solvent).
The hydrodynamic force FH

i = −6πηri(Ui−U∞
i ), captures Stokes

drag on a sphere of radius ri, with U∞
i the background fluid veloc-

ity at the sphere centre (generally set to 0 except under oscillatory
shear).

Brownian forces are generated as FB
i =

√
12πηrikT/∆tR, where

∆t is the timestep, kT the thermal energy and the elements of the
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vector R are drawn from a Gaussian distribution with zero-mean
and no time correlation. The characteristic diffusive timescale for
a particle with radius ri is thus 6πηr3

i /kT . To avoid crystallisation
in the small colloids, we use a binary size mixture with radii rS

and 1.4rS (mixed equally by number), while the larger grains are
monodisperse with radius rL varying from 8rS to 24rS. Since the
diffusion time scales as r3

i , for the larger grains it is > 500 times
longer than the colloidal timescale τB = 6πηr3

S/kT , so that even
though Brownian forces are applied uniformly to all particles the
larger grains are effectively non-Brownian.

Colloids (labeled i and j) at a distance r and surface-to-surface
separation δi j = r−(ri+r j) interact via a Morse potential, giving a
pairwise force Fp

i j = εκi je−κi jδi j (e−κi jδi j −1)ni j with ni j the center-
to-center unit vector. This potential gives finite-ranged attraction,
and repulsion for overlapping particles (δi j < 0). The interaction
length scale is set as κ

−1
i j = (ri + r j)/200 to give short-ranged at-

traction. We evaluate the force when δi j < 0.03(ri + r j) (following
conventional practice, see e.g. Sciortino et al. 31), beyond which
the attractive force is < 1% of its maximum value. We defined
contacts using the same threshold of δi j, having verified that a
more stringent criteria does not affect any of the conclusions we
draw. The depth of the attractive potential ε is varied between
kT and 20kT , with a variable step size to refine our estimates of
the gelation point. Colloid-granular and granular-granular con-
tact forces are modeled as linear springs Fp

i j = −knδi jni j, with a
stiffness kn set sufficiently large (knr2

S/kT = 2× 105) to approx-
imate hard-sphere interactions. The timestep ∆t is set to 10−4,
substantially smaller than the Brownian time τB, the contact time√

ρr3
S/kn and the inertial relaxation time τi = r2

Sρ/η (with η suf-
ficiently large that τi� τB).

We characterise the mechanical response of steady-state struc-
tures by applying an oscillatory shear through the liquid stream-
ing velocity as U∞

i (t,yi) = yiγ0 sinωt and turning off the Brown-
ian forces. We remain in the low amplitude regime by setting
γ0 = 0.005, and set ω such that inertia plays no role (in practice
this is achieved when ωτi ≤ 0.005). The bulk shear stress is com-
puted as σi j =V−1

∑ri jF tot
i j (with the sum being over all interact-

ing pairs), and the viscoelastic moduli G′ and G′′ are computed
from the Fourier transform of σxy averaged over 50 shear cycles.
All results for both the elastic moduli and Liso are averages from
at least 6 independent realisations with randomized granular and
colloidal initial positions. We simulated a larger system of 105

colloids with rL/rS = 24 inclusions and confirmed that its results
are consistent with the 104 system both in terms of Liso and in the
distribution of isostatic cluster sizes.

3 Results and Discussion

The system initially equilibrates at a prescribed volume fraction
in the absence of colloidal attraction, after which the interaction
potential with depth ε/kT is turned on and the system evolves
for up to 104τB to reach a steady state. To map the phase be-
havior of these systems, we vary ε/kT along with the colloidal
and granular volume fractions, φS = Vs/V and φL = VL/V . These
volume fractions are defined as the volume occupied by the col-
loids (grains),Vs (VL), relative to the total volume of the cubic
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Fig. 1 Isostaticity percolation and its relation to the mechanical response.
(A) Procedure for determining Liso. Left to right: Isostatic colloids with
N ≥ 6 contacts (red) are isolated and contacting clusters identified. The
isostatic length is computed from the span of the largest cluster, Liso ≡
(Lx +Ly +Lz)/3 3√V ). (B) Time evolution of 1−Liso for an unfilled system
(φS = 0.2, φL = 0) at varying attraction ε/kT . (C) Steady-state 1−Lssiso
(black, left axis) and viscoelastic moduli G′ and G′′ (red filled and open
symbols, respectively, right axis) verses ε/kT . Green arrow highlights
the coincidence between the crossover G′ = G′′ and 1−Lssiso → 0. Inset:
rendering of a steady-state (t/τB > 103) gel state for ε/kT = 5.6 with
φS = 0.2, φL = 0. (D) and (E) reproduce (B) and (C), respectively, for
a filled system with φS = 0.20, φL = 0.3. Inset in (E) shows a rendering
with granular inclusions (yellow) at ε/kT = 5.6. Error bars in (C) and( E)
indicate the standard deviation from 6 realisations. Dotted lines in (C)
and (E) (and later Figures) are used to indicate data crossing the broken
y-axis.

simulation box, so that increasing φL at fixed φS decreases the free
volume available to the colloids.

3.1 Isostaticity percolation and mechanical response
To explore how large granular inclusions alter the colloidal mi-
crostructure, we characterize networks of isostatic particles, de-
fined as colloids with N ≥ 6 contacts. This follows from the
Maxwell criteria for stability in a system with pairwise central
forces, requiring that constraints balance the degrees of free-
dom32. While this isostaticity criterion is typically considered
globally in the context of granular packings33, it has been sug-
gested that networks of locally isostatic particles control the rigid-
ity of colloidal gels9,34. Specifically, recent experimental work
suggests the gel transition coincides with the formation of a per-
colating network of isostatic particles35.

We define contacts among attractive colloids as pairs (radii ri

and r j) within a separation 0.03(ri + r j). To characterise the dis-
tance from isostaticity percolation, we first remove colloids with
N < 6 contacts and then identify clusters of isostatic particles. The
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isostatic length, Liso, gives the mean length of the largest iso-
static cluster in all three spatial dimensions relative to the box
size (Fig. 1A), so that Liso = 1 corresponds to isotropic isostaticity
percolation (in principle Liso may exceed unity once the periodic
box is unwrapped, in which case we limit it to this value).

In pure colloidal suspensions (φL = 0), the colloids are initially
well-dispersed, with Liso ≈ 0 (so that 1− Liso ≈ 1). Turning on
the attraction ε at time t = 0 causes clusters to form and grow,
reflected in an increase in Liso(t) with time (Fig. 1B). As time
progresses this initial growth slows and the isostatic length ap-
proaches a plateau at some steady-state value Lss

iso at long times
(t & 103−104τB). The growth of Liso(t) depends on the attraction
strength, with strongly attractive colloids rapidly reaching iso-
staticity percolation at Lss

iso = 1 (1−Lss
iso = 0) while with weaker at-

traction Liso instead appears to plateau at some steady-state value
Lss

iso < 1, short of the percolation threshold. Reaching steady states
in Liso(t) gets progressively slower as we approach the critical in-
teraction energy ε∗, and truncating our time series at 103−104τB

limits our resolution in ε∗ to ±0.1kT . This limitation will not af-
fect the outcomes of our work, and future studies aiming to obtain
ε∗ with greater precision will require substantially larger particle
numbers and run times.

We apply small amplitude oscillatory shear γ(t) = γ0 sinωt to ex-
tract the viscoelastic moduli G′ and G′′ for the structures obtained
at the end of each time series. We find a transition from liquid-
like states (G′ < G′′) to solid-like states (G′ > G′′) as the attrac-
tion strength ε is increased (Fig. 1C), indicating the emergence
of a solid-like gel. The crossover point where G′ = G′′ occurs as
Lss

iso approaches unity at interaction energy ε∗ indicating that the
gel transition coincides with isostaticity percolation in agreement
with Tsurusawa et al. 35 . We verified this agreement holds for
φS ≤ 0.4, and that our phase diagram reported below is consistent
with that obtained purely via rheology.

3.2 Role of granular inclusions

The addition of granular inclusions gives qualitatively similar be-
havior in both the evolution of Liso with time and the mechani-
cal response of the steady state structures, Figs. 1D, E. We again
find good agreement between isostaticity percolation (Lss

iso = 1)
and the emergence of mechanical rigidity (G′ = G′′), indicated by
green arrows in Figs. 1C and E. Comparing these transition points
for filled (rL = 8rS, φL = 0.3) and unfilled systems both at φS = 0.2,
we find that the inclusions aid gelation with a reduced ε∗ in the
filled system.

To understand this shift in the gelation point, we examine how
granular inclusions alter the structure and distribution of the iso-
static colloidal particles. In a pure colloidal system below the
gel transition, ε = 5.1kT = 0.94ε∗ and φS = 0.2, there are numer-
ous disjoint clusters of isostatic particles (Fig. 2A) and the system
remains well below the isostatic percolation threshold. The in-
clusion of the larger grains increases the number of isostatic col-
loidal particles, enabling them to instead form a large connected
network which percolates across the sample for φL = 0.4 (Fig. 2B).

This observation is reflected in the microstructural statistics:
for fixed φS = 0.2, we find that Lss

iso of an initially liquid system
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Fig. 2 Contrasting effects of granular inclusions. Shown are snapshots of
steady-state (t = 103−104τB) configurations, with φS = 0.2 and ε = 0.94ε∗0
for (A) φL = 0 and; (B) φL = 0.4. Only isostatic colloids are rendered,
with the largest cluster shown in red. Larger grains are shown (grey) in
(B). (C,D): 1−Lssiso(φL) at varying ε for (C) φS = 0.2 and (D) φS = 0.1.
Values for ε given relative to the gelation point in the unfilled system,
ε∗0 , with ε∗0 = 5.3kT for φS = 0.2 and ε∗0 = 6.1kT for φS = 0.1. Dashed
squares a) and b) indicate states rendered in (A) and (B), respectively.
(E,F): probability distribution of the number of contacts per particle as
a function of φL, for (E) φS = 0.2, ε = 5.1kT and (F) φS = 0.07, ε = 6.6kT .
Both cases cross the phase boundary as φL is increased.

increases dramatically with increasing φL (Fig. 2C), mirrored by a
shift to larger N in the probability distribution of particle contact
numbers (Fig. 2E). Defining ε∗0 ≡ ε∗(φL = 0) the critical interac-
tion energy in the unfilled system, granular inclusions can take
a system initially quite far from the gelation point (ε = 0.91ε∗0
and Lss

iso ≈ 0) nearly up to the transition point Lss
iso ≈ 0.98 as φL

increases up to φL = 0.4. Increasing the interaction energy to
ε/ε∗0 = 0.96, the volume of granular filler needed to drive iso-
staticity percolation decreases, so that the gelation boundary ε∗

where Lss
iso reaches unity continuously shifts to lower values with

increasing φL.
Since the free volume available to the colloids decreases with

increasing φL, one might expect this described increase in the
number of isostatic particles, and hence an increase in Lss

iso in the
filled system. Furthermore, the gel phase boundary for unfilled
systems, ε∗0 (φS), is a decreasing function of φS, at least at low
to moderate concentrations16–25. This suggests the possibility of
capturing the shifting gel point with granular inclusions simply

Journal Name, [year], [vol.],1–6 | 3



10−3

10−2

10−1

100

φs = 0.1

ε/ε∗0
0.95

0.90

0.0 0.1 0.2 0.3 0.4
0

0 2 4 6 8 10
10−5

10−4

10−3

10−2

10−1

100
101

φs = 0.2

0.
6

0.
8

0.
50

0.
55

0.
60

0.
65

0.
70

P
(r

v
)

0 4 8 12 16 20
10−5

10−4

10−3

10−2

10−1

100
101

φs = 0.1

A B

0.6 0.8
0.50

0.55

0.60

0.65

0.70

φL

C D
0.6 0.8

0.50

0.55

0.60

0.65

0.70

rv/rs

0.6 0.8
0.50

0.55

0.60

0.65

0.70

rv/rs

0.6 0.8
0.50

0.55

0.60

0.65

0.70

rL = 16rs

0.6 0.8
0.50

0.55

0.60

0.65

0.70

rL = 8rs

0 5
0.0

2.5

5.0

7.5
0

0.1

0.2

0.1

0 5
0.0

2.5

5.0

7.5
0

0.1

0.2

0.1

0 5
0.0

2.5

5.0

7.5
0

0.1

0.2

0.1

0 5
0.0

2.5

5.0

7.5
0

0.1

0.2

0.1

0.60.8
0.50

0.55

0.60

0.65

0.70

{
0.6 0.8

0.50

0.55

0.60

0.65

0.70

φL

0 5
0.0

2.5

5.0

7.5
0

0.1

0.2

0 5
0.0

2.5

5.0

7.5
0

0.1

0.2

0 5
0.0

2.5

5.0

7.5
0

0.1

0.2

0.6 0.8
0.50

0.55

0.60

0.65

0.70

φL

0.60.8
0.50

0.55

0.60

0.65

0.70

{
0.6 0.8

0.50

0.55

0.60

0.65

0.70

rL = 8rs

0.6 0.8
0.50

0.55

0.60

0.65

0.70

φs = 0.2

0.6 0.8
0.50

0.55

0.60

0.65

0.70

φs = 0.1

0.
6

0.
8

0.
50

0.
55

0.
60

0.
65

0.
70

1
−

L
ss is
o

0.
6

0.
8

0.
50

0.
55

0.
60

0.
65

0.
70

P
(r

v
)

Fig. 3 Void-volumes in filled and unfilled systems near the gel boundary.
Normalized colloidal void size distribution P(rv) for (A) φS = 0.2 (ε =

5.3kT ≈ ε∗0 ) and (B) φS = 0.1 (ε = 6.3kT ≈ ε∗0 ) at varying φL. The large
particle size is rL = 8rS (highlighted by black dashed vertical lines), with
the exception of the red filled symbols in (B) where rL = 16rS (highlighted
by the red dashed vertical line). (C) 1−Lssiso(φL) for ε = 5.8kT (red circles)
and 5.5kT (blue triangles), with open symbols for rL = 8rS and filled
symbols for rL = 16rS. Schematic cartoon in (D) presents a simplified
picture to understand the influence (or lack thereof) of the granular filler
on the gel structure, with large grains either fitting into ‘natural’ voids in
the gel, leaving the colloidal microstructure unaffected (black arrow), or
forcing larger voids, which in turn distorts and compresses the colloidal
phase (red arrows).

in terms of the reduced free volume available to the colloids. In
this picture, one would expect the filler to have more pronounced
effect at lower colloid concentrations, where the curve ε∗0 (φS) is
steepest. However, simulations with φS = 0.1 (and lower) instead
show the opposite, with the inclusion of large grains giving only a
modest increase in Lss

iso (Fig. 2D), having little to no effect on P(N)

(Fig. 2F), and generating only minor shifts in the gelation phase
boundary. This unexpected result demonstrates that a universal
picture in which the gel state is defined entirely by an effective
colloidal volume fraction does not apply.

3.3 Fillers and voids

To understand the reduced filler impact at low φS, we look at how
the microstructure of the colloidal phase varies with concentra-
tion. Specifically, we focus on the size distribution of the empty
voids between the colloids at (or close to) the gel transition36.
We compute this distribution by dividing the simulation volume
into cubic cells (length rS) and then finding the largest possible
sphere (radius rv) centered in each cell that avoids intersecting a
colloidal particle (so that larger grains are treated as empty voids).
Normalised histograms of these local void radii give the void size
distribution P(rv).

For an unfilled colloidal system with φS = 0.2 close to the gel
transition (ε = 5.3kT ≈ ε∗0 ), this distribution is nearly flat up to

rv ≈ 3rS and then falls off rapidly as rv increases further (Fig. 3A)
with voids larger than rv ≈ 6rS exceedingly rare. While precisely
characterizing the rare-event tails in P(rv) would require signifi-
cant computational effort, we can define an effective maximum
void size P(rmax

v ) = 10−4, as voids larger then this are effectively
absent in our observed configurations. Adding larger granular in-
clusions, with rL = 8rS > rmax

v , perturbs the colloidal microstruc-
ture and shifts the shoulder in P(rv) to higher radii≈ rL, reflecting
the voids created by the large grains.

However, reducing the colloid concentration to φS = 0.1 gives a
significantly wider distribution of void sizes in the unfilled system,
with the shoulder in P(rv) now around rv = 8rS and rmax

v ≈ 12rS

(Fig. 3B). This indicates there are ‘pre-existing’ voids which can
accommodate the larger rL = 8rS grains without forcing a signif-
icant change in the colloidal microstructure. Indeed, in contrast
to the large shift seen for φS = 0.2, here increasing φL has only a
minor impact on the shape of P(rv). This suggests a picture where
dilute gels with rv > rL can effectively form around the immobile
granular inclusions, forming a network of colloid-colloid contacts
that is essentially indistinguishable from the unfilled case. With
no change in this network, Liso is unaffected by the granular in-
clusions and there is little shift in the gel phase boundary. We
would thus expect that increasing rL above the characteristic void
size would result in a more pronounced filler-effect on Lss

iso and
the gelation point in these more dilute gels.

We find this is indeed the case when rL is increases from 8rS

to 16rS. These larger grains now notably shift P(rv) to higher
values (compare open and filled symbols in Fig. 3B), and also now
find a clear increase in Lss

iso(φL) (Fig. 3C), similar to the impact
of the rL = 8rS grains in the φS = 0.2 system with smaller voids.
This supports a simplified picture of the interplay between the
granular inclusions and attractive colloids (Fig. 3D); grains with
rL < rv have little impact on the gel structure or transition point as
they easily fit into the gel voids, while grains with rL > rv distort
and compress colloidal structures, increasing Lss

iso and reducing
the attraction needed to form the gel.

3.4 Phase Diagram

Having detailed the influence of granular inclusions at two spe-
cific φS, we now map out the gel phase boundaries over a range
of φS and φL. Having demonstrated good agreement between
the rigidity onset and isostaticity percolation, we use Lss

iso to clas-
sify states as they provide a more direct microstructural measure.
Carrying out a series of simulations at varying ε for given φS

and φL, we define the transition point ε∗ as the point at which
Lss

iso = L∗iso = 1. The dimensions of our simulation box are such
that we cannot reach values of 0.9999 < Lss

iso < 1, which again
places a limitation on the precision with which we can deter-
mine ε∗. For the range of φS explored here (up to φS = 0.4),
we find the isostatic percolation boundary ε∗(φS) monotonically
decreases with increasing φS (Fig. 4 inset). For fixed rL = 8rS,
increasing φL at fixed φS generally shifts this boundary to lower
attraction strength.

Instead plotting these isostatic percolation boundaries as a
function of an effective volume fraction φeff ≡ φS/(1− φL), giv-
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Fig. 4 Isostatic percolation boundaries ε∗ varying φS and φL. Inset:
Critical attractive energy ε∗(φS) for varying φL (indicated in main panel
legend) for rL = 8rS. Main panel: Open symbols show same data as
inset, now plotted against φeff = φS/(1−φL). Solid symbols show results
for larger grains and smaller φS, with rL = 16rS for φS = 0.1 and rL = 24rS
for φS = 0.07 so that rL > rmax

v in both cases. Error bars on ε∗ computed
using error bars on Lssiso to obtain upper and lower bounds for the point
the isostatic length reaches the threshold Lssiso = 1 and are shown only in
the inset for clarity.

ing the volume fraction of the small colloids relative to the free
volume excluding the large grains (1−φL)V , we find reasonable
collapse for φeff & 0.2 (Fig. 4 main panel). This suggests that
the filler-induced shifts in the phase boundary can be understood
solely through the reduction in free volume available to small
colloids, so that adding larger grains is effectively equivalent to
shrinking the box volume. However, for φS . 0.1 we find this col-
lapse breaks down, with points at higher φL lying clearly above
the φL = 0 boundary. This is consistent with the behavior seen in
Fig. 2D, where the granular inclusions only have a minor effect on
Liso for φS = 0.1 compared to the significant enhancement seen at
a higher φS = 0.2.

Increasing the size of the large particles to ensure rL > rmax
v ,

in this case setting rL = 16rS for φS = 0.1 and rL = 24rS for φS =

0.07, we find that this collapse can be recovered (filled symbols
in Fig. 4). We thus see that when the granular inclusions are
significantly larger than the typical voids in the unfilled gel, so
that they force a notable change in the gel microstructure, the
influence of the voids can be captured by the effective free volume
available to the small colloids. With smaller grains this effect is
diminished, with the phase boundary instead largely independent
of the filler concentration.

4 Conclusions
Using Langevin dynamics simulations, we have mapped out the
influence of larger granular inclusions on isostaticity percolation
and the gel transition in suspensions of smaller attractive colloids.
Varying the volume fractions of both species, we demonstrated
two distinct regimes: (i) a ‘passive void-filling’ regime, where
the granular inclusions can fit into already-present voids within
the gel, so that the microstructure is effectively unchanged and

the gel transition governed almost solely by φS and (ii) an ‘active
void-enhancing’ regime where the granular inclusions perturb the
gel structure by forcing larger voids and the gel transition gov-
erned by an effective volume fraction φeff = φS/(1− φL). These
two limiting regimes are differentiated by the size ratio of the
larger grains rL and shape of the gel void size distribution P(rv),
so that anticipating the impact of the granular filler requires de-
tailed characterization of the unfilled gel structure.

To obtain these insights it has been necessary to omit more
detailed aspects of the physics from our simulation model. Im-
portantly, we are operating under density matched conditions so
that gravity may be neglected. Gravity plays a key role in filled
gels (indeed in applications the role of the gelled phase is often
to stabilise the grains against sedimentation) and in unfilled ones
alike37, and will be an important aspect of future research that
builds on the results presented here. We have also omitted full
hydrodynamics38 from our model, noting that they likely play an
important role under dynamic conditions but are less important
in determining the static gel structure39,40.

There is relatively little experimental work examining the
phase behavior of filled colloidal gels, though a recent study using
a battery electrode slurry (a carbon black gel with ≈ 10µm gran-
ular inclusions) found little change with addition of the granular
particles7. Given the very low gel point (occurring at φS ≈ 0.02),
it is plausible that the carbon black gel contains sufficiently large
voids to place this system in regime (i), though detailed charac-
terisation of the gel structure would be required to confirm this.
Our results should be particularly relevant to battery slurry for-
mulation and electrode fabrication, where particle connectivity is
key for performance6, providing a road map to match the native
gel structure and filler properties to tune the electrode microstruc-
ture.

Author Contributions
YL, JR, JS and CN planned the research; YL carried out the re-
search; YL, JR and CN wrote the manuscript.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
YL is funded by the China Scholarship Council (CSC) and by the
University of Edinburgh through a School of Engineering stu-
dentship. C.N. acknowledges support from the Royal Academy
of Engineering under the Research Fellowship scheme. The work
was supported by the UK Engineering and Physical Sciences Re-
search Council under grant EP/N025318/1. For the purpose of
open access, the authors have applied a Creative Commons Attri-
bution (CC BY) licence to any Author Accepted Manuscript ver-
sion arising from this submission. The data used to generate the
figures in this article is available via Edinburgh DataStore at XXX

Notes and references
1 V. Trappe and P. Sandkühler, Current Opinion in Colloid and

Interface Science, 2004, 8, 494–500.

Journal Name, [year], [vol.],1–6 | 5



2 E. Zaccarelli, Journal of Physics: Condensed Matter, 2007, 19,
323101.

3 C. P. Royall, M. A. Faers, S. L. Fussell and J. E. Hallett, Journal
of Physics: Condensed Matter, 2021, 33, 453002.

4 K. Y. Cho, Y. I. Kwon, J. R. Youn and Y. S. Song, Materials
Research Bulletin, 2013, 48, 2922–2926.

5 T.-S. Wei, F. Y. Fan, A. Helal, K. C. Smith, G. H. McKinley, Y.-
M. Chiang and J. A. Lewis, Advanced Energy Materials, 2015,
5, 1500535.

6 W. B. Hawley and J. Li, Journal of Energy Storage, 2019, 25,
100862.

7 S. L. Morelly, M. H. Tang and N. J. Alvarez, Polymers, 2017, 9,
461.

8 V. Trappe, V. Prasad, L. Cipelletti, P. N. Segre and D. A. Weitz,
Nature, 2001, 411, 772–775.

9 L. C. Hsiao, R. S. Newman, S. C. Glotzer and M. J. Solomon,
Proceedings of the National Academy of Sciences, 2012, 109,
16029–16034.

10 G. Wang, A. M. Fiore and J. W. Swan, Journal of Rheology,
2019, 63, 229–245.

11 J. Rouwhorst, P. Schall, C. Ness, T. Blijdenstein and A. Zac-
cone, Physical Review E, 2020, 102, 022602.

12 C. Ferreiro-Córdova, G. Foffi, O. Pitois, C. Guidolin, M. Schnei-
der and A. Salonen, Soft Matter, 2022, 18, 2842–2850.

13 C. Ferreiro-Cordova, E. Del Gado, G. Foffi and M. Bouzid, Soft
Matter, 2020, 16, 4414–4421.

14 Y. Jiang, S. Makino, J. R. Royer and W. C. Poon, Physical Re-
view Letters, 2022, 128, 248002.

15 Y. Jiang and R. Seto, arXiv preprint arXiv:2211.12978, 2022,
1–9.

16 M. C. Grant and W. B. Russel, Physical Review E, 1993, 47,
2606–2614.

17 H. Verduin and J. K. Dhont, Journal of Colloid and Interface
Science, 1995, 172, 425–437.

18 W. C. K. Poon, A. D. Pirie and P. N. Pusey, Faraday Discuss.,
1995, 101, 65–76.

19 P. N. Segrè, V. Prasad, A. B. Schofield and D. A. Weitz, Physical
Review Letters, 2001, 86, 6042–6045.

20 S. A. Shah, Y.-L. Chen, K. S. Schweizer and C. F. Zukoski,
Journal of Chemical Physics, 2003, 119, 8747–8760.

21 H. Sedgwick, K. Kroy, A. Salonen, M. B. Robertson, S. U. Egel-
haaf and W. C. K. Poon, The European Physical Journal E,
2005, 16, 77–80.

22 P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino

and D. A. Weitz, Nature, 2008, 453, 499–503.
23 A. P. Eberle, N. J. Wagner and R. Castaneda-Priego, Physical

Review Letters, 2011, 106, 105704.
24 M. E. Helgeson, Y. Gao, S. E. Moran, J. Lee, M. Godfrin, A. Tri-

pathi, A. Bose and P. S. Doyle, Soft Matter, 2014, 10, 3122–
33.

25 K. A. Whitaker, Z. Varga, L. C. Hsiao, M. J. Solomon, J. W.
Swan and E. M. Furst, Nature Communications, 2019, 10,
2237.

26 R. Tuinier and H. N. Lekkerkerker, Colloids and the Depletion
Interaction, Springer Netherlands, 2011.

27 S. Zhang, L. Zhang, M. Bouzid, D. Z. Rocklin, E. Del Gado and
X. Mao, Physical Review Letters, 2019, 123, 058001.

28 A. Fierro, E. D. Gado, A. de Candia and A. Coniglio, Journal
of Statistical Mechanics: Theory and Experiment, 2008, 2008,
L04002.

29 A. Zaccone, H. Wu and E. Del Gado, Physical Review Letters,
2009, 103, 208301.

30 A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G.
Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida,
C. Trott and S. J. Plimpton, Computer Physics Communications,
2022, 271, 108171.

31 F. Sciortino, S. Mossa, E. Zaccarelli and P. Tartaglia, Physical
review letters, 2004, 93, 055701.

32 J. C. Maxwell, The London, Edinburgh, and Dublin Philosophi-
cal Magazine and Journal of Science, 1864, 27, 294–299.

33 M. van Hecke, Journal of Physics: Condensed Matter, 2009,
22, 033101.

34 G. Wang, A. M. Fiore and J. W. Swan, Journal of Rheology,
2019, 63, 229–245.

35 H. Tsurusawa, M. Leocmach, J. Russo and H. Tanaka, Science
Advances, 2019, 5, eaav6090.

36 N. Koumakis, E. Moghimi, R. Besseling, W. C. Poon, J. F. Brady
and G. Petekidis, Soft Matter, 2015, 11, 4640–8.

37 R. Harich, T. Blythe, M. Hermes, E. Zaccarelli, A. Sederman,
L. F. Gladden and W. C. Poon, Soft Matter, 2016, 12, 4300–
4308.

38 Z. Varga, G. Wang and J. Swan, Soft Matter, 2015, 11, 9009–
9019.

39 C. Ness and A. Zaccone, Industrial & Engineering Chemistry
Research, 2017, 56, 3726–3732.

40 J. De Graaf, W. C. Poon, M. J. Haughey and M. Hermes, Soft
Matter, 2019, 15, 10–16.

6 | 1–6Journal Name, [year], [vol.],


	Introduction
	Methods
	Results and Discussion
	Isostaticity percolation and mechanical response
	Role of granular inclusions
	Fillers and voids
	Phase Diagram

	Conclusions

