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Abstract

With the implementation of demand response programs and its increasing

penetration in the power grid, various new challenges to the grid’s operation

have emerged. As a consequence, optimizing the operation of the power

grid and the allocation of demand response resources, in the short-term,

medium-term and long-term, has become a fundamental problem. This sur-

vey presents a review of the optimization approaches in the literature for

the integration of DR in three central problems in power systems planning,

namely optimal power flow, unit commitment, and generation and trans-

mission expansion planning. We also highlight important future research

directions.

Keywords: OR in energy, power system planning, demand response, unit

commitment, optimal power flow

1. Context and Motivation

The growing adoption of renewable energy generation has made the plan-

ning of power systems significantly more challenging. At the same time,

the advent of smart grids has enabled and incentivized the development of

demand response (DR) programs that employ customer demand, includ-

ing residential customers, to provide ancillary services to the electric power
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grid. For example, DR can contribute to mitigating the impacts of fluctuat-

ing renewable generation. These developments motivate the importance of

approaches to power system planning for both system operation and system

expansion that integrate the optimal use of DR resources. The focus of this

survey is on the integration of DR into three central problems in power sys-

tems planning, namely optimal power flow (OPF), unit commitment (UC),

and generation and transmission expansion planning.

OPF models were conceived to solve the problem of generating and dis-

tributing energy optimally considering the transmission system (Momoh

et al., 1999). These models can consider different energy sources on the

generation side. Furthermore, the transmission system model can be ei-

ther more detailed by considering an Alternating Current Optimal Power

Flow (ACOPF) model or simplified by considering a Direct Current Opti-

mal Power Flow (DCOPF) model.

UC models are used to determine an optimal operating plan for the gen-

erating units in the system so that the demand is met while optimizing a

given objective. This is typically the minimization of the total cost of gen-

eration but it can also be the minimization of active power losses (Bingane

et al., 2018) or other objective of interest. The complexity of UC mod-

els comes from the fact that they consider the implications of committing

specific generating units, accounting for the costs incurred when starting

up these plants as well as physical constraints when ramping up or down

production (Tejada-Arango et al., 2019).

Capacity expansion planning models consider the operation of the power

system over a long-term time horizon. By contrast with short-term or

medium-term models, long-term models need to take into account the fact

that energy demand grows over time and that the current installed capacity

eventually may no longer suffice to supplying this demand adequately. Thus,

there is a need to build additional generation capacity and to expand the

transmission system to guarantee sufficient energy supply over a long time

horizon with minimum investment cost (Unsihuay-Vila et al., 2011; Meza

et al., 2007; Hemmati et al., 2013a).

Demand response (DR) can be defined as the ability to change the en-

ergy demand so that one can alleviate energy demand peaks (Albadi &
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El-Saadany, 2008). In order to implement DR in the power grid there are

several options, which will be briefly explained in the next section. As a re-

sult of the fact that DR resources are so sparsely distributed throughout the

power grid, operating them and the power grid at the same time in a coordi-

nated fashion is very challenging. To overcome this difficulty, the concept of

aggregator was developed. An aggregator is an entity that is responsible for

the management of DR resources (Carreiro et al., 2017) and facilitates the

integration of DR resources into the operation of the grid. Aggregators may

be grid operators or they may be independent entities that interact with the

grid via market or control signals. Regardless of the specific arrangements,

this problem is still very challenging.

Although there are some reviews that approach some of the problems

that interest us, such as Robert et al. (2018); Verma et al. (2018); Abdi et al.

(2017); Shariatzadeh et al. (2015), none of them discuss both operations

and capacity expansion planning problems considering DR. In Robert et al.

(2018), even though they discuss the DR-OPF integration, they neither

present models nor examine the DR-UC integration. In Verma et al. (2018),

they review the techniques to handle uncertainty in smart grids, but they do

not discuss DR-UC or DR-OPF problems. In Abdi et al. (2017), although

the authors consider OPF problems in general, they only briefly discuss the

inclusion of DR in OPF models. Finally Shariatzadeh et al. (2015) discuss

very briefly the impacts of DR in operational problems. As a consequence,

there is a need for a survey that explores in detail the operational models

(OPF and UC) and the capacity expansion planning models that consider

DR.

Our objective in this survey is thus to review the different approaches

used to model and solve the problem of planning the operation of the power

grid and of DR resources in a coordinated fashion. This survey explores both

the deterministic power grid operation models and the power grid operation

under uncertainty models, covering both operation and capacity expansion

planning models. We are interested in identifying both the optimization

techniques used as well as the modelling approaches taken to tackle these

problems. We are also interested in highlighting the existing research gaps,

both in terms of modelling needs and of relevant optimization techniques.
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This survey is organized in five sections. After this introductory section,

Section 2 introduces the key concepts considered in this survey, namely OPF,

UC, Expansion Planning, and DR. Section 3 is concerned with OPF models,

Section 4 with UC models, and Section 5 with Expansion Planning models.

Section 6 gives concluding remarks and directions for future research.

2. Key Concepts, Definitions, and Notation

2.1. Optimal Power Flow

A power grid is composed of buses, indexed by m ∈ N , which have

power plants, indexed by j ∈ Thm, as well as transmission lines, denoted by

{m,n} ∈ Ω. Loads are also located at buses, and we consider them below.

An OPF model is a mathematical representation of this grid, and is con-

cerned with its optimal operation considering the transmission constraints

and minimizing costs (typically generation costs).

When formulating an OPF model, there are several variables of interest.

The first ones are the active and reactive power generation, that are rep-

resented by Tjm, QTjm, respectively. There is also the voltage magnitude

at a bus, V mm, the active and reactive power injections in the ’to’ point

of the branch m, Ipemn, I
q
emn, as well as in the ”from” point of the branch

m, Ipfmn, I
q
fmn. Several parameters also have to be taken into considera-

tion. In each bus there are the active and reactive power demands, Dm, Qm,

the shunt susceptance and the shunt conductance, B′
m, G′

m. As regards the

transmission lines, there is their susceptance , Bmn, their admittance , Ymn,

and their turns ratio, Tnmn. There are also the coefficients of the generation

cost function for the thermal plants, aTh
jm, bTh

jm, cjm. Finally, there are also

the upper and lower bounds for all variables and for the transmission.

A general formulation of OPF is as follows:

� Objective function:

min
N∑

m=1

∑
j∈Thm

(
aTh
jmT 2

jm + bTh
jmTjm + cjm

)
(1)
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� Active power balance constraint:∑
j∈Thm

Tjm +
∑

{m,n}∈Ω

Ipfmn +
∑

{n,m}∈Ω

Ipenm −G′
mV m2

m = Dm ∀m ∈ N

(2)

� Reactive power balance constraint:∑
j∈Thm

QTjm +
∑

{m,n}∈Ω

Iqfmn +
∑

{n,m}∈Ω

Iqenm +B′
mV m2

m = Qt
m ∀m ∈ N

(3)

� Transmission constraints:

Ipfmn + iIqfmn =

− V mm

Tnmn

[(
i
Bmn

2
+ Ymn

)
V mm

Tnmn
− YmnV mn

]
∀{m,n} ∈ Ω

(4)

Ipemn + iIqemn =

− V mn

Tnmn

[(
i
Bmn

2
+ Ymn

)
V mn − Ymn

V mm

Tnmn

]
∀{m,n} ∈ Ω

(5)

V mm ≤ V mm ≤ V mm ∀m ∈ N (6)

(Ipmn)
2 + (Iqmn)

2 ≤ Smn
2 ∀{m,n} ∈ Ω (7)

� Generation constraints:

Tjm ≤ Tjm ≤ Tjm ∀m ∈ N, ∀j ∈ Thm (8)

QTjm ≤ QTjm ≤ QTjm ∀m ∈ N, ∀j ∈ Thm (9)

The objective function minimizes the generation cost of meeting the en-

ergy demand. As for the constraints, there are the power balance constraints

(2)-(3), the transmission constraints (4)-(7), and the generation bounds (8)-

(9). Because of (4),(5) and (7), this model is a non-convex non-linear op-

timization problem, and even checking its feasibility is strongly NP-hard

(Bienstock & Verma, 2019).

Because of the computational challenges faced when solving the ACOPF

model, the use of the DCOPF model is often proposed. To obtain the

DCOPF model, one removes (3)-(7) and (9), and updates the power balance
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constraint accordingly. A new variable is also added, θtn, that represents the

voltage angle at bus n at time t. The following constraints are also added

to the problem:

Ipmn = Bmn(θn − θm) ∀{m,n} ∈ Ω (10)

− Smn ≤ (Ipmn) ≤ Smn ∀{m,n} ∈ Ω (11)

An excellent introduction to the OPF problem is given by Frank &

Rebennack (2016).

2.2. Unit Commitment

The UC problem has a similar objective function to OPF but the focus

of UC is on the physical constraints of the generating units. This requires

additional variables for each power plant, namely the start-up, shutdown and

on/off state variables, respectively ytjm, ztjm, xtjm. We also add the following

constraints to the original OPF model:

xt−1
jm − xtjm + ytjm − ztjm = 0 ∀m ∈ N, ∀j ∈ Thm, ∀t ∈ T (12)

T t
jm − T t−1

jm ≤ RU
jmxt−1

jm + SU
jmytjm ∀m ∈ N, ∀j ∈ Thm,∀t ∈ T (13)

T t−1
jm − T t

jm ≤ RD
jmxtjm + SD

jmztjm ∀m ∈ N, ∀j ∈ Thm, ∀t ∈ T (14)

t∑
k=t−TU

j +1,k≥1

ykjm ≤ xtjm ∀m ∈ N, ∀j ∈ Thm,∀t ∈ T (15)

t∑
k=t−TD

j +1,k≥1

zkjm + xtjm ≤ 1 ∀m ∈ N, ∀j ∈ Thm,∀t ∈ T (16)

Constraint (12) ensures that a generating unit is not turned on and

turned off at the same time period. Constraints (13)-(14) are the ramping

constraints, and (15)-(16) are the uptime and downtime constraints. The

generation bounds constraints also need to be modified so that the bounds

only apply when the unit is on:

Tjm
txtjm ≤ T t

jm ≤ Tjm
t
xtjm (17)

QTjm
txtjm ≤ QT t

jm ≤ QTjm
t
xtjm ∀m,∀j (18)
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Improved versions of some of these inequalities that lead to a tighter de-

scription of the feasible operating schedules for generators were proposed in

Ostrowski et al. (2011).

More detailed presentations on UC problems can be found in Anjos et al.

(2017) and van Ackooij et al. (2018).

2.3. Expansion Planning

Unlike the OPF and UC models, expansion planning models are used to

plan for the optimal operation of the power grid over a long-term horizon.

When planning operation of the power grid over such a time horizon, one

has to consider the expansion of both the generation capacity and the power

transmission system. There are models that only focus on the former, some

that only focus on the latter, and some that consider both problems.

Because expansion planning is carried out for a long-term horizon, the

grid operation constraints generally do not include the unit commitment con-

straints. Moreover, expansion planning models typically consider a DCOPF

model of the transmission system. A general formulation of the expansion

planning model is as follows:

� The objective function is defined as

min ctop + ctte + ctge (19)

where

ctop =

N∑
m=1

∑
j∈Thm

(
aTh
jmT 2

jm + bTh
jmTjm + cjm

)
(20)

ctte =
N∑

m=1

N∑
n=1

∑
k∈Temn

ρtkmn (21)

ctge =

N∑
m=1

∑
l∈Gem

ρtln (22)

with ctop being the total power system operation cost, ctte the total trans-

mission system expansion cost, and ctge the total generation expansion cost,

and where Temn is the set of potential new transmission lines that can be

built connecting nodes m and n, and Gem is the set of potential new energy
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plants that can be built at node m. The variable ρtln indicates that the

potential plant l at node n is operational at time t, and the variable ρtkmn

indicates that the potential line k between nodes m and n is operational at

time t.

� Transmission constraints:

Ipkmn = Bmnk(θnk − θmk) ∀{m,n} ∈ Ω,∀k ∈ Tem (23)

−Smnkρ
t
kmn ≤ (Ipmnk) ≤ Smnkρ

t
kmn ∀{m,n} ∈ Ω,∀k ∈ Tem (24)

� Generation plants bounds:

Tlmρtln≤ Tlm ≤ Tlmρtln ∀m ∈ N, ∀l ∈ Gem (25)

� Expansion decisions:

ρtkmn ≥ ρt−1
kmn ∀m,n ∈ N∀k ∈ Tem (26)

ρtln ≥ ρt−1
ln ∀m ∈ N, ∀l ∈ Gem (27)

ρtkmn ∈ {0, 1} ∀m,n ∈ N∀k ∈ Tem (28)

ρtln ∈ {0, 1} ∀m ∈ N, ∀l ∈ Gem (29)

First, for each potential new transmission line, we add its respective

transmission constraints. Second, the generation plants bounds for the po-

tential new generation plants have the upper and lower bounds multiplied

by the decision variable relative to building the plant. Third, the constraints

for expansion decisions guarantee that if a new generation plant or trans-

mission line is built at time t then this will be reflected in the time periods

that follow, and that the expansion decision variables are binary variables.

We note that there are additional constraints that may be considered in

an expansion planning model, such as precedence constraints between ex-

pansion projects or the possibility of having links between expansion projects

(Thomé et al., 2019).

A thorough presentation of generation expansion problems can be found

in Koltsaklis & Dagoumas (2018), and a detailed presentation of transmis-

sion expansion problems can be found in Hemmati et al. (2013b).
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2.4. Demand Response

Demand response is the ability to change consumption patterns accord-

ing to the system operator’s needs. This can be done by either shifting or

reducing demand, typically by providing a benefit to customers that change

their consumption habits (Deng et al., 2015).

There are three main actions that can be classified as demand response

(Deng et al., 2015):

� Peak clipping or load curtailment: This is a reduction of the load

at peak energy consumption times in order to avoid surpassing the

maximum total generation capacity of the power grid.

� Valley filling: This is achieved using energy storage devices to store

energy during off-peak periods, thus increasing off-peak consumption,

and the stored energy is used during peak consumption periods with-

out contributing to the peak.

� Load shifting: This consists of shifting an amount of energy consump-

tion from peak to off-peak periods without lowering the total energy

demand over the day.

Demand response has several potential applications in the operation of

the power grid. It can be used: i) to mitigate the intermittent energy output

of renewable energy sources (Bitaraf & Rahman, 2017); ii) to help alleviate

congestion in the transmission system (Yousefi et al., 2012); iii) to guarantee

voltage stability (Wang et al., 2011) or provide other ancillary services to

ensure operational security in general (Lee et al., 2016); iv) to mitigate the

need for expanding generation capacity on the grid (Malik, 2007).

There are two categories of DR programs: incentive-based DR (IBDR)

and price-based DR (PBDR). IBDR programs directly incentivize users to

either reduce or shift their consumption. Examples of existing IBDR pro-

grams are Direct Load Control and Emergency Demand Reduction. PBDR

programs also incentivize users to change their consumption but do this via

the pricing of electricity. The idea is that they will avoid consuming energy

when the price is higher, and consume more energy when the price is lower.

Examples of PBDR programs are real-time pricing and time-of-use pricing.

9



More recently, the concept of time-and-level-of-use pricing was proposed to

price DR in terms of both power and energy (Besançon et al., 2020).

When considering either IBDR or PDBR programs in optimization mod-

els, such as OPF, UC and expansion planning models, DR can be modelled

as a variable, such as in Kwag & Kim (2012) for IBDR, and in Wu et al.

(2013b) for PBDR. Alternatively, its impact can be considered directly in

the final demand, such as in Govardhan & Roy (2016) for IBDR, and in

Tumuluru et al. (2014) for PDBR. It should be noted that for IBDR, one

can model DR through incentive value variables, such as in Abdollahi et al.

(2011).

Coordinating the operation of DR resources within the power grid is

a complex process because DR is provided by a large number of small

providers. To overcome this problem, an entity called aggregator was defined

to act as a middleman between the system operator and the DR resources

(Carreiro et al., 2017). Although they facilitate the communication between

the system operators and the DR resources, designing aggregators is chal-

lenging and there are several options for doing so, such as designing virtual

power plants.

We refer the reader to Deng et al. (2015) for more information about

DR and DR programs, and to Carreiro et al. (2017) for a recent survey on

aggregators.

3. Optimal Power Flow

When integrating DR in the operation of the power grid, several different

objectives can be considered in the modelling. In this section, we discuss

OPF models that take DR into consideration. Because many of the pa-

rameters considered in this type of problem depend on data that cannot be

predicted accurately, one really should take uncertainty into account. How-

ever, uncertainty is often not considered for two main reasons, the first being

that the problems become too complex and, consequently, too hard to solve,

and the second being that there is a lack of data to adequately model the

uncertainty. We discuss both deterministic and stochastic models, includ-

ing algorithms and techniques used to tackle optimization problems under
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uncertainty.

When considering DR in power grid operations, most models will con-

sider what kind of DR program is implemented, impacting the choices of

how DR is integrated in the model. Besides that, because of the challenges

in coordinating DR resources, some of the proposed models consider that

DR is offered through aggregators, and this also impacts modelling choices.

There are models in which DR is offered through an IBDR program (e.g

Wang et al. (2015a)), others in which it is offered through a PBDR program

(e.g. Goel et al. (2008)), and in some cases, both types of programs are

considered (e.g Sugimura et al. (2020)). There are also models that simply

do not consider the DR program through which DR is offered.

Another modelling choice is whether the transmission system is consid-

ered or not. If it is considered, as discussed in Section 2.1, the model for the

transmission system model must be determined, typically it is the DCOPF

or the ACOPF model. In most of the literature, either the transmission

system is not considered or a DCOPF model is used. Because DCOPF

models cannot directly account for transmission losses, some authors add

constraints to approximate these losses and hence more accurately model

the system behaviour. Losses can be directly computed in the models that

use an ACOPF model, such as in Duan et al. (2019); Nojavan & Seyedi

(2020); Ghorashi et al. (2020); Goel et al. (2008); David & Li (1993); Singh

et al. (2010); Safdarian et al. (2014).

3.1. Purpose of DR Integration in the Grid

Most authors are interested in the adequate integration of DR into the

power grid operation, such as in Bai et al. (2016); Cheng et al. (2018); Su

& Kirschen (2009); Goel et al. (2008); David & Li (1993); Sharma et al.

(2014); Kara et al. (2021). In some cases, the problem of optimal location

and sizing of DR resources is considered, see e.g. Cheng et al. (2018). In

Kara et al. (2021), the impact of uncertainty in allocating demand response

resources is taken into consideration and evaluated.

DR can also be a key asset in dealing with the fluctuations of renewable

energy sources. In these models, DR will help mitigate this issue by shifting

loads, such as in Wang et al. (2015a); Duan et al. (2019); Bie et al. (2016);
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Kies et al. (2016); Sugimura et al. (2020).

There are also models that focus on the power grid operation security.

For example, voltage stability is a very important issue for a secure operation

of the power grid, and, in some cases, DR can be used to help in guarantee-

ing voltage stability and avoiding voltage collapses, such as in Wang et al.

(2011); Nojavan & Seyedi (2020). In Wang et al. (2011), specifically, DR is

only activated when there are critical events, i.e., possible voltage collapse

scenarios. In Zeng et al. (2018), the authors propose a methodology for

evaluating the reliability value of DR in power grids, creating the concept

of capacity credit with that goal.

In addition, there are some approaches that use DR to manage conges-

tion in the transmission system. In Yousefi et al. (2012), the authors con-

sider both DR and flexible alternating current transmission system (FACTS)

devices to manage congestion in the transmission system. In Singh et al.

(2010), not only it is proposed using DR for congestion management, but it

is also used to avoid locational marginal prices spikes. In Wu et al. (2019),

a transmission line congestion probability measure is used to guarantee that

the transmission system congestion will be less than a certain probability

level. In Tabandeh et al. (2015), the authors also take into consideration

possible transmission lines and generating units outages when using DR for

congestion management. Furthermore, DR can also be used to enhance the

reliability of the power system, which can be seen in Goel et al. (2008).

DR resources are used in moments of contingencies, such as when there are

transmission system limits violations.

DR is also used to help mitigate electricity prices volatility. More specif-

ically, in Goel et al. (2007), DR is used to mitigate nodal price volatility.

In some cases, when considering PBDR programs, price responsiveness is

represented in terms of demand side bids, such as in Su & Kirschen (2009).

Alternatively, in Safdarian et al. (2014), the authors are interested in

analyzing the impacts of DR on the power grid operation, such as system

losses, voltage profiles and service reliability.

There is also the possibility determining the operation of the DR re-

sources and the power grid in a coordinated fashion without the need of a

centralized calculation. Instead, the problem can be solved in a distributed
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fashion, as done in Matsuda et al. (2019) using an alternating direction

method of multipliers (ADMM).

In some cases, the cost of implementing the infrastructure necessary for

DR is also taken into consideration as well as the optimal location for DR

resources, as can be seen in Yu et al. (2018, 2019).

There are some approaches where the DR is considered in a more detailed

fashion, not only having upper and lower bounds, but also having ramping

rate limits and constraints for the time of use of DR resources. For example,

in Kies et al. (2016) DR resources are modeled similarly to an energy storage

system, with state of charge and decisions of power charged and discharged.

Although most of the models consider DR as a variable, there are some

approaches that favour directly calculating a new demand considering the

DR usage, such as in Ghorashi et al. (2020); Su & Kirschen (2009); Matsuda

et al. (2019); Singh et al. (2010). In particular, Ghorashi et al. (2020) use

a system of rewards and penalties so that customers adjust their demands

according to the rewards and penalties offered to them by the operator.

3.2. Aggregators

Because the DR resources are often spread thin throughout the power

grid and most of the consumers can only offer a very small amount of energy

through DR, many models consider aggregators instead of each individual

customer’s DR.

In much of the literature in which aggregators are considered, there is

no detailed modeling of aggregators, as one can see in Yousefi et al. (2012);

Duan et al. (2019); Singh et al. (2010). As such, the impact of aggregators

is the smaller number of variables and the tractability of the problem. How-

ever, in some cases, models for aggregators are developed. In Devine et al.

(2019), the authors propose a model where the objective is to maximize the

aggregators’ profit for using DR both for energy supply and reserve capacity.

3.3. Operation Planning Under Uncertainty

As mentioned earlier, when planning the operation of the power grid,

there are several parameters that cannot be known accurately, such as de-

mand, solar and wind energy generation. Therefore, there is a need to con-

sider their uncertainty by transforming the original, deterministic, problem
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into an optimization problem under uncertainty. Broadly speaking, there are

three main different modelling approaches for this purpose, namely stochas-

tic programming, robust optimization and chance-constrained optimization.

Stochastic programming (SP) generally encompasses mathematical pro-

grams that consider uncertainty in some or all of their parameters. In this

survey, SP specifically refers to the representation of uncertainty through

a set of possible scenarios. For a more detailed introduction to stochastic

programming, see Birge & Louveaux (2011).

Robust optimization (RO) models uncertainty through uncertainty sets.

When using uncertainty sets, the solution of the problem has to be feasible

for any value within the set. As a consequence, the optimal solutions of

robust optimization problems tend to be more conservative. We point out

that while one needs to know the uncertain data distribution when solving

a stochastic programming problem, this is not the case for RO. A more

detailed exposition of robust optimization can be found in Ben-Tal et al.

(2009).

Chance-constrained optimization (CCO) problems approach the uncer-

tainty in the problem differently. Instead of considering the expected value

(like SP) or the worst-case scenario (like RO), CCO considers the probability

of the constraints impacted by uncertain parameters to be respected. The

classic article of Charnes & Cooper (1959) remains an excellent reference

about CCO.

3.3.1. Stochastic Programming

When solving a stochastic programming problem, regardless of mod-

elling the problem as a two-stage or a multistage problem, the simplest way

to tackle it is formulating it as a deterministic equivalent, i.e., writing it as

a single optimization problem, such as in Goel et al. (2007); Bukhsh et al.

(2015); Singh & Kumar (2017); Hu et al. (2016). However, this approach

creates intractable problems when considering a large number of scenarios.

Thus, many practical approaches use a scenario reduction technique to select

a few scenarios that are representative of the uncertainty, see e.g. Tabandeh

et al. (2015); Talari et al. (2018); Sun et al. (2021). Scenarios are typi-

cally generated using Monte Carlo simulation but not always. For example,
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Huang et al. (2020) use the probabilistic collocation method with the aim

of reducing the number of scenarios needed for a good representation of the

uncertainty.

Another issue with SO is that risk is often not well represented, which has

prompted some authors to take into account risk measures. One can observe

this in Sun et al. (2021), where the proposed model uses the Conditional

Value-at-Risk (CVaR) measure to model the risk that is associated with the

decisions made.

3.3.2. Robust Optimization

The most straightforward approach to tackle an optimization problem

under uncertainty with robust optimization is considering a single-stage RO

problem, such as in Hu et al. (2018), the so-called static robust counterpart

(SRC).

Nonetheless, in many cases, there may be some decisions that need to be

made before the uncertainty is realized leading to a multi-stage RO prob-

lem, which can be reformulated by finding its adjustable robust counterpart

(ARC), such as in Zhang et al. (2017); Yu et al. (2019, 2018); Sheng &

Gu (2019). In general, due to performance considerations, decomposition

methods are used to tackle this kind of problem. In most cases the column

and constraint generation (C&CG) algorithm is used, since it has a better

convergence speed, such as in Zhang et al. (2017).

In some cases, it is possible to know the distribution of some of the uncer-

tain parameters of the problem, and a hybrid stochastic-robust optimization

approach can be used, see e.g. Li et al. (2021); Sheng & Gu (2019).

Finally, some authors approach the uncertainty with information gap

decision theory (IGDT), such as Ghahary et al. (2018). IGDT is very similar

to RO, however, it considers variable uncertainty sets, i.e., the upper and

lower bounds of the uncertainty set are not fixed.

3.3.3. Chance-constrained Optimization

When solving a chance-constrained problem, one builds a non-linear op-

timization problem that can be solved directly, as done in Wu et al. (2019).

However, the resulting non-linear optimization problems can be hard to
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solve.

4. Unit Commitment

When solving UC problems, we are considering, besides the OPF as-

pects, the technical constraints of energy plants, such as when they can be

started up or shut down, and their ability to ramp output up or down. Sim-

ilarly to the case of the OPF problem, there are various benefits in taking

DR into consideration when solving UC problems.

4.1. DR purpose in the power grid

Most authors are interested in integrating DR and power grid operation

adequately, such as in Zhang et al. (2015c); Kwag & Kim (2012); Parvania

et al. (2014, 2013); Khodaei et al. (2011); Tumuluru & Tsang (2016); Aghaei

et al. (2016); Tumuluru et al. (2014); Wu et al. (2013b); Magnago et al.

(2015). In Zhang et al. (2015c), DR can be a source of energy for reserve

capacity.

DR can also be a huge asset in dealing with the fluctuations in renewable

generation. In these models, DR mitigates this issue by shifting loads, such

as in Bitaraf & Rahman (2017); Bakirtzis et al. (2018); Ikeda et al. (2012). In

Mousavi-Taghiabadi et al. (2020), DR and plug-in electric vehicles are used

to to ensure the security of frequency dynamics, which is primordial and

increasingly difficult in view of the increasing penetration of wind power

generation. In Bakirtzis et al. (2018), differently from other models, the

authors propose that industrial, commercial and residential DR should be

considered separately. Specifically, commercial and residential DR resources

are modelled as being supplied by an aggregator, which is not the case for

the industrial DR resources. In Ikeda et al. (2012), the authors take into

account the forecast error, although they do not model the problem using

stochastic optimization. Finally, some approaches aim to minimize environ-

mental impacts such as greenhouse gas emissions, see e.g. Hajibandeh et al.

(2018); Zhao & Zeng (2012).

There are also models that focus on power grid operation security. In

Lee et al. (2016), a security-constrained unit commitment (SCUC) problem
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is modelled and DR is used to ensure supply security. In Alirezazadeh

et al. (2021), DR is used to supply reserve capacity in case of thermal unit

outages. In Ansari & Malekshah (2019), DR is used to manage transmission

lines outages. DR has also been considered for supporting frequency control

and hence supporting the secure operation of the grid, as seen in Bao et al.

(2017); Mousavi-Taghiabadi et al. (2020). In Bao et al. (2017), DR is used

for both demand shifting and frequency control.

Furthermore, DR is also used to help mitigate the volatility in electricity

prices. Specifically, in Abdolahi et al. (2019), DR is used to smooth the local

marginal price.

Considering how the customers will respond to DR and how to make it

more attractive to them is an important aspect too. This is explored in Bie

et al. (2016) where the authors propose to measure the customers’ comfort,

in addition to setting an attractive price, when deciding how to request DR

resources from them.

On the other hand, in Jiang et al. (2017), the authors focus on evaluating

whether taking DR into consideration is the most beneficial alternative or

not, and they also analyze how the net load baseline inflation impacts the

DR and, consequently, the operation of the grid.

In some cases, the cost of implementing the infrastructure necessary for

DR is also taken into consideration as well as the optimal location for DR

resources, as can be seen in Yu et al. (2018, 2019).

Finally, there are some approaches where DR is modelled in a more de-

tailed manner, not only with upper and lower bounds, but also with ramping

rate limits and constraints on the time of use of DR resources, such as in

Kwag & Kim (2012); Khodaei et al. (2011); Bitaraf & Rahman (2017); Wu

et al. (2013b); Zarei et al. (2019); Jiang et al. (2017). In Khodaei et al.

(2011), the authors propose an UC model, and hence the DR also has an

on/off state variable.

Although most of the models consider DR as a variable, there are some

approaches that favour directly calculating a new demand considering the

DR usage, such as in Govardhan & Roy (2016); Abdollahi et al. (2011);

Tumuluru et al. (2014). Specifically in Govardhan & Roy (2016); Abdollahi

et al. (2011), it is calculated based on the incentive valued offered by the
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operator to the customers.

4.2. Aggregators

In much of the literature in which aggregators are considered, a model

for an aggregator is not included, as one can see in Konda et al. (2017);

Bakirtzis et al. (2018); Zhang et al. (2015c); Parvania et al. (2014). As

such, the impact of aggregators is the smaller number of variables and the

tractability of the problem.

Models of the aggregator are sometimes taken into consideration. In

Bao et al. (2017), the aggregator offers the DR resources through a virtual

power plant (VPP), and, consequently, DR becomes akin to a generation

plant. In Tumuluru & Tsang (2016), the aggregation is done through find-

ing an equivalent price elasticity at a system level, and, as a consequence,

the authors were able to implement price-based DR through aggregators.

Parvania et al. (2013) presents a model where the objective is to maximize

the aggregators profit, DR contracts are aggregated, and different types of

DR are considered separately. In Saebi & Nguyen (2020), a DR market

model is developed for the aggregator to operate in, which is applied only at

the distribution system level. The decisions about the use of DR resources at

the distribution level are then used at the transmission system level. In Ta-

lari et al. (2018), the aggregators offer DR resources through DR contracts;

there are both day-ahead DR and real-time DR contracts.

4.3. Operation Planning Under Uncertainty

4.3.1. Stochastic Programming

When solving a stochastic problem, regardless of modelling the problem

as a two-stage or a multistage stochastic programming problem, the simplest

way to tackle it is formulating it as a deterministic equivalent, such as in

Ansari & Malekshah (2019); Han et al. (2017); Saebi & Nguyen (2020); Wu

et al. (2013a); Wang et al. (2016); Karangelos & Bouffard (2011); Gong et al.

(2017); Wang et al. (2015b). However, this approach creates intractable

problems when considering a large number of scenarios. For this reason,

many approaches use a scenario reduction technique to have a few scenarios

that are representative of the uncertainty, such as in Talari et al. (2017);
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Rahmani et al. (2020); Sahebi & Hosseini (2014); Hamdy et al. (2019); Va-

linejad et al. (2017); Parvania & Fotuhi-Firuzabad (2010).

The practical performance issues have also led to the use of decompo-

sition methods such as Benders decomposition (BD) which can be seen in

Zhang et al. (2015b); Vahedipour-Dahraei et al. (2018); Soltani et al. (2018).

In particular, Huang et al. (2014) implements the Benders-based Branch-

and-Cut that works by verifying whether every examined integer solution

is optimal or not. If it is not, a Benders cut is added and the resulting

problem is solved again. This process is repeated until it returns an optimal

integer solution, or a fractional solution, or the problem becomes infeasible.

This algorithm removes the need to solve a MILP problem several times,

significantly improving the performance of BD.

Another way to tackle the performance issues is to use heuristics. In

De Jonghe et al. (2013), the authors use the PIES algorithm to solve the

problem, and in Khazali & Kalantar (2016), the PSO algorithm is used.

Heuristics are also applied to multi-objective problems, such as in Hajiban-

deh et al. (2018) where a multi-objective multi-criteria decision making

heuristic is applied, and in Furukakoi et al. (2018), where a genetic algo-

rithm is used to solve the model. In Kiran & Kumari (2016), instead of

using an heuristic, the authors apply lagrangian relaxation to the original

model and they solve the new model in an iterative fashion.

Besides that, there is the issue that risk is often not well represented,

which has prompted some authors to take into account risk measures. One

can observe this in Wang et al. (2016), where the proposed models use

the Conditional Value-at-Risk (CVaR) measure to model the risk that is

associated with the decisions made. In Yin & Zhao (2018), the authors

propose the use of the fuzzy stochastic CVaR to measure the risk adequately,

since they aim to measure the risk associated with the wind power and DR

uncertainties. In Huang et al. (2014), the authors use the Average Value-

at-Risk instead of CVaR as a risk measure.

Finally, because of the lack of information about the uncertainty data

distribution, in some cases the uncertainty of some parameters is modeled

using information gap decision theory (IGDT), such as in Ahrabi et al.

(2021) where a hybrid IGDT-stochastic programming model is developed.
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4.3.2. Robust Optimization

The most straightforward approach to tackle an optimization problem

under uncertainty using RO is to consider a single-stage RO problem, such

as in Liu & Tomsovic (2015); Heydarian-Forushani et al. (2015); Mahboubi-

Moghaddam et al. (2016), and to solve it via the so-called static robust

counterpart.

Nonetheless, in many cases, there may be some decisions that need to be

taken before the uncertainty is realized. This leads to a multi-stage RO prob-

lem that can be reformulated by finding its adjustable robust counterpart

(ARC), such as in Zhao et al. (2013); Zhao & Zeng (2012). In general, due

to performance considerations, decomposition methods are used to tackle

this kind of problem. In some cases BD is applied, as seen in Zhao et al.

(2013), but in most cases the column and constraint generation (C&CG)

algorithm is used because it has a better convergence speed, see e.g. Zhao

& Zeng (2012).

In Du et al. (2020), the authors take into account adjustable uncer-

tainty sets and use the affinely adjustable approach, generating an affinely

adjustable robust counterpart (AARC), which is less conservative than the

ARC.

Finally, some authors approach the uncertainty using IGDT, such as

Nikoobakht & Aghaei (2017); Ahrabi et al. (2019).

4.3.3. Chance-Constrained Optimization

A CCO problem can be transformed with a non-linear optimization prob-

lem but this latter problem is often hard to solve. This has led to the use

of solution methods or problem reformulations that make the model more

tractable. In Tan & Shaaban (2020), the authors use the so-called Big-M

method to linearize the model, and, similarly, in Wang et al. (2012), a MILP

reformulation of the chance constraints is used.

Heuristics are sometimes used in order to find a good quality solution

in a reasonable amount of time. In Azizipanah-Abarghooee et al. (2016),

the authors propose an improved version of the jaya algorithm, which is a

population-based method. Particle swarm optimization (PSO) is also em-

ployed in some cases, such as in Liu et al. (2019). In Zhang et al. (2015a), the
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authors apply PSO together with some of the genetic algorithm operators,

such as the mutation and crossover operators.

5. Expansion Planning

In this section, we cover the various capacity expansion planning mod-

els in the literature for generation and/or transmission expansion planning

taking DR into account. When operating the power grid over a long-term

horizon, different issues must be considered. Because energy consumption

grows over time, it is expected that the generating capacity may not suffice

to supply all the demand, and that the transmission system may not be able

to transport all the energy to meet the demand. There is thus a need to

plan the expansion of both generation and transmission. When tackling this

problem, one may consider only one or both aspects. Moreover, modellers

also make assumptions about the kind of DR program considered, and how

it is integrated in the model. Moreover, when the transmission system is

included in the model, one may choose how it is represented. Most of the

models either do not consider a transmission system or consider a DCOPF

model, but some models do use an ACOPF representation.

5.1. Generation Expansion Planning

The impact of DR on generation expansion planning is taken into account

in articles such as Oderinwale et al. (2020); De Jonghe et al. (2012); Malik

(2007); Samadi et al. (2013). It may be done with different possible goals.

Most approaches in the literature consider DR resources in order to

minimize or delay investments in new energy plants, such as in Malik (2007);

Samadi et al. (2013). In some cases, in addition to delaying investments,

DR is also used to mitigate the variability of renewable generation, such as

in De Jonghe et al. (2012). In Domı́nguez & Carrión (2019), the authors

also consider the need to minimize greenhouse gas emissions, and DR also

supports that objective.

Some authors, such as in Oderinwale et al. (2020), only account for

DR with regards to how it impacts the operation of the power grid. The

operation of the power grid is used to verify if the proposed expansion plan

is optimal.
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Finally, although DR is often represented using a specific variables for it,

such as in Oderinwale et al. (2020); De Jonghe et al. (2012); Malik (2007),

this is not always the case. In Samadi et al. (2013), DR is represented by

calculating the new demand directly considering the electricity price.

5.2. Transmission Expansion Planning

There are several approaches in which transmission expansion plan-

ning takes into account the impacts of DR, such as in Rathore & Roy

(2016); Kazerooni & Mutale (2010); Özdemir et al. (2015); Zakeri & Askar-

ian Abyaneh (2017); Qiu et al. (2017a); Xie et al. (2020); Löschenbrand

(2021). DR may be considered in expansion planning for various purposes.

There are models that consider DR resources to mitigate the variablility

of renewable energy sources, such as in Rathore & Roy (2016); Qiu et al.

(2017a). In Qiu et al. (2017a), the authors also consider system reliability,

using DR to support reliability in the presence of large quantities of renew-

able generation. In Li et al. (2015), the authors consider potential outages

of generating units and transmission lines outages. Congestion management

issues also need to be considered, as seen in Hajebrahimi et al. (2015). In

some cases, DR is used to reduce the need to build new transmission lines

or to reinforce existing ones, such as in Zakeri & Askarian Abyaneh (2017).

Besides that, in certain cases, the impact of DR is evaluated on the daily

power grid operation in order to verify if a given transmission expansion

plan is optimal, such as in Kazerooni & Mutale (2010).

We again point out that including DR in a model does not necessarily

imply having specific variables and constraints for it. In fact, in Rathore

& Roy (2016); Kazerooni & Mutale (2010); Özdemir et al. (2015); Zakeri

& Askarian Abyaneh (2017), DR is not calculated directly, but rather it

is the new demand, after DR is requested, that is calculated directly. In

Kazerooni & Mutale (2010); Özdemir et al. (2015), this new demand value

is calculated based on the price elasticity and on the electricity price, and

in Zakeri & Askarian Abyaneh (2017), besides these two factors, incentives

are also taken into account.
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5.3. Joint Generation and Transmission Expansion Planning

The impact of DR on joint generation and transmission expansion plan-

ning is taken into account in articles such as Khodaei et al. (2012); Gbadamosi

& Nwulu (2020); Saxena & Bhakar (2019); Zhang et al. (2016b); Anjo et al.

(2018); Zhang et al. (2016a); Guerra et al. (2016); Unsihuay-Vila et al.

(2011); Jenabi et al. (2013); Hamidpour et al. (2019). As mentioned in

previous sections, the inclusion of DR has several possible goals.

Some approaches in the literature consider DR resources to minimize

or delay investments on new power plants as well as investments on new

transmission lines, such as in Saxena & Bhakar (2019); Zhang et al. (2016b);

Hamidpour et al. (2019). Others are based on the fact that DR can not only

be used to delay investments, but it can also be used to manage the system

balance in the presence of renewable generation, such as in Khodaei et al.

(2012); Gbadamosi & Nwulu (2020); Anjo et al. (2018); Zhang et al. (2016a).

The work in Khodaei et al. (2012) examines the reliability of the grid

after applying the proposed expansion plan. In this specific model, the

reliability is measured using the loss of load expectation (LOLE) that must

remain within given limits.

In some cases, the impact of the DR resources in the proposed expansion

plan is analyzed in the daily operation after applying that plan, such as in

Zhang et al. (2016b). More precisely, the idea is to analyze the impact on

the peak load and the adequacy of the proposed expansion plan for grid

operation.

Besides that, the problem of the optimal location and siting of DR re-

sources in the power grid is also taken into consideration by a few models,

such as in Guerra et al. (2016); Jenabi et al. (2013).

In Guerra et al. (2016); Unsihuay-Vila et al. (2011) there is also a pre-

occupation with regards to the environmental impacts when proposing an

expansion plan. To mitigate those impacts, CO2 emissions constraints are

used as well as carbon capture technologies.

Furthermore, DR is sometimes integrated through an aggregator, such

as in Hamidpour et al. (2019), which facilitates the procurement of DR

resources by the system operator.

Finally, we note that DR is generally directly represented using a specific
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variable when modelling this type of joint expansion planning, as we can

see in Khodaei et al. (2012); Gbadamosi & Nwulu (2020); Zhang et al.

(2016b,a); Guerra et al. (2016); Unsihuay-Vila et al. (2011); Jenabi et al.

(2013); Hamidpour et al. (2019). However, this is not always the case, and

Saxena & Bhakar (2019) is a good example of that.

5.4. Expansion Planning Under Uncertainty

5.4.1. Stochastic Programming

Similar to what happens for operation planning, most authors model un-

certainty as a single (deterministic) stochastic programming problem con-

taining all the scenarios, such as in Asensio et al. (2017, 2016); Domı́nguez

& Carrión (2019); Zheng et al. (2018); Marañón-Ledesma & Tomasgard

(2019). However, because of the computational performance issues of that

approach, some authors use a scenario reduction technique to keep only the

most representative scenarios, such as in Jin et al. (2013); Qiu (2018).

In order to consider more scenarios and larger problems, some papers

rely on decomposition algorithms. In Qiu (2018); Qaeini et al. (2019);

Zeinaddini-Meymand et al. (2019); Qaeini et al. (2019), the authors use

the BD algorithm to solve their proposed models. Because BD has perfor-

mance issues, enhancements to this method are employed in articles such as

in Li et al. (2015), where the authors use an improved BD algorithm, which

they call hierarchical BD (HBD). It works by solving, in a first phase, a

relaxed version of the original problem, and then in a second phase, solving

the original problem with the Benders cuts generated in the first phase. In

Lohmann & Rebennack (2017), the authors also propose the use of BD to

solve a mixed-integer non-linear optimization designed for expansion plan-

ning. However, instead of using generalized BD (GBD), they propose to

dynamically overestimate the linear relaxation of the subproblems, avoid-

ing the need to use GBD. Because the relaxed subproblem can be hard to

solve in some cases, the authors further propose the use of nested Benders

decomposition (NBD) to solve the subproblem. In short, BD coupled with

NBD is used to solve the proposed model.

Some authors propose multi-objective stochastic programming models,

which are often solved with heuristics. Hajebrahimi et al. (2015); Hejeejo
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& Qiu (2017) employ the nondominated sorting genetic algorithm to solve

their models, while Qiu et al. (2016) use the multi-objective evolutionary

algorithm MOEA/D.

Finally, because risk is often misrepresented in stochastic programming

problems from a practical perspective, some approaches take into consid-

eration risk measures, as we can see in Qiu (2018); Qiu et al. (2017b). In

Qaeini et al. (2019), the authors use CVaR as a risk measure in order to

generate risk-averse solutions.

5.4.2. Robust Optimization

In the first step to use a RO approach, one only needs to design an

uncertainty set, find its robust counterpart and solve it. This is the SRC

approach that can be seen in Löschenbrand (2021). However, under uncer-

tainty, investment decisions will impact future decisions. In this case, we

face a multi-stage problem and an ARC formulation can be used to solve

it, as in Dai et al. (2019); Huang et al. (2019). Because these problems can

be hard to solve, decomposition methods are often used, such as in Zheng

et al. (2019).

it is also often the case that one has information about the distribution

of the uncertainty that could be used in a stochastic optimization approach,

but the knowledge of this distribution is incomplete. In these case, one can

use the Distributionally Robust Optimization (DRO) approach, as seen in

Zheng et al. (2019).

6. Conclusion

This survey has presented a review of operation and expansion plan-

ning models integrating DR resources. For operation planning, DR can be

used for different purposes, such as mitigating the fluctuations in renewable

energy generation and mitigating transmission congestion. For expansion

planning, the main objective of using DR is to mitigate the need for build-

ing new power plants or new transmission lines. However, DR is often also

used to support ancillary operational objectives.

In most cases, the transmission system is modelled using DCOPF or it

is not considered at all. An ACOPF model is seldom employed in either
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operation or expansion planning models. Although this is understandable

due to the fact that ACOPF makes the models computationally challenging

to solve, this choice may lead to optimistic solutions. Considering that there

are now high-quality convex relaxations for ACOPF, such as in Bingane et al.

(2018) and Coffrin et al. (2015), it would be worthwhile to use these to find

more accurate solutions.

With respect to DR modelling, we note that aggregators are often not

considered, which may cause issues when tackling large-scale grids with

many DR resources. It would be interesting to explore the impacts of ag-

gregators on large-scale grids and how they can facilitate the integration

and optimal use of DR. Moreover, in most expansion planning models, the

impact of DR coupled with the expansion schedule is not analyzed from a

daily operational perspective. Considering that the impact of using DR is

more perceptible in day-ahead operation, it would be important to analyze

how DR might impact expansion decisions.

Uncertainty is growing in importance for operation and expansion plan-

ning, and while there are several models that account of it in some way,

this survey highlights the fact that only a few of them employ decompo-

sition techniques, and, even in these cases, most of them do not consider

any enhancement methods to improve the performance of those decompo-

sition methods. Given that such methods are practically the only means

to solve large-scale models of realistic sizes, a promising path for future re-

search is to optimize the performance of these techniques specifically for

these classes of models, as was done recently for hydropower maintenance

models in Rodŕıguez et al. (2021). This would allow to apply the models to

real-world power grids.

Finally, with regards to RO, we can observe that it is sparsely used

to address uncertainty. It would be expecially interesting to explore the

potential of applying the recently developed method of DRO to operation

and expansion planning modelling.
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