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ABSTRACT
We present deep 1.4 GHz source counts from ∼5 deg2 of the continuum Early Science data release of the MeerKAT International
Gigahertz Tiered Extragalactic Exploration (MIGHTEE) survey down to 𝑆1.4GHz ∼15 μJy. Using observations over two
extragalactic fields (COSMOS and XMM-LSS), we provide a comprehensive investigation into correcting the incompleteness
of the raw source counts within the survey to understand the true underlying source count population. We use a variety of
simulations that account for: errors in source detection and characterisation, clustering, and variations in the assumed source
model used to simulate sources within the field and characterise source count incompleteness. We present these deep source
count distributions and use them to investigate the contribution of extragalactic sources to the sky background temperature
at 1.4 GHz using a relatively large sky area. We then use the wealth of ancillary data covering a subset of the COSMOS
field to investigate the specific contributions from both active galactic nuclei (AGN) and star forming galaxies (SFGs) to the
source counts and sky background temperature. We find, similar to previous deep studies, that we are unable to reconcile the
sky temperature observed by the ARCADE 2 experiment. We show that AGN provide the majority contribution to the sky
temperature contribution from radio sources, but the relative contribution of SFGs rises sharply below 1 mJy, reaching an
approximate 15-25% contribution to the total sky background temperature (𝑇𝑏 ∼100 mK) at ∼15 μJy.
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1 INTRODUCTION

As radio astronomers head towards the era of the Square Kilometre
Array Observatory (SKAO)1, a combination of SKAO precursor and
pathfinder telescopes are transforming the ability to observe galaxies
to sub-mJy and even to μJy sensitivities at radio frequencies of tens
of MHz to several GHz and these facilities combine both fast survey
speeds with large area observations. This includes surveys from pre-
cursor facilities such as theMeer Karoo Array Telescope (MeerKAT;
Jonas 2009, Booth et al. 2009) which is located at the SKAO site
in South Africa and pathfinder facilities which span the frequencies
of the proposed SKAO. These pathfinder facilities include mid fre-
quency (∼GHz) observations with facilities such as the Australian
Square Kilometre Array Pathfinder (ASKAP; Johnston et al. 2007,
2008, Hotan et al. 2021) and low frequency (∼10-200 MHz) obser-
vations with the LOw Frequency ARray (LOFAR; van Haarlem et al.
2013) as well as those radio facilities which span both low and mid
frequencies such as the Upgraded Giant Metrewave Radio Telescope
(u-GMRT; Gupta et al. 2017) and the upgraded Karl G. Jansky Very
Large Array (VLA; Thompson et al. 1980). These telescopes allow
observations of radio populations at incredibly deep sensitivities,
detecting a wealth of previously undetected radio sources, enabling
more in depth studies of galaxy evolution, and studies to higher
redshifts.
Within these deep extragalactic radio surveys, the sources are typ-

ically classifed into two populations: star forming galaxies (SFGs)
and active galactic nuclei (AGN). The radio emission from both of
these populations (at ∼1 GHz) is dominated by synchrotron radia-
tion (Condon 1992), though free-free emission may be important for
SFGs and becomes more important at higher rest-frame frequencies
(see e.g. Tabatabaei et al. 2017, Galvin et al. 2018). In the synchrotron
mechanism, radiation is emitted when electrons, that are moving at
relativistic speeds, spiral in magnetic fields. For SFGs, the relativis-
tic electrons are generated in supernova remnants, and so this radio
emission acts as a proxy for star formation within a galaxy. This leads
to relations as in the works of Bell (2003), Garn et al. (2009), Jarvis
et al. (2010), Davies et al. (2017), Delhaize et al. (2017), Gürkan
et al. (2018), Delvecchio et al. (2021) and Smith et al. (2021), which
link radio luminosity to star formation rates (SFRs) and also to their
infrared emission through the infrared radio correlation. For AGN,
the relativistic electrons spiral in the jets associated with the accret-
ing supermassive black holes. Historically, those AGNwhich exhibit
jets are often further classified based on their morphology (Fanaroff
& Riley 1974) and more recently AGN have been classified on their
accretion mechanisms (see e.g. Best & Heckman 2012, Heckman &
Best 2014, Whittam et al. 2018, Williams et al. 2018). For faint sur-
veys, with the telescopes described above, a substantial population
of radio quiet AGN will also become important within the sources
observed.
One way in which we can investigate the contribution of different

extragalactic radio populations to the radio source landscape is by
looking at the distribution of radio sources as a function of flux
density. This is typically done through investigating the source counts
of radio sources (see e.g. Owen & Morrison 2008, Ibar et al. 2009,
de Zotti et al. 2010, Vernstrom et al. 2016, Mandal et al. 2021,
Matthews et al. 2021a, van der Vlugt et al. 2021). At high flux
densities, the dominant radio source populations are powerful AGN
(see e.g.Mauch& Sadler 2007, Padovani 2016, Smolčić et al. 2017b)
and this is therefore reflected in various simulated catalogues of radio
sources (Wilman et al. 2008, Bonaldi et al. 2019). However, with

1 https://www.skao.int

sensitive surveys such as those described in Smolčić et al. (2017a),
Shimwell et al. (2019), Heywood et al. (2022), Tasse et al. (2021),
Sabater et al. (2021) and Norris et al. (2021) we are able to detect
significant numbers of the faint radio extragalactic populations. These
include SFGs as well as the faint, radio quiet AGN populations
(Padovani et al. 2015, White et al. 2015, 2017). The contribution of
these sources is responsible for the flattening in the source counts
distribution at .mJy flux densities at 1.4 GHz (see e.g. Jarvis &
Rawlings 2004, Smolčić et al. 2017b).

These faint source counts have been investigated using the new,
sensitive surveys from LOFAR (Mandal et al. 2021), VLA (Smolčić
et al. 2017b, van der Vlugt et al. 2021) and GMRT (Ocran et al.
2020). The recent source counts fromMeerKATDEEP2observations
(Mauch et al. 2020, Matthews et al. 2021a) covered 1.04 deg2 and
used both the source counts from catalogues as well as inferred sub-
threshold source counts from probability of deflection, P(D), analysis
(Matthews et al. 2021a). Previous deep sub-μJy source counts have
been inferred with both P(D) analysis (see e.g. Condon et al. 2012,
Vernstrom et al. 2016) as well as using Bayesian stacking (see e.g.
Zwart et al. 2015). These have produced the best constraints on
source counts at sub-μJy levels to date. These deep observations
are typically restricted to small areas, whilst at low frequencies the
LOFAR surveys have constructed source counts over relatively large
areas (∼25 deg2 Mandal et al. 2021) to ∼200 μJy at 144 MHz (∼40
μJy at 1.4 GHz). For the deepest observations at GHz frequencies,
the surveyed areas are small, including the deepest source counts
available from van der Vlugt et al. (2021) and Algera et al. (2020)
which covers 350 arcmin2 and so is limited by sample variance (e.g.
Heywood et al. 2013).

Knowledge of the source counts distribution at faint flux densi-
ties is also essential for understanding the integrated sky background
temperature. This provides the information necessary to model the
contributions of faint extra-galactic sources to the background emis-
sion at radio frequencies. The radio sky background is especially
interesting to investigate at faint flux densities due to the large sky
temperature excess found by the ARCADE 2 experiment (Fixsen
et al. 2011). In their work, Fixsen et al. (2011) used radiometers to
measure the sky temperature between 3-90 GHz at seven frequency
values. This was combined with literature values (such as Reich &
Reich 1986, at 1.4 GHz) to create a model for the total sky back-
ground temperature in the range 22 MHz - 10 GHz. However this
work has been shown to be in disagreement with work from the cat-
alogues of radio surveys. Whilst one explanation for this large sky
temperature could have been an excess of faint (∼μJy) radio sources,
recent work by Vernstrom et al. (2011), Murphy & Chary (2018),
Hardcastle et al. (2021) and Matthews et al. (2021b) have indicated
that it is not possible to explain the ARCADE 2 measurement using
deep radio surveys.

One deep, relatively large area radio survey which also benefits
froma vastwealth of ancillarymulti-wavelength data is theMeerKAT
International Giga Hertz Tiered Extragalactic Exploration (MIGH-
TEE) survey (Jarvis et al. 2016, Heywood et al. 2022). When com-
pleted, these observations will cover a total area of 20 deg2, covering
four extragalactic fields (COSMOS, E-CDFS, ELAIS-S1 and XMM-
LSS). This should allow a range of different environments (e.g. clus-
ters, voids etc.) to be observed and investigated, mitigating the effect
of sample variance. The continuum Early Science data release of the
MIGHTEE survey (Heywood et al. 2022) covers a fraction of two
of the four fields: COSMOS and XMM-LSS. This release consists
of both a lower (∼8′′) and higher (∼5′′) resolution image. In total
these observations cover ∼ 5 deg2 to a typical thermal noise of ∼2
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μJy beam−1 in the lower resolution image and ∼6 μJy beam−1 in the
higher resolution image.
Importantly, MIGHTEE’s survey strategy targets those fields with

some of the best multi-wavelength ancillary data. This spans the vast
ranges of the electromagnetic spectrum, and a non-exhaustive list of
these observations include those from the X-ray (see e.g. Hasinger
et al. 2007, Chen et al. 2018, Ni et al. 2021), optical (see e.g. Davies
et al. 2018, Aihara et al. 2018, Davies et al. 2021), near-IR (see
e.g. McCracken et al. 2012, Jarvis et al. 2013, Laigle et al. 2016),
mid-IR (see e.g. Lonsdale et al. 2003, Mauduit et al. 2012), far-IR
(see e.g. Oliver et al. 2012, Ashby et al. 2013) and radio (see e.g.
Bondi et al. 2003, Tasse et al. 2007, Smolčić et al. 2017a, Hale et al.
2019, Heywood et al. 2020) wavelengths. This produces a wealth
of information to help characterise source types (e.g. SFG or AGN)
and also the properties of the host galaxies (e.g. star formation rate,
SFR, and stellar mass, 𝑀∗) through methods such as spectral energy
distribution (SED) fitting.
In this paper we investigate the deep source counts distribution

from the continuum Early Science data release of the MIGHTEE
survey in the COSMOS and XMM-LSS fields. We then make use
of the classifications which use the large amounts of ancillary data
within the MIGHTEE fields to consider the contribution to the inte-
grated background sky temperature from AGN and SFGs separately.
Using radio observations at these depths and investigating the sky
temperature contribution from AGN and SFG respectively is some-
thing which benefits from surveys such as MIGHTEE where depth,
area, and multi-wavelength information are all combined.
The layout of this paper is as follows: in Section 2 we describe the

data used for this analysis before we then outline the methods used
for calculating the incompleteness of the source counts in Section 3.
Using the measurements of source count completeness we determine
the corrected source counts which we present in Section 4 before
using these corrected source counts to determine the integrated sky
background temperature contribution of AGN and SFGs. We then
discuss these results in Section 5, before drawing conclusions in
Section 6.

2 DATA

In this section we give a brief overview of the continuum data from
theMIGHTEE continuumEarly Science data release (Heywood et al.
2022) that are used in this paper. Furthermore, we also use the cat-
alogues generated from cross-matching (Prescott et al. subm.) and
further classified by their source type (Whittam et al. 2022), which
are used to investigate the contribution of AGN and SFGs. Further
information and details on the MIGHTEE Early Science continuum
data release can be found in Heywood et al. (2022), where informa-
tion on data access can also be found.

2.1 MIGHTEE Continuum Data

The images used for this work are taken from the Early Science data
release in the MIGHTEE survey, which cover the COSMOS (∼1.6
deg2) and XMM-LSS fields (∼3.5 deg2). For the COSMOS field,
a total of 17.45 hours of observations (on target) were taken over a
single field of view centered at RA: 10h00m28.6s, Dec: +02◦12′21′′.
Three observations of the field were taken in April 2018, May 2018
and April 2020 respectively. For XMM-LSS, 3 pointings were used
to construct the mosaicked image of the field, with individual field
centres of (02h17m51s, −04◦49′59′′), (02h20m42s, −04◦49′59′′)

and (02h23m22s, −04◦49′59′′). Each pointing was observed twice
during October 2018 with ∼12.4 hours on each field centre.
Data reduction is described comprehensively in Heywood et al.

(2022) and used a combination of both direction-independent and
direction-dependent calibration. CASA (McMullin et al. 2007) was
used to determine gain solutions from the primary and secondary
calibrators and thesewere applied to the target datawhichwere subse-
quently flagged using TRICOLOUR2. Direction-independent imaging
and self-calibration of the target data set was performed using a com-
bination of WSCLEAN (Offringa et al. 2014) and the CASA GAINCAL
task. Direction-dependent calibration was then calculated and the
fields were then imaged using a combination of KILLMS (Smirnov &
Tasse 2015) and DDFACET (Tasse et al. 2018).
Final images were constructed using two Briggs’ weighting values

(Briggs 1995): 0.0 and −1.2. The first Briggs’ weighting of 0.0 was
optimised to improve the sensitivity of the image (thermal noise ∼2
μJy beam−1, though observed noise in the central regions is∼4-5 μJy
beam−1 due to confusion), however this compromised the resolution
and led to 8.6′′ (8.2′′) resolution for COSMOS (XMM-LSS) field.
A second Briggs’ weighting of −1.2 instead prioritized resolution
over depth of the image and resulted in images with 5.0′′ resolution
but with poorer sensitivity (thermal noise ∼6 μJy beam−1). For the
work in this paper, we only make use of the low resolution images, to
probe the source counts and sky background temperature to faintest
flux densities possible. However, this does mean our images are more
likely to be affected by confusion.
Source catalogues were generated by running the Python Blob De-

tector and Source Finder (PyBDSF; Mohan & Rafferty 2015) using
the default source extraction parameters. PyBDSF produces both a
source catalogue (srl) file as well as a list of the Gaussian com-
ponents (gaul) that are used to model the radio emission above
3𝜎 of the local sky background. The respective advantages of these
two catalogues will be described further in Section 3.2. Consider-
ing the Gaussian component catalogues only, there are a total of
9,915 components in the COSMOS low resolution image and these
were combined into 9,252 sources. In the XMM-LSS low resolution
image there are 20,397 components detected and 19,290 sources.
Subsequent visual inspection of these images and catalogue led to a
removal of a handful of spurious sources, as described in Heywood
et al. (2022).

2.2 Effective Frequency Map

For each image, an effective frequency map was also constructed
in Heywood et al. (2022). This reflects the changing nature of the
effective frequency at each location within the image due to the
response of the primary beam of MeerKAT being both a function of
position within a pointing as well as frequency. Observations were
taken across a wide frequency band, ∼900-1600 MHz, and factors
such as the flagging of the raw data, the varying response of the
primary beam with frequency and the mosaicing of data means the
effective frequency is not a constant value across the image.
The effective frequency maps that were created and released with

Heywood et al. (2022) for the low resolution images in the COSMOS
and XMM-LSS fields can be seen in Figure 1. Figure 1a shows that
the effective frequency for the COSMOS field is higher towards the
centre of the field (∼1.4 GHz in the low resolution image), decreasing
to lower frequencies at greater distance from the pointing centre.
For XMM-LSS (Figure 1b), the distribution in effective frequency is

2 https://github.com/ska-sa/tricolour
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(a) COSMOS (b) XMM-LSS

Figure 1. Effective frequency map of the COSMOS field (left) and XMM-LSS field (right) released in Heywood et al. (2022). The colour bar indicates the
effective frequency as well as the correction factor needed to convert flux densities at the given frequency to 1.4 GHz assuming a synchrotron power law.

more complicated, due to the mosaicking of three pointings that were
used to construct the full field. As such there are higher values for
the effective frequency towards the centre of the east and west-most
pointings. The overlap between the central pointing and the east and
west pointings, however, shows slightly lower effective frequencies.
For ourwork,we scale our source counts to a common frequency of

1.4 GHz, assuming a synchrotron power law spectrum3. The colour
bars in Figure 1 therefore not only show the change in frequency, but
also the value of the correction for the flux density of sources at each
position within the map to ensure a common frequency of 1.4 GHz.
Depending on the location within these images, this correction factor
is in the range ∼0.9−1.0. The effective frequency maps from Hey-
wood et al. (2022) do not have associated errors with themaps andwe
do not have spectral indices and associated errors for each individual
source. Therefore there are likely very small uncertainties on these
correction factors. However, given the small frequency corrections,
small changes in the spectral index should not contribute significantly
to the errors in the source counts presented in Section 4.1.

2.3 AGN and SFG classification of MIGHTEE sources

The classification of radio sources into AGN and SFGs within the
MIGHTEE continuum early science data release is the result of
combined efforts to identify host galaxies for the objects detected
by PyBDSF (described in Prescott et al., subm.) and a process of
using multiple multi-wavelength diagnostics to separate AGN from
SFGs (described in Whittam et al. 2022). This identification of host
galaxies and classification into AGN and SFGs uses a subset of
the MIGHTEE Early Science continuum data, over 0.8 deg2 of the
COSMOS field.
In Prescott et al., (subm.), components within this central region

of COSMOS were cross-matched to probable host sources from a
compilation of catalogues which combine optical and near-IR data
from a multitude of wavelengths and telescopes, such as the Canada-
France-Hawaii Telescope Legacy Survey (CFHTLS), Hyper Suprime
Cam (HSC), Visible and Infrared Survey Telescope for Astronomy

3 𝑆a ∝ a−𝛼; where 𝑆a is the integrated flux density at a given frequency, a,
and the spectral index is denoted by 𝛼. We assume 𝛼 = 0.7 throughout this
paper unless otherwise stated. A spectral index of 0.7−0.8 has been commonly
measured, see e.g. Smolčić et al. (2017a), Calistro Rivera et al. (2017), de
Gasperin et al. (2018), An et al. (2021) and are commonly assumed values in
the literature.

(VISTA) and the Spitzer space telescope (for more information on
these compilation catalogues see Bowler et al. 2020, Adams et al.
2020, 2021). An updated version of the XMATCHIT code (see Prescott
et al. 2018) was used for visual host galaxy identification, using
composite images for each source that combined UltraVISTA (Mc-
Cracken et al. 2012) 𝐾𝑆-band images with radio contours from
MIGHTEE and from the VLA 3 GHz COSMOS survey (Smolčić
et al. 2017a) overlaid on the image. These images were visually in-
spected by members of the MIGHTEE team, providing host galaxy
identification for ∼83% of PyBDSF Gaussian components, including
those that were in regions masked by the multi-wavelength data. The
remaining components either did not have counterparts assigned or
were too confused to assign a host. This process also identified those
Gaussian components which needed to be combined into a single
source, as well as identifying those components which appeared to
be from multiple individual host sources. Exact details of the num-
ber of components which are classified as multi-component sources,
have no counterpart or are confused, can be found in Prescott et al.
(subm.).
Source classifications into AGN or SFGs were subsequently made

using the wealth of multi-wavelength data and the knowledge of
the host from the cross-matched catalogue as described in Whittam
et al. (2022). The combined multiple diagnostics are summarised
here. Firstly, diagnostics from X-ray emission were used to identify
AGN, with 𝐿𝑋>1042 erg s−1. Secondly, excess radio emission was
identified using the infrared-radio correlation from Delvecchio et al.
(2021) where sources with radio emission >2𝜎 above the correlation
were defined to be AGN. Moreover, AGN were identified from their
mid-infrared colours using the colour cut described in Donley et al.
(2012). Finally, sources that are found to be point-like at optical
wavelengths (using Hubble ACS I-band data) were described to be
optical AGN. The remaining sources were assumed to be SFGs if
they failed all of these four criteria and probable SFGs if they had
𝑧>0.5 but satisfied all the non-AGNcriteria (due toX-ray observation
limitations, see Whittam et al. 2022). For the sources which were
cross matched to a host galaxy in Prescott et al. (subm.) ∼88% of
sources are associated as either an AGN, SFG or probable SFG.
This represents ∼73% of the total sources, including sources within
masked regions. It is with these classifications that wewill investigate
the respective contribution of SFG and AGN to the background sky
temperature.
As mentioned, this only uses the classifications across the ∼0.8

deg2 central area of the COSMOS field. Therefore any assumptions
on the fraction of AGN/SFGs for the larger COSMOS region or for
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the XMM-LSS field are made assuming the ratio from the ∼0.8 deg2
COSMOS region.

3 CALCULATION OF SOURCE COUNTS AND
INCOMPLETENESS

In this section we discuss the methods to determine the source counts
for the catalogue of radio sources and to subsequently calculate the
background sky temperature for these data. We also discuss our
methods to calculate the incompleteness within these images and to
correct for this to understand the intrinsic source count distribution.

3.1 Calculation of Source Counts

Source counts quantify the number of sources (𝑁) within a flux
density (𝑆a) bin (i.e. 𝑑𝑁𝑑𝑆a ) per unit steradian observed on the sky
(combined to give 𝑛(𝑆a)). Typically, the counts are Euclidean nor-
malised and so the Euclidean normalised source counts are denoted
by 𝑛(𝑆a)𝑆2.5a . We first calculate the raw source counts using the
PyBDSF catalogues of Heywood et al. (2022) corrected to a frequency
of 1.4 GHz using the effective frequency map. However, these ob-
served raw source counts will decrease at faint flux densities due to
incompleteness from varying sensitivity across the image. Therefore
in order to calculate the intrinsic source counts distribution we must
first determine the appropriate completeness corrections to account
for underestimations in the raw source counts.

3.2 Source vs. Component catalogues

As described in Section 2, PyBDSF produces both a source and com-
ponent catalogue. The component catalogue describes the property
of each Gaussian component used to model emission within the im-
age, whilst the source catalogue describes the properties of sources
where Gaussian components, which are believed by the algorithm to
be associated with the same source, have been combined together4.
Both of these catalogues have advantages in different regimes and
the decision on which catalogue is appropriate to use will also be
dependent on the science goals. For images that are close to con-
fusion and where real radio sources may appear close together on
the sky, it may be more appropriate to use the Gaussian component
catalogue, at the faintest flux densities, to avoid combining different
true extragalactic radio sources into a single source. However, using
a Gaussian component catalogue will mean that resolved jetted AGN
or nearby SFGs may be split into many Gaussian components, which
typically affects brighter flux densities.
To investigate what is the best catalogue to use for our specific sci-

ence goal, we consider which source counts appear most appropriate
for the data using knowledge of the source counts from the cross-
matched catalogue. We show, in Figure 2, the difference between the
raw source counts (i.e. not corrected for incompleteness) using the
PyBDSF source and Gaussian component catalogues over the ∼0.8
deg2 cross-matched area and compare this to the source counts of
the cross-matched catalogue of Prescott et al. (subm.).
Figure 2 shows the effect of combining associated components us-

ing the 0.8 deg2 COSMOS cross-matched region. Above 1mJy, these
source counts differ significantly from the counts from the PyBDSF
Gaussian component (gaul) catalogue, and are more similar to the

4 See https://www.astron.nl/citt/pybdsf/algorithms.html#
grouping-of-gaussians-into-sources for further details

counts from the PyBDSF source (srl) catalogue. This relates to large,
bright, multi-component AGNwithin the field such as those with Fa-
naroff Riley Type I and II morphologies (Fanaroff & Riley 1974). At
fainter flux densities (∼50 μJy-1 mJy), there is less variation between
the cross-matched catalogue source counts and those from the raw
source and component catalogues. Below ∼50 μJy, again there are
discrepancies between the cross-matched catalogue source counts
and those from the raw source and component catalogues, but in
this flux density range this is a consequence of splitting objects de-
tected as single sources in PyBDSFwhich are in-fact multiple sources
which are confused. This can be seen by the source count distribu-
tion where any split sources have been recombined. Below ∼50 μJy,
the cross-matched source counts seem to slightly better reflect those
of the component catalogue. This is probably because the fainter
population of sources are more often single component objects, and
therefore the source counts based on the PyBSDF source catalogue
are instead underestimated compared to the cross-matched catalogue.
This would be due to sources being incorrectly combined with other
nearby sources into multi-component objects and is expected due to
the effect of confusion within the low resolution MIGHTEE images.
As can be seen in Figure 2, the source catalogue from PyBDSF

provides more comparable agreement to the source counts from the
cross-matched catalogue over a wide range of flux densities, com-
pared to those from the Gaussian catalogue. As such, we proceed
with this work by making use of the raw data source catalogues to
calculate the source counts and calculate the source counts complete-
ness corrections using the simulated and recovered source catalogues
from our simulated images. This should help provide an understand-
ing of the source counts distribution across a large flux density range
of∼0.01-100mJy. For bright sources, which are rare and are less well
sampled in the area of the MIGHTEE Early Science data, these are
better constrained, across a range of frequencies, from the catalogues
of larger area sky surveys (such as Condon et al. 1998, Shimwell et al.
2019, Hale et al. 2021).

3.3 Simulations to Determine Incompleteness

In order to understand the intrinsic source counts distribution, we use
simulations to quantify the incompleteness in these source counts,
which we then correct for. For these simulations, we use realistic
mock radio catalogues which reflect the radio sky to investigate the
detection of sources across the image. These simulations allow us
to consider the combined incompleteness seen due to the effects of
source finder incompleteness, resolution bias and sensitivity varia-
tions across the image. We use three different radio sky models from
simulations in order to investigate the completeness, which shall be
discussed separately in Sections 3.3.1, 3.3.2 and 3.3.3. For each of
these different input source models, we follow the approach of many
previous works (see e.g. Williams et al. 2018, Hale et al. 2019, 2021,
Williams et al. 2021, Shimwell et al. 2022) and inject simulated
sources into images of the corresponding field and determine how
successful source detection is.
For our work, it is important to understand both which image

we should inject our simulated sources into, as well as how many
sources to inject into the given image. Due to the confusion within
the image, it is challenging to inject a large number of sources into the
image itself. Alternatively, sources can be injected into the residual
image, which is the observed image with the modelled Gaussian
components subtracted. In the residual image, a much larger number
of simulated sources can be injected into the image. However, as
discussed above, the MIGHTEE images suffer from confusion so
there will still be a large number of faint sources in the residual
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Figure 2. Euclidean normalised source counts at 1.4 GHz using the raw PyBDSF components (light blue stars) and source (steel blue diamonds) catalogues over
the central ∼ 0.8 deg2 of the COSMOS field, compared to the cross-matched catalogue (black open circles triangles) and the cross-matched catalogue where
any components which were split based on their 3 GHz flux densities have been recombined (purple triangles). Also plotted in grey to highlight the results from
previous observational data are also shown for 1.4 GHz source counts from de Zotti et al. (2010) (dots), Smolčić et al. (2017b) (pentagons), Mauch et al. (2020)
(squares), Matthews et al. (2021a) (triangles) and van der Vlugt et al. (2021) (diamonds). For data at other frequencies, these are scaled to 1.4 GHz assuming
𝛼 = 0.7.

image that were previously unable to be detected above 5𝜎. Due to
confusion, the rms (root mean square, or noise) will be affected by
the sources (both number and flux density) within the image.With no
bright sources in the residual image, the intrinsic rms of this residual
image will likely be lower than the rms calculated for the original
image; this will therefore affect the measured completeness as a
function of flux density. Similarly, if too many simulated sources are
injected, the rms may be much larger than measured for the original
image. This choice of which image to inject sources into and how
many simulated sources to inject will be dependent on the simulation
used. We therefore discuss these details further for each simulation
respectively in Sections 3.3.1-3.3.3.

3.3.1 SKADS

Firstly, we created simulated sources across the image using the
radio sources from the Square Kilometre Array Design Study simu-
lations (SKADS; Wilman et al. 2008, 2010). To do this, we take the
SKADS components catalogue covering 100 deg2 of simulated sky
to a minimum source flux density of 5 μJy at 1.4 GHz. Each source
is constructed using components, which have an individual flux den-
sity, a simulated size and a simulated position. For some sources,
such as SFGs, these can be constructed using single SKADS compo-
nents. For other sources, such as Fanaroff-Riley type AGN (Fanaroff
& Riley 1974), these consist of multiple components to represent the
core and lobes of the source. The input source counts distribution for
the SKADS simulation can be seen in Figure 3, and appears to un-
derestimate the source counts at faint flux densities (𝑆1.4 GHz .0.1
mJy) compared to recent measured source counts distributions (see
e.g. Smolčić et al. 2017a, Prandoni et al. 2018, Mauch et al. 2020,
Matthews et al. 2021a). Therefore we will also consider a modified
version of this input distribution, which is discussed in Section 3.3.2.
In order to construct simulated images fromwhich we can estimate

the completeness, we choose locations randomly distributed over the

sky within the field of view to inject simulated sources. A simu-
lated source is then generated in the following manner, following the
method of e.g. (Hale et al. 2021). After randomly selecting a source
from the SKADS catalogue, each SKADS component is modelled
as an elliptical disk or a point source depending on the source size.
Each component is then convolved with a 2D Gaussian kernel which
has the same FWHM as the restoring beam of the radio image and
scaled to retain the integrated flux density of the component (scaled
to the effective frequency at the position of the source). Each com-
ponent for a given source is combined together to make a model for
the entire source. This model is then injected into the image at the
random location for the source.
As we want to understand the completeness within the image, we

choose to inject a small number of simulated sources into the image
itself. For each simulation we inject 1,000 sources for the COSMOS
field and 2,000 sources in the larger XMM-LSS. We repeat these
simulations 1000 times on each image in order to build up better
statistics of the completeness.

3.3.2 Modified SKADS Source Model

As described in Section 3.3.1, there is growing evidence that the
SKADS model underestimates the observed source counts at faint
flux densities (𝑆1.4 GHz . 0.1mJy). To ensure that underestimations
of the source counts model from SKADS is not affecting our derived
completeness, we also use a modified version of the SKADS cata-
logue in which the SFG sample within the SKADS catalogue have
been doubled. This difference in source population may affect the
measured completeness. For example, if the additional SFGs have a
different source size distribution to the AGN at these flux densities,
this then could affect the impact of resolution bias on completeness.
Doubling this population creates a raw source count distribution
which is in much better agreement with recent observations of source
counts at the faintest fluxes. We use this new input catalogue in the
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same way as described in Section 3.3.1 to produce 1000 simulations
again with the same number of injected sources.

3.3.3 SIMBA Light Cone

Next, we consider the completeness using simulations which account
for realistic clustering within the field of view using a 1 deg2 sim-
ulated light cone from SIMBA (see e.g. Davé et al. 2019, Lovell
et al. 2021). SIMBA is a state-of-the-art suite of cosmological hy-
drodynamic simulations resolving galaxies down to a stellar mass of
𝑀★ = 5.8×108 M� within a (100 ℎ−1Mpc)3 box assuming a Planck
Collaboration et al. (2016) concordant cosmology with ΩM = 0.3,
ΩΛ = 0.7, Ωb = 0.048, 𝐻0 = 68 km s−1Mpc−1, 𝜎8 = 0.82, and
𝑛𝑠 = 0.97. SIMBA is unique in that it models the growth of su-
permassive black holes via a two mode sub-resolution prescription,
namely, Bondi accretion from hot gas and gravitational torque limited
accretion from cold gas (see Anglés-Alcázar et al. 2017). In addi-
tion, SIMBA models the feedback from supermassive black holes
motivated by observations (Heckman & Best 2014) including ki-
netic feedback in the form of bipolar jets. The model employed by
SIMBA has shown good agreementwith observations of galaxy prop-
erties (e.g. Davé et al. 2019) as well as black hole–galaxy correlations
and co-evolution (Thomas et al. 2019), and reproduces a viable pop-
ulation of radio galaxies (Thomas et al. 2021). Radio luminosities at
1.4 GHz for SIMBA galaxies are computed from star formation as
well as ongoing jet feedback using the scaling relations detailed in
Thomas et al. (2021).
Using a realistic light cone is important as, at the sensitivity and

resolution of MIGHTEE’s lower resolution (∼8′′) images, we are
reaching the confusion limit within the survey. As such, the source
counts may be affected by confused sources not being correctly iden-
tified as separate sources. Whilst the original SKADS catalogue has
large-scale clustering included, SIMBA will more accurately repre-
sent both the ‘1-halo’ clustering (within the same dark matter halo)
and ‘2-halo’ clustering (within different dark matter haloes, see e.g.
Cooray & Sheth 2002, Zehavi et al. 2004) as it is based on cosmo-
logical simulations. SIMBA realistically distributes galaxies within a
light cone over the redshift range 0 < 𝑧 < 6 and projected over 1 deg2
of sky area. We use this to understand the effects of source clustering
and large scale structure. Clustering may affect source counts mea-
surements both due to the effects of confusion and sample variance
(see Section 3.5). This light cone is created by combining together
snapshot images of the simulation at different times.
In order to use this light cone to investigate the effect of clustering

on completeness, we compare two approaches. In the first, we use the
positional information and the flux densities of the sources within
the light cone simulation5 We then model each source within the
simulation as a point source using a 2D Gaussian model with the
properties of the restoring beam and inject the source into the residual
image. The residual image needs to be used in this simulation due to
the number of SIMBA sources to be injected. The MIGHTEE image
is already close to confusion and so it would not be useful to directly
inject these into the image. Injection into the residual image should
instead produce an overall source density broadly comparable to that
of the data. As the simulation only has a 1 deg2 field of view, it
will not cover the field in its entirety. Therefore for each realisation
we randomly generate a central position for the light cone within

5 We convert this from a flux density at 1.4 GHz to the effective frequency
at the source location using an assumed spectral index of 𝛼=0.7; this is again
done to reflect the typical frequency for the image.

Figure 3. Euclidean normalised 1.4 GHz source counts models used in this
work and compared with previous data and simulations. Simulations shown
are from SKADS (red dotted line; Wilman et al. 2008); the modified SKADS
model described in 3.3.2 (red solid line); SIMBA (black dashed line). This
is compared with P(D) analysis from Matthews et al. (2021a) (grey shaded
region) and previous observational data from de Zotti et al. (2010) (dots),
Smolčić et al. (2017b) (pentagons), Mauch et al. (2020) (squares), Matthews
et al. (2021a) (triangles) and van der Vlugt et al. (2021) (diamonds). For data
at other frequencies, these are scaled to 1.4 GHz assuming 𝛼 = 0.7.

the field of view and also randomly rotate the simulation within the
image. For the second approach, we use the same method but instead
of using the positions from SIMBA, we use random positions within
1 deg2 of the image. By comparing the completeness using the two
approaches we can determine whether the intrinsic clustering plays
an important role in affecting the completeness of sources within the
field for this work. For each of the two SIMBA simulations we create
100 realisations. This is fewer simulations than in Section 3.3.1 and
3.3.2, however as more sources are injected into the residual image,
we maintain good statistics.
In this simulation we make the assumption that we can model each

of the simulated SIMBA sources as a point source. In reality, some
of the more extended sources would be resolved in the MIGHTEE
images. However, as we are primarily using these simulations to
make a direct comparison of the completeness with and without
clustering, the assumption that the SIMBA sources are unresolved
will not be likely to affect the results significantly. The effect
of resolution bias will instead be accounted for in the SKADS
simulations. We also note that the SIMBA simulations may have
small box edge effects when generating the light cone as discussed
in Blaizot et al. (2005) (Section 3.2.1) and Merson et al. (2013)
(Section 4.1), but for the small-scale clustering which may be
important for completeness, these effects should have a negligible
effect. This simulation also only represents one realisation and so
may be affected by sample variance however; we discuss including
sample variance in our errors in Section 3.5.

3.3.4 Summary of source count models

All the input source count models used in this work are shown in
Figure 3. As can be seen, the modified SKADS distribution appears
to more accurately reflect the observed deep source counts compared
to both the original SKADS model and the SIMBA simulations. For
SIMBA, as the distribution of galaxies is related to cosmological
simulations, this discrepancy could relate to the calibration chosen
between the galaxies observed, their mass and SFR to the radio flux
observations. At bright flux densities (>1 mJy), SKADS models the
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distribution of source counts well, however SIMBA cannot constrain
the bright source counts due to the small volume size.
Once a simulated image was created (using the different models

described) PyBDSF was run over the image using the same parame-
ters as used in Heywood et al. (2022). By using the output catalogues
from PyBDSF and comparing this to the input catalogue, it is possible
to determine the effects of incompleteness across the field due to the
combined effects of rms variations as well as source finder detec-
tion issues. Furthermore, this strategy of using simulated sources,
including those injected below the nominal 5𝜎 detection threshold,
also allows the effect of Eddington bias (Eddington 1913) to be con-
sidered. However they do not account for variations in the source
size models. For each of the simulation methods described in Sec-
tions 3.3.1-3.3.3, we repeated the method and generated multiple
realisations to calculate the variation in completeness, see Section
3.4.

3.3.5 High Flux Density Simulations

At the very highest flux densities, the simulations described in Sec-
tions 3.3.1-3.3.3 are limited because the source populations are dom-
inated by faint sources and so fewer sources are injected at bright flux
densities. Therefore for the simulations in Sections 3.3.1 and 3.3.2 we
conduct additional simulations where we only inject brighter sources
(≥ 0.1 mJy) into our images. For each high flux density simulation
we inject 500 sources in the COSMOS field, and 1,000 sources in
the XMM-LSS image and run 1000 realisations. We do not generate
the same high flux density simulations for the SIMBA simulations
(described in Section 3.3.3) as these are used to understand the ef-
fects of clustering and confusion which primarily affects the faint
populations.

3.4 Calculating Source Counts Corrections

3.4.1 Matching Input and Output Catalogues

In order to determine how incomplete6 our source counts are we
want to ensure that the sources detected by PyBDSF for each sim-
ulation are those same simulated sources injected within the field,
and not any existing emission within the image prior to adding in the
simulated sources. Therefore we compare the output detected source
catalogues to those originally within the image (MIGHTEE image or
residual image depending on the simulation) before calculating the
completeness. We shall call this catalogue the pre-simulation cata-
logue. For the simulations of Section 3.3.1 and 3.3.2, where we inject
sources into the image itself, these sources would be the catalogue
of Heywood et al. (2022). For Section 3.3.3 where, instead, we inject
the simulated sources into the residual image. Whilst it might be
expected that there are no sources in the residual image, with the
>5𝜎 sources removed from the image, the background emission and
rms values within the residual image is lower and therefore some

6 Whilst completeness is typically defined as the fraction of sources with
an intrinsic given flux density that are detected in the image irrespective
of measured flux density, here we define a total source counts completeness
correction factor. We define our source counts completeness to be the fraction
of sources detected within a flux density bin compared to the number of
simulated sources injected within the same flux density bin. This therefore
calculates a correction applicable to the source counts as a function of flux
density which incorporates both traditionally defined completeness as well as
the biases in measuring flux densities due to the source finder, the impact of
noise on flux density measurements and due to confusion.

objects now exceed the 5𝜎 threshold of PyBDSF. Whilst some of
these new detections may be genuine faint sources, there will also
be a contribution of noise artefacts detected. Therefore, we also run
PyBDSF using the same detection parameters as in Heywood et al.
(2022) over the residual image to produce a pre-simulation source
catalogue.
To determine the source counts incompleteness for each simula-

tion, we firstmatch both the input simulated catalogues and the output
detected catalogues to the PyBDSF pre-simulation catalogue as well
asmatching the output catalogue from the simulated image to both the
input simulated source and component catalogues. We remove any
sources within either the input or output catalogue that are matched
to the pre-simulation catalogue within a given angular separation.
This angular separation will be discussed further in Section 3.4.2
and is chosen to ensure that not only are detected sources correctly
associated to an input source, but also that any simulated sources that
are associated through the cross-matching process are not affected
by difficulties in determining whether the flux density contribution
arises predominately from the input source, pre-simulation source
or a combination of the two. This is especially important as we are
injecting predominantly faint sources, due to the source counts distri-
bution, and so do not want to confuse these faint sources with bright
sources which already exist within the image. Finally, we determine
a source to be in our “detected" catalogue if either the separation
between the nearest input source or input component is less than a
certain angular separation7, see Section 3.4.2. We do this secondary
match to ensure that the detected sources are in fact related to the
simulated sources.

3.4.2 Determining the Angular Matching Separation

First we determine the appropriate matching radius to use to match
our detected sources from the simulations to the input sources as
well as to mask around any sources already detectable within the
image. Therefore for each simulated source detected by PyBDSF we
determine both its nearest pre-simulation catalogue source and near-
est input source and input component. In Figure 4 we present the
distribution of the ratio of the measured PyBDSF source flux density
to the flux density of (a) the nearest pre-simulation source, (b) the
nearest input source and (c) the component. These are presented as
a function of angular separation for the three simulations described
earlier. There are typically two distinct regions within the distribu-
tions of flux density ratio , separated at an angular separation of
∼7.5′′. For the top row of Figure 4, we compare the flux density
ratio of the measured source to the nearest pre-simulation source.
At very small angular separations (.0.5′′) this flux density ratio is
∼1 where we are identifying those sources that are only from the
pre-simulation sources already in the image. As the separation in-
creases, this ratio increases to∼2-3 up to∼7.5′′. This is likely a result
of pre-simulation sources merging with faint simulated sources. At
separations larger than 7.5′′ the scatter in the flux ratio distribution
increases due to association of an undetected input source with a
random nearest neighbour.
In the middle row of Figure 4 we compare to the input source

catalogue and we again see a large number of matches at small
angular separations with flux density ratios of ∼1, as expected. The

7 For theSIMBA light cone based simulationswe only use the input simulated
catalogue source with flux densities > 5μJy when matching to the output
sources. This is done to avoid matching detected sources to a less appropriate
faint source due to positional offsets in the source finding process.
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(a) COSMOS

Figure 4. Comparison of the ratio of flux densities between a detected source in the simulated image and its nearest pre-simulation source (top row), nearest
input source (middle row) and nearest input component (bottom row) as a function of angular separation. This is shown for the SKADS simulations (left,
Section 3.3.1), modified SKADS model simulations (centre, Section 3.3.2) and SIMBA based simulations (right, Section 3.3.3) in the COSMOS field. Each
point represents a source and is coloured based on its detection signal-to-noise ratio. The dashed lines represent 2.5′′, 5′′and 7.5′′separations as a guide only.
The result for the XMM-LSS field are not presented as the results are very similar to those shown for the COSMOS field.

scatter around this flux density ratio of 1 increases at large angular
separations. This increase in flux density ratio (and the scatter around
it) appears to be due to lower signal to noise sources whose flux
density and positions are more easily influenced from being on a
noise peak or trough. However, this will preferentially be biased to
having largermeasured flux densities compared to input flux densities
as sources on noise peaks are more likely to be detected by PyBDSF
than those on noise troughs. It is possible to see that there are a small
group of sources at larger ∼5-10′′ separation with an input to output
flux density ratio of ∼0.5. This relates to double lobed AGN within
our simulation that have been detected by PyBDSF as two separate
sources. Similarly in the bottom row of Figure 4, where we compare
to the nearest component, there are now a group of sources with flux
density ratios of ∼2 at separations < 2.5′′. These are those sources
which were simulated as two components, but PyBDSF only detects
a single source.

The dichotomy in sources which occurs at ∼7.5′′ leads us to use
this as the matching radius. We do note though that for those multi-
componentAGN that are detected as two separate sources byPyBDSF,
both detected components will be included in the output catalogue,
as opposed to one single input source. However, in our real MIGH-
TEE images there will also be single sources that PyBDSF detects
as multiple components. Therefore where these sources influence
the completeness and so the corrected source counts, this will likely
be correcting the measured source counts in the catalogues in the

same way as necessary for the PyBDSF catalogues from the images.
As discussed in Section 3.4.1, we therefore remove all simulated in-
put/output sources that are matched to the pre-simulation catalogue
within 7.5′′. After applying this angular separation radius, we present
the comparison of the input flux density to the measured flux density
for the COSMOS field in Figure 5. This is shown for the three in-
put simulation models, where the high flux simulations can be seen
above 0.1 mJy.

As expected, at high flux densities sources have measured inte-
grated flux densities in agreement with their simulated flux densities,
as the sources are bright and the noise is comparatively low. However,
for fainter simulated sources the noise is more comparable to the flux
densities of the sources themselves. For these faint sources, there is a
clear excess in flux density that is important below ∼ 0.1 mJy, lead-
ing to an artificial boost in the measured flux density of a simulated
source. As discussed previously, sources are both likely to be located
on noise troughs as well as peaks, but those affected by noise troughs
are less likely to be detected by a source finder, due to the reduced
peak flux values and hence the reduced signal to noise. The increase
in scatter at &0.1 mJy reflects the large number of high flux density
simulations, where the majority of sources will be detected. As can
be seen in Figure 5, there are a number of sources for the SKADS-
based simulations where the measured source flux density of some
brighter sources is approximately half of the input flux density. This
relates, as discussed above, to those sources with multiple compo-
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nents which have been split into two sources when measured with
PyBDSF. Figure 5 shows only detected sources, which preferentially
have higher flux densities than the injected simulated sources (Ed-
dington bias; Eddington 1913). This bias towards measuring larger
flux densities than were simulated is also notable in Figure 6 where
the source count completeness appears larger than 1 at certain flux
densities.

3.4.3 Quantifying Source Counts Completeness and the Associated
Errors

The flux density-dependent source count completeness for each field
is then determined by comparing the binned flux density distribu-
tion of input sources scaled to 1.4 GHz based on the input source
position (excluding those within a certain angular separation to the
original image catalogue) to that of output measured flux density of
the sources in the detected catalogue, again scaled to 1.4 GHz (and
excluding those matched to the original image catalogue). We then
compare the full input and output flux density distributions using
logarithmically spaced flux density bins. As such, the completeness
(as defined in this work) can be found to be greater than 1. This can
occur when predominately faint sources are boosted to higher flux
densities (although they may also decrease in flux densities). How-
ever these differences may also relate to any measurement errors
when using the source finder, PyBDSF. This is less likely to affect
bright sources.
The combined average source counts completeness value is de-

termined using the ratio of the detected binned flux distribution to
input source flux density distribution across all the simulations. To
determine the uncertainty, we used the modified SKADS model to
estimate the expected number of sources in each flux density bin
considered. Using these numbers of sources, we construct random
samples from out simulated sources which have the expected number
in each flux density bin. By comparing the input flux density distribu-
tion of these sources to the flux density distribution of their measured
counterparts (if they exist) a measurement of the completeness can
be made. This process is then repeated a number of times (𝑁resamp)
and the standard deviation of these realisations is used to quantify the
error. 𝑁resamp is the approximate the number of independent sam-
ples we can consider and is calculated by determining the median
number of independent samples across the flux density bins. This
is ∼20 samples for the low flux density simulations, rising to ∼200
samples when we use the high flux density bins. The completeness
errors are independently determined for the standard and high flux
density simulations. The completeness and its errors above 0.5 mJy
are constructed from these high flux density simulations.
At the very highest flux densities, the accuracy of the completeness

estimates from these simulations may still be limited. Therefore, we
set the completeness to 1 (and the completeness error to 0) above a
flux density limit of 10 mJy. At these flux densities the number of
sources in a field are small and so the errors will be dominated by
small number statistics in these bins.

3.5 Resulting Source Count Corrections

We present the results from investigating the source count complete-
ness as a function of flux density in Figure 6. This is shown using the
distribution of input source flux density to detected source flux den-
sity and for the three different simulation models. The completeness
increases from 0 at ∼10 μJy to a value larger than 1, before declining
back down to a value of 1 at flux densities &1 mJy. As discussed

earlier, this increase above a value of 1 is not unexpected, and reflects
the differences between the input simulated flux density and the flux
density recovered when detected.
The underlying intrinsic source counts were calculated by dividing

the raw source counts (scaled to 1.4 GHz) by the source counts
completeness calculated above. The associated errors are determined
by combining, in quadrature, the errors on the counts (fromEquations
9 and 12 of Gehrels 1986) as well as the standard deviation derived
from the completeness simulations and finally the error due to sample
variance from Heywood et al. (2013).

4 RESULTS

In this section we present the results from investigating both the cor-
rected source counts and the integrated sky background temperature
from AGN and SFGs.

4.1 Corrected Source Counts

We present the corrected Euclidean normalised source counts from
the combined results of the simulations using both the COSMOS
(upper) and XMM-LSS (lower) fields in Figure 7. We present the
corrected source counts using each of the three models described in
Sections 3.3.1 - 3.3.3 as well as a comparison to the source counts
from the raw (uncorrected) MIGHTEE source counts. We further
present comparisons to input simulated models from Wilman et al.
(2008), and the simulated light cone from SIMBA as well as previous
observational data from de Zotti et al. (2010), Smolčić et al. (2017a),
Mauch et al. (2020), Matthews et al. (2021a) and van der Vlugt
et al. (2021). The source counts from de Zotti et al. (2010) are a
compilation of 1.4 GHz source counts from the literature from the
work of Bridle et al. (1972), White et al. (1997), Ciliegi et al. (1999),
Gruppioni et al. (1999), Richards (2000), Hopkins et al. (2003),
Fomalont et al. (2006), Bondi et al. (2008), Owen&Morrison (2008),
Kellermann et al. (2008), Seymour et al. (2008). Our derived source
counts are also presented in Tables 1 and 2 for both the COSMOS
and XMM-LSS fields respectively, in each case giving the raw and
the corrected source counts from the three simulation methods8.
The source counts are shown for flux densities &10 μJy however,
given the 5 μJy flux density limit on simulated sources (and hence
potential residual Eddington bias effects) as well as the increasing
risk of systemic errors in completeness calculations at the lowest flux
densities (for example, due to the effects of source size distributions
on resolution bias), we recommend that strong conclusions are only
drawn above 3-4𝜎 (i.e. ∼15−20 μJy) in order to properly account for
Eddington bias. This is indicated by the dashed line at 15 μJy within
Figure 7. Our tabulated results only include the source counts above
15 μJy.
As can be seen in Figure 7, the four simulation variations each pro-

duce corrected source counts in good agreement with one another in
the COSMOS field source counts and in XMM-LSS the two SKADS
simulations agree with each other and two SIMBA simulations are
in good agreement with each other, though with corrected source
counts slightly lower than the SKADS based source counts; this will

8 As we use logarithmic binning, the quoted flux density mid-point is taken
using the mid-point of the logarithmic flux density bin. We also note that
although we include the SIMBA corrected source counts, these are underes-
timated due to the fact sources are injected into the residual image, see text.
The SKADS or modified SKADS source counts should be used for future
comparisons.
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(a) COSMOS

Figure 5. Comparison of the input simulated flux density (x-axis) to the measured flux density (y-axis) for the source catalogues in the COSMOS field. The
results for the XMM-LSS field are not shown, as the results are very similar to those shown for the COSMOS field. The black dashed line indicates a 1-to-1
relation and the results are shown for the combined simulation results for three simulation models SKADS (left), modified SKADS (centre) and SIMBA light
cone (right). The grey dotted lines represent flux density ratios of 0.5 and 2.

Figure 6. Source counts correction factor as a function of flux density within the COSMOS (left) and XMM-LSS (right) fields for the simulations using the
SKADS (navy stars), modified SKADS (blue diamonds) and SIMBA light cone both with (blue triangles) and without (light blue pentagons) clustering effects.

be discussed further in Section 5.1. Therefore for future discussions
of the integrated background sky temperature we will only use the
results for the model described in Section 3.3.2 for the modified
SKADS simulations.

4.1.1 The effect of input source model

Whilst the consistency of our results give us confidence in our com-
pleteness corrections, in this section we examine the effect of using
very different input source models. To do this we use two param-
eterised models for the source counts which allow a great deal of
variation, including an uptick in the Euclidean normalised source
counts at the faintest flux densities. Using these input source models
we use the random simulations from the models of Section 3.3.1
to determine what the “observed source counts" from a given input
model may be, which can be compared to the raw source counts to
test what limits of an input source model could be assumed and still
reconcile observations. We use the assumed source size distributions

from SKADS as this should give us a good estimate of the input
model size distribution, assuming these are approximately correct.
The first model is a broken power law model of the form:

𝑑𝑁

𝑑𝑆
𝑆2.5 =


𝐶

(
𝑆
𝑆0

)𝛼
(𝑆 ≤ 𝑆0)

𝐶

(
𝑆
𝑆0

)𝛽
(𝑆 > 𝑆0)

(1)

and the second is a quadratic polynomial of the form:

log10

(
𝑑𝑁

𝑑𝑆
𝑆2.5

)
=

2∑︁
𝑖=0

𝑎𝑖 × log10 (𝑆1.4 GHz)𝑖 . (2)

We sample the parameters 𝐶, 𝑆0, 𝛼 and 𝛽 (for the broken power
law model) and three parameters for the polynomial (𝑎𝑖 for i=0,1,2)
to determine an input source counts model. Using the random simu-
lated sources described in Section 3.3.1 (without the additional high
flux density simulations), we obtain an input simulated source “cat-
alogue", for a given input source model, and using the detected flux
densities for these sources to determine the “observed" source counts.
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12 C. L. Hale et al.

Figure 7. The 1.4 GHz Euclidean source counts for the MIGHTEE Early Science fields compared to previous models and observations for the COSMOS
(upper) and XMM-LSS (lower) fields. Presented are the raw counts (pink diamonds), corrected source counts using the simulations with SKADS (dark blue
stars, Section 3.3.1), modified SKADS (blue right diamonds, Section 3.3.2) and SIMBA light cone simulation both with clustering (blue right facing triangles,
Section 3.3.3) and without (light blue pentagons). This is compared to observational data from the compilation by de Zotti et al. (2010) (grey dots); from the
3GHz VLA COSMOS survey (1.4 GHz source counts from Smolčić et al. 2017b, grey pentagons); MeerKAT DEEP-2 observations by (Mauch et al. 2020,
Matthews et al. 2021a, grey squares and right facing triangles); NVSS source counts (as given in Matthews et al. 2021a, grey left facing triangles) and deep
COSMOS-XS observations (van der Vlugt et al. 2021, black diamonds). Also plotted are simulated models from SKADS (Wilman et al. 2008, 2010, red dotted
line), the modified SKADS model described in 3.3.2 (red solid line), the SIMBA simulations (Davé et al. 2019, black dashed line, also see Section 3.3.3) and
finally the sub-μJy models from P(D) analysis from (Matthews et al. 2021a, grey shaded region). For data at other frequencies, these are scaled to 1.4 GHz
assuming 𝛼 = 0.7. The vertical grey dashed line indicates a value of 15 μJy, which is 3× the minimum flux density used in our simulations. At fainter flux
densities, our assumed minimum source flux may be affecting our work. Therefore whilst these fainter flux densities are included here to indicate our agreement
with previous work, results below ∼15 μJy should not be used for future comparisons and are therefore omitted from Tables 1 - 2.

MNRAS 000, 1–24 (2022)



Source Counts and Sky Temperature from MIGHTEE 13

Ta
bl
e
1:
Eu
cl
id
ea
n
no
rm
al
is
ed
1.
4
G
H
z
so
ur
ce
co
un
ts
(a
t>
15

μ
Jy
)f
ro
m
th
e
C
O
SM
O
S
fie
ld
.S
ho
w
n
ar
e
th
e
m
id
-p
oi
nt
flu
x
de
ns
ity
,fl
ux
de
ns
ity
ra
ng
e,
nu
m
be
ro
fs
ou
rc
es
w
ith
in
th
e
flu
x
de
ns
ity

bi
n,
N
,r
aw
so
ur
ce
co
un
ts
(R
aw
SC
)a
nd
th
e
as
so
ci
at
ed
er
ro
rs
du
e
to
Po
is
so
ni
an
st
at
is
tic
so
nl
y
fr
om
G
eh
re
ls
(1
98
6)
.W
e
th
en
pr
es
en
tt
he
co
rr
ec
te
d
so
ur
ce
co
un
ts
fr
om
th
e
SK
A
D
S
si
m
ul
at
io
ns

(S
ec
tio
n
3.
3.
1)
,m
od
ifi
ed
SK
A
D
S
si
m
ul
at
io
ns
(S
ec
tio
n
3.
3.
2)
an
d
SI
M
BA
si
m
ul
at
io
ns
(w
ith
so
ur
ce
cl
us
te
rin
g,
Se
ct
io
n
3.
3.
3)
an
d
th
e
er
ro
rs
w
hi
ch
ha
ve
be
en
de
te
rm
in
ed
by
co
m
bi
ni
ng
th
e

Po
is
so
ni
an
er
ro
rs
,c
om
pl
et
en
es
ss
im
ul
at
io
n
er
ro
rs
an
d
co
sm
ic
va
ria
nc
e,
se
e
Se
ct
io
n
3.
5
fo
rd
et
ai
ls
.A
ls
o
in
cl
ud
ed
ar
e
th
e
so
ur
ce
co
un
ts
sp
lit
in
to
A
G
N
an
d
SF
G
sa
sd
es
cr
ib
ed
in
Se
ct
io
n
4.
3
fo
r

th
e
m
od
ifi
ed
SK
A
D
S
m
od
el
,a
ga
in
w
ith
th
e
er
ro
rs
fr
om
Po
is
so
ni
an
er
ro
rs
,c
om
pl
et
en
es
ss
im
ul
at
io
n
er
ro
rs
an
d
co
sm
ic
va
ria
nc
e
in
cl
ud
ed
,a
sw
el
la
st
he
er
ro
rs
fr
om
re
sa
m
pl
in
g
th
e
A
G
N
/S
FG

fr
ac
tio
ns
,s
ee
Se
ct
io
n
4.
3.
Th
es
e
ar
e
pr
es
en
te
d
fo
rt
he
tw
o
ca
se
sw
he
re
th
e
un
cl
as
si
fie
d
so
ur
ce
sa
re
as
su
m
ed
to
be
SF
G
(th
e
SC
A
G
N
an
d
SC
SF
G
+U
nc
co
lu
m
ns
)a
nd
w
he
n
th
e
un
cl
as
si
fie
d
so
ur
ce
s

ar
e
as
su
m
ed
to
be
a
m
ix
of
SF
G
s
an
d
A
G
N
ba
se
d
on
th
e
flu
x
de
ns
ity
ra
tio
of
cl
as
si
fie
d
so
ur
ce
s
(g
iv
en
he
re
w
ith
th
e
su
bs
cr
ip
t‘
ra
tio
’)
.W
e
no
te
th
at
as
di
sc
us
se
d
in
Se
ct
io
n
4.
2.
1,
w
hi
ls
tw
e

pr
es
en
th
er
e
th
e
ra
w
an
d
co
rr
ec
te
d
so
ur
ce
co
un
ts
ab
ov
e
10
m
Jy
fo
rt
he
fu
ll
sa
m
pl
e,
th
es
e
ar
e
no
tu
se
d
fo
rt
he
ca
lc
ul
at
io
n
of
sk
y
ba
ck
gr
ou
nd
te
m
pe
ra
tu
re
co
nt
rib
ut
io
n
fr
om
ex
tra
ga
la
ct
ic
so
ur
ce
s,

du
e
to
th
e
sm
al
le
rn
um
be
rs
ta
tis
tic
s.
A
ss
uc
h,
w
he
n
w
e
co
ns
id
er
th
e
so
ur
ce
co
un
ts
fo
rt
he
di
ffe
re
nt
so
ur
ce
ty
pe
s(
A
G
N
vs
SF
G
s)
,t
he
se
ar
e
no
ti
nc
lu
de
d
ab
ov
e
10
m
Jy
w
he
re
th
e
so
ur
ce
co
un
ts

fr
om
N
V
SS
ar
e
us
ed
an
d
cl
as
si
fie
d
us
in
g
th
e
so
ur
ce
ra
tio
fr
om
M
IG
H
TE
E.
So
ur
ce
co
un
ts
ar
e
qu
ot
ed
to
3
si
gn
ifi
ca
nt
fig
ur
es
.

𝑆
𝑆
m
in
−
𝑆
m
ax

𝑁
R
aw
SC

SC
SK
A
D
S

SC
m
od
.S
K
A
D
S

SC
SI
M
BA

SC
A
G
N

SC
SF
G
+U
nc

SC
A
G
N
,r
at
io

SC
SF
G
,r
at
io

[μ
Jy
]

[μ
Jy
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

20
16
-2
5

24
9+
17 −1
6

0.
96
6
+0
.0
07

−0
.0
06

3.
03

+0
.3
5

−0
.3
5

3.
02

+0
.3
2

−0
.3
1

2.
52

+0
.2
5

−0
.2
5

0.
62
0
+0
.0
91

−0
.0
84

2.
39

+0
.2
5

−0
.2
6

0.
87
4
+0
.1
26

−0
.1
17

2.
13

+0
.2
4

−0
.2
4

32
25
-4
0

16
17

+4
1

−4
0

1.
25

+0
.0
3

−0
.0
3

3.
54

+0
.2
0

−0
.2
0

3.
42

+0
.1
9

−0
.1
9

2.
96

+0
.1
6

−0
.1
6

0.
71
2
+0
.0
51

−0
.0
49

2.
70

+0
.1
6

−0
.1
5

0.
98
0
+0
.0
69

−0
.0
67

2.
44

+0
.1
4

−0
.1
4

50
40
-6
3

27
51

+5
3

−5
2

4.
25

+0
.0
8

−0
.0
8

4.
33

+0
.2
3

−0
.2
3

4.
19

+0
.2
2

−0
.2
2

3.
99

+0
.2
1

−0
.2
0

1.
02

+0
.0
6

−0
.0
6

3.
17

+0
.1
7

−0
.1
7

1.
40

+0
.0
9

−0
.0
8

2.
80

+0
.1
5

−0
.1
5

79
63
-1
00

22
00

+4
8

−4
7

6.
78

+0
.1
5

−0
.1
4

5.
31

+0
.2
8

−0
.2
8

5.
16

+0
.2
8

−0
.2
8

5.
00

+0
.2
7

−0
.2
7

1.
58

+0
.1
0

−0
.1
0

3.
58

+0
.2
1

−0
.1
9

2.
15

+0
.1
4

−0
.1
3

3.
01

+0
.1
8

−0
.1
7

12
6

10
0
-1
58

11
74

+3
5

−3
4

7.
22

+0
.2
2

−0
.2
1

5.
95

+0
.3
6

−0
.3
6

5.
77

+0
.3
3

−0
.3
2

5.
62

+0
.3
3

−0
.3
2

2.
13

+0
.1
6

−0
.1
6

3.
64

+0
.2
3

−0
.2
3

2.
86

+0
.2
1

−0
.2
0

2.
91

+0
.2
1

−0
.2
0

20
0

15
8
-2
51

55
2+
25 −2
3

6.
77

+0
.3
0

−0
.2
9

6.
25

+0
.4
3

−0
.4
2

6.
11

+0
.4
2

−0
.4
1

5.
56

+0
.4
0

−0
.3
9

2.
76

+0
.2
3

−0
.2
2

3.
34

+0
.2
7

−0
.2
5

3.
63

+0
.2
9

−0
.2
7

2.
48

+0
.2
3

−0
.2
1

31
6

25
1
-3
98

29
2+
18 −1
7

7.
15

+0
.4
4

−0
.4
2

6.
86

+0
.6
2

−0
.6
0

6.
66

+0
.5
6

−0
.5
5

6.
24

+0
.5
4

−0
.5
2

3.
68

+0
.3
9

−0
.3
6

2.
96

+0
.3
4

−0
.3
1

4.
65

+0
.4
7

−0
.4
4

1.
98

+0
.2
9

−0
.2
7

50
1

39
8
-6
31

14
4+
13 −1
2

7.
04

+0
.6
4

−0
.5
9

6.
73

+0
.7
8

−0
.7
4

6.
75

+0
.7
8

−0
.7
4

6.
49

+0
.7
0

−0
.6
6

4.
45

+0
.6
1

−0
.5
6

2.
28

+0
.4
2

−0
.3
8

5.
36

+0
.6
9

−0
.6
3

1.
38

+0
.3
4

−0
.3
0

79
4

63
1
-1
00
0

58
+9 −8

5.
65

+0
.8
4

−0
.7
4

5.
51

+0
.9
4

−0
.8
6

5.
42

+0
.9
2

−0
.8
4

5.
11

+0
.8
2

−0
.7
3

4.
10

+0
.7
5

−0
.6
6

1.
30

+0
.3
9

−0
.3
3

4.
70

+0
.8
2

−0
.7
1

0.
69
6
+0
.2
93

−0
.2
21

12
59

10
00
-1
58
5

59
+9 −8

11
.5

+1
.7

−1
.5

11
.6

+2
.0

−1
.9

11
.5

+2
.0

−1
.8

11
.2

+1
.8

−1
.6

9.
62

+1
.8
6

−1
.7
2

1.
75

+0
.9
8

−0
.7
5

10
.6

+1
.9

−1
.8

0.
69
5
+0
.7
94

−0
.3
99

19
95

15
85
-2
51
2

35
+7 −6

13
.6

+2
.7

−2
.3

13
.8

+3
.1

−2
.7

13
.7

+3
.0

−2
.6

13
.8

+2
.9

−2
.5

11
.9

+2
.7

−2
.4

1.
49

+1
.3
1

−0
.8
0

13
.2

+2
.8

−2
.6

0.
17
5
+0
.8
64

−0
.1
75

31
62

25
12
-3
98
1

25
+6 −5

19
.4

+4
.7

−3
.8

19
.3

+5
.3

−4
.6

19
.1

+5
.2

−4
.4

17
.8

+4
.4

−3
.7

13
.5

+1
.7

−1
.8

3.
24

+1
.6
2

−1
.4
0

16
.2

+1
.3

−1
.4

0.
22
3
+1
.2
43

−0
.2
23

50
12

39
81
-6
31
0

22
+6 −5

34
.0

+8
.9

−7
.2

32
.8

+9
.8

−8
.4

33
.1

+9
.8

−8
.3

34
.0

+9
.0

−7
.4

17
.2

+2
.6

−2
.9

4.
99

+2
.8
8

−2
.3
9

21
.5

+1
.3

−2
.2

0.
30
7
+2
.4
98

−0
.3
07

79
43

63
10
-1
00
00

9+
4 −3

27
.7

+1
2.
7

−9
.1

27
.8

+1
3.
6

−1
0.
4

27
.7

+1
3.
3

−1
0.
0

27
.7

+1
2.
7

−9
.1

24
.0

+1
2.
1

−8
.7

2.
45

+4
.8
4

−1
.9
9

26
.1

+1
2.
7

−9
.2

0.
38
3
+3
.5
81

−0
.3
83

12
58
9

10
00
0
-1
58
49

9+
4 −3

55
.4

+2
5.
2

−1
8.
1

55
.4

+2
5.
4

−1
8.
3

55
.4

+2
5.
4

−1
8.
3

55
.4

+2
5.
4

−1
8.
3

-
-

-
-

19
95
3

15
84
9
-2
51
19

9+
4 −3

11
0
+5
0

−3
6

11
0
+5
1

−3
6

11
0
+5
1

−3
6

11
0
+5
1

−3
6

-
-

-
-

31
62
3

25
11
9
-3
98
11

4+
3 −2

98
.0

+7
7.
2

−4
6.
7

98
.0

+7
7.
4

−4
7.
0

98
.0

+7
7.
4

−4
7.
0

98
.0

+7
7.
4

−4
7.
0

-
-

-
-

50
11
9

39
81
1
-6
30
96

3+
3 −2

14
7
+1
42

−8
0

14
7
+1
42

−8
0

14
7
+1
42

−8
0

14
7
+1
42

−8
0

-
-

-
-

79
43
3
63
09
6
-1
00
00
0

3+
3 −2

29
2
+2
84

−1
59

29
2
+2
84

−1
59

29
2
+2
84

−1
59

29
2
+2
84

−1
59

-
-

-
-

MNRAS 000, 1–24 (2022)



14 C. L. Hale et al.

Ta
bl
e
2:
Eu
cl
id
ea
n
no
rm
al
is
ed
so
ur
ce
co
un
ts
ta
bl
e
as
in
Ta
bl
e
1
bu
tf
or
th
e
X
M
M
-L
SS
fie
ld
.

𝑆
𝑆
m
in
−
𝑆
m
ax

𝑁
R
aw
SC

SC
SK
A
D
S

SC
m
od
.S
K
A
D
S

SC
SI
M
BA

SC
A
G
N

SC
SF
G
+U
nc

SC
A
G
N
,r
at
io

SC
SF
G
,r
at
io

[μ
Jy
]

[μ
Jy
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

[J
y1
.5
sr
−1
]

20
16
-2
5

64
8+
26 −2
5

0.
11
6
+0
.0
05

−0
.0
05

2.
94

+0
.1
9

−0
.1
8

2.
89

+0
.2
0

−0
.2
0

2.
11

+0
.1
4

−0
.1
4

0.
59
5
+0
.0
74

−0
.0
68

2.
29

+0
.1
8

−0
.1
7

0.
84
0
+0
.1
01

−0
.0
94

2.
04

+0
.1
7

−0
.1
6

32
25
-4
0

40
94

+6
5

−6
4

1.
46

+0
.0
2

−0
.0
2

3.
27

+0
.1
4

−0
.1
4

3.
20

+0
.1
4

−0
.1
4

2.
68

+0
.1
2

−0
.1
2

0.
66
7
+0
.0
40

−0
.0
39

2.
53

+0
.1
1

−0
.1
1

0.
91
9
+0
.0
54

−0
.0
53

2.
28

+0
.1
0

−0
.1
0

50
40
-6
3

56
86

+7
6

−7
5

4.
05

+0
.0
5

−0
.0
5

3.
89

+0
.1
6

−0
.1
6

3.
76

+0
.1
6

−0
.1
6

3.
55

+0
.1
5

−0
.1
5

0.
91
8
+0
.0
50

−0
.0
49

2.
85

+0
.1
2

−0
.1
2

1.
25

+0
.0
7

−0
.0
7

2.
51

+0
.1
1

−0
.1
1

79
63
-1
00

41
89

+6
6

−6
5

5.
95

+0
.0
9

−0
.0
9

4.
74

+0
.2
0

−0
.2
0

4.
62

+0
.2
0

−0
.2
0

4.
50

+0
.1
9

−0
.1
9

1.
42

+0
.0
8

−0
.0
7

3.
21

+0
.1
4

−0
.1
4

1.
93

+0
.1
0

−0
.1
0

2.
69

+0
.1
3

−0
.1
2

12
6

10
0
-1
58

22
20

+4
8

−4
7

6.
29

+0
.1
4

−0
.1
3

5.
29

+0
.2
4

−0
.2
4

5.
14

+0
.2
4

−0
.2
4

5.
07

+0
.2
5

−0
.2
5

1.
89

+0
.1
3

−0
.1
2

3.
24

+0
.1
7

−0
.1
7

2.
55

+0
.1
6

−0
.1
5

2.
59

+0
.1
6

−0
.1
6

20
0

15
8
-2
51

10
23

+3
3

−3
2

5.
78

+0
.1
9

−0
.1
8

5.
32

+0
.3
1

−0
.3
1

5.
26

+0
.2
7

−0
.2
7

4.
83

+0
.2
6

−0
.2
6

2.
37

+0
.1
7

−0
.1
7

2.
88

+0
.1
9

−0
.1
8

3.
12

+0
.2
1

−0
.2
0

2.
13

+0
.1
7

−0
.1
7

31
6

25
1
-3
98

54
5+
24 −2
3

6.
15

+0
.2
7

−0
.2
6

5.
80

+0
.3
8

−0
.3
7

5.
73

+0
.3
7

−0
.3
6

5.
44

+0
.3
6

−0
.3
5

3.
17

+0
.2
8

−0
.2
6

2.
55

+0
.2
5

−0
.2
4

4.
01

+0
.3
3

−0
.3
1

1.
71

+0
.2
3

−0
.2
2

50
1

39
8
-6
31

27
1+
17 −1
6

6.
10

+0
.3
9

−0
.3
7

5.
81

+0
.4
8

−0
.4
7

5.
82

+0
.4
7

−0
.4
6

5.
70

+0
.4
5

−0
.4
3

3.
84

+0
.4
1

−0
.3
9

1.
97

+0
.3
2

−0
.3
0

4.
61

+0
.4
4

−0
.4
3

1.
19

+0
.2
7

−0
.2
4

79
4

63
1
-1
00
0

18
6+
15 −1
4

8.
35

+0
.6
6

−0
.6
1

8.
13

+0
.8
2

−0
.7
8

8.
11

+0
.8
0

−0
.7
7

7.
53

+0
.6
8

−0
.6
4

6.
14

+0
.7
6

−0
.7
0

1.
95

+0
.5
1

−0
.4
4

7.
03

+0
.8
0

−0
.7
3

1.
04

+0
.4
1

−0
.3
1

12
59

10
00
-1
58
5

11
2+
12 −1
1

10
.0

+1
.0

−0
.9

10
.2

+1
.3

−1
.2

10
.0

+1
.3

−1
.2

9.
84

+1
.1
0

−1
.0
2

8.
39

+1
.3
0

−1
.2
2

1.
53

+0
.8
3

−0
.6
4

9.
26

+1
.3
0

−1
.2
3

0.
60
7
+0
.6
91

−0
.3
46

19
95

15
85
-2
51
2

83
+1
0

−9
14
.8

+1
.8

−1
.6

15
.1

+2
.1

−2
.0

15
.0

+2
.1

−2
.0

15
.1

+2
.0

−1
.8

13
.1

+2
.1

−2
.1

1.
64

+1
.4
0

−0
.8
6

14
.5

+2
.1

−2
.0

0.
19
4
+0
.9
55

−0
.1
94

31
62

25
12
-3
98
1

48
+8 −7

17
.1

+2
.8

−2
.5

17
.2

+3
.2

−2
.9

17
.3

+3
.2

−2
.9

16
.2

+2
.8

−2
.4

13
.5

+1
.7

−1
.8

3.
24

+1
.6
2

−1
.4
1

16
.2

+1
.3

−1
.4

0.
22
4
+1
.2
43

−0
.2
24

50
12

39
81
-6
31
0

38
+7 −6

27
.0

+5
.1

−4
.4

25
.8

+5
.5

−4
.9

26
.1

+5
.5

−4
.8

27
.0

+5
.2

−4
.5

17
.3

+2
.6

−2
.9

4.
98

+2
.8
8

−2
.3
8

21
.5

+1
.2

−2
.2

0.
30
6
+2
.5
02

−0
.3
06

79
43

63
10
-1
00
00

32
+7 −6

45
.4

+9
.5

−8
.0

45
.3

+1
0.
7

−9
.4

45
.4

+1
0.
8

−9
.5

45
.4

+9
.7

−8
.2

39
.5

+1
1.
1

−1
0.
2

4.
19

+7
.2
7

−3
.3
5

42
.7

+1
1.
1

−1
0.
3

0.
64
0
+5
.8
44

−0
.6
40

12
58
9

10
00
0
-1
58
49

26
+6 −5

73
.7

+1
7.
5

−1
4.
3

73
.7

+1
7.
7

−1
4.
6

73
.7

+1
7.
7

−1
4.
6

73
.7

+1
7.
7

−1
4.
6

-
-

-
-

19
95
3

15
84
9
-2
51
19

8+
4 −3

45
.2

+2
2.
3

−1
5.
6

45
.2

+2
2.
3

−1
5.
7

45
.2

+2
2.
3

−1
5.
7

45
.2

+2
2.
3

−1
5.
7

-
-

-
-

31
62
3

25
11
9
-3
98
11

2+
3 −1

22
.6

+2
9.
6

−1
4.
5

22
.6

+2
9.
7

−1
4.
6

22
.6

+2
9.
7

−1
4.
6

22
.6

+2
9.
7

−1
4.
6

-
-

-
-

50
11
9

39
81
1
-6
30
96

5+
3 −2

11
3
+7
6

−4
8

11
3
+7
6

−4
9

11
3
+7
6

−4
9

11
3
+7
6

−4
9

-
-

-
-

79
43
3

63
09
6
-1
00
00
0

6+
4 −2

26
9
+1
61

−1
07

26
9
+1
61

−1
07

26
9
+1
61

−1
07

26
9
+1
61

−1
07

-
-

-
-

12
58
93

10
00
00
-1
58
48
9

1+
2 −1

89
.6

+2
05
.0

−7
4.
2

89
.6

+2
05
.0

−7
4.
3

89
.6

+2
05
.0

−7
4.
3

89
.6

+2
05
.0

−7
4.
3

-
-

-
-

31
62
28

25
11
89
-3
98
10
7

1+
2 −1

35
7
+8
16

−2
96

35
7
+8
16

−2
96

35
7
+8
16

−2
96

35
7
+8
16

−2
96

-
-

-
-

50
11
87

39
81
07
-6
30
95
7

1+
2 −1

71
2
+1
62
8

−5
90

71
2
+1
62
8

−5
90

71
2
+1
62
8

−5
90

71
2
+1
62
8

−5
90

-
-

-
-

MNRAS 000, 1–24 (2022)



Source Counts and Sky Temperature from MIGHTEE 15

Thesemodel “observed" source counts are then compared to themea-
sured raw MIGHTEE source counts using emcee (Foreman-Mackey
et al. 2013) to sample the posterior likelihood space, assuming a
𝜒2 log likelihood function (lnL = −𝜒2/2) fit over the flux density
range: 𝑆1.4 : 1.5 × 10−5 − 1.0 × 10−3Jy. For each run, 50 walkers
with a chain length of 2000 steps are used to build up our samples.
We then repeat this 100 times for each field using and each model.
In order to ease computation for the polynomial models, extreme
models (with > 107 sources in a flux density bin were excluded).
The range of parameters used for this fitting with Equation 1 were:
log10 (𝑆0) = [-5.5, -3.5]; log10(C) = [0, 2]; 𝛼 = [-0.5, 1.5] and 𝛽 =
[-1, 1]. For the model with Equation 2, instead the ranges used were:
𝑎0 = [-3.0, 1.0]; 𝑎1 = [-3.0, 1.0] and 𝑎2 = [-0.5, 0.5].
As the sampling code will randomly sample an input random cat-

alogue distribution based on the model, it is the case that a different
likelihood value can be obtained despite using the samemodel param-
eters. As such, chains were able to become stuck in a value where the
likelihood for that given model and that given random sample was
high. To avoid over weighting these particular parameter/randoms
combinations, we use the last chain for each walker when comparing
the models produced by the sampler. The results from the final chains
of each of the source model simulations are shown in Figure 8. We
note that for the quadratic polynomial model, the large parameter
range which is probed by the walkers results in a number of walkers
appearing to be stuck in likelihood values that have not optimised.
For the majority of walkers (∼ 60−75% of walkers on average, closer
to 100% for the broken power law model) the final chains have log
likelihood values > −50, whilst the remaining walkers have anoma-
lous log likelihood values (large negative values), as such, these are
removed from the samples plotted as it is clear that these are poor fits
to the data. Figure 8 shows the range in models only for those final
chains with lnL >= −100. The 5th, 16th, 84th and 95th percentiles
for these chains are indicated on the plot. Figure 8 shows that both
models agree well with both the data of Matthews et al. (2021a) be-
low ∼ 70 μJy as well as with the modified SKADSmodel. The errors
associated with the corrected source counts calculated in Section 4.1
are comparable or larger than those associated with the 16th and 84th
percentiles, due to the restricted parameterisation.
Our source count models and measured source counts are in good

agreementwith one another, in general, and the twoparameterisations
agree well, though there are increasing discrepancies at the faintest
flux densities, where we are less able to constraining our model,
due to the 5μJy limit for our simulated sources. The fact that our
corrected source counts are in good agreement with these models
indicates that the assumed source count model simulations that were
used in order to calculate the corrected source counts in Section 3.5
are not substantially affecting the corrected source count models that
we determine. We do note that our models are slightly higher than
the P(D) results from Matthews et al. (2021a) below 10 μJy, but as
these are in the flux density ranges below where we fit our data and
our simulated sources had flux densities ≥5 μJy, a discrepancy here
is not necessarily unexpected.

4.2 Sky Background Temperature

4.2.1 Calculation of Sky Temperatures

The corrected source count distributions can then be used to cal-
culate the background sky temperature at 1.4 GHz. Following the
procedure of Hardcastle et al. (2021) and Matthews et al. (2021b) we
estimate the sky background temperature, 𝑇𝑏 , at a given frequency,
a, through the equations relating the thermodynamic temperature, 𝑇 ,

and spectral radiance, 𝐼a , for a blackbody (Planck’s law):

𝐼a =
2ℎa3

𝑐2
1

𝑒
ℎa

𝑘𝐵𝑇 − 1
, (3)

where ℎ is the Planck’s constant, 𝑘𝐵 the Boltzmann’s constant and 𝑐
is the speed of light in a vacuum.
The spectral radiance is a measure of the flux density per unit solid

angle, at a given frequency, with standard units Wm−2sr−1Hz−1.
Given that at radio frequencies we are in the Rayleigh-Jeans regime
( ℎa
𝑘𝐵𝑇

<< 1), then given a spectral radiance measurement at a given
frequency, this can be simplified to give the expression for the bright-
ness temperature, 𝑇𝐵 , as:

𝑇𝐵 =
𝐼a𝑐
2

2𝑘𝐵a2
. (4)

In order to determine the integrated spectral radiance from the data,
and specifically from the contribution of individual sources, we must
sum the contribution of the flux density of sources observed within
our image, and normalise for the solid angle subtended. Following
the methods of Hardcastle et al. (2021), we use the equation:

𝐼a (≥ 𝑆a) =
∫ ∞
𝑆a
𝑆′a𝑛(𝑆′a)𝑑𝑆′a

=
∫ ∞
𝑆a
𝑆′−1.5a 𝑛(𝑆′a)𝑆′2.5a 𝑑𝑆′a

(5)

where 𝑛(𝑆′a) is the non-Euclidean source counts described in Section
3.1 and 𝑆′a the flux density of the source at a given frequency, a. The
contribution of individual extragalactic sources to the integrated sky
brightness temperature above a given flux density, 𝑇𝑏 , is calculated
by:

𝑇𝑏 (≥ 𝑆a) =
𝑐2

2𝑘𝐵a2

∫ ∞

𝑆a

𝑆′−1.5a 𝑛(𝑆′a)𝑆′2.5a 𝑑𝑆′a . (6)

We note that for the rest of this paper, we omit the subscript for
frequency (a) notation in our description of source counts and tem-
perature for simplicity, however they are evaluated at 1.4 GHz.
We use Equation 6 with the corrected source counts derived in

Section 4.1. However, whilst the area of these observations (∼5 deg2)
is relatively large for such deep observations (∼ 5× and ∼ 50× larger
than used in the works of Matthews et al. 2021a, van der Vlugt et al.
2021, respectively), it is still limited in observing the brightest, rarest
sources. These sources can only be observed in large numbers using
surveys that cover large fractions of the sky such as NVSS (Condon
et al. 1998), TGSS-ADR (Intema et al. 2017), LoTSS (Shimwell et al.
2019) and RACS (McConnell et al. 2020, Hale et al. 2021). These
bright sources can have a significant contribution to the background
sky temperature, and so the poor statistics in small areas can lead to
a large amount of Poisson noise. Therefore, we follow the method
of Matthews et al. (2021a), and combine the source counts from
MIGHTEE with the source counts from NVSS at high flux densities
(from Table 6 of Matthews et al. 2021a). We use the source counts
from MIGHTEE below a flux density of 10 mJy. Whilst we have
data up to ∼100 mJy, as can be seen in Figure 7, the source counts
in the 10-100 mJy flux density range are more variable, especially in
the XMM-LSS field. This is likely a result of two contributions: (1)
sample variance and (2) multi component bright AGN which have
not been combined into a single object.

4.2.2 Contribution of AGN and SFG to the Sky Temperature

As discussed in Section 1, one of the key benefits of the MIGHTEE
survey is the wealth of ancillary data within the fields being ob-
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Figure 8. Results for the power law (red) and polynomial (blue) models for the COSMOS (left) and XMM-LSS field (right). The filled region shows the range
of values for the final step in the chain of those walkers not stuck in an poor fit and are given by the 5th and 95th percentiles. The dotted lines show the 16th and
84th percentiles from these fits. Also shown are the SKADS source counts fromWilman et al. (2008) (black dotted) and modified SKADS model (black dashed)
and observed source counts from Matthews et al. (2021a) (gold dots), Smolčić et al. (2017a) (grey pentagons) and van der Vlugt et al. (2021) (grey diamonds).
The P(D) analysis from Matthews et al. (2021a) is also included (gold shaded region). The raw source counts in each field (grey triangles) and corrected source
counts in the field (black stars, using the modified SKADS source counts model) are also shown.

served. This information from across the electromagnetic spectrum
can be combined using multiple diagnostics in order to distinguish
those radio sources which are AGN dominated, compared to those
dominated by star formation. This, therefore, allows for direct mea-
surement of the contribution of these extragalactic SFGs and AGN to
the integrated sky background temperature. The relative contribution
to the sky temperature has been inferred recently by Matthews et al.
(2021b) through linking the source counts distribution to an evolv-
ing luminosity function from the local radio luminosity functions.
This, therefore, does not use direct measurements of the proportion
of AGN and SFGs within the population to classify into a certain
source type. For this work, though, the wealth of ancillary data in the
MIGHTEE fields provides an excellent opportunity to directly use
the AGN and SFG fractional contributions to the source counts in
order to determine their separate contribution to the sky temperature.

The fraction of AGN and SFGs within the MIGHTEE data as a
function of flux density can be calculated from the catalogue pro-
duced in Whittam et al. (2022). In this work MIGHTEE sources
were classified into AGN (as well as sub-categories of AGN), SFGs
and probable SFGs (which we consider here to be SFGs), however
there also remained a subset of sources which could not be classified
or those which could not be cross-matched, either due to a lack of
multi-wavelength source or due to the radio source being confused
(see Prescott et al., subm.). For this work we consider three poten-
tial options for these unmatched or unclassified sources in order to
understand how their lack of classification may affect our measure-
ment of the contribution of SFGs and AGN to the source counts and
background sky temperature. The first possibility is that all these un-
detected/unclassified sources are dusty SFGs which are not detected
at other wavelengths due to attenuation of their emission. The second
possibility is that these sources are AGN which are predominately at
high redshift. Thismay be the case for the unclassified sources, which
Whittam et al. (2022) find to predominantly be at higher redshifts.
However, the most likely option is that the unclassified/unmatched
sources are a combination of SFGs and AGN as both have selection
biases which may affect how easily a host galaxy could be detected

or, for those with a host, how easily these could be classified. There-
fore, we also use the case where the unclassified/unmatched sources
are assumed to have the same split in SFGs to AGN as the classified
sources at the given flux density. By considering these cases, we are
able to better ascertain the spread in classified source counts.

As discussed previously, we also note that the AGN/SFG classi-
fications are only available over the central ∼0.8 deg2 of COSMOS
where the PyBDSF Gaussian component catalogue has been com-
bined together and cross-matched to ancillary data. Therefore the
exact AGN/SFG fraction across both fields (COSMOS and XMM-
LSS) may be different to that used here from just this smaller region.
This will be further improved with the completion of MIGHTEE
observations, and the associated source classifications, across all the
four fields (COSMOS, E-CDFS, ELAIS-S1 and XMM-LSS). In this
work, we make the assumption that the completeness of SFGs and
AGN (as a function of flux density) agree with one another, even at
the faintest flux densities. Therefore, even though we are incomplete
at the faintest flux densities, the ratio of AGN to SFGs represents
the true ratio of sources if we were complete. We test this with the
SKADS-based simulations, which have source type information so
we can compare the completeness of AGN to SFGs. From Figure 9,
it can be seen that completeness of SFGs and AGN for the SKADS
and modified SKADS simulations agree with each other within the
errors at the brightest and faintest flux densities. There are small dif-
ferences in the measured source count completeness values of AGN
and SFGs in the range 0.05-0.2 mJy, however these differences are
small and are unlikely to significantly impact our results.

In this work, in order to determine the number of AGN, SFGs
(including probable SFGs) and unclassified/unmatched sources as a
function of flux density we use coarser logarithmic binning (using 15
bins between log10 (𝑆1.4GHz) of -5.2 to -1) than used to investigate the
source counts. We can then interpolate from this binned distribution
to determine a function and from this we then calculate the fraction
of different source types for each flux density bin we evaluate the
source counts at. This will be used to help resample our data to allow
the contribution of AGN and SFGs to the 1.4 GHz source counts
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Figure 9. Source counts completeness of SFGs (blue), AGN (red) and for
all sources (black) in the COSMOS field for simulations using the modified
SKADS model (Section 3.3.2).

and the associated errors on that, as described below. We made the
assumption at bright flux densities (> 1 mJy where there are no
sources within the flux density bin), that the fraction of AGN in our
sample would go to 1, this is consistent with assumed ratios in works
such as Wilman et al. (2008), de Zotti et al. (2010), Bonaldi et al.
(2019).

4.3 Uncertainties on the Sky Background Temperature

To calculate the uncertainty on the background sky temperature ac-
counting for Poissonian statistics, completeness, sample variance
and the fractional contribution of AGN/SFGs we take the following
approach. First, we produce 1000 source count realisations by ran-
domly sampling a normal distribution centred on the corrected source
counts value within each flux density bin and with errors from the
combined errors described in Section 3.5. Due to the asymmetric
errors we use 50% of these samples with the positive and negative
errors respectively.
We then further attempt to model the uncertainty associated with

the split in AGN and SFGs for both the classified source counts and
sky temperature contribution. This is challenging, as it is hard to
distinguish the error in classification using multiple diagnostics as
well as the error from the AGN/SFG fractional contributions due to
the fact that ∼0.8 deg2 of COSMOS was used to calculate these con-
tributions, not the full ∼5 deg2. Therefore, we try to understand how
the SFG/AGN split may be affecting the background sky temperature
contributions by using resampling to make 1000 more realisations
of the already resampled source counts to determine the fractional
AGN and SFG contributions. We therefore use resampling to re-
calculate the number of SFGs, AGN and unclassified sources in the
coarser flux density bins that for theAGN/SFG fractions, as discussed
above. We then use these to calculate a new fraction of SFGs and
AGNwithin each of the coarse flux density bins based on the fraction
of resampled each respective population compared to the sum of the
resampled SFG, AGN and unclassified populations. Again, we then
interpolate from these distributions to evaluate the fraction of SFGs
and AGN at the flux density bins that the source counts are evaluated
at. As discussed, we assume at the brightest flux densities that the
AGN fractions can be assumed to be 1 and hence 0 for SFGs. This
led to a total of 1,000,000 realisations each for the intrinsic source
counts distributions for SFGs and AGN for each of the respective
models where we make the assumptions for the consistency of the
unclassified sources. This method to determine errors is limited, as it
does not allow for systematic classification errors in the diagnostics

used in Whittam et al. (2022), however these are difficult to properly
account for, and we note that this may lead to an underestimation of
the uncertainties.

4.3.1 Contribution of AGN and SFGs to the Source Counts

We present the source counts generated using this resampling pro-
cess as a function of source type in Figure 10 for both the COSMOS
and XMM-LSS fields. The differences in the assumptions for the un-
classified/unmatched sources affects the flux density at which SFGs
appear to become the significant population. For example, if the un-
classified sources (which includes the unmatched sources and we
now on refer to solely as unclassified) are all assumed to be SFGs,
then the SFG population becomes a significant fraction of the source
population at flux densities 𝑆1.4 GHz .0.3 mJy. If instead the un-
classified sources are assumed to be AGN then the source counts for
these two populations show similar behaviour below 𝑆1.4 GHz .0.05
mJy. Finally, if we assume these unclassified sources have the same
flux density ratio as to the classified sources, then the SFGs do dom-
inate below 𝑆1.4 GHz .0.1 mJy. We also include the source counts
of SFGs and AGN from the previous works of Smolčić et al. (2017b)
and Algera et al. (2020). Using these source counts models for the
different source types, we then use these to calculate the integrated
background sky temperature above a given flux density limit. From
these samples, we then quantify the integrated background sky tem-
perature by determining the median temperature contributions for
the two populations and report the uncertainties from the 16th and
84th percentiles of the samples.

4.3.2 Sky Temperature Results

Finally, we present the integrated sky background temperature
as a function of flux density from both AGN, SFGs and un-
matched/unclassified sources in the COSMOS and XMM-LSS fields
in Figure 11. Asmentioned previously, this uses the corrections based
on the modified SKADS simulations described in Section 3.3.2. We
show the contribution to the integrated sky background temperature
from AGN and SFGs using the three assumptions of what the un-
classified sources could be. We find that the contribution to the sky
temperature from extragalactic sources to be 𝑇𝑏 ∼ 100 mK at ∼ 15
μJy. In Figure 11 we compare this to the integrated background sky
temperature measured in both Vernstrom et al. (2011) and Hardcastle
et al. (2021). Vernstrom et al. (2011) used a compilation of data from
surveys at 150MHz to 8.4GHz (see references in Table 1 of Vern-
strom et al. 2011). They evaluated the sky temperature contribution
from all sources above 10 μJy at 1.4GHz and found 𝑇𝑏 = 110 ± 20
mK. Hardcastle et al. (2021) used data from the LOFAR deep fields
(see e.g. Tasse et al. 2021, Sabater et al. 2021) to calculate the total
sky background temperature at 144 MHz and found 𝑇𝑏 = 44 ± 2 K
above 100 μJy at 144 MHz.
To convert the measurements of background sky temperatures at

other frequencies to 1.4GHzwe follow themethod used inHardcastle
et al. (2021) and convert the temperatures using:

𝑇𝑏 = 𝑇a ×
(
a (GHz)
1.4

)𝛽
. (7)

For our definition of spectral index convention 𝛽 = 2 + 𝛼, as in
Hardcastle et al. (2021). As we assumed 𝛼 = 0.7, we use 𝛽 = 2.7 for
this frequency conversion. We plot the value from Hardcastle et al.
(2021) also including the limiting flux density used, converted to
1.4 GHz. However, we also present the results of Hardcastle et al.
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(2021) scaled to 1.4 GHz assuming 𝛼 = 0.8 (and 𝛽 = 2.8). Whilst
a difference in spectral index of 0.1 will not make much difference
to the conversion of the source counts at 1.4 GHz (as the frequency
of MIGHTEE is close to 1.4 GHz, see Figure 1) it can be seen to
have an important impact on the conversion of temperatures from
144 MHz.

5 DISCUSSION

We now discuss the corrected source counts and the integrated back-
ground sky temperature based on the MIGHTEE Early Science data.

5.1 Source Counts

In Figure 7 we present our corrected source counts, as well as com-
parisons to previous studies. As can be seen in Figure 7, at the faintest
flux densities the completeness corrections are able to correct the un-
derestimated raw source counts to values in better agreement (com-
pared to the raw counts) to those previously measured from Smolčić
et al. (2017b), Mauch et al. (2020), Matthews et al. (2021a) and van
der Vlugt et al. (2021). However, the corrected source counts, using
all three models, are typically higher than Matthews et al. (2021a) in
the range ∼ 0.1 − 2 mJy. At flux densities ∼ 0.05 − 0.2 mJy, what
is most striking is the contrast between the raw source counts from
the COSMOS and XMM-LSS fields to the corrected source counts.
In this regime, the raw source counts are notably higher than those
which are corrected. This suggests that whilst on average the sim-
ulated and measured (recovered) flux densities follow a 1-to-1 line
(see Figure 5), there are small offsets between the measured distri-
bution of sources by PyBDSF compared to any input simulation. This
is seen in the source counts completeness plots of Figure 6, where
the source counts completeness can be larger than 1, as we are com-
bining completeness with the measurement of the recovered sources
with boosted flux density. This leads to a downwards correction of
the raw source counts especially where these values were found to
be greatly in excess of most previous observations (although with
some overlap with source counts from the compilation by de Zotti
et al. 2010) becoming in better agreement with observations from
e.g. Matthews et al. (2021a).
There are some small discrepancies, though, at faint flux densities

(. 100μJy) between the observations from Smolčić et al. (2017b),
the MeerKAT DEEP-2 observations (Matthews et al. 2021a), the
COSMOS-XS observations (van der Vlugt et al. 2021) and the
work presented here. At these flux densities, the source counts from
Smolčić et al. (2017b) are lower than those observed with MeerKAT
(both with DEEP2 and MIGHTEE) but also to VLA observations
at 3 GHz from van der Vlugt et al. (2021). These differences could
arise from several reasons such as field to field variation due to sam-
ple variance and the relatively small field sizes observed in these
surveys as well as differences in the assumptions used to calculate
completeness. Furthermore, Prandoni et al. (2018), have shown that
comparisons of the same fields can lead to differences in source
counts measurements at the faintest flux densities, which is what we
find in our COSMOS field source counts compared to that of Smolčić
et al. (2017b). These differences could be attributed to assumptions
on the spectral index made in scaling the source counts from 3 GHz
to 1.4 GHz or could be attributed to the increased number of SFGs at
faint flux densities (∼100 μJy, see e.g. Wilman et al. 2008, Smolčić
et al. 2017b, Bonaldi et al. 2019). Furthermore, if these SFGs are re-
solved, it is possible that due to the baseline configuration of the VLA
used for the VLA 3GHz COSMOS project which produced images

at very high resolution (0.75′′ resolution Smolčić et al. 2017a), then
extended emission may be more difficult to observe with the VLA.
This may result in an under-prediction of the source counts even in
regions where completeness is high unless these extended sources
are included in simulations (see Appendix A). In their work, Smolčić
et al. (2017a) did include resolution bias, but this could be under-
estimated for the most nearby and extended sources. In their work,
van der Vlugt et al. (2021) explain differences between their counts
and that of Smolčić et al. (2017a) as a combination of resolution bias
and field-to-field variation, as they show the Smolčić et al. (2017a)
observations over the same area, which are in better agreement. In,
this work we probe a larger area than the 350 arcmin2 of van der
Vlugt et al. (2021), and for both fields our work shows larger source
counts than that of Smolčić et al. (2017b). This therefore suggests
that spectral index assumptions (converting from 3 GHz to 1.4 GHz)
and resolution bias may also play an important role.
At bright flux densities, 𝑆1.4GHz & 1 mJy, the results from COS-

MOS and XMM-LSS source counts are in roughly good agreement
with e.g. the counts from NVSS in Matthews et al. (2021a) and from
the source counts compilation of de Zotti et al. (2010), although
there is a lot of scatter. For example, at ∼ 10 − 50 mJy, the source
counts appear to be lower in the XMM-LSS field compared to pre-
vious measurements. This likely arises from the need to combine
together multiple components of bright extended AGN manually,
as in Prescott et al. (subm.), that have not been combined together
by PyBDSF. At faint flux densities (∼0.02-0.05 mJy), the corrected
source counts from the XMM-LSS and COSMOS fields are in good
agreement with one another as well as being in good agreement
(.0.05 mJy) with previous deep measurements from Mauch et al.
(2020), Matthews et al. (2021a) and van der Vlugt et al. (2021). Our
source counts should only be trusted above ∼15 μJy, however we
note that the source counts in our faintest flux density bin are in good
agreement with Matthews et al. (2021a) and van der Vlugt et al.
(2021).
Comparing the different SKADS models we find that they provide

corrected source counts that are in good agreement. When compar-
ing to the two SIMBA simulations to compare the results with and
without realistic clustering invoked, we find that for the COSMOS
field the two SIMBA models are in excellent agreement both with
each other and with the corrected source counts from the SKADS
models. For the XMM-LSS field, small discrepancies can be seen
between the SIMBA source counts and those from the SKADS sim-
ulations in the two lowest flux density bins below 30 μJy. However
the discrepancies between the SIMBA model with and without clus-
tering invoked within the simulations are consistent with each other.
Combining these two fields this suggests that the effect of cluster-
ing on completeness appears small and will not have a significant
impact on our results moving forwards. The difference between the
SKADS based models and that of SIMBA is therefore likely a result
of a combination of resolution bias, which is not included in the
SIMBA simulations, and any differences in completeness due to the
effect of injecting SIMBA sources into the residual (as opposed to
restored) image. Therefore, despite different methodology and dif-
ferent assumptions in the input source models, we can be confident
that the corrected source counts measured here, using the SKADS
based corrections, represent the true underlying source model.
Finally, we discuss our results for the source counts split by source

type (using the modified SKADS based corrections), as presented in
Figure 10. In Figure 10 we show the comparison of our source counts
to those of Smolčić et al. (2017b) (AGN and Clean SFGs, as pre-
sented in their Table 2) and Algera et al. (2020) (combining HLAGN
and MLAGN), who both use observations over the COSMOS field
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(a) COSMOS

(b) XMM-LSS

Figure 10. The 1.4 GHz Euclidean source counts for the COSMOS (upper) and XMM-LSS field (lower) split into SFGs (left) and AGN (right) using the modified
SKADS simulations (Section 3.3.2). The shaded colourful regions indicate the three different assumptions on the unclassified population: the unclassified sources
are SFGs (blue), AGN (red) and a mixture of AGN and SFGs dependent on the classified ratio for that flux bin (yellow). Also included are the SFG and AGN
source counts from Smolčić et al. (2017b) (grey hexagons for SFGs, grey pentagons for AGN) and from Algera et al. (2020) (black plus for SFGs, black crosses
for AGN). Also plotted are the respective SFG or AGN source models from SKADS (Wilman et al. 2008, 2010, cyan dashed line) and the modified SKADS
model described in 3.3.2 (cyan dotted line). For data at other frequencies, these are scaled to 1.4 GHz assuming 𝛼 = 0.7.

to determine the contribution of AGN and SFGs. As can be seen in
Figure 10, these are considered for the three possible assumptions
about the unclassified sources, which we shall discuss now individ-
ually. Firstly, if all unclassified sources are AGN, the results for the
source counts for the AGN populations appear to, in general, bemuch
larger than found by either Smolčić et al. (2017b) or Algera et al.
(2020) below ∼0.3 mJy. For SFGs, the source counts model has good
agreement with that of Smolčić et al. (2017b), but significantly under
predicts the counts of SFGs compared to Algera et al. (2020). Sec-
ondly, in the case where the unclassified sources are assumed to be
SFGs, there is good agreement between the AGN source counts pre-
sented here with, in general, both the work of Smolčić et al. (2017b)
and Algera et al. (2020). For SFGs, there is good agreement with
the work of Algera et al. (2020) below 0.05 mJy, but the SFG source
counts presented here are higher than Smolčić et al. (2017b). Finally,
if we consider the unclassified sources to have the same fraction of
AGN/SFGs as in the classified sample then, again, there is relatively
good agreement with the AGN source counts from both works, and
agrees significantly better with the results of Algera et al. (2020)

than for Smolčić et al. (2017b). This could reflect the fact that the
source counts in Smolčić et al. (2017b) are for “Clean SFGs", and
so this may underestimate the true SFG population in Smolčić et al.
(2017b).

Our work demonstrates that the choice of classification for the
sources that do not have a robust classification can significantly
affect the contribution of AGN and SFGs to the measured source
counts. Therefore, further investigations into deep multi-wavelength
fields, using many multi-wavelength diagnostics, are important to
help understand the contribution of SFGs and AGN to the source
counts. This will be improved with the full MIGHTEE survey (see
Jarvis et al. 2016). However, our work does suggest that, in order
to agree with the previous work of Algera et al. (2020) that these
unclassified sources in our sample must be either SFG dominated or
a flux-weighted ratio of AGN and SFGs and cannot be dominated by
AGN, we therefore do not include the source counts from AGN and
SFGs using these assumptions in Tables 1-2.
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Figure 11. Contribution of AGN (red) and SFGs (blue) to the total (purple) integrated background sky temperature indicated by a filled region between their
16th and 84th percentiles. This is shown for the COSMOS (left) and XMM-LSS (right) fields for the simulations using the modified SKADS model (Section
3.3.2). The three assumptions for what makes up the unclassified sources are indicated by the black lines. Solid black lines indicate where all unclassified sources
are assumed to be SFGs, dashed black lines indicate where the unclassified sources are assumed to be SFGs and, finally, black dotted lines indicate where
unclassified sources are assumed to be a mixture of SFGs with their ratio the same as for the classified sources in the given flux density bin. Also shown is the
sky background temperature contribution from extragalactic sources from Vernstrom et al. (2011) (green diamond) and Hardcastle et al. (2021) (grey star; filled
marker assuming 𝛼 = 0.7 and as an indicative example of the effect of spectral index this is also show with 𝛼 = 0.8, open marker) scaled to 1.4 GHz using
equation 7. The grey dotted vertical lines indicates a ∼15 μJy flux density cut.

5.2 Integrated Background Sky Temperature

With our source counts in good agreement with each other and pre-
vious measurements, we now discuss the results from the integrated
sky background temperature contributions from AGN and SFGs.
As discussed, given the results from the SKADS simulations are in
good agreement and clustering (from the SIMBA simulations) does
not appear to have a strong effect therefore, we only use the modified
SKADS simulations (Section 3.3.2) to investigate the integrated sky
background temperature in the COSMOS to XMM-LSS fields. We
choose the modified SKADS simulation given its close agreement
between its source counts model to that of observed data. Using
these, the results from the two fields are in very good agreement
with each other and consistent within the errors, although we note
that we again use the same AGN/SFG split from the 0.8 deg2 of the
COSMOS field. However as the corrected source counts are calcu-
lated separately for each fields, there will be differences between the
temperature contributions from the two fields.
If we consider the contribution of AGN and SFGs to the back-

ground sky temperature, it is important to note that the bright sources
(which are generally AGN) have a large influence on the sky back-
ground temperature even though they are fewer in numbers. As can
be seen from Figure 11, the temperature contribution of SFGs be-
comes a more significant fraction of the total temperature below
∼0.2-1 mJy, depending on the assumption of the split of AGN and
SFGs in the unclassified sources. This leads to a contribution to the
sky background temperature at ∼15 μJy in the range of ∼15-30 mK
from SFGs, as seen in Figures 11(a) and (b). However, the previous
discussion on source counts suggests that we are unlikely to be in the
regime in which the unclassified sources are dominated by AGN. If
we only consider the possibilities where the unclassified sources are
all SFGs or a mixture of SFGs and AGN with the same fractional
split as the classified data, then the contribution of SFGs to the back-
ground sky temperature at ∼15 μJy is ∼15-25 mK. Given the total
integrated background temperature at the flux density limit is ∼100
mK, this suggests that at these faint flux densities SFGs only con-
tribute ∼15-25% of the integrated background temperature, whereas
they contribute ∼50% of the sources.

Comparing to previous results, our total sky background tempera-
ture estimate is in good agreement within the uncertainties and when
frequency differences are accounted for with both the work of Vern-
strom et al. (2011) and Hardcastle et al. (2021), assuming 𝛼=0.7.
Indeed both fields are in excellent agreement with the measurement
fromHardcastle et al. (2021) of 44±2K at 144MHz at a flux density
limit of 𝑆144MHz ∼ 100 μJy. This measurement fromHardcastle et al.
(2021) is equivalent to ∼ 97 mK at 1.4 GHz at ∼20 μJy. However
if, instead, 𝛼 = 0.8 is considered to convert the work of Hardcastle
et al. (2021), then the temperature, 𝑇𝑏 (& 10μJy), is closer to 75 mK.
This would suggest that a low frequency spectral index of 𝛼 = 0.8 is
too steep when comparing between 1.4 GHz and 144 MHz and that
𝛼 = 0.7, as assumed in this work throughout, is a more appropriate
value. Our models also extrapolate to those from Vernstrom et al.
(2011) at ∼10 μJy, though this is below the flux density threshold for
this work. The results from Vernstrom et al. (2011), Hardcastle et al.
(2021) and our observations of T𝑏 ∼100 mK at ∼15μJy, however,
are a factor of ∼ 4− 5 lower than measured with the ARCADE 2 ex-
periment (Fixsen et al. 2011), where the total integrated background
temperature was estimated to be ∼500 mK at 1.4 GHz. This suggests
that there is no such population of faint extragalactic sources to these
sensitivities that could explain such difference in temperature.
The relative contribution of AGN and SFGs to the background

sky temperature is something which can only be investigated with
modern radio surveys, where the faint SFG population are detected
in large numbers. Therefore, only recent studies such as Matthews
et al. (2021b) have been able to look at the fractional contribution of
AGN and SFGs to the background temperature. As discussed earlier,
in Matthews et al. (2021b) the fractional contribution of AGN and
SFGs to the sky background temperature was determined through
evolving local radio luminosity functions in order to reproduce the
total source counts when integrated over redshift. This work, on the
other hand, uses classifications of MIGHTEE sources to estimate
the relative contribution of AGN and SFGs. As discussed, SFGs
contribute approximately 15-25% of the background temperature at
15 μJy. This is compared to ∼30% for the results of Matthews et al.
(2021b), who measure a total temperature of ∼90−100 mK at 10−15
μJy.
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This work suggests that an even fainter population of extragalactic
sources would need to exist in order to reconcile the background
temperature with that of Fixsen et al. (2011). This will be possi-
ble to investigate with surveys such as those from the future Square
Kilometre ArrayObservatory. The SKAOwill also have higher angu-
lar resolution than MIGHTEE which will aid in avoiding confusion,
whilst retaining surface brightness sensitivity. However, as our source
counts seem to extrapolate to the models of Matthews et al. (2021a),
it seems improbable that such a numerous faint extragalactic popu-
lation of galaxies exist but are not already detected even at sub 5𝜎
levels in the deep radio data already available.

5.3 Model of Background Sky Temperature

Finally, we provide a model of the sky background temperature for
future comparison. To do this, we fit the models described in Section
4.2.1 using numpy polyfit to model the temperature, 𝑇 , in K as a
function of 1.4 GHz flux density, 𝑆1.4 GHz, in Jy as:

𝑇 (> 𝑆1.4 GHz) =
6∑︁
𝑖=0

𝑎𝑖 × log10 (𝑆1.4 GHz)𝑖 (8)

These fits are provided as supplementary material alongside this
work. These models are fit where the 16th percentile fits are >0
and temperature values are >0.01 mK. As the SFG models are fit
over a smaller flux density range, we force 𝑎6 to be 0 for these fits.
In the supplementary table we provide the field, source type (e.g.
AGN-AssumeUnclassAreSFG is the AGN model where unclassified
sources are considered to be SFGs), percentile being fit (e.g. median,
16th) and maximum flux density (in Jy) the fit can be used up to,
above which it oscillates around 0 mK.

6 CONCLUSIONS

The MIGHTEE survey is an exciting new radio astronomy survey
with MeerKAT, which will be essential in the study of galaxy evolu-
tion due to its depth (rms∼ 4 − 5μJy beam−1), large area (∼20 deg2
on completion) and wealth of ancillary data across the four extra-
galactic fields it will observe. In this paper, we have investigated the
deep source counts to ∼15 μJy from the two Early Science fields (∼5
deg2 over the COSMOS and XMM-LSS; Heywood et al. 2022). We
make use of simulations using multiple underlying source popula-
tion models to account for the incompleteness within the raw data to
determine the intrinsic source counts distribution. By doing this, we
account for incompleteness due to confusion, the visible area from
RMS variations across the image as well as the detection efficiency
and flux density accuracy of the source finding algorithm. Through
these methods, we recover source counts which are in agreement
with other recent, deep surveys of Mauch et al. (2020), Matthews
et al. (2021a), van der Vlugt et al. (2021) but using a larger area
of observations. Furthermore we consider how the assumed source
model affects the completeness, and thus the corrected source counts.
From this we have demonstrated that independent of the input dis-
tribution of the underlying source counts, we determine corrected
source counts in good agreement with the inferred source models.
Building upon this, we use the classification of a subset of sources

into AGN and SFGs from Whittam et al. (2022), to directly inves-
tigate the contribution of SFGs and AGN to the background sky
temperature. We show that AGN are dominant in their contribution
to the sky temperature, with the contribution from SFGs increasing
below 1mJy, but only having∼15-25% contribution to the integrated

sky background temperature above 15 μJy. We find a total contribu-
tion to the sky background temperature from sources of ∼100 mK
above 15 μJy, which is approximately a factor of 4 smaller than the
reported background temperature from Fixsen et al. (2011). There-
fore, despite the sensitivity of these observations, we are unable to
reconcile such a large sky background temperature in agreement with
other previous works (e.g. Vernstrom et al. 2011, Hardcastle et al.
2021). Overall, we have shown that MIGHTEE will be an excellent
survey for developing our understanding of the population statistics
of ∼ μJy sources. Using the full 20 deg2 of MIGHTEE will allow
these source counts to be better constrained at the faintest flux den-
sities and, when combined with multi-wavelength data over the full
area, better constrain the high flux density source counts as well as
better constrain the contribution of SFGs and AGN, and not be lim-
ited to using the AGN/SFG fraction based on 0.8 deg2, which may
be influenced by sample variance.
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APPENDIX A: COMPARISON WITH VLA 3GHZ SOURCES

As discussed in Section 5.1, one potential reason for larger source
counts at faint flux densities compared to Smolčić et al. (2017a) could
relate to emission being resolved out by the VLA observations, re-
sulting in missing sources or a reduction in the flux density observed
from these sources. If not accounted for sufficiently, this could affect
source count measurements. Given that theMIGHTEEEarly Science
data covers the COSMOS field, we made a brief investigation of this.
Specifically, we examined sources in the MIGHTEE catalogues with
peak flux densities 𝑆1.4GHz, MIGHTEE ≥60 μJy that do not have a
VLA 3 GHz COSMOS (Smolčić et al. 2017a) counterpart source
within a 5′′ match radius. Whilst many MIGHTEE sources have a
counterpart or are not expected to due to sensitivity limits, a small
number of sources were found that had limited or no 3 GHz emission
and had extended host source morphologies. We show 12 example
overlays of these in Figure A1. For each source we indicate both the
MIGHTEE scaled 1.4 GHz integrated and peak flux densities, which
are in the range of ∼ 100 − 600 μJy (integrated) and ∼ 80 − 230 μJy
beam−1 (peak). We also measure the median rms within the same
VLA 3 GHz cutout and use this to determine what the measured
spectral index would be from the peak flux densities assuming that
the maximum emission of the source in the VLA 3 GHz image was
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Figure A1. Example overlays for 12 sources whose host galaxies appear to have extended morphologies and are visible in the MIGHTEE images (red contours at
3, 5 and 10𝜎 and sources shown as red squares) but are not detected within the VLA 3GHz COSMOS image (blue contours at 4, 5 and 10𝜎 and sources shown
as blue diamonds). These radio contours are overlaid on 𝐾𝑆 band images from UltraVISTA (McCracken et al. 2012) DR4. The source which being investigated
is in the centre of the image. Included in the figure are the 1.4 GHz integrated (𝑆Int, 1.4 GHz) and peak (𝑆Peak, 1.4 GHz) flux densities from MIGHTEE, the median
3 GHz rms (𝜎Median, 3 GHz) within the cutout from Smolčić et al. (2017a) and the implied lower limit on 𝛼 assuming a 5𝜎 and 15𝜎 detection using the peak
flux densities.

at a 5𝜎 and 15𝜎 detection level. As shown in Figure 16 of Smolčić
et al. (2017a), completeness of their catalogue is ∼50% at ∼5𝜎 and
rises to ∼90% completeness at 15𝜎9.
The examples shown are some of the most extreme cases which

have an implied limit on of 𝛼 > 1 even based on 15-sigma limits and
peak flux densities. The spectral indices measured from integrated
flux densities or at 5𝜎 would give even steeper measurements of
𝛼. Although sources could potentially have steep spectral indices, it
could also imply that there is missing emission due to the baselines
configurations used in the observations of Smolčić et al. (2017a),
which may be less sensitive to large angular scales. If extended emis-
sion is being resolved out in the images for these and other sources,
this could lead to an underestimation in flux densities and could af-
fect source count measurements. If these potential effects are under
accounted for in Smolčić et al. (2017a), this may explain why the
source counts from Smolčić et al. (2017a) appear to be underesti-
mated compared to other deep radio observations in this work and
that of Mauch et al. (2020), Matthews et al. (2021a) and van der
Vlugt et al. (2021). However, while Fig A1 provides some indicative
examples, as stated earlier the majority of sources have counterparts
or may not necessarily be expected to, given the relative sensitivity
limits. A full investigation of this issue is beyond the scope of this

9 These completeness levels at a SNR assumes the median rms of 2.3 μJy
beam−1, though this rms level varies across the field.

paper, and other factors may play a role. Smolčić et al. (2017a) calcu-
late their completeness to be less than 100% at 15𝜎 and sources like
these may already be accounted for in the completeness corrections
used in Smolčić et al. (2017a), which do include methods to account
for resolution bias. Factors such as source finder incompleteness,
source variability, flux offsets in the data and intrinsic steep spectral
indices may also play a role.
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