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Abstract

The use of minimal information from battery cycling data for various battery
life prognostics is in high demand with many current solutions requiring full
in-cycle data recording across 50-100 cycles. In this research, we propose a
data-driven, feature-based machine learning model that predicts the entire
capacity fade and internal resistance curves using only the voltage response
from constant current discharge (fully ignoring the charge phase) over the
first 50 cycles of battery use data. This approach is applicable where the
discharging component is controlled and consistent, but sufficiently general
to be applicable to settings with controlled charging but noisy discharge as
is the case of electric vehicles.

We provide a detailed analysis of the impact of the generated features
on the model. We also investigate the impact of sub-sampling the voltage
curve on the model performance where it was discovered that taking voltage
measurements at every 1 minute is enough for model input without loss of
quality. Example performance includes Capacity’s and Internal Resistance’s
end of life being predicted with a mean absolute error (MAE) of 71 cycles
and 1.5× 10−5Ω respectively.
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1. Introduction

Lithium-ion battery modelling is a fast growing research field. This can
be linked to the fact that lithium-ion batteries have desirable properties such
as affordability, high longevity and high energy densities [1, 2, 3]. In addi-
tion, they are deployed to various applications ranging from small devices
including smartphones and laptops to a more complicated and fast growing
products such as electric vehicles. However, as batteries age their ability to
store energy (capacity) fades by the influence of different mechanisms: us-
age, storage, environment, chemistry and combinations thereof. For many
cell chemistries and use cases the degradation throughout time is nonlinear
[4, 5]. This calls for the development of tools able to capture the degra-
dation pattern necessary for effective battery management system, battery
longevity classification, and quality control. Linked to capacity fade is the
internal resistance (IR) rise curve which quantifies the amount of opposition
to the flow of current in and out of a battery [6]. A considerable volume of
work has been done to understand [5, 7], detect [8, 6] and predict [8, 6, 9, 10]
key quantities relating to the evolution of cell capacity and IR.

Such models draw on rich datasets [11] from cell-cycling testing contain-
ing current, voltage and temperature response time series across many cycles
of charge and discharge, plus reference performance tests to determine ca-
pacity and IR. Of high relevance to this manuscript are data-centric feature-
based modelling approaches whose main advantage is explainability. This
approach has been used extensively where statistical, in-field and physics-
informed features are engineered, selected based on the their relevance, and
fed into a machine learning predictive algorithm [12, 8, 13, 14, 15]. Of these,
we give strong emphasis to Paulson et al. [15] where using the first 100 cycles
of cycling data (spanning through NMC111, NMC532, NMC622, NMC811,
HE5050 and 5Vspinel lithium-ion cells) they combine in-field knowledge with
statistics to generate a total of 396 features from the cycling data, after which
they applied a sequential feature selection technique to pick the best fea-
tures for modelling purpose. After considering several data-centric models
for prediction purposes they predict the cycle life with mean absolute error
(MAE) of 78 cycles and include an exhaustive analysis of the importance of
each of the features in the prediction. In alternative, other models taking a
feature free approach have been proposed utilising deep learning approaches
[9, 16, 17]. These show promising predictive performance from limited data
but offer limited explainability.

The lab data on which the above approaches were developed, contains
consistently controlled charge and discharge profiles. For many real world
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applications the charge or discharge component may be less predictable.
For example, the charging component of electric vehicles (EVs) use is com-
pletely controlled by the charging point and battery management system
(BMS) [18]. On the other hand, the discharge component depends on the
chosen route, level of traffic, driver habits and is non-monotonic (regener-
ative breaking). For EVs it is thus easier to design prognostics based on
the charging component. As for the situation where the discharging compo-
nent is consistent, a good example is the storage for renewable energy. In
this case, the charging component relies on the availability of the natural
sources such as the intensity of the sun in solar panels and wind speed in
wind turbines); however, the quantity of derived energy is controlled and
monitored [19]. It is thus of interest that the dataset used in this research
contains multiple differing charge profiles, but predictions can be made from
the common discharge component.

The aim of this paper is to develop a model to predict the full capacity
and IR trajectory predictive model (including end of life (EOL)) taking into
account limitations seen in real-life battery usage and requiring a limited
number of input cycles (and data). The datasets chosen for this research,
[12, 20, 6], have a large number of different charging profiles across the
considered cells but a consistent discharge profile for all cells. For this
reason we focus on prediction models using only the constant current (CC)
discharge Voltage response part of the cycling data. We aim to develop a
quick, cheap, computationally efficient, and highly practical model.

To the best of our knowledge, the idea of using CC discharging Voltage
for capacity/IR early life curve prediction is new and has not been addressed
in the research domain except for the very recent [17] (carried out indepen-
dently) and that we discuss in more detail in Section 4.5 below. Work to
estimate state-of-health (SOH) under these constraints has been conducted,
mainly making use of various deep learning techniques to estimate in-cycle
capacity and impedance spectra [21, 22, 23]. Inspired in [8] we investigate
how many cycles of input data are needed for effective predictions and also
the effect of frequency of data-recording (i.e., subsampling the voltage re-
sponse) in the predictor model. In fact, up to [8], feature-based data-driven
models took 100 or more cycles worth of input data for prognostics and
in [8] it was shown that 50-cycles was enough. Then in [9] it was shown
that one-single cycle of input data was enough to achieve an accuracy rate
better than that of [8], the model used in [9] is a convolutional deep neu-
ral networks that is less explainable. Inspired by [15], we develop a model
based on explainable feature mechanisms and provide an analysis of the
impact of generated features on model accuracy. This will give an insight
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into what features are important for curve prediction and thus speaking to
a parsimonious model.

We structure this paper as follows: Section 2 gives information about
the data used in this study and Section 3 provides detail of the methods
adopted for feature generation and model building. Section 4 presents the
results and their rationalization, Section 5 provides concluding remarks and
potential future study.

2. Data Description

The data used in this study are those presented in [12], [20] and [24]. Al-
though cells in each of these papers differ slightly in terms of cycling process,
they have almost identical cycling conditions and experimental recorded
data are presented in the same format. Thus, their combination is suit-
able. They contain data for Lithium Ferrosphosphate (LFP)/graphite A123
APR18650M1A cells each with nominal capacity of 1.1Ah and nominal volt-
age of 3.3V . As described in the three works, all cells are cycled at a constant
temperature of 30◦C and, critically for our work: the same discharging pro-
tocol was used throughout, but with a large variety of different fast-charging
policies. About 80 different charge policies were tested and they are ex-
plicitly described in Table 9 of the supplementary material to [12] – see
additionally [11] for a description of the datasets as whole.

The generated data is presented in eight batches, namely batches 1 to
batch 8: as a convention, each cell is named as bMcN where M and N
denote the batch number and cell number respectively. It is important to
note that cells from batches 4 to 7 are not cycled to EOL, thus, we excluded
them from this research; cells from batch 8 are cycled pass their EOL, for
consistency with batches 1 to 3, we only use data up to the EOL. In addition,
we excluded 11 outlier cells that last for more than 1200 cycles (inline with
other research [14, 25]) which leaves us with 158 cells.

Several measurements are included in the data but we only extract the
CC discharging voltage, discharging time, per cycle measure of capacity and
IR. As batch 8 does not contain IR measurements we use the corresponding
data from [24] as substitute. We present the evolution of the CC discharging
voltage for some selected cells in Figure 1. The maximum and minimum
voltage across the cells can be seen to range between approximately 3.4V
and 2.0V . In addition, the curve diminishes as each of the cells ages and
degrades. This is a key observation, which later forms the basis for the
techniques used for feature generation.
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Figure 1: Top: Current-voltage profile for sample cell at sample cycle. Bottom: Evolu-
tion of CC discharging voltage response curve for selected cells across full cycle life (note:
the profiles we use are close but different from CC-CV ones).

3. Modelling and Methodology

In this section, we present the modelling approaches for the early pre-
diction of capacity fade and IR rise curves. First we discuss the in-field
informed feature generation approach used in this research, then give de-
tails about the choice of machine learning algorithm, the number of cycles
needed for prediction and the technique adopted in predicting the entire
curves.

3.1. Feature generation

Our main feature of consideration is the CC discharge voltage and its
evolution. To construct features based on this we used statistical (mean,
variance, kurtosis, skewness, min and max) and gradient based approaches
(area under curve and slope). The calculation of gradient and area under the
curve is not obvious and requires a careful processing of the CC discharge
voltage and its corresponding time. Values for voltage are not measured at
regular time intervals, thus we fitted a one-dimensional linear interpolation
to the values and the associated time (using Numpy in interp1d function
[26]). We then used the resulting interpolated function to obtain voltage

5



values at equal time steps (every 4 seconds) while taking the initial and final
times into consideration. Following this approach, area under the curve and
the rate of change of the voltage curve were computed using the trapz and
gradient functions of the Numpy library. Partly inspired by [15], for each
cell and cycle (i) we construct the following set of features:

F
(cell)
i :=



min{Vk, k = 1, 2, . . . , li}, max{Vk, k = 1, 2, . . . , li},
mean{Vk, k = 1, 2, . . . , li}, var{Vk, k = 1, 2, . . . , li},
kurt{Vk, k = 1, 2, . . . , li}, skew{Vk, k = 1, 2, . . . , li}

min

{(
dV

dt

)
k

, k = 1, 2, . . . , li

}
,

max

{(
dV

dt

)
k

, k = 1, 2, . . . , li

}
,

h

2
(V1 + 2 (V2 + · · ·+ Vli−1) + Vli) ,(
dV

dt

)
k=1

,

(
dV

dt

)
k=li

;

(1)

where V is the interpolated CC discharge voltage for cycle i of the selected
cell and li denotes its length; var, kurt and skew denote the usual vari-
ance, kurtosis and skeweness operations respectively; h is the time step (in
minutes).

To include information about how features from in-cycle data compare
with others, we calculated multi-cycle features that find the difference be-
tween values of features at two different cycle numbers (gradient informa-
tion). As gradient features are more sensitive to noise, we consider median
values from windows of width i10 and multi-cycle features are calculated
according to

f0 := median{F (cell)
i , i = 1, 2, . . . , i10},

fn/2 := median{F (cell)
i , i = n/2− i10, n/2− i10 + 1, . . . , n/2 + i10},

fn := median{F (cell)
i , i = n− i10, n− i10 + 1, . . . , n},

fn−0 := fn − f0,

fdiff := fn − 2fn/2 − f0;

(2)

where n is the number of cycles selected for feature generation (we choose
n = 50) and i10 is the cycle number corresponding to 10% of n. In total we
generated 54 features using this approach, and their description is provided
in Table 1.
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Table 1: A comprehensive list of generated features: <multi> signifies any of the iden-
tifiers defined in Equation (2), V is the CC discharge voltage measured at time t.

Feature Description

min-ccv-<multi> minimum CC discharge voltage
max-ccv-<multi> maximum CC discharge voltage
mean-ccv-<multi> mean of CC discharge voltage
var-ccv-<multi> variance CC discharge voltage
skew-ccv-<multi> skewness of CC discharge voltage
kurt-ccv-<multi> kurtosis CC discharge voltage
area-ccv-<multi> area under the CC discharge voltage curve
grad-ccv-sart-<multi> dV/dt at start time
grad-ccv-end-<multi> dV/dt at final time
grad-ccv-min-<multi> minimum value of dV/dt
grad-ccv-max-<multi> maximum value of dV/dt

3.2. Machine learning model

Various machine learning models were explored in this research: Decision
Trees [27], Random Forest [28], Support Vector Regression [29], Extremely
Randomized Trees [30], and Extreme Gradient Boosting (XGBoost) [31].
However, out of all these algorithms, XGBoost was able to reduce overall
model variance and over-fitting, capture non-linear relationships in the data,
and had the best performance (both in sample and out of sample) in terms
of the metrics considered. For the purpose of brevity and the fact that
this study is not meant for the comparison of model performances, only the
results of the XGBoost model are presented and discussed.

Main model is XGBoost. It is a non-linear ensemble model which builds
regression trees (called weak learners) sequentially and the variance of the
previous tree is corrected in the new tree to finally build a strong learner
[31]. The sci-kit learn [32] implementation was used.

Targets to predict. We used the approach discussed in [9, Section 3] to
obtain a list of targets for our machine learning model. In short, each
capacity curve is summarised by certain cogent points: knee-onset (k-o) and
knee-point (k-p) [8]; the same is applied to IR curves: initial point, elbow-
onset (e-o) and elbow-point (e-p) [6]. Knees, Elbows and their onsets are
identified via the Bacon-Watts model [8, 6]. In addition, capacity at k-o
(Qatk-o) and k-p (Qatk-p); IR at e-o (IRate-o), e-p (IRate-p) and EOL
(IRatEOL). Capacity at EOL is known (taken as 80%) and not included in
the list of targets to be predicted. See Table 2 for a summary.

Two block models, ‘cycle-at’ and ‘value-at’, were trained (see summary
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Table 2). Firstly, we trained an XGBoost model to predict knees, elbows,
and EOL jointly, which we call ‘cycle-at’ model. This combination is nat-
ural as the values of these targets are larger in comparison to those of ca-
pacity/IR; all are measured in cycles and are correlated. Secondly, a model
to jointly predict capacity and IR at knees, elbows, and EOL values was
trained on the log-transformed values of these targets and we call it the
‘value-at’ model. The log transformation was considered due to the small
values of capacity (ranging between 1.1 to 0.88Ah) and IR (ranging between
approximately 0.015 to 0.03Ω).

Table 2: Description and nomenclature for the machine learning models.

Model class type Prediction targets
cycle-at k-o, k-p, e-o, e-p, EOL
value-at Qatk-o, Qatk-p, IRate-o, IRate-p, IRatEOL

Model performance is measured using the mean absolute error (MAE)
and root mean squared error (RMSE), see metrics in Equation (3). We
present the values of these metrics for each of the models both for training
and test dataset.

Training and tuning. Choosing hyper-parameters for each of the machine
learning models involved two techniques: (1) trial and error approach, (2)
grid search method. The former was done to search for feasible parameters
values while the latter considers a range of values around those obtained in
the first stage. The second stage was performed using the GridSearchCV
object1 from the scikit-learn Python library. An exhaustive search was not
performed for all the parameters in each of the considered models, however,
we selected those that most effect the model performance during the course
of trial and error approach. The algorithm makes use of squared-error loss
function. It was found that n-estimator, max-depth, reg-alpha, learning-
rate, and min-samples-split were the most important to tune for model im-
provement. The description of these hyperparameters can be found in the
XGBoost documentation2.

1GridSearchCV is an exhaustive search mechanism which takes a range of values of
parameters (parameter space), a method of searching, cross-validation scheme, and a
scoring function. It returns the parameter setting which best improves the metric used.

2https://xgboost.readthedocs.io/en/stable/parameter.html
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3.3. Choosing cycle number threshold – How much longitudinal data?

To see the effects of using different cycle thresholds on the prediction
of each of the targets, we split errors based on whether they are associated
to capacity or IR. Maximum threshold of 100 cycles was considered and we
generated features by extracting the first n cycles, 10 ≤ n ≤ 100, where n is
an integer. For each n, we built two different XGBoost models as discussed
in Section 3.2 and evaluated them through cross-validation on the training
set using the metrics of Equation (3). Figure 2 presents the cross-validation
errors on training data together with their 90% confidence intervals. By
inspecting this figure, we note that model performance is not sensitive to
the number of cycles selected. Thus, inline with [8], we selected 50 cycles as
the input size for our model.

Figure 2: Cross-validated errors on training data showing the impact of using different
cycle number threshold for feature generation and modelling.

3.4. Prediction of the entire curves

We recover the Capacity and IR degration curves by employing a method-
ology similar to that of [9]. Concretely, after obtaining the knees, elbows
and EOL together with the corresponding capacity and IR from the predic-
tions of the model (Table 2), we fitted a modified quadratic spline to these
points to get the entire capacity fade and IR curves – see Equations (4)-(5)
in Methods section below.
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4. Results and Discussion

In this section, we present the results of our findings together with the ra-
tionalizations behind them. It covers the presentation of model performance
results, and an account of feature importance analysis. Recall Section 3.2
for nomenclature.

4.1. Model performance

The performance of the cycle-at model on training and test data is given
in Table 3. To account for a comprehensive performance, we closely look at
the errors in predicting each of the targets by providing performance met-
rics and their corresponding confidence intervals. With respect to training
metrics, the model is able to capture the underlying pattern with a best
MAE and RMSE (in the case of k-o and k-p prediction) of 10 and 13 cy-
cles respectively. As for the performance on the test set, similar pattern
is also observed: it gives the lowest MAE and RMSE of 57 and 78 cycles
respectively for k-o prediction, whereas highest values are seen for e-o (with
MAE and RMSE of 81 and 103 cycles, respectively). These results show
that the model predicts knees more accurately than elbows. This is most
likely linked to the nature of the process of obtaining knees and elbows:
k-o and k-p are extracted from the capacity fade curve with less noise in
comparison to the IR rise curve from where e-o and e-p are extracted; the
noisiness in IR measurements of [12] has been thoroughly discussed in [24].
In addition, the fact that we obtain the smallest test errors on k-o prediction
can be associated to the closeness of this point to the cycle from which we
are predicting from (which is 50 cycles).

The summary of the performance of value-at model is shown in Table 4.
In terms of capacity at knees prediction, we note that the model achieves
approximately the same MAE and RMSE on the training set for the predic-
tion of both k-o and k-p. However, different out-of-sample performance is
observed. As for the prediction of IR at elbows and EOL, the model yields
approximately similar MAE and RMSE on the training set for all the IRs.
On the other hand, the best performance on the hold-out data is attained
for the prediction of e-o and e-p with MAE and RMSE of approximately
4.13 × 10−4Ω and 5.77 × 10−4Ω, respectively. The similarities in errors on
the training set in both capacity and IR estimations can be associated to
the positions of knees/elbows on the capacity fade/IR curve: k-o and k-p as
well as e-o and e-p are points with few cycles away from each other. Thus,
their corresponding capacity/IR values will not be differed significantly.
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The parity plots of the predicted versus observed values are presented
in Figure 3. In both train and test data, most of the points are remark-
ably close to the parity line. The embedded histogram also shows that
most residuals/errors are distributed around zero which indicates a reliable
performance of the models.

Table 3: Performance metrics and their corresponding 95% confidence intervals of cycle-
at model in predicting k-o, k-p, e-o, e-p and EOL.

MAE (cycles) RMSE (cycles)
Train Test Train Test

k-o 10 ± 1.5 57 ± 15.4 13 ± 2.0 78 ± 23.4
k-p 10 ± 1.5 69 ± 20.2 13 ± 1.9 99 ± 34.9
e-o 12 ± 1.8 81 ± 18.5 15 ± 2.2 103 ± 20.7
e-p 12 ± 1.9 68 ± 16.7 16 ± 2.4 89 ± 20.5
EOL 11 ± 1.8 71 ± 21.0 15 ± 2.3 101 ± 36.5

Table 4: Performance metrics together with 95% confidence intervals of value-at model
in predicting Qatk-o, Qatk-p, IRate-o, IRate-p and IRatEOL.

MAE RMSE
Train (×10−4) Test (×10−3) Train (×10−4) Test (×10−3)

Qatk-o 7.79± 1.30 5.373± 1.20 10.50± 2.10 6.778± 1.60
Qatk-p 7.79± 1.30 4.590± 1.10 10.52± 2.20 6.002± 1.20
IRate-o 0.15± 0.02 0.413± 0.12 0.20± 0.035 0.577± 0.17
IRate-p 0.14± 0.025 0.414± 0.11 0.19± 0.035 0.570± 0.17
IRatEOL 0.15± 0.025 0.440± 0.13 0.20± 0.030 0.624± 0.21
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Figure 3: Parity plots of the predicted values from the cycle-at and value-at models
versus observed values. Histograms of corresponding residuals embedded in each plot.

4.2. Entire curve prediction

After obtaining the knees/elbows and their corresponding capacity and
IR values, we used the modified quadratic spline described in Section 3.4
to fit these values. The results of this procedure, applied to random cells
in test set, together with 90% confidence interval are shown in Figure 4.
For each of the curves, the associated confidence interval was obtained by
calculating prediction intervals for the test set. These intervals were calcu-
lated by training and predicting with multiple independent copies of models:
each of these models gave different predictions due to stochastic nature of
the XGBoost algorithm. Subsequent to this, we apply the spline on the
predicted intervals for k-o/e-o, k-p/e-p and EOL. It is observed that the
method performs better in predicting capacity fade curves than IR curves.
The reason for this is not far-fetched. The IR values in the utilised dataset
are very noisy and thus any model using these values is likely to strug-
gle in capturing the underlying pattern (see, e.g., b1c33 and b2c39 in Fig
4b); However, the predicted IR curves do qualitatively capture the observed
trends. We also note an underestimation of IRatEOL for the IR curves of
cells in batch 8. In addition to the measured IR data, we make use of the
predicted IR values in [24] for cells in batch 8. This will introduce an inher-
ent uncertainty/variance in their prediction into our model and additionally
illustrates differences from predicting from real data (that of [12]) and syn-
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thetic data (that of [6]) – we emphasize that without such synthetic data no
quantification of IR prediction would be possible for the [20] dataset.

(a)

(b)

Figure 4: Predicted (a) capacity fade and (b) IR curves for random selected test cells
with confidence interval.
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4.3. Feature relevance

We now report on the feature importance through correlation and model
results as means to discuss the most relevant features out of the generated
predictor models.

We, firstly, obtain the Pearson correlation (ρ) between the features and
targets; results are given in Figure 5. We aim at looking at features which
have a linear relationship with target values. Most features are found to
have high correlation with targets except in few cases such as min-ccv-f0,
min-ccv-f25 and max-ccv-fdiff. Looking in more detail at the correlations,
features corresponding to the mean of the CC discharge voltage are seen to
have a strong positive correlation with knee-onset/point, elbow-onset/point
and EOL (with ρ > 0.5), while strong negative correlations are observed for
IRs at e-o, e-p and EOL (with ρ < −0.5). The correlations observed here
reflect practical scenarios. It is expected that cells which decay slower (and
thus have a later knee-onset/point, elbow-onset/point and EOL) would have
a higher average voltage during discharge and thus a positive correlation.
On the other hand, cells that decay quickly will have a faster increase in IR,
and hence, a negative correlation with the average voltage. This discovery
is also seen in the correlations of all features belonging to kurtosis; few
extracted from area under the curve (area-ccv-f50-0 and area-ccv-fdiff); and
some corresponding to gradients (grad-ccv-start-f0/f25/f50, grad-ccv-min-
diff and grad-ccv-max-diff). However, the reverse is the case for all features
measuring the variance and skewness of the curve, grad-ccv-end-f25, and
grad-ccv-min-f25.

Secondly, we look at the feature importance in each of the proposed
XGBoost models: cycle-at and value-at models. Detailed information about
how feature importance is computed by the XGBoost algorithm can be found
in [31]. We provide the plot of this scaled importance (with least and highest
importance as 0 and 1 respectively) in Figure 6. With respect to the cycle-
at model, feature measuring the difference between the variance of the CC
discharge voltage at the initial cycle and cycle 50 (var-ccv-f50-0) is found
to be used most frequently in tree construction with highest importance
value across all the predicted targets. This feature does not only capture
the dynamics of the voltage curve at the measured points, but also compare
their variability at the two extreme points of prediction (at first and 50th
cycle). This rationalization is responsible for this remarkable performance.
Looking at the literature that makes use of this idea of variance to measure
variability, a variance model using only the logarithm of the variance of
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∆Q100−10(V )3 was built in [12] for EOL prediction. Said model achieves
an MAPE of about 15% and 11% on their primary and secondary test sets,
respectively.

As for the value-at model, the features’ relative importance is spread
across a larger number of features. Features with low relative importance
might capture different information or pattern in the data, which does not
have a direct impact on the targets in consideration. Looking at the predic-
tion of Qatk-o and Qatk-p, the area under the CC discharge voltage curve
is found to have the highest feature importance. This can be linked to the
relationship between this feature and capacity. The time integral of dis-
charge voltage is proportional to the energy delivered by the battery since
the current is kept constant over the discharge process. This energy is in
turn influenced by the capacity of the battery: the energy produced by a
battery is controlled by the amount of electricity generated as a result of
electrochemical reactions in the battery. On the other hand, the associated
with the rate of change of the CC discharge voltage with time is discovered
to be the most relevant in predicting IRs at the elbows and EOL when com-
pared to other features in the model. This is most likely attached to the
inverse relationship between this predictor and IR. As IR increases, the bat-
tery temperature rises and voltage drops thus a negative rate. The reverse
is the case when the IR falls with time.

3∆Q100−10(V ) = Q100(V ) − Q10(V ), where Qi(V ) is the value of the interpolated
discharge capacity (Q)-voltage (V ) curve corresponding to cycle i.
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Figure 5: Pearson correlation between all generated features and targets.
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(a)

(b)

Figure 6: Feature importance bar charts of the first 10 most important features (as
metrised by the XGBoost algorithm [31]) in the case of (a) cycle-at model and (b) value-
at model.

4.4. Sub-sampling of CC discharging voltage

For the dataset at hand and illustrated in Figure 1, the frequency of data
recording is approximately 4 seconds and all models developed so far made
full use of the data. In this section we investigate how much sub-sampling
in the CC discharge voltage response curve can be done without a signifi-
cant loss of quality in the models. We focus on a single model predicting
the capacity EOL cycle number of the cells and evaluate it through cross-
validation. Figure 7 shows, as expected, errors to be increasing as the time
steps rise (i.e., sub-sampling in wider intervals). The errors are more pro-
nounced when a time step of more than 1 minute is used for sub-sampling.
A direct implication of this strategy is that CC discharge voltage does not
need to be measured in a small-time interval to obtain a good enough model,
and we note that it is sufficient to take voltage response measurement at the
end of every 1 minute. This reduces cost of data acquisition, storage and
computational time during the modelling process.
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Figure 7: Cross-validation results using different time steps for CC discharge voltage
sub-sampling. The 95% confidence intervals on the mean errors were calculated via boot-
strapping. It is observed that the model yielded an MAE and RMSE of 65 and 83 cycles
respectively at the minimum time step (4 seconds) whereas errors are 87 and 109 cycles
respectively when the CC discharge voltage curves are sub-sampled at every 1 minute.
This indicates that the model does not lose significant quality at 1 minute time step.

4.5. Comparison with the literature

In this section, we compare our approach to other methods found in the
literature making use of the same datasets [12] and feature-based technique
to predict EOL. To bring all the approaches to a common ground as much
as possible, we only use batches 1, 2, and 3 (i.e., [12] ) for this comparison
as they were used in the referenced work. We present the summary of this
comparative analysis in Table 5.

Severson et al. [12] worked on data-driven prediction of EOL for capacity
degradation. The authors generated features and built three linear regres-
sion models which they called variance, discharge and full model. A key note
about their study is that they made use of the first 100 cycles of the data.
The variance model, which used logarithm of the variance of ∆Q100−10(V )
for EOL prediction, achieved a MAPE of about 15% and 11% on the pri-
mary and secondary test sets respectively. The discharge model, in addition
to the previous features, used predictors obtained from voltage and current
readings during the first 100 cycles, and attains an MAPE of 10.1% and
8.6% on the primary and secondary test data respectively. Their full model,
using a combination of features from the previous two and features derived
from temperature and IR, achieved 7.5% and 10.7% MAPE on the primary
and secondary test data respectively.

In a paper closely related to that of [12], Saxena et al. [17] used the first
100 cycles of the discharge voltage-capacity curves as inputs to a CNN model
to predict the entire capacity fade curve via an exponential curve parame-
terisation (no IR is predicted). On testing the accuracy of their model, a
mean absolute percentage error (MAPE) of approximately 22% was recorded
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in predicting the EOL of the cells involved. Although it should be emphasized
that their model was not trained to predict the EOL directly.

A broad learning-extreme learning machine was proposed by Ma et
al. [33] to predict the capacity and EOL using the first 100 cycles of data
for feature extraction. They recorded an MAPE of 9% on the test data.

Another approach similar to [12] is the work of Shen et al. [34]: they
made use of the Relevance Vector Machine to generate synthetic data for
cells characterized by longer cycle-lives. Subsequent to this, this synthetic
data together with the actual data were used to build a feature-based con-
volutional neural network (CNN) using the gradient of the interpolated
capacity-voltage curve Q(V ) corresponding to the first 100 cycles to pre-
dict EOL. An average MAPE of 11.7% was reported in their paper.

In the same vein, the EOL of the considered cells was predicted in [35]
using the Gradient Boosting Regression Trees algorithm trained on features
extracted from different sources namely: entire voltage, capacity, and tem-
perature. The model evaluation yielded a mean average percentage error of
7%.

Contrary to all the aforementioned strategies which used the entire curves
of a specific battery chemistry, our approach makes use of 50 cycles of only
CC voltage response corresponding to the discharge part of the curve. Gen-
erated features were fed into an extreme gradient boosting regression algo-
rithm which resulted in a mean absolute percentage error of 12% on the test
data.
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Table 5: Comparison of the performance of our model in predicting EOL. For comparison
purpose, we restrict model building to only cells in batches 1, 2, and 3. Papers are ordered
as an increasing function of number of cycles used and whether they use full or part of
the measured data; data used are measured voltage (V ), discharge capacity (Q), current
(I), temperature (T ), IR (IR), discharge capacity-voltage curve (Q(V )), state-of-health
(SOH) and charge time (ct). ‘Full at discharge’ means that the corresponding curves
are obtained using the whole measurements when energy is being derived from the cells;
whereas ‘CC at discharge’ depicts the data is derived only from the CC component of the
discharge curve. Metrics in parenthesis correspond to the secondary test scores from the
paper.

Papers Data used
Cycles
used

Nature of curve MAPE (%)

This work V 50 CC at discharge 12.0

[17] Q(V ) 100 Full at discharge ∼22.0
Variance [12] Q(V ) 100 Full at discharge 15.0 (11.0)
Discharge [12] Q(V ), V, I 100 Full at discharge 10.1 (8.6)

Full [12] Q(V ), V, I, T, IR 100 Full at discharge 7.5 (10.7)
[33] SOH, Q(V ), IR, ct 100 Full at discharge 9.0
[34] Q(V ) 100 Full at discharge 11.7
[35] SOH, Q(V ), V, T 100 Full at discharge 7.0

5. Conclusion

The prediction of degradation capacity fade and IR rise curves from
the CC voltage response during the discharge phase has been addressed.
The model developed provides a stark benefit over previous approaches that
require information of full charge/discharge (or both) cycles. Many real-
world applications do not allow for consistent charge/discharge cycles and
thus being able to predict from just one of the (charge or discharge) phases
(or portions of it) in isolation provides great value.

In the context of a reduction in data dimension, our method uses only
CC discharge voltage corresponding over the first 50 cycles of data with
competitive accuracy. We found that minutewise recording of the voltage
response suffices for prediction, contrasting with the literature reviewed in
this study that requires all the available data from charging/discharging (or
both) and with high-frequency data recording. These model characteristics
are especially valuable for practical deployment where only limited data can
be accessed. Our findings also show how much (or how little) information
is needed for cheap, informative and accurate early-life prediction.

On the access to various remaining useful life quantifiers, our strategy
leverages the accurate prediction of knees, elbows and EOL. This indicates
the efficiency and versatility of our approach as one obtains a full trajectory
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curve prediction and various battery life prognostics. Regarding feature
importance analysis, we strike a balance between model complexity and
interpretability as we can analyse the contribution of each of the features
generated to the overall model performance. This is extremely useful from
the industrial application point of view as we find that a minimal number
of features can capture the main behaviours of the degradation profile.

In terms of future study, our approach could be extended to consider CC
charging situations, as it typical for electric vehicles.

Methods

Machine Learning Performance

The metrics considered in this study are mean absolute error (MAE),
mean absolute percentage error (MAPE) and root mean squared error (RMSE).
They are defined as follows:

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|

MAPE(y, ŷ) =
100%

n

n∑
i=1

|yi − ŷi|
yi

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

(3)

where yi, ŷi are the actual and predicted values for sample i respectively,
and n is the number of samples.

Modified Quadratic Spline

The idea behind the construction of this spline is to have three different
polynomials defined in three different domains which have the knees, elbows
and EOL as their end-points. The first of these polynomials is a straight
line which joins the start of the curve to the knee/elbow onset. While the
second (a quadratic curve) connects the knee/elbow onset to the knee/elbow
point, the last polynomial (also quadratic) completes the curve estimation by
joining the knee/elbow point to the EOL. Concretely, this spline is defined
in terms of polynomials P0, P1, and P3 as:

S2 :=


P0(n) = a0 + b0n+ c0n

2, n0 ≤ n < n1;

P1(n) = a1 + b1n+ c1n
2, n1 ≤ n < n2;

P2(n) = a2 + b2n+ c2n
2, n2 ≤ n ≤ n3;

(4)
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constrained by 

P0(ni) = fi, i = 0, 1;

P1(ni) = fi, i = 1, 2;

P2(ni) = fi, i = 2, 3;

P ′
0(n1)− P ′

1(n1) = 0;

P ′
1(n2)− P ′

2(n2) = 0;

c0 = 0.

(5)

Here, n depicts cycles and ai, bi, ci are all real numbers. The points
ni, i = 0, . . . , 3 correspond to the initial cycle number, k-o/e-o, k-p/e-p and
EOL respectively. Similarly fi, i = 0, . . . , 3 are the initial capacity/IR at
these points: Qatk-o/IRatk-o, Qatk-p/IRate-p and QatEOL/IRatEOL re-
spectively. The first three constraints of Equation (5) ensure that the spline
coincide with the actual values fi while derivative constraints ensure the
continuity of the spline at the interior points. The last constraint fixes the
first polynomial P0 to be a straight line and is also needed to obtain values
of all the coefficients. To obtain the entire spline, we make the assumption
that the initial cycle and the corresponding capacity/IR values are known.
In addition, S2 is only defined in the interval [n0, n3]. This is not rigid as the
EOL (which corresponds to n3) can be redefined other than cycle number
at 80% of initial capacity. The linear equations generated for each of the
cells are solved computationally using the NumPy solver [26].
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