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ABSTRACT (250 words) 

 

BACKGROUND: Epicardial adipose tissue volume (EAT) is a marker of visceral obesity that can be 

measured in coronary CT angiograms (CCTA). The clinical value of integrating this measurement in 

routine CCTA interpretation has not been documented.   

 

OBJECTIVE: To develop a deep-learning network (DLN) for automated quantification of EAT from 

CCTA, test it in technically challenging patients, and validate its prognostic value in routine clinical 

care. 

 

METHODS: The DLN was trained and validated to auto-segment EAT in 3720 CCTA scans from the 

Oxford Risk Factors And Non-invasive imaging cohort. The model was tested in patients with 

challenging anatomy and scan artefacts and applied to a longitudinal cohort of 253 post-cardiac surgery 

patients and 1558 patients from the SCOT-HEART trial, to investigate its prognostic value. 

 

RESULTS: External validation of the DLN yielded a concordance correlation coefficient of 0.970 for 

machine vs human. EAT was associated with coronary artery disease (OR[95%CI] per SD increase in 

EAT 1.13[1.04-1.30] p=0.01), and atrial fibrillation (AF) (1.25[1.08-1.40], p=0.03), after correction for 

risk factors (including BMI). EAT predicted all-cause mortality (HR[95%CI] per SD = 1.28[1.10-1.37], 

p=0.02), myocardial infarction (1.26[1.09-1.38] p=0.001) and stroke (1.20[1.09-1.38] p=0.02) 

independently of risk factors in SCOT-HEART (5y follow-up). It also predicted in-hospital 

(HR[95%CI] = 2.67[1.26-3.73], p=< 0.01) and long-term post-cardiac surgery AF (7y follow-up; 

HR[95%CI] = 2.14[1.19-2.97], p=< 0.01). 
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CONCLUSIONS:  Automated assessment of EAT is possible in CCTA, including in challenging 

patients; it forms a powerful marker of metabolically unhealthy visceral obesity, which could be used for 

cardiovascular risk stratification. 

 

KEY WORDS: Computed tomography, deep-learning, adipose tissue, visceral fat, atherosclerosis, 

atrial fibrillation 

 

ABBREVIATION LIST 

BMI Body mass index 

BSA Body surface area 

CAC Coronary artery calcium 

CAD Coronary artery disease 

CCC Lin’s concordance correlation coefficient 

CCTA Coronary computed tomography angiography 

DLN Deep-learning network 

EAT Epicardial adipose tissue 

HU Hounsfield Units 

MI Myocardial infarction 

ORFAN The Oxford Risk Factors And Non Invasive Imaging Study 

ROC Receiver operator characteristic 
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INTRODUCTION 

Coronary computed tomography angiography (CCTA) is used to evaluate coronary artery 

disease (CAD) risk(1), with guidelines in Europe(2) and USA(3) recommending CCTA for assessment 

of patients with chest pain. The use of CCTA for detecting CAD is increasing world-wide and it is likely 

that further valuable information within CCTA scans that is currently not fully utilised in clinical 

practice could improve risk assessment and patient management for cardio-metabolic diseases, with 

multiple such technologies being discovered through the uptake of artificial intelligence methods in 

research and practice(4). 

Adipose tissue is recognised as a key regulator of cardiovascular health and disease, exerting 

both protective and deleterious effects on the cardiovascular system(5). Epicardial adipose tissue (EAT) 

is a metabolically active depot of visceral fat(5), and may be a feature of metabolically unhealthy 

obesity and the metabolic syndrome (6). Indeed, EAT volume has been associated with multiple distinct 

cardiovascular diseases including CAD and atrial fibrillation (AF)(7). The EAT volume is generally 

considered to be a marker of visceral obesity, as opposed to more sophisticated metrics such as the peri-

coronary Fat Attenuation Index, which specifically captures the degree of coronary inflammation, and 

has prognostic value over and above that of EAT volume(8). CCTA provides the non-invasive gold 

standard measurement of EAT volume due to its excellent spatial resolution. However, manual 

quantification is laborious and currently falls outside the scope of routine CCTA interpretation. If 

clinical utility of automated EAT volume quantification could be demonstrated and found to be feasible 

in technically challenging CCTA patients, it is possible that this measure could become part of standard 

of care. 

In this study we developed and validated a DLN for the automated quantification of EAT 

volume, which was then tested in real-world CCTA patients with commonly encountered image quality 

issues to ensure validity. Then, we applied the fully automated EAT quantification tool to investigate the 
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clinical association of EAT volume with relevant cross-sectional and longitudinal disease outcomes 

(Central illustration). 

 

METHODS 

Study populations 

Each study (Oxford Risk Factors And Non Invasive Imaging Study (ORFAN), AdipoRedOx and 

the Scottish COmputed Tomography of the HEART (SCOT-HEART) trial) received ethical approval. 

The full ethics, population descriptions, variable definitions, laboratory techniques, and CCTA 

acquisition and retrieval protocols are outlined in the Supplementary Methods. Briefly, The ORFAN 

Study (NCT05169333) is an international multi-centre prospective cohort study which collects CCTA 

scans and patient clinical data from those who are undergoing or have undergone CCTA since 2005 

(www.oxhvf.com/the-orfan-study). For this analysis, data was utilised from across four NHS sites in 

England and one in the USA (Figure 1). The AdipoRedOx study involves patients who are undergoing 

cardiac surgery; as part of the study patients undergo CCTA shortly after their operation and are 

prospectively followed-up for clinical outcomes via NHS Digital (see Supplement). The SCOT-HEART 

trial included clinical patients with suspected angina due to coronary heart disease, who were followed 

up for 5 years post-CCTA for clinical outcomes (see Supplement). 

Overall study design 

The overall approach to the development of the DLN, the internal and external validation, and 

the application of the DLN in external cohorts for ascertainment of clinical utility is outlined in Figure 2. 

In summary, 2200 CCTA scans from the ORFAN Study were utilised for training the DLN for the 

detection of the whole heart within the bounds of the pericardium. Following training, an initial 

assessment of model performance was performed in 100 unseen ORFAN Study scans (see 

Supplementary Figure 1 and 2). Three separate groups of 200 unseen scans from the ORFAN Study 

were utilised for fine-tuning the model through three iterations of feedback learning.  

https://clinicaltrials.gov/ct2/show/NCT05169333
http://www.oxhvf.com/the-orfan-study
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The DLN was tested internally on 200 unseen ORFAN Study scans from the UK sites of the 

study. External validation was performed on 720 unseen scans from USA sites of the ORFAN Study. 

The DLN was then applied to unseen scans from challenging clinical populations test the model in 

patients with challenging anatomy and/or commonly occurring scan artefacts. Finally, the model was 

tested in unseen external scans of the SCOT-HEART trial for real world evaluation of the prognostic 

value of EAT volume as a marker of metabolically unhealthy obesity. The model was also applied 

within the AdipoRedOx Study to test the prognostic value of EAT volume on the risk of in-patient post-

cardiac surgery AF (>30s AF on monitoring) and long-term AF (paroxysmal, persistent, or chronic) 

following surgery were investigated 

Developing the DLN for automated segmentation and quantification of EAT volume 

Manual segmentation of the 2200 CCTA and the iterations of scans for feedback learning of the 

DLN, and the automated extraction of EAT volume from the heart segmentation were performed using 

CaRi-Heart® version 2.2.1 (Caristo Diagnostics Ltd., Oxford, UK) (see Supplementary Figure 3)(9). A 

fully automated method for whole heart segmentation on CCTA scans was employed using a 3D 

Residual-U-Net neural network architecture for volumetric segmentation of CCTA (Supplementary 

Methods). The architecture of the DLN is demonstrated in Figure 3A.  

Internal validation 

A random sample of 200 sequestered CCTAs from the UK sites in the ORFAN study were 

utilised for internal validation of the DLN. Human segmentation of these scans was undertaken blind to 

all other data. 

External validation 

A sample of 720 unseen CCTA from the Cleveland Clinic, OH, USA, site of the ORFAN Study 

were utilised for external validation of the algorithm – as a broad external validation cohort(10). The 

manual segmentation of these scans was undertaken blind to all other data. 

Statistical analysis 
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For inter-reader repeatability testing and human versus automated model assessment of testing 

data (preliminary testing, internal/external validation, and challenging clinical populations) agreement 

was assessed by using concordance correlation coefficients (CCC) with scatterplots and Bland-Altman 

analysis for significance of bias. When applied in a cohort-wide setting in the AdipoRedOx and SCOT-

HEART studies, all EAT volumes were standardised by patient body surface area (BSA) using the Du 

Bois formula[22].  

For cross-sectional analysis of disease risk conveyed by EAT volume, multiple-adjusted logistic 

regression was used for calculation of the odds-ratio of prevalent disease (AF at time of CCTA and 

obstructive CAD from CCTA) at the time of the CCTA given increase in EAT by one standard deviation 

(SD). All analysis were adjusted for a standard set of cardiovascular disease (CVD) risk factors that are 

listed within all figure legends. Longitudinal assessment of the prognostic value of EAT volume was 

performed by multivariable Cox regression models adjusted for the standard set of clinical risk factors 

for each outcome. Both odds ratios and hazard ratios are reported per one SD increase in EAT volume. 

Analysis of all SCOT-HEART trial risk models was repeated with the inclusion of only variables in 

each model that were found to have a statistically meaningful association with the relevant outcome 

(dependent variable) in univariate analysis, at the level of p ≤ 0.1 (see Supplementary Methods, & 

Supplementary Table 1). Supplementary analysis of AdipoRedOx Study risk models was performed 

with AF specific risk factors (see Supplementary Methods). 

Receiver operator characteristic curves for the discrimination of obstructive CAD from CCTA 

and MI were plotted with a CVD risk factor models vs traditional risk factor model plus the addition of 

EAT volume. Area under the curve analysis was undertaken to compare the models for each outcome. 

We selected the optimum unified cut-off for EAT volume prognostication for all-cause mortality, 

fatal/non-fatal MI and fatal/non-fatal stroke in SCOT-HEART by identifying the value that maximised 

Youden's J statistic (sum of sensitivity and specificity) on time-dependent ROC curve analysis for all-

cause mortality, fatal/non-fatal MI and fatal/non-fatal stroke to ensure an optimum balance between 
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sensitivity and specificity in our models. For consistency, the same approach was utilised to select the 

optimum cut-off for EAT volume prognostication for in-hospital post-operative and long-term AF risk 

within the severe CAD population of the AdipoRedOx Study. Further statistical analysis is in the 

Supplementary Methods. 

 

RESULTS 

The geographic location, demographics, clinical risk factors, and CCTA scan technical 

parameters for all ORFAN Study cohorts utilised in DLN training, validation and external testing are 

shown in Table 1. The demographics and scan characteristics of the external clinical cohorts for which 

the DLN were applied following development are shown in Table 2. The relevant clinical outcomes for 

the prospective clinical cohorts are presented in Supplementary Table 2. In all cohorts where EAT 

volumes were quantified, both manually and automatically, the values were normally distributed. 

Inter-reader repeatability for EAT segmentation and whole heart segmentation 

The inter-observer variability between two expert analysts of the Oxford Academic 

Cardiovascular Computed Tomography Core Lab (OXACCT) core lab was evaluated in 100 randomly 

selected patients from the UK sites of ORFAN. CCC for EAT volume was excellent between readers at 

0.970, and the bias was non-significant at mean[95% agreement] of 2.1[-3.9-6.1]cm3, p= 0.74 

(Supplementary Figure 5A-B). For the whole heart segmentation volume CCC was also excellent at 

0.969 with non-significant bias of 15.2[-7.5-23.1]cm3 p=0.08 (Supplementary Figure 5C-D). 

Internal validation of the model 

Final internal validation occurred following three iterations of feedback learning to enhance the 

performance of the model. The median[IQR] EAT volume in internal validation was 120.9[95.1-

156cm3]. When applied to 200 unseen scans from the UK sites of the ORFAN Study, the CCC was 

0.972 (Figure 4A). The bias in Bland-Altman analysis (Figure 4B) was also non-significant at 6.1[-11.1-

15.7]cm3, p = 0.19.  
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External validation of the model 

The final deep-learning model was applied to 720 unseen scans from the US sites of the ORFAN 

Study. The mean automated analysis time for the automated segmentation was 12.4 seconds compared 

to mean manual segmentation time of 18 minutes and 20 seconds. The median[IQR] EAT volume in 

external validation was 169.3[111.6-241.7]cm3. The CCC for the automated deep-learning model versus 

human expert segmentation in the external validation cohort was excellent, at 0.970 (Figure 4C) and the 

bias in Bland-Altman analysis (Figure 4D) was non-significant at 3.2[-13.6-17.2]cm3, p = 0.20. 

Validation of the automated model for EAT volume quantification in challenging clinical populations 

Excellent CCC for automated EAT segmentation versus human expert segmentation was 

achieved in all challenging patient groups: Patient’s with recent cardiac surgery (<6 weeks post 

operation) CCC = 0.960 (Figure 5A – green); patients with BMI ≥ 40, CCC = 0.962 (Figure 5A – red); 

patients with reported CAC score of ≥ 400 (Figure 5B – green), CCC = 0.958; patients with significant 

metallic artefact within the pericardium, CCC = 0.955 (Figure 5B – red), and a combined patient group 

of recent open-heart surgery, BMI ≥ 30Kg/m2  & CAC ≥ 400, CCC = 0.955 (Figure 5C).  

Cross-sectional clinical correlations 

At the time of the CCTA, application of the fully automated segmentation tool for quantification 

of EAT volume was found to be a significant independent predictor of the presence of AF at time of 

CCTA and obstructive CAD from CCTA (any one coronary vessel with ≥50% stenosis on CCTA), 

within 1,558 patients randomised to receive CCTA in the SCOT-HEART trial population. 

When accounting for CVD risk factors the odds ratio (OR[95%CI]) of AF at time of CCTA per 1 

standard deviation (SD) increase of EAT was 1.25[1.08-1.40] p=0.03 (Figure 6A). When accounting for 

CVD risk factors the OR of obstructive CAD from the CCTA per 1 SD increase of EAT was 1.13[1.04-

1.30] p=0.01 (Figure 6B). Results with statistically selected risk factor adjustment is shown in 

Supplementary Figure 4. 

Longitudinal EAT volume clinical correlations 
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Median follow up for the 1,558 patients randomised to receive CCTA in SCOT-HEART which 

were analysed was 4.8 years. There were 35 deaths of all causes (2.25%) of which 4 (0.25%) were 

deaths related with coronary heart disease. There were 8 fatal and non-fatal strokes (0.51%) and 39 fatal 

and non-fatal myocardial infarctions (2.5%). 

The hazard ratio (HR[95%CI]) of all-cause mortality per 1 SD increase of EAT was 1.28[1.10-

1.37] p=0.02, after accounting for CVD risk factors (Figure 6C). When adjusted for the same risk 

factors, the HR[95%CI] of non-cardiac mortality per 1 SD increase of EAT volume was 1.17[1.07-1.33] 

p=0.04 (Figure 6D). This constitutes a ∆HR of -0.10, confirming that EAT is a measure of visceral 

adipose tissue related with multiple fatal pathologies, unrelated to CAD. When accounting for CVD risk 

factors the HR of MI per 1 SD increase of EAT was 1.26[1.09-1.38] p=0.001 (Figure 6E). Finally, when 

accounting for the same risk factors, HR[95%CI] of stroke per 1 SD increase of EAT is 1.20[1.08-1.32] 

p=0.02 (Figure 6F). Results with statistically selected risk factor adjustment is shown in Supplementary 

Figure 4. 

Adding EAT volume into a clinical model led to significant improvement in the ability to detect 

obstructive CAD on CCTA (any one coronary vessel with ≥50% stenosis on CCTA) cross sectionally 

(Figure 6G, ΔAUC 0.103 (p<0.01)) and improved the ability to predict future MI (both fatal and non-

fatal) longitudinally (Figure 6H, ΔAUC 0.07 (P<0.01). 

A single predictive value of EAT volume for long-term disease risk 

To generate distinct clinical groups based around a single EAT volume cut-point, the SCOT-

HEART trial population was dichotomised into high versus low EAT volume groups based on an 

optimum cut-off of 169.9cm3 for the three primary outcomes of interest: all-cause mortality, fatal/non-

fatal MI and fatal/non-fatal stroke. This cut-off was derived from a weighted Youden’s J index analysis 

to generate a single value for application. Utilising this cut-point, there was significantly different 

adjusted hazard ratios for the low EAT group (<169.9cm3) versus the high EAT group (≥169.9cm3) for 

all outcomes. All analyses included multivariable adjustment for CVD risk factors including BMI.  
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High EAT volume values (≥169.9cm3 vs <169.9cm3) were associated with a higher prospective 

risk for both fatal and non-fatal myocardial infarction (adjusted HR 1.93[1.31-4.01] p<0·01; Figure 7A), 

both fatal and non-fatal stroke (2.25[1.07-4.72] p<0·01; Figure 7B), non-cardiac mortality (3.84[1.54-

12.10] p<0·01; Figure 7C), and all-cause mortality (5.02[2.93-9.34] p<0·01; Figure 7D). 

EAT volume and post-operative atrial fibrillation risk 

Utilising 250 scans from patients in the AdipoRedOx Study, the longitudinal associations 

between EAT volume and in-patient post-operative AF (>30 seconds of AF on monitoring) and long-

term AF (paroxysmal, persistent or chronic) following surgery were investigated.  

Again, a weighted Youden’s J index analysis was used to generate a single value to dichotomise 

the AdipoRedOx study population into high versus low EAT volume groups based on an optimum cut-

off of 198.7cm3 for the two primary outcomes of in-hospital post-operative AF and long-term post-

operative AF. Utilising this cut-point, there was significantly different adjusted hazard ratios for the low 

EAT group (<198.7cm3) versus the high EAT group (≥198.7cm3) for both outcomes. 

There were 97 events of in-hospital post-operative AF (38.8%) and 48 cases (19%) of new-onset 

AF in nation-wide NHS Digital data for the AdipoRedOx cohort. The Kaplan-Meier curve for in-

hospital post-operative AF following cardiac surgery for high (≥198.7cm3) EAT volume versus low 

(<198.7cm3). High EAT volumes were associated with a significantly greater risk for in-patient post-

operative AF following adjustment for CVD risk factors, with HR[95%CI] of 2.67[1.26-3.73] p<0.01, 

per 1 SD increase in EAT volume (Figure 8A). Equally, for long-term new-onset AF following cardiac 

surgery high risk EAT volumes were associated with a significantly greater risk for long-term AF, with 

HR[95%CI] of 2.14[1.19-2.97] p<0.01, per 1 SD increase in EAT volume (Figure 8B). 

The addition of EAT volume into a CVD risk factor model significantly improved the prediction 

of new-onset in-hospital AF in ROC curve analysis (Figure 8C) with ΔAUC of +0.0.8 (p=0.03) for CVD 

risk factor model 1 with the addition of EAT volume, and ΔAUC of +0.11 (p<0.001) with the addition 

of the risk factor model plus EAT volume on top of CCTA derived LA volume alone. The same was 
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found for new-onset long-term AF (Figure 8D), with ΔAUC of +0.09 (p=0.04) for risk factor model 1 

with the addition of EAT volume, and ΔAUC of +0.11 (p<0.001) over LA volume alone.  

Identical analysis with adjustment for a selection of AF specific risk factors, including LA 

volume and NT-proBNP, is presented as Supplementary Figure 6, with EAT volume retaining 

significance in all models. There was no significant change in results for all post-operative AF risk 

analysis when BMI was replaced with waist-hip ratio (Supplementary Figure 7).  

DISCUSSION 

In this study we developed a deep-learning model for automated segmentation and quantification 

of EAT from CCTA images. The model was then validated in multiple cohorts, including commonly 

occurring challenging populations where manual segmentation is extremely difficult due to artefacts 

with good performance. Then we applied this automated model to the SCOT-HEART cohort, 

demonstrating a good prognostic value of EAT volume for all-cause mortality and cardiovascular 

events, as a possible measure of unhealthy visceral obesity relevant to cardiometabolic dysfunction, 

regardless of if EAT volume was used as a continuous variable or when used with a cut-off. Contrary to 

peri-coronary FAI, that captures the degree of coronary artery inflammation, and is predictive of cardiac 

(but not of non-cardiac) mortality, we now demonstrate that EAT volume is predictive of non-cardiac 

mortality, confirming its role as a broader biomarker of visceral obesity, that affects survival in a 

broader sense. We also demonstrate that this measurement has important prognostic value for post-

operative AF in patients undergoing cardiac surgery, beyond known post-operative risk models 

including LA volume and NT-proBNP. Fully automated measurement of EAT volume incorporated into 

routine interpretation of CCTA promises to significantly improve the risk stratification of patients, 

across several important clinical outcomes. 

We developed a deep-learning model utilising a single network for the fully automated and rapid 

quantification of EAT volume from CCTA. Previous automated models for EAT quantification have 

predominately been in small cohorts (11,12). Most relevant is Commandeur et al(13) who developed a 
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CNN capable of automated EAT segmentation and tested in the EISNER cohort, however no head-to-

head comparison is made in this study. The model developed here achieves accurate EAT volume 

quantification in technically challenging yet commonly occurring clinical populations. The need for any 

AI-based radiology approaches to be applicable for all-comers is fundamental to patient acceptance and 

the future uptake of such technology. The DLN reduced EAT quantification time from an average of 

18minutes when performed manually, to an average of 12seconds, rendering this tool usable in the 

clinical environment without adding workload to clinical teams. 

EAT volume has previously been found to be associated with CVD metrics and outcomes 

including the presence of atherosclerosis (14) as well as coronary calcification progression(15). EAT is a 

source of numerous pro-inflammatory mediators that circulate well beyond the microcirculation of the 

heart to exert paracrine and endocrine effects on the cardiovascular and endocrine systems(5). We found 

EAT volume to be a significant predictor of all-cause mortality even with the exclusion of cardiac 

deaths. This suggests that the EAT may play a clinically significant role in broader metabolic diseases 

beyond atherosclerotic CAD. We propose that EAT volume should be treated as the gold standard for 

the detection of metabolically unhealthy visceral obesity and could form part of routine clinical 

interpretation of CCTA. This would shift the focus of CCTA examination as a purely structural 

assessment of the coronary arteries towards a more universal assessment of cardiovascular risk that 

considers a key visceral, metabolically sensitive, tissue depot. 

EAT is in continuous bi-directional communication with the cardiovascular system(5). When 

there is discordance between adipose tissue and the cardiovascular system the former is thought to shift 

function and exerts detrimental effects on the vessels and the heart muscle(16), which may pre-dispose 

the patient to adverse outcomes such as those which we investigated. We found that EAT volume is 

predictive of non-fatal MI and stroke independent of BMI and following adjustment for other relevant 

disease risk factors.  
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We demonstrate that EAT volume is an independent predictor providing incremental value for 

post-operative AF regardless of patient BMI, LA volume, NT-pro-BNP, and other AF risk factors, 

indicating an important role for EAT in driving post-operative arrhythmogenesis. It is proposed that pro-

inflammatory cytokines diffuse locally from dysfunctional EAT into the myocardium and contribute 

towards atrial myopathy(17), which drives the risk of AF. 

Limitations of this study include that we did not have detailed adiposity data (e.g., waist-hip 

ratio), or mortality data available within the SCOT-HEART trial population to investigate the exact 

causes of non-cardiac mortality that could be driving our finding of elevated risk of all-cause mortality 

conveyed by EAT volume. There were only 4 cardiovascular deaths during the 5y follow-up in SCOT-

HEART, limiting any cardiac mortality analysis. Other challenging clinical CCTA populations exist, 

such as those with congenital cardiac conditions, for which we lacked enough cases for testing of the 

deep-learning algorithm. Short-term AF risk data following cardiac surgery relied on inpatient 

monitoring only, without device monitoring following discharge.  

Conclusions 

We present a new deep-learning model that allows accurate, reproducible and rapid 

quantification of EAT volume on routine CCTA scans. We demonstrate that assessment of EAT volume 

can improve risk assessment for cardiovascular and non-cardiovascular outcomes independently of other 

risk factors including BMI. EAT volume is predictive of all-cause mortality and non-cardiac mortality, 

MI and stroke. EAT volume also conveys significant independent risk of post-cardiac surgery atrial 

fibrillation. Incorporating automated EAT volume quantification in CCTA reading protocols could 

improve global cardio-metabolic risk assessment and treatment planning for patients who undergo 

CCTA investigation, independently of the presence of coronary atherosclerosis. 
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CLINICAL PERSPECTIVE 

Competency in Clinical Knowledge:  

The automated quantification of epicardial adipose tissue (EAT) volume through an artificial 

intelligence approach on routine CT coronary angiography scans may allow improvements in disease 

risk assessment for cardiovascular event such as MI and stroke. 

Translational Outlook: 

The introduction of automated EAT assessment into standard CT coronary angiography 

interpretation could add significant value to patient care through enhanced prediction of disease risk for 

conditions such as coronary artery disease, stroke, and atrial fibrillation. 
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FIGURES & FIGURE LEGENDS 

 

Figure 1. The ORFAN Arm 4 Study  

The Oxford Risk Factors And Non Invasive Imaging Study (ORFAN) Arm 4 study is an international 

multi-centre retrospective cohort study of patients undergoing clinically indicated CCTA. The initial 

cohort size is 75,000 patients within the UK and 25,000 internationally, with ethically approved 

expansion underway for 250,000 patients. Within the UK, the study includes 17 NHS Trusts, with 4 

contributing data for the current study. Data collected for each participant includes the CCTA scan, data 

from the local hospital electronic patient record (EPR) and data from authorised third parties, including 

NHS Digital (all hospital event data from 2005-now), NICOR (national cardiac event registry) and 

SSNAP (national stroke event registry). 
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Figure 2. Study flow chart of model development, testing, and external application 

Schematic representation of the scientific approach to the development of the deep-learning model, the 

validation of the model through internal and external cohorts, and the application of the automated EAT 

volume quantification tool to three groups of patients from the AdipoRedOx Study and SCOT-HEART 

trial. 

CCTA: coronary computed tomography angiography; EAT: epicardial adipose tissue 
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Figure 3. Schematic of the deep-learning model for automated segmentation of the whole heart 

within the pericardium (A), and example automated segmentation (B) 

(A) Block diagram of the Residual U-Net based CNN architecture.  

Details of each layer are provided in the Supplementary Methods.  

(B) A single CCTA from the ORFAN study demonstrating human expert segmentation as ground truth, 

automated machine segmentation and a merge. 

EAT: Epicardial adipose tissue; CCTA: coronary computed tomography angiography; I: inferior; L: left; 

R: right; S: superior. 
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Figure 4. Validation of the deep-learning model 

Following all training and fine-tuning of the algorithm, internal validation in 200 ORFAN UK cases 

occurred and is demonstrated in the scatterplot (A) and Bland-Altman plot (B). External validation in 

720 ORFAN USA scans is shown in the scatterplot (C) and Bland-Altman plot (D). CCC: concordance 

correlation coefficient; EAT: epicardial adipose tissue 
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Figure 5. Validation of the automated deep-learning model in challenging clinical populations 

The automated EAT volume quantification tool was applied to groupings of unseen CCTA from the 

AdipoRedox Study and the SCOT-HEART trial. (A) patients who underwent open heart surgery 

(CABG) up to 6 weeks prior to CCTA (green) and patients with BMI ≥ 40 (red); (B) patients with CAC 

≥ 400 (green) and patients with significant metallic artefact within the pericardium (red); (C) patients 

who underwent open heart surgery (CABG) up to 6 weeks prior to the CCTA, had BMI ≥30 and CAC 

≥400. 

BMI: body mass index; CABG: coronary artery bypass graft surgery; CAC: coronary artery calcium 

score; CCC: concordance correlation coefficient; CCTA: coronary computed tomography angiography; 

EAT: epicardial adipose tissue. 
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Figure 6. Cross-sectional and longitudinal associations between EAT volume and clinical 

outcomes in the SCOT-HEART trial 

Plots of cross-sectional adjusted risk models for AF at the time of the scan, adjusted for age, 

gender, BMI, hypertension, CAC score, diabetes, and obstructive CAD as detected on CT (A); and 

obstructive CAD (any one coronary vessel with ≥50% stenosis on CCTA), adjusted for the same risk 

factors plus non-HDL-cholesterol and without obstructive CAD (B). Odds ratio is shown per 1 standard 

deviation (SD) increase in EAT volume for 1558 patients randomised to receive CCTA in the SCOT-

HEART trial. Plots of longitudinal hazard ratios per 1 SD increase in EAT volume in 1558 patients 

randomised to receive CCTA in the SCOT-HEART trial are shown for all-cause mortality (C), and non-

cardiac mortality (D), both with the same adjustment as for (A). Myocardial infarction (both fatal and 

non-fatal) (E) and stroke (both fatal and non-fatal) (F) are shown with the same adjustment. ROC curves 

are shown for the discrimination of obstructive CAD at the time of the CCTA (G) and longitudinal 

myocardial infarction (H). The risk factor model (blue) for each curve includes age, male gender, BMI, 

hypertension, non-HDL cholesterol, diabetes and CAC score, with obstructive CAD also included in the 

myocardial infarction model. Red in both curve is the risk factor model with the addition of EAT 

volume.  

AF: atrial fibrillation; BMI: body mass index; CAC: coronary artery calcium score; EAT: epicardial 

adipose tissue; Non-HDL C.: non-high density lipoprotein cholesterol. *Continuous variables per 1-

standard deviation increase; † = P<0.05 
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Figure 7. High EAT volume increases risk of major adverse events when assessed with a single 

cut-point  

Utilising a single cut-point for high-risk patients in SCOT-HEART (high risk = EAT 

≥169.9cm3), Kaplan-Meier curves for (A) fatal/non-fatal myocardial infarction, (B) fatal/non-fatal 

stroke, (C) non-cardiac mortality, and (D) all-cause mortality, are demonstrated. All HR are adjusted for 
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age, sex, BMI, hypertension, diabetes mellitus, coronary artery calcium score (log-transformed) and 

obstructive CAD as derived from CCTA.  

CI: confidence interval; EAT: epicardial adipose tissue; HR: hazard ratio 
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Figure 8. Prognostic value of EAT volume for post-operative AF 

Kaplan-Meier curve and adjusted HR for in-hospital post-operative AF (A) and long-term post-

operative AF (B), with sample dichotomised by Youden’s J index derived cut-point of EAT volume 

(high risk ≥ 198.7cm3; low risk < 198.7cm3), expressed per 1 SD increase of EAT volume. Adjustment 

is made for age, gender, hypertension, diabetes, CAC score, and BMI. (C,D) Time-dependent ROC 
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curves for discrimination of in-hospital post operative AF (C) and long-term post-operative AF (D). 

CCTA-derived LA volume (yellow) is shown alone; model 1 (red) consists of age, gender, hypertension, 

diabetes, CAC score, and BMI. The addition of EAT volume into model 1 is demonstrated (blue). 

AF: atrial fibrillation; AUC: area under curve; BMI: body mass index; CI: confidence interval; EAT: 

epicardial adipose tissue; HR: hazard ratio; LA: left atrium; MI: myocardial infarction; RFs: risk factors 
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Central Illustration. The development, testing and external application of an AI-powered 

epicardial adipose tissue quantification tool for clinical practice 

A deep-learning model was trained to automatically extract the adipose tissue from CCTA (top). The 

model performed excellently compared to human segmentation in internal and external testing, 

including in commonly occurring yet challenging CCTA patient groups (middle). The final automated 

AI-model for EAT quantification was applied to external clinical cohorts and revealed improved 

detection of prevalent disease risk for CAD and AF and provided incremental prognostic benefit for key 

cardiovascular events such as myocardial infarction, stroke, post-operative AF, and mortality in 

longitudinal cohorts. 

AF: atrial fibrillation; AI: artificial intelligence; BMI: body mass index; CAC: coronary artery calcium; 

CAD: coronary artery disease; CT: computed tomography; CCTA: coronary computed tomography 

angiography; EAT: epicardial adipose tissue; GPU: graphics processing unit; MI: myocardial infarction. 
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Table 1. Demographics and scan characteristics of ORFAN Study cohorts used in AI model development and testing 

BMI: Body mass index; CAD: Coronary artery disease; EAT: Epicardial adipose tissue; GE: General Electric.  

Values expressed as n(%) or median(IQR)

 ORFAN manual 

training cohort 

ORFAN UK feedback 

training cohort 

ORFAN UK internal 

validation cohort 

ORFAN USA external 

validation cohort 

Total number 2200 600 200 720 

Age (years) 60 (50-70) 57 (49-64) 56 (48-62) 53 (43-62) 

Male gender 1047 (47.6%) 315 (52.5%) 104 (52.0%) 389 (54.0%) 

BMI (kg/m2) 26.6 (23.6-29.9) 26.1 (23.1-30.0) 27.7 (24.8-30.7) 27.9 (24.5-32.2) 

Active smoking 376 (17.0%) 93 (15.5%) 27 (13.5%) N/A 

Hypertension 711 (32.0%) 228 (38.0%) 73 (36.5%) 309 (42.9%) 

Hypercholesterolaemia 896 (40.7%) 253 (42.2%) 76 (38.0%) 370 (51.4%) 

Diabetes mellitus 286 (13.0%) 101 (16.8%) 25 (12.5%) 73 (10.1%) 

Valve disease 139 (6.3%) 31 (5.2%) 13 (6.5%) 49 (6.8%) 

Known CAD 188 (8.5%) 55 (9.2%) 21 (10.5%) 331 (46.0%) 

Atrial fibrillation 98 (4.5%) 21 (3.5%) 9 (4.5%) 98 (13.6%) 

Previous heart surgery 47 (2.1%) 19 (3.2%) 7 (3.5%) 16 (2.2%) 

Scans     

Sites  

(scanner make & model) 

Oxford, UK (GE Revolution GSI, GE Lightspeed 

VCT & Canon Aquilion One) 

Bath, UK (Siemens Drive)  

Milton Keynes, UK (Canon Aquilion Prime SP)  

Leicester, UK (Siemens Definition Flash) 

Oxford, UK ( GE 

Revolution GSI, GE 

Lightspeed VCT & Canon 

Aquilion One ) 

Cleveland, USA (Philips 

Brilliance iCT & Siemens 

Definition Flash) 

Tube voltage     

 120 kVp 2112 (96.0%) 567 (94.5%) 193 (96.5%) 463 (64.3%) 

 100 kVp 81 (3.7%) 33 (5.5%) 7 (3.5%) 257 (35.7%) 

 80 kVp 7 (0.3%) 0 (0%) 0 (0%) 0 (0%) 

EAT volume (cm3) 133.2 (100.1-191.8) 124.9 (97.4-203.2) 120.9 (95.1-156.2) 169.3 (111.6-241.7) 
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Table 2. Demographics and scan characteristics of external clinical cohorts 

 

BMI: Body mass index; CAD: Coronary artery disease; EAT: Epicardial adipose tissue; 

GE: General Electric. Values expressed as n(%) or median(IQR) 

 

 AdipoRedOx cohort  SCOTHEART cohort 

Total number 253 1558 

Age (years) 67 (59-74) 58 (47-69) 

Male gender 220 (87.0%) 887 (56.9%) 

BMI (kg/m2) 27.9 (25.0-31.1) 28.7 (25.1-33.2)  

Active smoking 127 (50.2%) 298 (19.1%) 

Hypertension 186 (73.5%) 541 (34.7%) 

Hypercholesterolaemia 227 (89.7%) 810 (52.0%) 

Diabetes mellitus 55 (21.7%) 173 (11.1%) 

Valve disease 48 (19.0%) 144 (9.2%) 

Known CAD 253 (100%) 158 (10.1%) 

Atrial fibrillation 18 (7.1%) 32 (2.1%) 

Previous heart surgery 253 (100%) 33 (2.1%) 

Scans   

Site 

Scanner make & model 

Oxford  

-GE Revolution GSI 

-GE Lightspeed VCT 

-Canon Aquilion One 

Scotland  

-Philips Brilliance 64,  

-Siemens Biograph mCT  

-Canon Aquilion One 

Tube voltage   

 120 kVp 253 (100%) 846 (54.3%) 

 100 kVp 0 (0%) 712 (45.7%) 

 80 kVp 0 (0%) 0 (0%) 

EAT volume (cm3) 162.9 (103.3-223.3) 130.1 (94.2-171.6) 
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Supplementary Methods 

Study ethics 

All studies utilised in this manuscript complied with the human research ethics committees of the coordinating institute. The 

ORFAN Study (15/SC/0545) and the AdipoRedOx Study (C11/SC/0140) are sponsored by the University of Oxford and are both 

conducted with approval of the South Central – Oxford C Research Ethics Committee, as part of the Oxford Heart Vessels and 

Fat (ox-HVF) programme. The SCOT-HEART trial was sponsored by the University of Edinburgh and was conducted with the 

approval of the South-East Scotland Research Ethics Committee (NCT01149590). ORFAN USA sites research protocol was 

approved by all local institutional review boards, including material and data sharing agreements, with waiver of individual 

informed consent. 

Study populations 

ORFAN Study 

The ORFAN Study is an Ox-HVF study that enrols adult patients who receive clinically indicated CCTA for all accepted 

indications at collaborating hospitals. Enrolment is through individual clinical sites and includes 13 NHS Trusts in England and 

two clinical sites in the USA. ORFAN scans utilised in this study were performed between January 2015 through to December 

2020. For each patient included in the study the CCTA scan is pseudo-anonymised and delivered to The Oxford Academic 

Cardiovascular CT (OXACCT) Core Lab for analysis. 2,200 ORFAN patients’ scans were utilised for the manual training of the 

deep-learning model while 600 further unseen scans were utilised for feedback learning (where the scan is fed into the model for 

automated segmentation, the output segmentation is then corrected by a human expert before being fed back into the model). 100 

unseen UK ORFAN scans were utilised for preliminary evaluation of the model, and 200 unseen UK ORFAN scans were used 

for internal validation of the model. No outcome analysis of the ORFAN cohort was performed. 720 ORFAN USA scans 

(Cleveland Clinic, OH) were used only for external validation of the model and remained sequestered throughout the 

development and internal validation process. 

AdipoRedOx Study 

The AdipoRedOx study is an Ox-HVF study that enrols cardiac surgery patients at the Oxford University Hospitals NHS 

Foundation Trust, UK. The study is designed to investigate the role of inflammation and redox-state biology on heart disease 

through the collection of heart, vessel, and adipose tissue at the time of surgery. Relevant to this study, participants also undergo 

a CCTA within 6 weeks following surgery. Scans and relevant patient data from 253 participants were utilised in this study for 

the validation of the automated EAT quantification tool in challenging post-cardiac surgery patients.  
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SCOT-HEART trial 

SCOT-HEART is an open-label, randomized, controlled, parallel-group trial that was performed at 12 centres across Scotland, 

commencing in 2009. Adult patients (n=4126) referred to outpatient cardiology clinics for stable chest pain were randomly 

assigned in a 1:1 ratio to standard care plus CCTA or to standard care alone. No standard-care patients were utilised in this study. 

The trial has been described in detail previously1, 2. The median duration of follow-up was 4.8 years. In this study, 1,558 eligible 

patients who had been randomised to the CCTA arm of the study were utilised. 

Risk factors 

In regression models, hypertension was defined based on the presence of a documented diagnosis or treatment with an 

antihypertensive regimen, according to the relevant clinical guidelines3. Similar criteria were applied for the definition of 

hypercholesterolemia and diabetes mellitus4, 5. Valve disease was defined as the presence of any documented aortic or mitral 

valve stenosis or regurgitation (of any severity), or previous valve repair and/or replacement procedure, including minimal 

invasive methods. Previous heart surgery was defined as any previous documented coronary artery bypass graft procedure or 

valve replacement or repair procedure (not including TAVI). Active smoking was defined as any documented active smoking of 

any amount of tobacco products, including all tobacco products. All SCOT-HEART baseline variables have been described in 

further detail elsewhere6. 

Outcomes 

SCOT-HEART Study 

The cross-sectional outcome of AF was defined as any documented diagnosis of paroxysmal, persistent or chronic AF within a 

patient’s medical history, including self-report of the patient at the time of enrolment in the study. Outcomes within SCOT-

HEART trial are all defined within the Study Protocol6, 7. Importantly, MI was defined as per the Universal Definition of the 

Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction8. For the purposes of this study, the 

investigators followed the original SCOT-HEART investigators adjudication of events. This adjudication occurred according to 

the guidelines of the ACC/AHA9 and the Academic Research Consortium for definition of the cause of death10. Cardiac mortality 

within the study was defined as ‘any death due to proximate cardiac causes (e.g. myocardial infarction, low-output heart failure, 

fatal arrhythmia)’6. Sudden cardiac death was also included within this group9, 10. Any other death that was not captured by the 

previous definition was classified as of non-cardiac cause. Non-cardiac deaths included vascular causes such as stroke and 

embolism within the pulmonary circulation. Deaths were classified as ‘deaths of unknown cause’ only when information on the 

exact cause could not be obtained with certainty, which was at the discretion of the local SCOT-HEART investigators. The 

protocol of the SCOT-HEART study required that all adjudication of study events and cause of death be performed at each local 

site by the local study investigators. These investigators were not involved in the CT scan analysis or the statistical analysis of the 

study data. Events were ascertained via patient chart review, death certificate review and/or telephone follow-up or in-person 

verification with family members. No patient events were re-adjudicated for this study. All information utilised in this study was 

sent for statistical analysis to an independent team based at the University of Oxford, United Kingdom, which performed all 

analyses blind to scan data.  

AdipoRedOx Study 
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Immediate post-operative AF outcomes were collected in hospital during the in-patient stay following the surgery. AF in this 

context was defined as >30s of AF captured on continuous electrocardiographic monitoring. Patients were on telemetry 

monitoring of heart rhythm throughout their in-patient stay. If telemetry was ceased by the treating team, the patient was 

censored at that time in analysis. 

The long-term post-operative AF outcome was collected from NHS Digital data via linkage with study participant identifiers 

(NHS number and date of birth). Linkage was made to hospital episode statistics data for all regular admissions, outpatient 

episodes, emergency presentations and critical care episodes following the surgery. The long-term AF outcome is a merger of 

relevant ICD-10 codes for AF including codes that capture the diagnosis of paroxysmal AF, persistent AF, chronic AF and AF 

unspecified (codes I48.0, I48.1, I48.2, I48.9, respectively). If any of these codes were entered for a patient over the follow-up 

period, this was counted as an event. 

Manual CCTA segmentation 

All analyses were performed using the standard operating procedures of the Oxford Academic Cardiovascular CT (OXACCT) 

core lab at the Acute Vascular Imaging Centre (AVIC) in the University of Oxford. Manual segmentation of the whole heart and 

the pericardium was performed on randomly selected ORFAN CCTA scans for the training of the deep-learning model. The 

manual segmentation was undertaken by 2 independent readers. Both readers are trained members of the OXACCT Core Lab and 

have undertaken training in the specific whole heart segmentation technique required. The training of the readers was overseen 

by the Director of the Core Lab (SCCT level 3 qualification). According to the Quality Management System of the OXACCT 

core lab, the readers receive training based on a well-defined and controlled SOP. Before qualification as expert readers, the core 

lab members need to achieve <5% variability in manual segmentation of the pericardium compared to the gold standard 

segmentations included into the training and testing package, and they perform at least 150 supervised manual segmentations 

with assessment and peer-review prior to commencing any research analysis. The standard operating procedures of the Core Lab 

mandate the use of quality control assessment of segmentations performed for both research and industry.  

The whole heart within the pericardium was segmented between the bifurcation of the pulmonary trunk superiorly and the apex 

of the pericardium inferiorly. CaRi-Heart® version 2.2.1 (Caristo Diagnostics Ltd., Oxford, UK) was utilised for manual imaging 

segmentation (See Supplementary Figure 1 for example of manual segmentation). All voxels within the pericardium including 

the visceral pericardium were included. Examination of EAT volume segments for intra-observer bias was excellent with both 

expert human readers having excellent intra-class correlation coefficient in a test of 20 blinded repeat reads of the same case 

(reader 1, ICC[95%CI] = 0.987[0.980-0.999] p < 0.001; reader 2, 0.984[0.976-0.998] p < 0.001; interval between reads 2 weeks). 

Following initial training with 2200 manually segmented CCTA, the model was further enhanced by 3 iterations of feedback 

learning performed on unseen CCTA scans from the ORFAN study. These unseen scans were fed into the model in batches of 

200, then the output segmentations were manually corrected by 2 experts readers (same readers as the training analysis) before 

being fed back into the deep-learning model. 

The extraction of EAT volume from the heart segmentation 

The extraction of EAT volumes from the segmentation of the whole heart was achieved by automated selection of adipose tissue 

voxels. The Hounsfield unit (HU) range of -190 HU through to -30 HU was utilised, adhering to the conventional definition of 
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adipose tissue density on CCTA11-13. The extraction of the EAT volume on a per-voxel basis from within the whole heart 

segment was fully automated in a bespoke module within the CaRi-Heart® platform, created especially for the purpose of the 

quantification of EAT from CT segmentations. An example of EAT segmentation is shown in Figure 3B, with manual 

segmentations and automated segmentation shown independently, and merged. 

Traditional CCTA interpretation methods 

CAC Score 

In the SCOT-HEART Trial population coronary artery calcium score was quantified by the Agatston method on non-contrast 

cardiac CT scans using commercially available software (Aquarius Workstation® V.4.4.11-13, TeraRecon Inc., Foster City, CA, 

USA), in those patients with an indication for CCS assessment. 

Obstructive CAD 

Included SCOT-HEART trial scans has been previously reviewed by two independent clinical researchers within the OXACCT 

Core Lab, as published previously14. Obstructive CAD was defined as the presence of at least one coronary stenosis ≥50% on 

CCTA.  

Coronary computed tomography angiography technical parameters 

ORFAN Study 

Participants in the ORFAN study in the UK underwent CCTA scans at NHS Trust hospitals including Oxford University Hospital 

NHS Foundation Trust, University Hospitals of Leicester NHS Trust, Royal United Hospitals Bath NHS Foundation Trust, 

Milton Keynes University Hospital NHS Foundation Trust. All scans were performed according to local clinical procedures, with 

minimal variance between sites. Heart rate was optimised using intravenous injection of beta-blockers and sublingual glyceryl-

trinitrate (800ug) was also administered to achieve maximum coronary vasodilatation if needed. CCTA was performed following 

intravenous injection of 50-70 ml of iodine based contrast medium (typically Niopam 370, BRACCO UK Ltd) at a flow rate rate 

of 5.5-6.5 mL/sec (axial slice thickness on Canon scanners was typically 0.5mm, with Siemens typically between 0.65mm or 

0.75mm, rotation time was 0.35 sec, detector coverage was up to 160mm and tube energy selected based on body habitus and 

according to local clinical practice). Prospective image acquisition was used by ECG-gating at 75% of cardiac cycle (with 

100msec padding if required). If not possible, retrospective image acquisition was used (e.g. in the presence of irregular rhythm).  

For ORFAN USA sites, a total of 2,246 scans were available for inclusion. A random selection of 720 were selected for inclusion 

in the cohort. The majority of the CCTA scans (n=627, 87·0% of the total number of scans) were performed in a 256-slice 

Brilliance iCT scanner (Philips Medical Systems, Best, Netherlands), with the remainder using a 2 x 128-slice Definition Flash 

scanner (Siemens Healthcare, Erlangen, Germany) (n=70, 9.7%) and a 2 x 192-slice Somatom Force CT scanner (Siemens 

Healthcare, Forchheim, Germany) (n=23, 3·2%). In patients with heart rate > 60 beats/minute, 5 mg of intravenous metoprolol 

(with incremental 5 mg doses up to a maximum dose of 30 mg) or intravenous diltiazem (5 mg increments up to 20 mg 

maximum), if the heart rate remained above 60 beats per minute once the patient was positioned on the CT table. Patients also 

received 0·3 mg of nitroglycerin sublingually immediately before CCTA and iodinated contrast (Omnipaque 350, General 

Electric, Milwaukee, USA) was administered at flow rate of 5-6 ml/s. 
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For all ORFAN sites, scans with profoundly poor-quality images, more than 2 missing slices, severe beam hardening or 

significant step artifacts were excluded from the analysis. Minor to moderate scan artefacts were acceptable and included in 

analysis. 

AdipoRedOx Study 

Participants in AdipoRedOx underwent CCTA using a 64-slice scanner (LightSpeed VCT, General Electric), as previously 

described.15 Heart rate was optimised using intravenous injection of beta-blockers and sublingual glyceryl-trinitrate (800ug) was 

also administered to achieve maximum coronary vasodilatation. A non-contrast prospectively ECG triggered axial acquisition CT 

scan was obtained (0.35 sec rotation time, 2.5 mm axial slice thickness, 20 mm detector coverage, tube energy of 120 kV and 200 

mA) with the carina and the diaphragm used as cranial and caudal landmarks respectively. Lung field of view was extended to 

cover the entire thoracic soft tissue (for subcutaneous adipose tissue analysis). CCTA was performed following intravenous 

injection of 95ml of iodine based contrast medium (Niopam 370, BRACCO) at a flow rate rate of 4.5-6mL/sec (tube energy of 

120 kVp, axial slice thickness of 0.625 mm, rotation time of 0.35 sec, detector coverage of 40 mm). Prospective image 

acquisition was used by ECG-gating at 75% of cardiac cycle (with 100 msec padding for optimal imaging of the right coronary 

artery if required). There were no exclusions from the AdipoRedOx cohort based on scan parameters. 

SCOT-HEART trial 

CCTA scans were performed using either two 64 detector row scanners (Brilliance 64, Philips Medical Systems, Netherlands, 

and Biograph mCT, Siemens, Germany) or one 320 detector row scanner (Aquilion ONE, Toshiba Medical Systems, Japan) at 

three imaging sites according to each site’s local protocol1, 2. A total of 1786 patients were available for analysis. Scans 

performed at tube voltage settings other than 100 or 120 kVp, and scans with profoundly poor-quality images (unsuitable for 

human or machine analysis), 2 or more missing slices, severe beam hardening or significant step artifacts were excluded from the 

analysis (n=228), resulting in a study dataset of 1558 CCTA scans. 

Scan retrieval 

All CCTAs from each study were first anonymized locally, or in the cloud at the time of transfer, and sent to the Oxford 

Academic Cardiovascular Computed Tomography (OXACCT) core lab (Oxford, UK) for either manual analysis on dedicated 

workstations or for sequestering for later automated validation analysis. 

The training of the deep-learning model for automated segmentation of the whole heart within the pericardium 

The 2,200 manually whole heart segmented CCTA scans were individually normalised to have zero mean and unary standard 

deviation, as on input networks performed better in this intensity range. A convolutional neural network was used for 

segmentation by casting them to voxel-wise classification. The network was trained to predict whether the central voxel of a 

patch is or is not within the bounds of the pericardium depending on the content of the surrounding 3D patch. 

A fully automatic method was employed using 3D Residual-U-Net neural network architecture [3] for 3D volumetric 

segmentation of CCTA data. A building block of a Residual-U-Net is called a residual block or skip connection. The activation 

of a layer is fast-forwarded to a deeper layer in the neural network in a residual block. This allows training much deeper neural 

networks without the issue of vanishing gradients. The architecture resembles auto encoder framework and consist of 4 down-

sampling and 4 up-sampling blocks which are connected by a bridge block. Feature size is halved after passing through every 



6 
 

down-sampling block by a max-pooling layer at its base. At the beginning of every up-sampling block the feature size is doubled 

using transposed convolution layer with stride of size 2 for each dimension. Passing information through interconnections was 

achieved by using zero padding. After every convolution operation we fill the newly computed vector with zeros to its original 

length and therefore both convolution layers use the same size of the input vector. During training, the parameters of the kernels 

were optimized using Adam optimizer, with the target of minimizing the error between the predictions and the true labels. The 

hyper-parameters of the network were tuned following the first and second stages of the feedback learning process, that is after 

he first and second cycles of scan (n=200) input and correction. 

The CNN as shown in Figure 3A of the main text demonstrates the layers of model. The light green boxes (Conv+RelU) 

represent a convolutional layer. These layers capture the spatial relationship between CCTA voxels to receive image features 

using small patches of input data by learning local connectivity patterns followed by RelU activation to ensure non-linearity, 

sparsity, and a reduced likelihood of vanishing gradient. Yellow boxes (Concat) represents residual interconnections to allow 

gradients to pass through the network directly by skipping over series’ of convolution and non-linear activation functions to solve 

the degradation problem of the deep networks, and concatenation to add tensors of both connections. Max pooling layer is 

represented by dark green colour box (MaxPool) to extract sharp and smooth features. Orange boxes (UnPool) represents the up-

sampling step to revert the effect of the max pooling operation. The purple box (Sigmoid) represents the output layer using 

sigmoid function. This outputs values in the range 0 to 1 representing the probability of a voxel being within the desired 

segmentation of the heart pericardium. The grey horizontal lines represent concatenation of decoder paths with the corresponding 

feature map from the encoder path. 

The network architecture was trained using Keras framework using Tensorflow 2.2 (Google Brain, Mountain View, CA, USA) as 

backend. The network used a binary cross-entropy as a loss function and Dice coefficient as performance metric. 

Automated left atrium segmentation 

Left atrium volume was utilised as a co-variate in analysis of the relationship between EAT volume and post-operative AF risk 

within the AdipoRedOx Study. In the AdipoRedox Study LA volume was calculated via automated quantification upon the same 

CCTA utilised for EAT quantification. The automated segmentation was trained in the same manner to the whole heart 

segmentation – via a Residual-U-Net neural network architecture for 3D volumetric segmentation the LA chamber, including the 

LAA. The training cohort for this analysis was the same as described for the whole heart in this manuscript – the UK ORFAN 

Study population. The internal validation cohort was 200 unseen UK ORFAN scans, with resulting concordance correlation 

coefficient (CCC) for human vs machine of 0.981. The external validation cohort was in 720 USA ORFAN CCTAs, with a CCC 

of 0.971. No AdipoRedOx Study scans were utilised in the training or validation of the LA volume quantification tool. The 

automated tool was incorporated into the CaRi-Heart analysis platform (Caristo Diagnostics Ltd., Oxford, UK). 

Preliminary internal validation of the whole heart segmentation DLN 

EAT was segmented manually in 100 randomly selected scans from the UK arm of ORFAN, all previously sequestered from the 

algorithm, prior to the same set of scans being segmented by the automated deep-learning algorithm. This analysis occurred prior 

to the initiation of the feedback learning cycles and represents a preliminary validation of the model (Supplementary Figure 2). 
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CCC was excellent between human expert and the machine at 0.960, and the bias was non-significant at 5.5[-8.0-14.7]cm3, p = 

0.22. 

For the whole heart volume in the same 100 scans there was minimal variability between a single human expert and machine 

(Supplementary Figure 3). CCC was excellent between human expert and the machine at 0.969, and the bias was non-significant 

at 29.2[-30.3-77.5]cm3, p = 0.18. 

Quantification of blood markers 

AdipoRedOx 

NT-proBNP was calculated from blood samples collected in an EDTA tube intra-operatively for each participant.  Plasma BNP 

was quantified by chemiluminescent-microparticle immunoassay (Architect BNP, Abbott, Germany). 

SCOT-HEART Trial 

Non-HDL cholesterol was calculated along with a complete lipid panel as previously described6, 7. 

Supplementary statistical analysis 

Participant demographics are summarized as numbers (percentages) or median (25th to 75th percentile) for categorical and 

continuous variables, respectively. For intra-observer repeatability, intraclass correlation coefficient was calculated with 20 

repeat cases per reader.  

Whenever utilised, coronary artery calcium (CAC) score was log-transformed before inclusion in regression models 

(ln[CAC + 1]). 

For cross-sectional analysis of disease risk conveyed by EAT volume, multiple-adjusted logistic regression was used for 

calculation of the odds-ratio of prevalent disease (AF at time of CCTA and obstructive CAD from CCTA) at the time of the 

CCTA given increase in EAT by one standard deviation (SD). Within the main text, results are presented with adjustment for all 

models with a uniform set of co-variates. Supplementary results are presented with a statistical approach to risk factor 

adjustment. Longitudinal assessment of the prognostic value of EAT volume was performed by multivariable Cox regression. 

Both odds ratios and hazard ratios are reported per one SD increase in EAT volume. The variables that are included in each 

supplementary model of the SCOT-HEART trial analysis are the risk factors that have shown a statistically meaningful 

association with the relevant outcome (dependent variable) in univariate analysis, at the level of p ≤ 0.1 (see Supplementary 

Table 1). 

When calculating Youden’s J Statistic within the SCOT-HEART cohort, we weighted the influence of each outcome (all-cause 

mortality, fatal/non-fatal MI and fatal/non-fatal stroke) according to the number of events in the population and then tested the 

prognostic value of the high vs low EAT volume (as a dichotomous variable) by multivariable Cox regression analysis after 

adjustment for relevant disease risk factors as listed in the results. 

For analysis of risk of post-operative AF in CABG patients from the AdipoRedOx Study, secondary analysis with AF specific 

risk factors was performed (see Supplementary Figure 6). The risk factors selected in this analysis were selected for their known 

relationship with new onset AF in the post-operative population following literature review. 
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Statistical analyses were performed predominantly in STATA SE version 15 (Stata Corp, College Station, TX, USA), with some 

analysis in the R environment (R for Windows 4.0.4). All tests were two-sided and α was set at 0.05, unless specified otherwise.  
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Supplementary results 

Preliminary internal validation of the automated whole heart and EAT volume detection model vs human segmentation 

EAT was segmented manually in 100 randomly selected scans from the UK arm of ORFAN, all previously sequestered from the 

algorithm, prior to the same set of scans being segmented by the automated deep-learning algorithm. This analysis occurred prior 

to the initiation of the feedback learning cycles and represents a preliminary validation of the model (Supplementary Figure 1). 

CCC was excellent between human expert and the machine at 0.960, and the bias was non-significant at 5.5[-8.0-14.7]cm3, p = 

0.22. 

For the whole heart volume in the same 100 scans there was minimal variability between a single human expert and machine 

(Supplementary Figure 2). CCC was excellent between human expert and the machine at 0.969, and the bias was non-significant 

at 29.2[-30.3-77.5]cm3, p = 0.18. 

Cross-sectional clinical correlations with statistical approach to co-variate selection  

At the time of the CCTA, application of the fully automated segmentation tool for quantification of EAT volume was found to be 

a significant independent predictor of the presence of AF at time of CCTA and obstructive CAD from CCTA (any one coronary 

vessel with ≥50% stenosis on CCTA), within 1,558 patients randomised to receive CCTA in the SCOT-HEART trial population. 

When accounting for AF risk factors the odds ratio (OR[95%CI]) of AF at time of CCTA per 1 standard deviation (SD) increase 

of EAT was 1.20[1.06-1.45] p=0.03 (Supplementary Figure 4A). When accounting for CAD risk factors the OR of obstructive 

CAD from the CCTA per 1 SD increase of EAT was 1.12[1.03-1.30] p=0.01 (Supplementary Figure 4B). 

Longitudinal EAT volume clinical correlations with statistical approach to co-variate selection 

Median follow up for the 1,558 patients randomised to receive CCTA in SCOT-HEART which were analysed was 4.8 years. 

There were 35 deaths of all causes (2.25%) of which 4 (0.25%) were deaths related with coronary heart disease. There were 8 

fatal/non-fatal strokes (0.51%) and 39 fatal/non-fatal myocardial infarctions (2.5%).  

The hazard ratio (HR[95%CI]) of all-cause mortality per 1 SD increase of EAT was 1.24[1.08-1.34] p=0.03, after accounting for 

relevant general disease risk factors (Figure 6C). When adjusted for the same risk factors as Figure 6A, the HR[95%CI] of non-

cardiac mortality per 1 SD increase of EAT volume was 1.14[1.02-1.37] p=0.04 (Supplementary Figure 4D). This constitutes a 

∆HR of -0.10, confirming that EAT is a measure of visceral adipose tissue related with multiple fatal pathologies, unrelated to 

CAD. When accounting for CAD risk factors the HR of fatal/non-fatal MI per 1 SD increase of EAT was 1.25[1.08-1.45] 

p=0.001 (Supplementary Figure 4E). Finally, when accounting for stroke risk factors the HR[95%CI] of fatal/non-fatal stroke per 

1 SD increase of EAT is 1.12[1.03-1.27] p=0.02 (Supplementary Figure 4F). 

EAT volume and post-operative atrial fibrillation risk with AF specific risk factors 

As is reported in the main manuscript, utilising 250 scans from patients in the AdipoRedOx Study, the longitudinal associations 

between EAT volume and in-patient post-operative AF and long-term AF following surgery were investigated.  

Utilising the same methods described in the main text, secondary analysis was performed with multivariable adjustment for 

relevant AF risk factors including LA volume and NT-proBNP (see above in Supplementary Methods for quantification details). 

High EAT volumes were associated with a significantly greater risk for in-patient post-operative AF following adjustment for 

typical AF risk factors, with HR[95%CI] of 1.54[1.12-3.33] p<0.01, per 1 SD increase in EAT volume (Supplementary Figure 
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6A). Equally, for long-term new-onset AF following cardiac surgery high risk EAT volumes were associated with a significantly 

greater risk for long-term AF following adjustment for typical AF risk factors, with HR[95%CI] of 1.34[1.10-2.87] p<0.01, per 1 

SD increase in EAT volume (Supplementary Figure 6B). 

The addition of EAT volume into a clinical risk factor model, significantly improved the prediction of new-onset in-hospital AF 

in ROC curve analysis (Supplementary Figure 6C) with ΔAUC of +0.108 (p<0.01) for risk factor model 1 with the addition of 

EAT volume, and ΔAUC of +0.221 (p<0.001) with the addition of the risk factor model plus EAT volume on top of CCTA 

derived LA volume alone. The same was found for new-onset long-term AF (Supplementary Figure 6D), with ΔAUC of +0.09 

(p<0.001) for risk factor model 1 with the addition of EAT volume, and ΔAUC of +0.141 (p<0.001) over LA volume alone.  

EAT volume and post-operative atrial fibrillation risk with waist-hip ratio included in analysis 

Replacement of BMI with waist-hip ratio (WHR) in the original analysis as presented in Figure 8 did not alter the statistical 

significance of the results (Supplementary Figure 7). High EAT volumes were associated with a significantly greater risk for in-

patient post-operative AF following adjustment for CVD risk factors including WHR, with HR[95%CI] of 12.57[1.23-3.63] 

p<0.01, per 1 SD increase in EAT volume (Supplementary Figure 7A). Equally, for long-term new-onset AF following cardiac 

surgery high risk EAT volumes were associated with a significantly greater risk for long-term AF following adjustment for CVD 

risk factors including WHR, with HR[95%CI] of 2.16[1.11-3.21] p<0.01, per 1 SD increase in EAT volume (Supplementary 

Figure 7B). The addition of EAT volume into a clinical risk factor model including WHR, significantly improved the prediction 

of new-onset in-hospital AF in ROC curve analysis (Supplementary Figure 7C) with ΔAUC of +0.05 (p<0.01) for risk factor 

model 1 with the addition of EAT volume, and ΔAUC of +0.09 (p<0.001) with the addition of the risk factor model plus EAT 

volume on top of CCTA derived LA volume alone. The same was found for new-onset long-term AF (Supplementary Figure 

7D), with ΔAUC of +0.07 (p<0.01) for risk factor model 1 with the addition of EAT volume, and ΔAUC of +0.1 (p<0.001) over 

LA volume alone. 
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Supplementary Tables 

 

Supplementary Table 1. Standardised univariate analysis of variables for inclusion in 

multivariable models in addition to EAT volume 

Variables Beta P-value* 

Dependent variable: Presence of atrial fibrillation at the time of the CCTA 

Factors (independent variables) qualified for inclusion in the models  

 Age 0.32 0.002 

 Male gender 0.19 0.005 

 BMI 0.16 0.01 

 Hypertension 0.15 0.009 

 Diabetes 0.09 0.05 

 Valve disease 0.10 0.09 

 Previous heart surgery 0.06 0.07 

Factors (independent variables) tested but not qualified for inclusion in the models 

 Non-HDL cholesterol -0.02 0.34 

 Active smoker 0.03 0.20 

 Previous smoking history -0.02 0.55 

 Obstructive disease from CCTA 0.19 0.21 

 CAC Score 0.09 0.49 

Dependent variable:  Obstructive CAD from CCTA (cross-sectional) 

Factors (independent variables) qualified for inclusion in the models 

 Age 0.27 0.002 

 Male gender 0.17 0.005 

 BMI 0.19 0.009 

 Hypertension 0.17 0.01 

 CAC Score 0.18 0.01 

 Non-HDL Cholesterol 0.10 0.02 

 Active smoker 0.07 0.04 

Factors (independent variables) tested but not qualified for inclusion in the models 

 Diabetes 0.04 0.22 

 Valve disease 0.01 0.53 

 Previous cardiac surgery 0.04 0.29 

 Previous smoking history 0.09 0.19 

Dependent variable: All-Cause Mortality 

Factors (independent variables) qualified for inclusion in the models 

 Age 0.31 0.002 

 Male gender 0.19 0.01 

 BMI 0.19 0.04 

 Hypertension 0.09 0.05 

 Diabetes 0.10 0.09 

 Active smoker 0.09 0.06 

Factors (independent variables) tested but not qualified for inclusion in the models 

 Non-HDL Cholesterol 0.08 0.22 

 CAC Score -0.05 0.38 

 Obstructive disease from CCTA 0.08 0.25 

 Valve disease 0.04 0.34 

 Previous cardiac surgery 0.009 0.58 

 Previous smoking history 0.11 0.15 

Dependent variable: Non-cardiac Mortality 

Factors (independent variables) qualified for inclusion in the models 

 Age 0.36 0.001 

 Male gender 0.12 0.01 

 BMI 0.09 0.04 

 Hypertension 0.03 0.09 

 Diabetes 0.13 0.07 

Factors (independent variables) tested but not qualified for inclusion in the models 

 Non-HDL Cholesterol 0.03 0.28 

 CAC Score -0.11 0.19 

 Obstructive disease from CCTA 0.03 0.22 

 Valve disease 0.10 0.33 

 Previous cardiac surgery 0.04 0.48 

 Active smoker 0.11 0.15 

 Previous smoking history 0.09 0.18 
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Dependent variable: MI 

Factors (independent variables) qualified for inclusion in the models 

 Age 0.31 0.008 

 Male gender 0.09 0.09 

 BMI 0.15 0.02 

 Hypertension 0.11 0.05 

 Non-HDL Cholesterol 0.09 0.08 

 CAC Score 0.13 0.09 

 Obstructive disease from CCTA 0.16 0.04 

Factors (independent variables) tested but not qualified for inclusion in the models 

 Diabetes 0.06 0.08 

 Valve disease 0.03 0.45 

 Previous cardiac surgery -0.05 0.34 

 Active smoker 0.12 0.15 

 Previous smoking history 0.009 0.22 

Dependent variable: Stroke 

Factors (independent variables) qualified for inclusion in the models 

 Age 0.30 0.009 

 Male gender 0.12 0.02 

 BMI 0.16 0.01 

 Hypertension 0.09 0.02 

 Valve disease 0.07 0.08 

 Previous heart surgery 0.16 0.06 

Factors (independent variables) tested but  not qualified for inclusion in the models 

 Diabetes 0.07 0.12 

 Non-HDL cholesterol 0.003 0.66 

 Active smoker 0.12 0.13 

 Previous smoking history 0.02 0.46 

 Obstructive disease from CCTA 0.006 0.59 

 CAC Score 0.04 0.49 

*Significance set at p ≤ 0.1 

AF: atrial fibrillation; BMI: body mass index; CAC: coronary artery calcium score; HDL: high-density 

lipoprotein; MI: myocardial infarction 
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Supplementary Table 2. Outcomes from the prospective clinical cohorts 

Prospective follow-up  

 AdipoRedOx  

cohort of cardiac surgery 

SCOTHEART outcomes cohort 

Duration in-hospital (days) 6 days (4.1-7.5) N/A 

Duration long-term follow up (months) 5.6 years (3.8-6.5) 4.8 years (4.2-5.7) 

All-cause mortality N/A 35 (2.25%) 

Cardiac mortality N/A 4 (0.26%) 

Myocardial infarction* N/A 39 (2.5%) 

Stroke* N/A 8 (0.51%) 

Post-operative AF in hospital 97 (38.3%) N/A 

Post-operative AF long-term 48 (19%) N/A 

Data are median (IQR) or mean (%).  

* Fatal and non-fatal. 

AF: Atrial fibrillation; MI: myocardial infarction 
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Supplementary Figures 

Supplementary Figure 1. Preliminary internal validation of the deep-learning model for EAT volume segmentation 

Following initial training of the model but prior to three iterations of feedback learning the model was assessed for preliminary 

performance against human expert segmentation on unseen CCTA. The scatterplot (A) and Bland-Altman plot (B) demonstrate 

the variability in EAT volume quantification between automated deep-learning machine and human expert analyst. 
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Supplementary Figure 2. Preliminary internal validation of machine learning model for whole heart segment volume 

assessment 

Following the initial training of the model and prior to three iterations of feedback learning the model was assessed for 

performance against human expert segmentation in unseen CCTAs. The scatterplot (A) and Bland-Altman plot (B) demonstrate 

minimal variability in whole heart volume quantification between automated deep-learning machine and human expert analyst. 

Yellow cases indicate that the analysts indicated they assessed the individual scan to be poor quality. CCC= concordance 

correlation coefficient; EAT = epicardial adipose tissue; ORFAN = The Oxford Risk Factors And Non Invasive Imaging Study 
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Supplementary Figure 3. Image of CaRi-Heart user work-view of manual whole heart segmentation. 

The whole heart within the bounds of the visceral pericardium is manually segmented incorporating all voxels inferior to the 

bifurcation of the pulmonary trunk and superior to the most inferior portion of the apex of the heart. Image shows axial (red), 

coronal (yellow) and sagittal (green) views. Blue = segmented region.  
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Supplementary Figure 4. Cross-sectional and longitudinal associations between EAT volume and clinical outcomes in the 

SCOT-HEART trial with statistically selected risk factor adjustment 

Plots of cross-sectional adjusted risk models for diagnosed AF at the time of the CCTA, adjusted for age, gender, BMI, presence 

of hypertension, previous heart surgery, presence of valvular heart disease and presence of diabetes (A), and obstructive CAD 

from CCTA (any one coronary vessel with ≥50% stenosis on CCTA), adjusted for age, gender, BMI, presence of hypertension, 

CAC score, non-high density lipoprotein cholesterol, and active smoking (B). Odds ratio is shown per 1 standard deviation (SD) 

increase in EAT volume for 1558 patients randomised to receive CCTA in the SCOT-HEART trial. Plots of longitudinal hazard 

ratios per 1 SD increase in EAT volume in 1558 patients randomised to receive CCTA in the SCOT-HEART trial are shown for 

all-cause mortality (C), and non-cardiac mortality (D), both with adjustment for age, gender, BMI, presence of hypertension and 

diabetes, with further adjustment for active smoking in 6C. Myocardial infarction (E) is shown with adjustment for of age, 

gender, BMI, presence of hypertension, presence of diabetes, non-high density lipoprotein cholesterol, obstructive CAD from 

CCTA (any one coronary vessel with ≥50% stenosis on CCTA), and coronary artery calcium score, and stroke (F) is shown with 

adjustment for age, gender, BMI, presence of hypertension, presence of valvular heart disease and previous heart surgery. AF: 

atrial fibrillation; BMI: body mass index; CAC: coronary artery calcium score; EAT: epicardial adipose tissue; MI: myocardial 

infarction; Non-HDL C.: non-high density lipoprotein cholesterol. 
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Supplementary Figure 5. EAT segmentation and whole heart volume assessment between human experts. 

The scatterplot (A & C) and Bland-Altman plot (B & D) demonstrate variability in EAT segmentation (A & B) and whole heart 

volume segmentation (C & D) between each human analyst. CCC= concordance correlation coefficient; EAT = epicardial 

adipose tissue; ORFAN = The Oxford Risk Factors And Non Invasive Imaging Study 
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Supplementary Figure 6. Prognostic value of EAT volume for post-operative AF with adjustment for AF specific risk 

factors 

Kaplan-Meier curve and adjusted HR for in-hospital post-operative AF (A) and long-term post-operative AF (B), with sample 

dichotomised by Youden’s J index derived cut-point of EAT volume (high risk ≥ 198.7cm3; low risk < 198.7cm3), expressed per 

1 SD increase of EAT volume. Adjustment is made for age, gender, previous AF diagnosis, presence of hypertension, presence of 

heart failure, NT-proBNP, previous myocardial infarction, BMI, and LA volume. (C,D) Time-dependent ROC curves for 

discrimination of in-hospital post operative AF (C) and long-term post-operative AF (D). CCTA derived LA volume (yellow) is 

shown alone; model 1 (red) consists of age, gender, previous AF, presence of hypertension, presence of heart failure, NT-

proBNP, LA volume, previous MI, & BMI. The addition of EAT volume into model 1 is demonstrated (blue). 

AF: atrial fibrillation; AUC: area under curve; BMI: body mass index; CI: confidence interval; EAT: epicardial adipose tissue; 
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Supplementary Figure 7. Prognostic value of EAT volume for post-operative AF with adjustment for CVD risk factors 

including waist-hip ratio 

Kaplan-Meier curve and adjusted HR for in-hospital post-operative AF (A) and long-term post-operative AF (B), with sample 

dichotomised by Youden’s J index derived cut-point of EAT volume (high risk ≥ 198.7cm3; low risk < 198.7cm3), expressed per 

1 SD increase of EAT volume. Adjustment is made for age, gender, hypertension, diabetes, CAC score and waist-hip ratio. (C,D) 

Time-dependent ROC curves for discrimination of in-hospital post operative AF (C) and long-term post-operative AF (D). CCTA 

derived LA volume (yellow) is shown alone; model 1 (red) consists of age, gender, hypertension, diabetes, CAC score and waist-

hip ratio. The addition of EAT volume into model 1 is demonstrated (blue). 

AF: atrial fibrillation; AUC: area under curve; CI: confidence interval; EAT: epicardial adipose tissue; 
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