
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evaluation Trade-Offs for Acyclic Conjunctive Queries
Citation for published version:
Kara, A, Nikolic, M, Olteanu, D & Zhang, H 2023, Evaluation Trade-Offs for Acyclic Conjunctive Queries. in
B Klin & E Pimentel (eds), Proceedings of the 2023 Computer Science Logic Conference. vol. 252, 29,
LIPIcs – Leibniz International Proceedings in Informatics, vol. 252, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, The 31st EACSL Annual Conference on Computer Science Logic, 2023, Warsaw, Poland,
13/02/23. https://doi.org/10.4230/LIPIcs.CSL.2023.29

Digital Object Identifier (DOI):
10.4230/LIPIcs.CSL.2023.29

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the 2023 Computer Science Logic Conference

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. Mar. 2023

https://doi.org/10.4230/LIPIcs.CSL.2023.29
https://doi.org/10.4230/LIPIcs.CSL.2023.29
https://www.research.ed.ac.uk/en/publications/620d3488-d84f-4029-8d76-5eab237a94b3


Evaluation Trade-Offs for Acyclic Conjunctive
Queries
Ahmet Kara #

Universität Zürich, Switzerland

Milos Nikolic #

University of Edinburgh, UK

Dan Olteanu #

Universität Zürich, Switzerland

Haozhe Zhang #

Universität Zürich, Switzerland

Abstract
We consider the evaluation of acyclic conjunctive queries, where the evaluation time is decomposed
into preprocessing time and enumeration delay. In a seminal paper at CSL’07, Bagan, Durand, and
Grandjean showed that acyclic queries can be evaluated with linear preprocessing time and linear
enumeration delay. If the query is free-connex, the enumeration delay becomes constant. Further
prior work showed that constant enumeration delay can be achieved for arbitrary acyclic conjunctive
queries at the expense of a preprocessing time that is characterised by the fractional hypertree width.

We introduce an approach that exposes a trade-off between preprocessing time and enumeration
delay for acyclic conjunctive queries. The aforementioned prior works represent extremes in this
trade-off space. Yet our approach also allows for the enumeration delay and the preprocessing time
between these extremes, in particular the delay may lie between constant and linear time.

Our approach decomposes the given query into subqueries and achieves for each subquery a
trade-off that depends on a parameter controlling the times for preprocessing and enumeration. The
complexity of the query is given by the Pareto optimal points of a bi-objective optimisation program
whose inputs are possible query decompositions and parameter values.
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1 Introduction

The problem of query evaluation is central to databases, e.g., [19, 16, 12, 15]. Over the past
five decades, extensive work has been conducted on finding algorithms for conjunctive query
evaluation with increasingly lower computational complexity. This complexity is governed
by notions of width, such as the treewidth [17], hypertree width [10, 13, 16], fractional edge
cover number [2], and submodular width [14, 12]. Yet, this coarse analysis puts on the same
par intrinsically hard queries and easy ones with the same asymptotic output size.

A finer analysis decomposes the complexity into preprocessing time and enumeration
delay. The preprocessing time is the time to build a data structure that represents succinctly
the query result. The enumeration delay is the maximum of three times: the time to output
the first tuple in the query result, the time between outputting any two consecutive result
tuples, and the time between the last result tuple and the end of the enumeration process [8].
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29:2 Evaluation Trade-Offs for Acyclic Conjunctive Queries

▶ Example 1. The query P (A, B) = R(A), S(B) computes the Cartesian product of the
unary relations R and S. The size of the query result is quadratic in the size of the relations,
so any join algorithm needs at least quadratic time to compute this result. Yet the tuples in
the query result can be enumerated with constant delay directly from the input relations.

The query J(A, B) = R(A, C), S(B, C) computes the natural join of the binary relations
R and S and projects away the join column B. It is conjectured that it is not possible to
evaluate this query with constant enumeration delay after linear preprocessing time [3]. The
query can be evaluated, however, with linear delay after no (or at most linear) preprocessing
time [3] or with constant delay after quadratic preprocessing time [16].

Even though both queries P and J can have results of quadratic size, they differ in the
amount of preprocessing required to guarantee constant-delay enumeration: Whereas P does
not need preprocessing, J requires to compute the result in the preprocessing step. ⌟

There is a solid body of work on the trade-off between preprocessing time and enumer-
ation delay for conjunctive queries. Any conjunctive query can be evaluated with O(Nw)
preprocessing time and constant enumeration delay [16], where N is the size of the input
database and w is the width of the query; w generalises the fractional hypertree width [13]
from Boolean to conjunctive queries with arbitrary free variables. Any acyclic conjunctive
query admits linear preprocessing time and linear enumeration delay [3]. If the acyclic query
is free-connex, the enumeration delay becomes constant; otherwise, the query cannot be
evaluated with linear preprocessing time and constant enumeration delay, assuming the
Boolean Matrix Multiplication conjecture [3]. A subclass of acyclic queries, called hierarchical,
can be evaluated with O(N1+(w−1)ϵ) preprocessing time and O(N1−ϵ) enumeration delay for
any ϵ ∈ [0, 1] [11]. In this trade-off space, the preprocessing time ranges from O(N) to O(Nw),
while the enumeration delay ranges from O(N) to constant. Conjunctive queries of bounded
free-connex submodular width admit constant (in the database size, albeit non-polynomial
in the query size) delay after a fixed-parameter tractable preprocessing step [5].

In this paper, we introduce an approach that defines a preprocessing-enumeration trade-off
for any acyclic conjunctive query. Prior works are points in this trade-off space. Our approach
can achieve lower query evaluation time than prior works in case only a fraction of the result
is needed. For this, we pick one point in the trade-off space that defines the preprocessing
time and the enumeration delay so that the overall computation time is the minimum across
the entire space.

Our approach works as follows. Consider an acyclic query Q with free variables F and
a partial order ω of the variables of Q, such that the free variables come before the bound
variables in ω [16]. We decompose Q into queries that are induced by the free variables: For
each free variable X ∈ F , we construct an induced query QX , whose body is the join of
all relations in Q subject to further simplifications by semi-join reductions and projections.
The free variables of QX are X and the variables that come before X in ω and on which X

depends (Section 2 defines dependent variables and Section 3 defines induced queries).
To enumerate the tuples in the result of Q, we use a chain of calls to the enumeration

procedures for the induced queries in the order of the free variables X1, . . . , Xn in ω. We
iterate over the result of QX1 to enumerate the distinct values of X1. We then iterate over
the result of QX2 to enumerate the distinct values of X2 given a value for X1. In general, we
iterate over the result of QXi

to enumerate the distinct values of Xi given values for X1 to
Xi−1, as fixed by the iterators for QX1 to QXi−1 . Once a tuple of values for all free variables
is obtained, we backtrack.

For each induced query QX , we design a preprocessing-enumeration trade-off controlled
by a parameter ϵX ∈ [0, 1] specific to QX . A low value for ϵX means low, down to linear
preprocessing time at the expense of a high, up to linear delay. A high value for ϵX means
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high preprocessing time to achieve a low, down to constant delay. To achieve a trade-off
depending on ϵX , we partition each relation on the join attributes such that the light parts
have join values whose frequencies are below a threshold defined by ϵX while the heavy
parts have join values with high frequencies. In the preprocessing phase, we then compute
the query over the light parts of the relations. In the enumeration phase, we enumerate
the tuples from the join of the parts where at least one part is heavy. The computation
times for the two phases are given by O(Np(QX ,ϵX )) for preprocessing and O(Ne(QX ,ϵX )) for
enumeration delay, where p(QX , ϵX) and e(QX , ϵX) are called the preprocessing cost and
enumeration cost, respectively. We can use the parameters for the induced queries to define
a trade-off for the original query Q. To find a desired trade-off, we need to consider the
set of possible variable orders for Q, as they may yield different sets of induced queries, as
well as possible parameter values for the induced queries. Given a variable order ω for an
acyclic query Q and a set ϵ = {ϵX | X ∈ F} of parameter values for the induced queries, we
define the preprocessing and enumeration costs of Q as the maximum preprocessing cost and
enumeration cost, respectively, of the induced queries: p(ω, ϵ) = maxX∈F p(QX , ϵX) and
e(ω, ϵ) = maxX∈F e(QX , ϵX).

Given two pairs (p1, e1) and (p2, e2), (p1, e1) < (p2, e2) holds if (1) p1 ≤ p2, (2) e1 ≤ e2,
and (3) at least one of the two inequalities is strict. A pair of preprocessing cost p and
enumeration cost e is Pareto optimal if there are no trade-off parameters ϵ and variable order
ω such that (p(ω, ϵ), e(ω, ϵ)) < (p, e).

The Pareto optimal pairs of objective values of the following bi-objective trade-off program
are possible preprocessing-enumeration costs for an acyclic query 1 Q with free variables F :

minimise
(

max
X∈F

p(QX , ϵX) , max
X∈F

e(QX , ϵX)
)

subject to ω is a variable order for Q and
QX is induced by X wrt. ω, ∀X ∈ F and

ϵX ∈ [0, 1], ∀X ∈ F

The minimisation of the program objective is based on the inequality (<) defined above.
We denote the set of Pareto optimal pairs of objective values of this program by µ(Q). The
complexity of our evaluation algorithm is given by any of these Pareto optimal values.

▶ Theorem 2. Any acyclic conjunctive query Q can be evaluated over a database of size N

with O(Np) preprocessing time and O(Ne) enumeration delay, where (p, e) ∈ µ(Q).

The exponents p and e are explained in detail in Sections 4.1 and 5.2. Our approach
recovers prior works as corollaries, as they represent possible Pareto optimal pairs in µ(Q).
It recovers the case of free-connex queries [3]:

▶ Corollary 3. Any free-connex acyclic conjunctive query can be evaluated over a database
of size N with O(N) preprocessing time and O(1) enumeration delay.

This is equivalent to stating that the pair (1, 0) of preprocessing and enumeration costs is in
the set µ(Q) of Pareto optimal pairs of objective values of the trade-off program.

Our approach also recovers the more general result for arbitrary acyclic queries [3]:

1 In this work we focus on acyclic queries with at least one free variable; in case of no free variables, there
are no induced queries and the optimisation program is not well-defined. If an acyclic query has no free
variables, it can be evaluated in linear time and the enumeration delay is trivially constant [3].

CSL 2023



29:4 Evaluation Trade-Offs for Acyclic Conjunctive Queries

▶ Corollary 4. Any acyclic conjunctive query can be evaluated over a database of size N

with O(N) preprocessing time and O(N) enumeration delay.

This means that (1, e) ∈ µ(Q) for e ≤ 1. Next, our approach recovers the result on constant
enumeration delay from prior work on factorised representations for query results, when
restricted to acyclic queries [16]:

▶ Corollary 5. Any acyclic conjunctive query with fractional hypertree width w can be
evaluated over a database of size N with O(Nw) preprocessing time and O(1) enumeration
delay.

This corollary is implied by the fact that (w, 0) ∈ µ(Q). Finally, our approach recovers the
trade-off for hierarchical queries [11]:

▶ Corollary 6. Any hierarchical query with fractional hypertree width w can be evaluated
over a database of size N with O(N1+(w−1)ϵ) preprocessing time and O(N1−ϵ) enumeration
delay for any ϵ ∈ [0, 1].

We obtain the above result by showing that (p, e) ∈ µ(Q) with p ≤ 1 + (w − 1)ϵ and e ≤ 1 − ϵ,
for any ϵ ∈ [0, 1]. In contrast to prior work [11], our approach uses different, more general
evaluation strategies to account for the generality of acyclic queries. This generality comes
at a price: Our trade-off does not have a closed-form expression for the computational
complexity of preprocessing and enumeration as for hierarchical queries.

In this paper we use one approach to evaluate all induced queries. Our framework is
however permissive and allows plugging in different evaluation strategies for different induced
queries, e.g., evaluation strategies tailored specifically at path and star queries [7].

The structure of the paper is as follows. Section 2 introduces basic notions and tools.
Section 3 explains our query decomposition technique. Sections 4 and 5 detail the prepro-
cessing and enumeration phases. Section 6 compares our approach against two mainstream
approaches by means of examples. Section 7 concludes with future work. Proofs of formal
statements are deferred to Appendix A.

2 Preliminaries

Data Model

A schema X = (X1, . . . , Xn) is a tuple of distinct variables. Each variable Xi has a discrete
domain Dom(Xi). We treat schemas and sets of variables interchangeably, assuming a
fixed ordering of variables. A tuple x over schema X is an element from Dom(X ) =
Dom(X1) × · · · × Dom(Xn).

A relation R over schema X is a set of tuples over the same schema. The size of R is
given by the number of tuples in R. A database is a set of relations and has size given by
the sum of the sizes of its relations.

Given a tuple x over schema X and S ⊆ X , x[S] is the restriction of x onto S. For a
relation R over X , a schema S ⊆ X , and tuple s ∈ Dom(S): σS=sR = { x | x ∈ R ∧ x[S] = s }
is the set of tuples in R that agree with s on the variables in S; πSR = { x[S] | x ∈ R } is
the set of restrictions of the tuples in R to the variables in S.

Conjunctive Queries

A conjunctive query (CQ) is of the form

Q(F) = R1(X1), . . . , Rn(Xn).



A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 29:5

Q1

A

B E

C D

B

C D E
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dep(B) = ∅
dep(C) = {B}
dep(D) = {B}
dep(E) = {B}
dep(A) = {B, E}

ω1

B C
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B D

QD

B

QB
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B E
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induced queries

A B

Q1
E

A E

Q2
E

Con∅(QE)

A

B E

QE

Con{{A}}(QE)

Figure 1 Left to right: Hypergraph of the query Q1 from Example 7; variable order ω1 for Q1;
the queries induced by the free variables in ω1; the ∅- and {{A}}-connected components of QE .

We denote by: (Ri)i∈[n] the relation symbols; (Ri(Xi))i∈[n] the atoms; vars(Q) =
⋃

i∈[n] Xi

the set of variables; free(Q) = F ⊆ vars(Q) the set of free variables; and atoms(Q) =
{Ri(Xi) | i ∈ [n]} the set of atoms in Q. The variables in vars(Q)\F are called bound. Given
a set R of atoms, we denote vars(R) =

⋃
R(X )∈R X .

The hypergraph of Q is a multi-hypergraph (V, E) where V is the set of variables in Q

and E contains a hyperedge over X for each atom R(X ) in Q. In the graphical representation
of hypergraphs, we underline the free variables.

A set V ⊆ vars(Q) is called a join v-set if there are two distinct atoms Ri(Xi) and Rj(Xj)
in Q such that Xi ∩ Xj = V. We denote the set of join v-sets in Q by JVSets(Q).

A CQ is acyclic (ACQ in short) if it admits a join tree where each node is an atom and if
any two nodes have variables in common, then all nodes along the path between them also
have these variables [19]. The query is free-connex acyclic if it is acyclic and stays acyclic
after adding a fresh atom whose schema consists of the free variables of the query [6]. A
query is hierarchical if for any two of its variables, either their sets of atoms are disjoint or
one is contained in the other [18].

Variable Orders

Given a CQ Q, two variables depend on each other if they occur in the same atom of the
query. A variable order ω for Q is a pair (T, dep) [16] where:

T is a rooted forest with one node per variable in Q. The variables of each atom in Q lie
along the same root-to-leaf path in T . No bound variable is an ancestor of a free variable.
The function dep maps each variable X to the subset of its ancestor variables in T on
which the variables in the subtree rooted at X depend.

This type of variable orders were first introduced as d-tree extensions [16] and later called
free-top variable orders [11]. We denote the set of variable orders of Q by VO(Q). Using the
language of hypertree decompositions, we call the set {X} ∪ dep(X) the bag of ω at X. In
the graphical representation of variable orders, we underline the free variables.

▶ Example 7. Consider the query Q1(B, C, D, E) = R(A, B), S(B, C), T (B, D), U(A, E).
Figure 1 shows its hypergraph (left) and next to it a variable order ω1 for the query. Consider
now the variant Q2(C, D, E) = R(A, B), S(B, C), T (B, D), U(A, E) of Q1 where the variable
B is bound. Its hypergraph is given in Figure 2 (left). The variable order ω1 from Figure 1
is not valid for Q2, since the bound variable B sits on top of the free variables C, D, and E.
The variable order ω2 in Figure 2 is a valid variable order for Q2. ⌟
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Q2

A

B E

C D
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D

E
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dep(C) = ∅
dep(D) = {C}
dep(E) = {C, D}
dep(A) = {C, D, E}
dep(B) = {A, C, D, E}

ω2

QE

C

QC

B

C D

QD

A

B E

C D

induced queries

A B

Q1
E

A E

Q2
E

B C

Q3
E

B D

Q4
E

Con∅(QE)
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B E

Q1
E
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E
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Q1
E

A

B

C D

A E

Q2
E

Con{{B}}(QE)

QE

A

B E

C D

Con{{A},{B}}(QE)

Figure 2 First row, left to right: Hypergraph of the query Q2 from Example 7; a variable order
ω2 for Q2; the queries induced by the free variables in ω2. Second row, left to right: The ∅-, {{A}}-,
{{B}}-, and {{A}, {B}}-connected components of QE .

Width Measures

Given a CQ Q and a set V of variables from Q, a fractional edge cover of V is a solution
λ = (λR(X ))R(X )∈atoms(Q) to the following linear program [2]:

minimise
∑

R(X )∈ atoms(Q)

λR(X )

subject to
∑

R(X ): X∈X

λR(X ) ≥ 1 for all X ∈ F and

λR(X ) ∈ [0, 1] for all R(X ) ∈ atoms(Q)

The optimal objective value of the above program is called the fractional edge cover number of
V and denoted as ρ∗

Q(V). We sometimes represent Q by the set E = {X | ∃R(X ) ∈ atoms(Q)}
of the schemas of its atoms and write ρ∗

E(V). If Q and E are clear from the context, we skip
them in the expressions.

We define the width w(Q) of Q as in prior work [11]:

w(Q) = min
ω∈VO(Q)

w(ω), where

w(ω) = max
X∈vars(Q)

ρ∗
Q({X} ∪ dep(X))

The measure w is equivalent to the fractional hypertree width when extended from Boolean
to non-Boolean queries [16].

▶ Example 8. Consider the variable order ω1 for the query Q1 in Figure 1. The bag at
variable A consists of the variables A, B, and E. It holds ρ∗({A, B, E}) = 2, since we need
two atoms to cover the variables in the bag. Similarly, for the bag {B, E} at E, we have
ρ∗({B, E}) = 2. Each of the other bags B of the variable order can be covered by a single
atom, therefore it holds ρ∗(B) = 1. Hence, w(ω1) = 2, which implies w(Q1) ≤ 2. By checking
other possible variable orders for Q1, one can see that w(Q1) equals 2.

Now, consider the variable order ω2 for the query Q2 in Figure 2. The bag at E consists
of C, D, and E. We have ρ∗({C, D, E}) = 3. It holds w(Q2) = w(ω2) = 3. ⌟



A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 29:7

Partitioning

We partition relations based on the frequencies of their values. For a database D, relation
R ∈ D over schema X , schema S ⊂ X , and threshold θ, the pair (RS )H , RS )L) is a partition
of R on S with threshold θ if:

(light part) RS )L = {x ∈ R | ∀K ∈ D, |σS=x[S]K| < θ}
(heavy part) RS )H = R \ RS )L

The relations RS )H and RS )L are called heavy and respectively light on the partition key S.
For |D| = N and a partition (RS )H , RS )L) of R on S with threshold θ = N ϵ for ϵ ∈ [0, 1], we
have: (1) ∀t ∈ πSRS )L : |σS=tRS )L| < θ = N ϵ; and (2) |πSRS )H | ≤ N

θ = N1−ϵ. The first
bound follows from the light part condition. The second bound holds because each tuple in
πSRS )H is paired with at least θ distinct tuples in at least one relation in the database. The
database can contain at most N

θ such tuples over S; otherwise, the database size exceeds N .
Given schemas S1, . . . , Sn ⊂ X , an HL-signature sig for R has the form {S1 →

s1, . . . , Sn → sn}, where si ∈ {H, L} for i ∈ [n]. The relation part Rsig is defined as⋂
i∈[n] RSi )si .

Computational Model

We consider the RAM model of computation. Each relation R over schema X is implemented
by a data structure that stores the tuples in R using O(|R|) space. This data structure can:
(1) look up tuples in constant time; (2) enumerate all tuples in R with constant delay; and
(3) report |R| in constant time. For a schema S ⊂ X , we use an index data structure that
for any s ∈ Dom(S) can: (4) enumerate all tuples in σS=sR with constant delay; (5) check
s ∈ πSR in constant time; and (6) return |σS=sR| in constant time. Our complexity results
are based on data complexity where the input query is assumed to be fixed.

3 Query Decomposition and Connected Components

Our approach decomposes queries following variable orders. Each query in such a decomposi-
tion is then split further into subqueries that are connected via specific join v-sets. In the
following we introduce both concepts.

3.1 Decomposing A Query into Induced Queries
Given a CQ Q(F), a variable order ω for Q, and X ∈ F , we define the query QX(FX) induced
by X wrt. ω as follows. The free variables of QX are FX = {X} ∪ depω(X). The body of
QX is bGYO(Q, FX), where the function bGYO applies a variant of the GYO algorithm [20],
which we call bound-GYO and explain next.

Given a CQ Q and a variable set FX , bound-GYO replaces atoms in Q by new atoms for
fresh relations computed from the input relations. The algorithm repeats the following two
rules as long as possible: (1) If a variable Y /∈ FX only occurs in one atom R(X ), replace
R(X ) by the atom R′(X \ {Y }), where R′ is obtained by projecting away Y from R; (2) if
there are two atoms R(X ) and S(Y) with X ⊆ Y, remove the first atom and replace the
second atom with a new atom S′(Y) for a new relation S′ obtained from S by filtering out
the tuples that are not in R (S′ is the result of the semi-join reduction of S with R). All new
relations in bGYO(Q, FX) can be computed in time linear in the size of the input database.

CSL 2023



29:8 Evaluation Trade-Offs for Acyclic Conjunctive Queries

▶ Example 9. Consider the query Q1 from Example 7. Figure 1 shows the hypergraphs of
Q1 and of the queries QB, QC , QD, and QE induced by the free variables of Q1 wrt. ω1.
We explain the construction of QE . We first eliminate the variables C and D by computing
S′ = πBS and T ′ = πBT . Then, we absorb S′ and T ′ by computing R′ = (R ⋉ S′) ⋉ T ′. We
obtain QE(B, E) = R′(A, B), U(A, E).

Now, consider the query Q2 from Example 7. Figure 2 shows the hypergraph of Q2
and of the queries induced by the free variables in ω2. The query QE induced by E is
Q2. The bound-GYO algorithm cannot apply any rule in this case, since all variables in
vars(Q2) \ ({E} ∪ depω2(E)) = {A, B} are join variables and no atom has a schema that
subsumes the schema of another atom. ⌟

3.2 Connected Components
Consider a CQ Q(F) and a set J ⊆ JVSets(Q) of join v-sets. A J -path between two atoms
R(X ) and R′(X ′) is a sequence R1(X1), . . . , Rn(Xn) of atoms such that R1(X1) = R(X ),
Rn(Xn) = R′(X ′), and Xi ∩ Xi+1 ∈ J for i ∈ [n − 1]. We say that a set R ⊆ atoms(Q) is
J -connected if there is a J -path between any two atoms in R. The set R is maximally
J -connected if it is J -connected and any proper superset of R is not. Let R1, . . . , Rk

be the maximally J -connected atom sets of Q. For each i ∈ [k], consider the query
Qi(Fi) whose body consists of the atoms in Ri and whose free variable set Fi consists of
vars(Ri) ∩ (F ∪

⋃
i ̸=j vars(Rj)). We call Qi(Fi) a J -connected component of Q and denote

the set of all J -connected components of Q by ConJ (Q).

▶ Example 10. Consider the query QE(B, E) = R′(A, B), U(A, E) depicted in Figure 1. We
have JVSets(QE) = {{A}}. Figure 1 shows the ∅- and the {{A}}-connected components of
the query QE . The ∅-connected components of QE are the queries Q1

E(A, B) = R′(A, B)
and Q2

E(A, E) = U(A, E). The only {{A}}-connected component of QE is QE itself.
Now, consider the query QE(C, D, E) = R(A, B), S(B, C), T (B, D), U(A, E) depicted in

Figure 2. In this case, we have JVSets(QE) = {{A}, {B}}. Figure 2 shows the J -connected
components of QE for any J ⊆ {{A}, {B}}. The query has four ∅-connected components.
Each of them contains in its body exactly one of the atoms in QE . The {{B}}-connected
components are Q1

E(A, C, D) = R(A, B), S(B, C), T (B, D) and Q2
E(A, E) = U(A, E). The

only {{A}, {B}}-connected component is QE . ⌟

4 Preprocessing

Given an ACQ Q(F), a variable order ω for Q, and a parameter ϵX ∈ [0, 1] for each free
variable X, we construct in the preprocessing stage a compact data structure that represents
the result of Q. The data structure consists of the results of skew-aware queries, which are
obtained from Q by taking the frequencies of values in the input relations into account. We
next explain the construction of skew-aware queries.

Given a query QX induced by X ∈ F wrt. ω and J ⊆ JVSets(QX), consider the J -
connected components {Q1, . . . , Qk} of QX . For i ∈ [k], the skew-aware query SJ (Qi) is
obtained from Qi by replacing each atom R(X ) in Qi with Rsig(X ), where sig = {V →
L | V ∈ J and V ⊆ X } ∪ {V → H | V ∈ JVSets(QX) \ J and V ⊆ X }. That is, for any
V ∈ JVSets(QX) that is contained in schema X of R, it holds: The relation Rsig is light on V
if V is in J and heavy otherwise. The skew-aware query SJ (Qi) has the same free variables
as Qi. Observe that each variable Y that is free in at least two distinct skew-aware queries
SJ (Qi) and SJ (Qj) must be part of a heavy join v-set. Otherwise, assume that all join
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τ(variable order ω, free variables F) : skew-aware queries

1 let sX = ∅, ∀X ∈ F
2 foreach X ∈ F
3 let QX be the query induced by X wrt. ω

4 foreach join v-set J ⊆ JVSets(QX)
5 let {Q1, . . . , Qk} be the J -connected components of QX

6 sX = sX ∪ {J 7→ {SJ (Q1), . . . , SJ (Qk)}}
7 return {sX}X∈F

Figure 3 Construction of skew-aware queries from a variable order ω and a variable set F . The
skew-aware query SJ (Qi) results from Qi by replacing each relation in Qi by its part that is light
on the join v-sets in J and heavy on all other join v-sets of the query QX induced by X wrt. ω.

v-sets including Y are light. By construction, this means that all such join v-sets are in J .
This implies that there is a J -path between the atoms in Qi and Qj that include Y . This
means that Qi and Qj are not maximally J -connected, which contradicts our assumption
that Qi and Qj are J -connected components of QX .

▶ Example 11. The only {{A}}-connected component of the query QE(B, E) = R′(A, B),
U(A, E) in Figure 1 is QE itself. The corresponding skew-aware query is QE(B, E) =
R′A )L(A, B), UA )L(A, E).

The ∅-connected components of QE(C, D, E) = R(A, B), S(B, C), T (B, D), U(A, E)
in Figure 2 are Q1

E(A, B) = R(A, B), Q2
E(A, E) = U(A, E), Q3

E(B, C) = S(B, C), and
Q4

E(B, D) = T (B, D). We obtain the skew-aware queries Q1
E(A, B) = RA )H,B )H(A, B),

Q2
E(A, E) = UA )H(A, E), Q3

E(B, C) = SB )H(B, C), and Q4
E(B, D) = T B )H(B, D). The

{{B}}-connected components of QE are Q1
E(A, C, D) = R(A, B), S(B, C), T (B, D) and

Q2
E(A, E) = U(A, E). We obtain the skew-aware queries Q1

E(A, C, D) = RA )H,B )L(A, B),
SB )L(B, C), T B )L(B, D) and Q2

E(A, E) = UA )H(A, E). ⌟

The procedure τ(ω, F) shown in Figure 3 constructs all skew-aware queries of the
preprocessing stage. The procedure returns a set {sX}X∈F of maps, where sX maps each set
of join v-sets of the query induced by X wrt. ω to a set of skew-aware queries. We explain
the construction in more detail. For each variable X ∈ F , the procedure first constructs
the query QX induced by X wrt. to ω (Line 3). For each J ⊆ JVSets(QX), it creates
the J -connected components ConJ (Q) = {Q1, . . . , Qk} of QX (Line 5). Then, it adds
J 7→ {SJ (Q1), . . . , SJ (Qk)} to the map sX , where each SJ (Qi) is the skew-aware query
obtained from Qi (Line 6). The procedure returns the set of maps sX with X ∈ F (Line 7).

Consider an ACQ Q(F), a variable order ω for Q, ϵX ∈ [0, 1] for X ∈ F , and a database
of size N . In the preprocessing stage, we first eliminate all dangling tuples in the database
using Yannakakis’ algorithm [19]. For each free variable X ∈ F , we then do the following.
First, we compute the fresh relations in the induced query QX . Then, we partition the
relations in QX on each join v-set in JVSets(QX) using the threshold N ϵX . Finally, we
compute the results of all skew-aware queries in τ(ω, F).

We next show that the skew-aware queries in τ(ω, F) represent the input query Q(F).

▶ Definition 12 (Skew-aware Composite Queries). Given an ACQ Q(F) and J ⊆ JVSets(Q),
consider the J -connected components ConJ (Q) = {Q1, . . . , Qk} of Q and the skew-aware
queries SJ (Q1), . . . , SJ (Qk). The query QJ (F) = SJ (Q1), . . . , SJ (Qk) is called a skew-
aware composite query obtained from Q.
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Given an induced query QX(FX), let Q∪
X(FX) be the union of all skew-aware composite

queries obtained from QX and Q⋊⋉(F) = (Q∪
X(FX))X∈F the join of these unions. On any

database, the result of Q(F) is equal to the result of Q⋊⋉(F):

▶ Proposition 13. For any ACQ Q(F), it holds Q(F) ≡ Q⋊⋉(F).

4.1 Preprocessing Time
Consider the output {sX}X∈F of the procedure τ(ω, F) in Figure 3. Assume that relations
in the induced queries of ω are partitioned using the trade-off parameters {ϵX}X∈F . The
preprocessing time is dominated by the time to compute the skew-aware queries in sX(J )
for any J ⊆ JVSets(QX). Consider for some X ∈ F and J ⊆ JVSets(QX), a skew-aware
query Q̂ in sX(J ). The atoms in the query are connected via light join keys. There are
several ways to compute such a query. One strategy is to materialise the result of Q̂ using
factorised computation over all relations in the query [16]. Another strategy is to use a join
plan where we join in one relation at a time using light join keys. We can also mix these
strategies, i.e., we can use factorised computation over a subset of the relations and then
join in, one by one, the remaining relations.

We formalise join strategies for a skew-aware query Q̂ by the notion of a cover. A cover is a
pair (R1, R2) with R1, R2 ⊆ atoms(Q̂) such that R1 is non-empty and R1 ∪ R2 = atoms(Q̂).
We denote by Cov(Q̂) the set of all covers for Q̂. A cover (R1, R2) represents the strategy
where we first use factorised computation to join the relations in R1 and then join in the
relations in R2 using light join keys. Assuming that the database size is N and the relations
are partitioned using the threshold N ϵX , the time required by this strategy is O(N c+|R2|ϵX ),
where c = max{w(Q̂1), ρ∗

Q̂1
(V)}, V = vars(R1) ∩ (free(Q̂) ∪ vars(R2)), and Q̂1 is the query

with free variables V whose body consists of the atoms in R1. The following cost measure p,
called preprocessing cost, minimises the exponent of the computation time over all possible
covers of the skew-aware query Q̂:

p(Q̂, ϵX) = min
(R1,R2)∈Cov(Q̂)

(c + |R2|ϵX) (1)

where c is defined as above. The exponent of the overall preprocessing time is bounded by
the maximal cost of any skew-aware query for the variable order ω:

p(ω, {ϵX}X∈F ) = max
X∈F

p(QX , ϵX) (2)

p(QX , ϵX) = max
J ⊆JVSets(Q)

max
Q̂∈ConJ (Q)

p(Q̂, ϵX) (3)

We state the preprocessing time of our approach using the preprocessing cost.

▶ Proposition 14. Given an ACQ Q(F), a variable order ω for Q, ϵX ∈ [0, 1] for X ∈ F ,
and a database of size N , the skew-aware queries in τ(ω, F) can be computed in time O(Np),
where p = p(ω, {ϵX}X∈F ).

▶ Example 15. Consider the query QE(B, E) = R′(A, B), U(A, E) from Figure 1. For any
ϵE ∈ [0, 1], a cover with minimal cost is ({R(A, B)}, {U(A, E)}), which implies p(QE , ϵE) =
1 + ϵE . The preprocessing cost for the query Q1 from Example 7 is dominated by this cost.
This leads to O(N1+ϵE ) overall preprocessing time.

Consider now the query QE(C, D, E) = R(A, B), S(B, C), T (B, D), U(A, E) from Fig-
ure 2. Depending on ϵE , we can choose one of the two covers ({R(A, B)}, {S(B, C), T (B, D),
U(A, E)}) and ({R(A, B), T (B, D), U(A, E)}, {S(B, C)}). This leads to p(QE , ϵE) =
min{1 + 3ϵE , 2 + ϵE}. This cost dominates the preprocessing cost for the query Q2 in
Example 7. This implies O(Nmin{1+3ϵE ,2+ϵE}) overall preprocessing time. ⌟
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5 Enumeration

Consider an ACQ Q(F) and a variable order ω for Q. In the preprocessing stage, we
construct for each X ∈ F , an induced query QX with free variables {X} ∪ dep(X). In the
enumeration phase, we consider dep(X) as the input variables and X as the output variable
of QX . The main building block of our enumeration procedure is a mechanism that supports
the enumeration of the X-values in the result of QX , given that the values of the input
variables dep(X) are fixed. Assume for now that we have such an enumeration mechanism for
each induced query. We can enumerate the result of Q as follows. We traverse the variables
in ω in pre-order. The input variables of an induced query QX are a subset of the variables
above X in ω, so when we arrive at variable X, the input variables of QX are already fixed by
the output values of the induced queries for the variables above X. We use the enumeration
mechanism of QX to obtain the X-values paired with the fixed input values. Each tuple in
the result of Q is a concatenation of the output values of the induced queries. The overall
enumeration delay for Q is the sum of the enumeration delays for all induced queries.

▶ Example 16. Consider the query Q1 and its variable order ω1 in Figure 1. The query
Q1 has four induced queries: QB(B), QC(B, C), QD(B, D), and QE(B, E). The query QB

has no input variables and the output variable B, whereas QC , QD, and QE have the input
variable B and the output variables C, D, and respectively E. Following the variable order
ω1, we enumerate the B-values from QB . For each such B-value b, we enumerate the C-, D-,
and E-values that are paired with b from QC , QD, and respectively QE . The concatenation
of output values, one from each induced query, forms a tuple in the result of Q1. The
enumeration delay of Q1 is the sum of the enumeration delays of the four induced queries. ⌟

5.1 Enumeration for an Induced Query
We now show the enumeration mechanism for an induced query QX . The preprocessing stage
decomposes QX into a set of skew-aware composite queries such that the result of QX is the
union of the results of these composite queries. We first show how to enumerate the result of
one composite query and then the union of the results of all composite queries built for QX .

Consider a skew-aware composite query QJ (F) = Q1(X1), . . . , Qk(Xk) obtained from the
J -connected components of an induced query QX(F) for some J ⊆ JVSets(QX). The query
QJ has the same free variables F as QX . We consider the output variable O and input
variables I of QX as the output and respectively input variables of QJ . Given a tuple i over
I, we next show how to enumerate the O-values that are paired with i in the result of QJ .

Case 1. We first discuss the case that the output variable O is a join variable in QJ . For
each skew-aware query Q′(X ′) ∈ {Q1(X1), . . . , Qk(Xk)}, we filter out all tuples in the result
of Q′ that do not match the input tuple i. The time to do this filtering is bounded by the
size of the result of Q′ after fixing the input variables by i. Then, we evaluate the skew-aware
composite query QJ over the filtered skew-aware queries.

By construction, each non-join variable is free, i.e., either an input or an output variable
(non-join bound variables are removed by bound-GYO as shown in Section 3). Since QJ has
only one output variable O, which is a join variable in Case 1, all non-join variables of QJ
are input variables. These variables are fixed by the input tuple i, so the output variable O

is the only free variable that is not fixed. This makes QJ a free-connex query. Hence, for an
input tuple i, we can compute the first result tuple of QJ in time linear in the output size of
the filtered skew-aware queries and enumerate the remaining tuples with constant delay [3].
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Given an input tuple, the enumeration delay for QJ is thus linear in the size of the result
of the skew-aware queries. Since the values of all non-join variables are fixed, this size is
bounded by the size of the projections of the skew-aware queries onto their join variables:

max
Q̂∈atoms(QJ )

|πF̂ Q̂|, where F̂ = free(Q̂) ∩
⋃

V∈JVSets(QX )

V. (4)

The set F̂ consists of the free variables of Q̂ that are part of the join v-sets of QX .

▶ Example 17. Consider the skew-aware composite query Q(A, C, D, E) = Q1(A, B),
Q2(A, E), Q3(B, C), Q4(B, D), which joins the materialised skew-aware queries Q1, Q2,
Q3, and Q4 and has the output variable A and the input variables C, D, and E. For a given
tuple (c, d, e) over (C, D, E), we show how to enumerate the A-values that are paired with
(c, d, e) in the result of Q. The output variable A is a join variable. For each skew-aware
query, we filter out all tuples that do not match (c, d, e). For Q3 and Q4, we keep only the
tuples that contain c and respectively d, denoted as Q3(B, c) and Q4(B, d). For Q2, we obtain
Q2(A, e). The query Q1 has no input variables, so no need for filtering. After the filtering,
the query becomes Q(A, c, d, e) = Q1(A, B), Q2(A, e), Q3(B, c), Q4(B, d). It is free-connex
since A is the only unfixed free variable. After the preprocessing stage that takes time
bounded by the maximum of the sizes |πA,B(Q1(A, B))|, |πA(Q2(A, E))|, |πB(Q3(B, C))|,
and |πB(Q4(B, D))|, we can enumerate the A-values with constant delay. ⌟

Case 2. We now discuss the case where the output variable O of the composite query QJ
is not a join variable. Let QO(XO) ∈ {Q1(X1), . . . , Qk(Xk)} be the skew-aware query with
O ∈ XO and FO ⊆ XO be the join variables in the schema of QO. We define a sub-query
QFO

of QJ by removing QO from the body of QJ and setting the schema of QFO
to be

(F \ XO) ∪ FO, that is, removing the free variables of QO from the schema of QJ and adding
the join variables FO in QO. We set the new variables from FO to be the output variables
and other free variables, (F \ XO) \ FO, to be the input variables of QFO

.
These input variables of QFO

are a subset of the input variables I of QJ since all variables
in F \XO are input variables of QJ (the only output variable O of QJ is in XO and removed).
Hence, an input tuple i over I fixes the input variables of QFO

. When these input variables
are fixed, QFO

becomes free-connex. The reason is that by adding an atom with variables
XO to QFO

, the query remains acyclic. All output variables of QFO
are join variables, so we

can compute the FO-tuples in the result of QFO
as in the previous case. The computation

time is as defined in Equation (4). Then, we can enumerate the distinct output of QJ using
the skew-aware query QO, as explained next.

For the given input tuple i over I and for each output FO-tuple t enumerated from QFO

for i, all variables in QO except O are fixed by i and t, therefore, the skew-aware query QO

supports constant-time lookups and constant-delay enumeration of the matching O-values
in the result of QO. We decompose QO into a union of queries instantiated for the distinct
FO-tuples and the input tuple i. From each query, instantiated for an FO-tuple t and the
input tuple i, we can enumerate with constant delay the O-values that are paired with t and
i in the result of QO. The O-values from these instantiated queries might not be disjoint,
so we cannot enumerate the O-values from each query one after the other. To enumerate
the distinct O-values, we employ the Union algorithm [9]. The enumeration delay is linear
in the sum of the enumeration delays of the instantiated queries. Since each instantiated
query supports constant-delay enumeration, the enumeration delay over all instantiated
queries is linear in the number of distinct FO-tuples, which is bounded by the size defined by
Expression (4). Overall, the enumeration delay of the result of QJ in this case is bounded
by the size defined by Expression (4).
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▶ Example 18. Consider the induced query QE and its ∅-connected components in Fig-
ure 2. The skew-aware composite query is of the form: Q∅

E(C, D, E) = Q1(A, B), Q2(A, E),
Q3(B, C), Q4(B, D), where Q1, . . . , Q4 are the skew-aware queries that are heavy on the
join v-sets {A} and {B}. The query has the input variables C and D and the out-
put variable E. The output variable E is not a join variable. We build a sub-query
QA from Q∅

E by removing the query Q2, which contains the output variable E, and
setting the join variable A to be the output variable of QA. The sub-query is then
QA(A, C, D) = Q1(A, B), Q3(B, C), Q4(B, D). Given an input tuple (c, d) over (C, D),
we retain only the tuples from the skew-aware queries Q1, Q3, and Q4 that match (c, d)
to obtain the query QA(A, c, d) = Q1(A, B), Q3(B, c), Q4(B, d). The query QA(A, c, d) is
free-connex since A is the only unfixed free variable. Preparing for the enumeration of
the A-value from QA takes time linear in the size of the filtered skew-aware queries in
QA, O(max(|πA,B(Q1(A, B))|, |πB(Q3(B, C))|, |πB(Q4(B, D))|)). We can then enumerate
the A-values in the result of QA(A, c, d) with constant delay [3]. For each such A-value
a, we can enumerate the E-values paired with a in Q2(A, E) with constant delay. The
output values of Q∅

E are over the schema (A, E) and might contain duplicates of E-values.
We apply the Union algorithm [9] to enumerate only the distinct E-values with the delay
linear in the number of distinct A-values, which is bounded by O(πA(Q1(A, B))). Since
|πA(Q1(A, B))| ≤ |πA,B(Q1(A, B)|, the delay for the enumeration of the output values of
Q∅

E is bounded by O(max(|πA,B(Q1(A, B))|, |πB(Q3(B, C))|, |πB(Q4(B, D))|)). ⌟

So far, we discussed the enumeration of the result of one skew-aware composite query.
To enumerate the result of an induced query, we need to enumerate the union of the results
of all skew-aware composite queries obtained from the induced query. Since these results
might not be disjoint, we again apply the Union algorithm [9]. The enumeration delay is
the maximum of the enumeration delays of all skew-aware composite queries.

Overall, the enumeration delay for a skew-aware composite query is bounded by the size of
the projections of its skew-aware queries onto their join variables, as defined in Expression (4).
The enumeration delay for an induced query is the maximum of the enumeration delays
of its skew-aware composite queries, and the enumeration delay for the input ACQ is the
maximum of the enumeration delays of its induced queries. Hence, the enumeration delay of
an ACQ Q(F) is given by:

max
X∈F

max
J ⊆JVSets(QX )

max
Q̂∈ConJ (QX )

|πF̂ SJ (Q̂)|, (5)

where SJ (Q̂) is the skew-aware query obtained from Q̂ and F̂ = free(Q̂) ∩
⋃

V∈JVSets(QX ) V.

5.2 Enumeration Delay
Let {sX}X∈F be the output of the procedure τ(ω, F) in Figure 3 for some variable order ω

and a set F of free variables. Assume that the relations are partitioned using parameter values
{ϵX}X∈F . Consider a skew-aware query Q ∈ sX(J ) for some X ∈ F and J ⊆ JVSets(QX).
Expression (5) implies that the overall delay is bounded by the maximal size of the projection
of the result of such a query Q onto F̂ = free(Q) ∩

⋃
JVSet∈JVSets(QX ) JVSet, i.e., the free

variables of Q that are part of join v-sets of QX . We give three bounds on the exponent e of
the size complexity: 1) One bound on e is given by p(Q, ϵX), where p is the preprocessing cost
defined in Equation (1). 2) Another bound is ρ∗

QX
(F̂), i.e., the fractional edge cover number

of F̂ . 3) The relations in Q are heavy on the join v-sets of QX that are included in F̂ . This
means that for each relation R in Q and JVSet ∈ JVSets(QX), we have |πJVSetR| ≤ N1−ϵX .
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Hence, we can bound e by ρ∗
JVSets(QX )(F̂)(1 − ϵX), i.e., the minimal number of join v-sets

covering all variables in F̂ multiplied by 1 − ϵX . We define the enumeration cost e of QX , Q,
and ϵX as the minimum of these three bounds:

e(QX , Q, ϵX) = min{ p(Q, ϵX), ρ∗
QX

(F̂), ρ∗
JVSets(QX )(F̂)(1 − ϵX) }, (6)

The overall enumeration cost is given by the maximum e(QX , Q, ϵX) over all induced and
skew-aware queries:

e(ω, {ϵX}X∈F ) = max
X∈F

e(QX , ϵX) (7)

e(QX , ϵX) = max
J ⊆JVSets(QX )

max
Q̂∈ConJ (QX )

e(QX , Q̂, ϵX) (8)

We state the delay of our approach for a given variable order and trade-off parameters.

▶ Proposition 19. Given an ACQ Q(F), a variable order ω for Q, ϵX ∈ [0, 1] for X ∈ F ,
and a database of size N , the result of Q can be enumerated from the queries in τ(ω, F) with
O(Ne) delay, where e = e(ω, {ϵX}X∈F ).

▶ Example 20. Consider the induced query QE from Figure 2 and the skew-aware composite
query Q∅

E(C, D, E) = Q1(A, B), Q2(B, C), Q3(B, D), Q4(A, E) obtained from its ∅-connected
components. The query Q∅

E(C, D, E) has the join variables F̂ = {A, B}. Let ϵE ∈ [0, 1].
We compute the enumeration cost e(QE , Q1, ϵE) of Q1 as defined in Equation (6). Since

the body of Q1 consists of a single atom that contains A and B, we have p(Q1, ϵE) = 1
and ρ∗

QE
(A, B) = 1. Since A and B can be covered by two join v-sets of QE , we get

ρ∗
JVSets(QE)(A, B)(1 − ϵE) = 2(1 − ϵE) = 2 − 2ϵE . Overall, we obtain e(QE , Q1, ϵE) =

min{1, 2 − 2ϵ}. The query Q2 consists of one atom. The only join variable in its schema is B.
Hence, the enumeration cost of Q2 is e(QE , Q2, ϵE) = 1 − 1ϵE . Similarly, the enumeration
cost for Q3 is e(QE , Q3, ϵE) = 1 − 1ϵE . The skew-aware query Q4 has no join variables. Its
enumeration cost is therefore constant.

The maximum of the enumeration costs for the four skew-aware queries considered above
is max{min{1, 2 − 2ϵE}, 1 − ϵE , 0} = min{1, 2 − 2ϵE}. This cost dominates the enumeration
costs of all induced queries of the query Q2 in Example 7. This implies O(Nmin{1,2−2ϵ})
overall enumeration delay. ⌟

6 Benefits of Our Approach

In this section we exemplify the benefits of our approach versus two mainstream approaches
dubbed lazy and eager. The lazy approach invests no time in the preprocessing phase at
the expense of linear enumeration delay [3]. The eager approach constructs a factorised
representation of the query result in time O(Nw), where w is the width of the query, after
which it needs constant enumeration delay [16]. In case we only need to enumerate a
fraction of the query result, our approach can be asymptotically faster than both competing
approaches. Furthermore, if the fraction is known in advance, we can derive the trade-off
parameters for the lowest overall complexity to compute this fraction of the query result.

▶ Example 21. Consider the query Q1(B, C, D, E) = R(A, B), S(B, C), T (B, D), U(A, E)
from Example 7 whose hypergraph is depicted in Figure 1 (left). The query has width
w = 2 (see Example 8). Assume that the input relations have size N . Our approach
achieves O(N1+ϵ) preprocessing time (Example 15) and O(N1−ϵ) enumeration delay for any
ϵ ∈ [0, 1], as depicted in Figure 4 (top left). These complexities are obtained by using the
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Figure 4 Top: Evaluation trade-offs for the query Q1 from Example 21 (left) and the query Q2

from Example 22 (right). Bottom: The overall evaluation times achieved by the lazy, eager, and our
approaches in case we want to enumerate Nγ output tuples of Q1 (left) and of Q2 (right). The last
row gives the ϵ values at which we achieve the complexities of our approach.

same trade-off parameter value ϵ for all induced queries. The lazy approach achieves linear
enumeration delay after constant preprocessing time, while the eager approach achieves
constant enumeration delay after O(N2) preprocessing time. Our approach recovers the lazy
approach2 at ϵ = 0 and the eager approach at ϵ = 1. For any ϵ ∈ (0, 1), our approach allows
for new trade-offs between preprocessing and enumeration.

The query result has at most N3 tuples. Assume that we want to compute Nγ tuples
from the query result for 0 ≤ γ ≤ 3. The second to fourth rows of the bottom left table
in Figure 4 give the exponents of the overall evaluation times achieved by the lazy, eager,
and our approaches for different values of γ. The last row gives the ϵ values at which we
achieve the complexities of our approach. For instance, for γ = 1

2 , the lazy approach needs
O(N · N

1
2 ) = O(N1 1

2 ), the eager approach needs O(N2 + N
1
2 ) = O(N2), and our approach

needs O(N 1
4 + N

3
4 N

1
2 ) = O(N1 1

4 ) time. In case γ is equal to 1
2 , 1, or 1 1

2 , the computation
time of our approach is strictly better than of the lazy and eager approaches. For the other
cases shown in the table, our approach recovers the best of the other two approaches. ⌟

▶ Example 22. Consider the variant Q2 of the query Q1 from Example 21 where the variable
B is bound. Its hypergraph is shown in Figure 2 (left). This query has width 3 (Example 8).
Assume that the input relations have size N . We explained in Examples 15 and 20 that our
approach achieves O(Nmin{1+3ϵ,2+ϵ}) preprocessing time and O(Nmin{1,2−2ϵ}) enumeration
delay for any ϵ ∈ [0, 1], cf. Figure 4 (top right). Just like in case of Q1, we obtain these
complexities by using the same trade-off parameter value for all induced queries. We recover
prior work using ϵ = 0 (lazy) and ϵ = 1 (eager). For ϵ ∈ ( 1

2 , 1), we obtain new trade-offs.

2 Our approach requires at least linear preprocessing time. In case the delay is linear, the preprocessing
time is also linear and we can shift it to the enumeration of the first tuple to match the constant
preprocessing time of the lazy approach.
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Figure 5 Left to right: Hypergraph of the query Q3 in Example 23; variable order ω3 for Q3;
trade-offs for the induced queries QA (thin blue lines) and QH (thick red lines).

There can be at most N3 tuples in the result of Q2. The bottom right table in Figure 4
gives the exponents of the overall computation times for the lazy, eager and our approaches for
computing Nγ tuples in the query result. In case γ equals 2 or 2 1

2 , the overall computation
time of our approach is strictly lower than of the other approaches. In all other cases
considered in the table, our approach recovers the best of the other two approaches. ⌟

The next example illustrates two aspects of our approach. First, even though our approach
may not achieve novel trade-offs for some induced queries for a given acyclic query Q, it may
still achieve new trade-offs for the entire query Q. Second, in case we are given a budget for
one of the preprocessing and enumeration costs, we can pick the trade-off parameters so as
to optimise for the other cost.

▶ Example 23. Consider the query Q3(A, D, F, G, H) = R(A, B), S(B, C), T (C, D),
U(D, E), V (E, F ), W (E, G), X(E, H) visualised in Figure 5 (left) and its variable order ω3 in
Figure 5 (middle). The query has width 4. We focus on the queries induced by the variables
A and H, since their complexities dominate the overall complexity of Q3. The query induced
by A is the path query QA(A, D) = R(A, B), S(B, C), T ′(C, D) and has width 2. The query
induced by H is the star query QH(D, F, G, H) = U ′(D, E), V (E, F ), W (E, G), X(E, H)
and has width 4. The relations T ′ and U ′ are computed by bound-GYO from T and U

through semi-join reductions with U and T , respectively. For both induced queries, the lazy
approach achieves linear enumeration delay after constant preprocessing time. The eager
approach achieves constant enumeration delay after O(N2) preprocessing time for QA and
after O(N4) preprocessing time for QH . For any ϵH ∈ [0, 1], our approach evaluates QH with
O(N1+3ϵH ) preprocessing time and O(N1−ϵH ) enumeration delay, as visualised with thick
red lines in Figure 5 (right). For any ϵA ∈ [0, 1], it takes O(Nmin{1+2ϵA,2}) preprocessing
time and O(Nmin{1,2−2ϵA}) enumeration delay for QA, as depicted with thin blue lines in
Figure 5 (top right). For both queries, it recovers the lazy approach at ϵA = ϵH = 0 and
the eager approach at ϵA = ϵH = 1. For any ϵH ∈ (0, 1), it allows for new trade-offs for QH

beyond the aforementioned ones of the existing approaches. For instance, for ϵH = 1
2 , it

achieves O(N2 1
2 ) preprocessing time, which is less than the preprocessing time of the eager

approach and O(N 1
2 ) enumeration delay, which is less than the delay of the lazy approach.

Our approach does not achieve new trade-offs for the induced query QA, but it still
achieves new trade-offs for the whole query Q3. The lazy and eager approaches achieve for Q3
the same trade-offs as for QH . Our approach achieves O(Np) preprocessing time and O(Ne)
delay, where p = max{min{1 + 2ϵA, 2}, 1 + 3ϵH} and e = max{min{1, 2 − 2ϵA}, 1 − ϵH}. This
means that for ϵA = 1 and ϵH ∈ ( 1

2 , 1), we obtain new trade-offs for Q3.
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Now, assume that we have a preprocessing cost budget of 2 1
2 , i.e., we can afford O(N2 1

2 )
preprocessing time. By setting ϵH = 1

2 , we achieve the lowest enumeration cost of 1
2 for QH .

The preprocessing cost of QA does not reach 2 1
2 for any ϵA. So, one possibility is to set

ϵA = 1 to obtain an enumeration cost of 0 for QA and an overall enumeration cost of 1
2 . If we

have an enumeration cost budget of 1
4 , we can set ϵH = 3

4 to obtain the lowest preprocessing
cost of 3 1

4 for QH . Since the preprocessing cost of QA never reaches 3 1
4 , we set ϵA = 1 to

achieve 0 enumeration cost for QA and an overall enumeration cost of 1
4 . ⌟

7 Conclusion

In this paper we introduce an evaluation approach for acyclic conjunctive queries that trades
off between the preprocessing time and the enumeration delay. This trade-off space includes
points representing prior works and also points corresponding to novel evaluation strategies
where the enumeration delay lies between linear and constant. Our approach can be extended
to arbitrary conjunctive queries: in the preprocessing phase, we either fully materialise
induced queries with cycles or do nothing. For such cyclic induced queries, the trade-off
space of our approach thus only consists of two points where the delay is constant or as high
as needed to compute the cycles in the query. In future work, we would like to generalise our
approach to queries with aggregates over arbitrary semirings [1].
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A Appendix: Proofs

A.1 Proof of Theorem 2
Consider an ACQ Q(F) and a database of size N . Assume that the pair (p, e) is included in
the set µ(Q) of Pareto optimal pairs of objective values of the trade-off program in Section 1.
This means that there is a variable order ω for Q and a set {ϵX}X∈F of trade-off parameters
such that p = p(ω, {ϵX}X∈F ) (Equation (2)) and e = e(ω, {ϵX}X∈F ) (Equation (7)). By
Propositions 14 and 19, the query Q can be evaluated with O(Np) preprocessing time and
O(Ne) delay.

A.2 Proof of Corollary 3
Consider a free-connex ACQ Q(F). We show that (1, 0) is included in the set µ(Q) of Pareto
optimal pairs of objective values of our trade-off program in Section 1.

Since Q is free-connex acyclic, it admits a variable order ω of width 1 [4]. Consider
an arbitrary free variable X in ω. Since the width of ω is 1, the variables {X} ∪ depω(X)
are covered by a single atom of Q. This means that the body of the induced query QX

consists of a single atom whose variables are free, i.e., the induced query is of the form
QX(X ) = R(X ). This implies that JVSets(QX) = ∅. The only ∅-connected component
of QX is QX itself. This means p(QX , ϵX) = 1 (Equation (1)) for any ϵX ∈ [0, 1] and
e(QX , QX , ϵX) = 0 (Equation (6)) for ϵX = 1. Since X is an arbitrary free variable in ω, we
derive that the preprocessing cost p(ω, {ϵX}X∈F ) (Equation (2)) is 1 and the enumeration
cost e(ω, {ϵX}X∈F ) (Equation (7)) is 0 for parameter values {ϵX = 1}X∈F . No variable
order can admit lower preprocessing or enumeration cost. This implies (1, 0) ∈ µ(Q).

A.3 Proof of Corollary 4
Consider an arbitrary ACQ Q(F). We show that (1, e) with e ≤ 1 is included in the set µ(Q)
of Pareto optimal pairs of objective values of the trade-off program in Section 1.

Given an arbitrary variable order ω for Q, consider the induced query QX for any free
variable X in ω. For any J ⊆ JVSets(QX), let Q̂ be an arbitrary J -connected component
of QX . Consider the cover ({R(X )}, R) for Q̂, where R(X ) is an arbitrary atom in Q̂ and
R = atoms(Q̂) \ {R(X )}. This means that the preprocessing cost p(Q̂, ϵX) (Equation (1))
is upper-bounded by 1 + |R|ϵX for any ϵX ∈ [0, 1]. This implies p(Q̂, 0) = 1. By definition,
e(QX , Q̂, 0) (Equation (6)) is upper-bounded by p(Q̂, 0) = 1. Since ω and X were chosen
arbitrarily, we derive that the preprocessing cost p(ω, {ϵX = 0}X∈F ) (Equation (2)) is 1 and
the enumeration cost e(ω, {ϵX = 0}X∈F ) (Equation (7)) is at most 1. Overall, we conclude
that (1, e) with e ≤ 1 is included in µ(Q).
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A.4 Proof of Corollary 5

Consider an ACQ Q(F) of width w. We show that (w, 0) is included in the set µ(Q) of
Pareto optimal pairs of objective values of our trade-off program in Section 1.

Consider a variable order ω for Q of width w. Let QX(FX) be the query induced by a
variable X ∈ F . By construction, ρ∗

QX
(FX) ≤ w. For any J ⊆ JVSets(QX), let Q̂(F̂) be an

arbitrary J -connected component of QX . Consider the cover (atoms(Q̂), ∅) for Q̂. Note that
Q1 as used in Equation (1) is equal to Q̂. It follows from the structure of QX and Q̂ that
w(Q̂) ≤ w and ρ∗

Q̂
(F̂) ≤ ρ∗

QX
(FX) ≤ w. This implies that is p(Q̂, ϵX) ≤ w (Equation (1)) for

any ϵX ∈ [0, 1]. By definition, e(QX , Q̂, ϵX) (Equation (6)) is upper-bounded by k(1 − ϵX),
for some k ≥ 0. By setting ϵX = 1, we obtain e(QX , Q̂, 1) = 0. Since ω and X were chosen
arbitrarily, we conclude that the preprocessing cost is p(ω, {ϵX = 1}X∈F ) = w (Equation (2))
and the enumeration cost is e(ω, {ϵX = 1}X∈F ) = 0 (Equation (7)). This implies that (w, 0)
is included in µ(Q).

A.5 Proof of Corollary 6

Consider a hierarchical query Q(F) of width w. We show that for any ϵ ∈ [0, 1], (p, e) with
p ≤ 1 + (w − 1)ϵ and e ≤ 1 − ϵ is included in the set µ(Q) of Pareto optimal pairs of objective
values of the trade-off program in Section 1.

Let ω be a variable order for Q of width w and ϵ ∈ [0, 1]. Consider the query QX(FX)
induced by a variable X ∈ F such that ρ∗

Q(FX) = w, where FX = {X} ∪ depω(X).
Hierarchical queries stay hierarchical after removing variables or atoms. Hence, QX(FX) is
hierarchical. It follows from the construction of QX and the shape of hierarchical queries
that the number of atoms in QX is w. For any J ⊆ JVSets(QX), consider an arbitrary
J -connected component Q̂ of QX . The query Q̂ is hierarchical and the number of atoms
in Q̂ is at most w. Consider the cover C = ({R(X )}, R) for Q̂, where R(X ) is an arbitrary
atom in Q̂ and R = atoms(Q̂) \ {R(X )}. Since the width of a query with a single atom and
the fractional edge cover of a variable set included in a single atom are at most one, the cost
of C is at most 1 + |R|ϵ = 1 + (w − 1)ϵ. It follows, p(Q̂, ϵ) ≤ 1 + (w − 1)ϵ (Equation (1)). Let
F̂ (as defined in Equation (6)) be the free variables of Q̂ that are included in the join v-sets
of QX . Since QX is hierarchical, there must be a single join v-set in QX that subsumes F̂ .
Hence, e(QX , Q̂, ϵ) is upper-bounded by ρ∗

JVSets(QX )(F̂)(1 − ϵ) ≤ 1 − ϵ. We conclude that
p(ω, {ϵX = ϵ}X∈F ) ≤ 1 + (w − 1)ϵ and e(ω, {ϵX = ϵ}X∈F ) ≤ 1 − ϵ. This implies that (p, e)
with p ≤ 1 + (w − 1)ϵ and e ≤ 1 − ϵ is included in µ(Q).

A.6 Proof of Proposition 13

Consider an ACQ Q(F) and a variable order ω for Q. Let QX(FX) be the query induced
by X ∈ F . In the preprocessing stage, we partition the relations of QX into disjoint parts.
Each skew-aware composite query obtained from QX computes the join of a combination of
these parts. Hence, the union Q∪

X(FX) of all skew-aware composite queries is the result of
the induced query QX(FX). The query Q⋊⋉(F) is defined by the join of the induced queries.
Each induced query QX(FX) computes the projection of the result of Q onto FX . The union
of the free variables of the induced queries covers exactly the free variables F of Q. Hence,
on any database, the result of Q⋊⋉(F) is equal to the result of Q(F).

CSL 2023



29:20 Evaluation Trade-Offs for Acyclic Conjunctive Queries

A.7 Proof of Proposition 14
Consider an acyclic query Q(F), a variable order ω for Q, trade-off parameters {ϵX}X∈F , and
a database of size N . Let {sX}X∈F be the output of τ(ω, F) (Figure 3). In the preprocessing
stage, we first eliminate the dangling tuples in the database. Since Q is acyclic, this can
be done in O(N) time [19]. For any free variable X, we compute the fresh relations in
the induced query QX by computing projections and semi-joins. These operations can be
executed in O(N) time. Partitioning the relations can also be done in linear time.

The preprocessing time is dominated by the time to compute the skew-aware queries in
{sX}X∈F . Given X ∈ F and J ⊆ JVSets(QX), consider a skew-aware query Q̂ in sX(J ).
Let (R1, R2) be a cover of Q̂ such that c + |R2|ϵX is minimal, where c is defined as in the
preprocessing cost p(Q̂, ϵX) (Equation (1)). Using factorised computation [16], we join the
relations in R1 in O(N c) time. Let relation S be the result of this join. Then, we use a
left-deep join plan to join S, one by one, with the relations in R2. In each step, we take a
relation from R2 that shares a light join v-set with the variables covered so far. Given an
intermediate result S′, we join S′ with such a relation R from R2 as follows: We iterate over
the tuples in S′ and for each such tuple, we iterate over the matching tuples in R. Since
R is light on the join v-set, this can be done in O(|S| · N ϵX ) time. Since R1 and R2 cover
all relations in Q̂ and these relations are connected via light join v-sets, this gives overall
O(N c+|R2|ϵX ) computation time for Q̂. By definition of the preprocessing cost p(ω, {ϵX}X∈F )
(Equation (2)), the overall computation time for the induced queries QX is O(Np).

A.8 Proof of Proposition 19
Consider an acyclic query Q(F), a variable order ω for Q, trade-off parameters {ϵX}X∈F ,
and a database of size N . Let {sX}X∈F be the output of τ(ω, F). As explained in Section 5
(Equation (5)), the enumeration delay of our approach is bounded by:

max
X∈F

max
J ⊆JVSets(QX )

max
Q̂∈ConJ (QX )

|πF̂ SJ (Q̂)|,

where SJ (Q̂) is the skew-aware query obtained from Q̂ and F̂ = free(Q̂) ∩
⋃

V∈JVSets(QX ) V.
We give bounds on the exponent e in the size complexity O(Ne) of πF̂ SJ (Q̂). One bound

is the fractional edge cover number ρ∗
QX

(F̂) [2]. Another bound is given by the preprocessing
cost p(Q̂, ϵX) (Equation (1)) for Q̂. The join v-sets of QX that are included in F̂ are heavy,
which means that the number of distinct tuples over each of these join v-sets must be bounded
N1−ϵX . This implies that e is bounded k − kϵX where k is the minimal number of join
v-sets covering all variables in F̂ . The number k can be expressed by ρ∗

JVSets(QX )(F̂). From
the definition of the enumeration cost e(ω, {ϵX}X∈F ) (Equation (7)), we conclude that e is
bounded by e = e(ω, {ϵX}X∈F ).
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