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Abstract
Cognates – words which share form and meaning across two
languages – have been extensively studied to understand the
bilingual mental lexicon. One consistent finding is that bilingual
speakers process cognates faster than non-cognates, an effect
known as cognate facilitation. Yet, there is no agreement on the
underlying factors driving this effect. In this paper, we use com-
putational modeling to test whether the effect can be explained
by the cumulative frequency hypothesis. We train a computa-
tional language model on two language pairs (Dutch–English,
Norwegian–English) under different conditions of input presen-
tation and test it on sentence stimuli from two existing studies
with bilingual speakers of those languages. We find that our
model can exhibit a cognate effect, lending support to the cu-
mulative frequency hypothesis. Further analyses reveal that the
size of the effect in the model depends on its linguistic accu-
racy. We interpret our results within the literature on cognate
processing.
Keywords: cognate facilitation effect; cumulative frequency;
bilingualism; language model; sentence processing

Introduction
Cognates are words that share form and meaning across lan-
guages, like the noun winter, which has identical orthography
and meaning in English and Dutch.1 Cognates are widely stud-
ied in bilingual language comprehension and production as
they may be central to our understanding of bilingual lexical
access (Costa, Caramazza, & Sebastian-Galles, 2000). One
consistent finding about cognates is that bilingual speakers
process them faster than non-cognates (and than monolin-
gual speakers do), known as the cognate facilitation effect.
This effect has been reported across various experimental
tasks, including sentence processing (Costa et al., 2000; Dijk-
stra, Grainger, & van Heuven, 1999; Libben & Titone, 2009;
Schwartz & Kroll, 2006, etc.). For instance, Dutch–English
bilinguals read the English example (1) faster with the cognate
word winter than with the control word prison (‘gevangenis’
in Dutch), even though the two words are matched on their
English corpus frequencies (Bultena, Dijkstra, & van Hell,
2014).

(1) The residents dislike the [winter
cognate

/ prison]
control

...

1Cognates can be spelled with small differences across languages,
but here we focus on identical cognates.

The exact nature of the facilitation effect, however, is not
known. One open question is whether it is driven by the higher
cumulative frequency of cognates compared to non-cognates
(Midgley, Holcomb, & Grainger, 2011; Voga & Grainger,
2007): due to the identical form, Dutch–English bilinguals
encounter a cognate such as winter more frequently than a
non-cognate such as prison. This effectively makes cognates
similar to words with very high frequency within one language.
Although the cumulative frequency hypothesis has found some
empirical support (Voga & Grainger, 2007; Strijkers, Costa,
& Thierry, 2010), it is not universally accepted. For example,
van Hell and Dijkstra (2002) argue that cognate facilitation is
not just due to cumulative frequency and that cognates have a
special type of representation in the mental lexicon.

The current paper investigates whether the cognate facili-
tation effect in sentence processing can be explained by cu-
mulative word frequency. We use computational language
modeling, a well-established paradigm in research on online
language processing (e.g., Smith & Levy, 2013). Language
models are well-suited for studying online processing, because
they predict the next word in a sentence, and their predic-
tions correlate with human reading times (e.g., Goodkind &
Bicknell, 2018). The exact relationship between a word’s pre-
dictability in context and its (unigram) frequency is not known
(e.g., Staub, 2015; Shain, 2019), but more frequent words tend
to also be more predictable in neural language models (Xie
et al., 2015). Importantly, such models provide full control
over the input data, so that the exact frequencies of cognates
and non-cognates can be counted, and they treat cognates and
non-cognates in exactly the same way, without assigning cog-
nates any special status. This makes computational language
modeling a suitable paradigm to test the cumulative frequency
hypothesis.

We train the model on two (Dutch–English, Norwegian–
English) languages and test it on stimuli from two experiments
on the reading of identical cognates in English sentence con-
texts, carried out with corresponding bilingual populations
(Bultena et al., 2014; Winther, 2017). The sentence con-
texts contain a target word which is either a cognate or a
non-cognate (control) word, as in (1) above. Because the



Dutch–English cognate winter occurs in both languages, a
model trained on Dutch and English will encounter this word
overall more frequently than the control word, prison. If our
model predicts cognates to be more likely than non-cognates in
the same sentence context, this would support the cumulative
frequency hypothesis. We consider multiple model variants,
trained under different conditions of input data presentation,
through manipulating three variables: first language (L1) pre-
training, inter-sentential language mixing in the input, and
first-to-second language (L1:L2) input ratio. These manipula-
tions change the cumulative frequencies of cognate and control
words and allow us to investigate under which conditions, if
any, the cognate facilitation effect is observed in the model.

Our main contribution in this study is a test of the cumu-
lative frequency hypothesis using a computational language
model trained on two languages, which we evaluate against
human experimental data with Dutch–English and Norwegian–
English bilinguals (Bultena et al., 2014; Winther, 2017). We
show that the model can predict the cognate facilitation effect
observed in human data. Our cumulative frequency analysis
confirms that frequency explains the model’s predictions better
than the words’ cognate status alone. We also find that the size
of the cognate effect in the model depends on its linguistic
accuracy.

Background

Cognate Facilitation Effect

A cognate facilitation effect in sentence processing has been
observed across many language pairs (e.g., Bultena et al.,
2014; Schwartz & Kroll, 2006; Libben & Titone, 2009). Here,
we focus on Dutch–English and Norwegian–English, due to
the availability of human experimental data with identical
cognates. Specifically, we evaluate our model on the stimuli
from two studies on cognate processing in second language
(L2) sentence contexts by Dutch–English (Bultena et al., 2014,
henceforth B14) and Norwegian–English bilinguals (Winther,
2017, henceforth W17). In both studies, bilingual participants
read L2 English sentences containing either cognates or non-
cognates (matched on their English frequency) whilst their
eye movements were measured. Shorter reading times were
observed for cognates than for control words.

Language Modeling and Bilingualism

In research on monolingual online sentence processing, lan-
guage models are commonly used to study a variety of phe-
nomena (e.g., Gulordava, Bojanowski, Grave, Linzen, & Ba-
roni, 2018; Arehalli & Linzen, 2020). In the computational
study of bilingualism, to our knowledge, only Frank (2014)
and Frank, Trompenaars, and Vasishth (2016) trained such
models on natural language data from two languages at the
same time (see also Frank, 2021). These two studies found a
significant correlation between the bilingual model’s predic-
tions and reading times of L1 Dutch and L2 English sentences
by Dutch–English bilinguals.

Table 1: Number of sentences and tokens in the training cor-
pora. The corpora are matched on number of sentences.

Sentences (mln.) Tokens (mln.)
All languages Norw. Dutch English

Train 1.6 28.2 29.0 42.5
Validation 0.2 3.5 3.6 5.3
Test 0.2 3.5 3.6 5.3

Total 2.0 35.2 36.3 53.1

While it is common to compare various language model ar-
chitectures on how well they predict human data (e.g., Futrell
et al., 2019), we are interested to test whether the cognate
facilitation effect can be predicted by any language model
trained on two languages. We choose to use a long short-term
memory (LSTM; Hochreiter & Schmidhuber, 1997) model,
because it has been commonly used in online processing stud-
ies mentioned above and is arguably a cognitively plausible
model (Merkx & Frank, 2020).

Methods
Our general approach is to train the model on data from one
or two languages and evaluate its linguistic accuracy and its
ability to predict the data from the two experimental studies
with cognates, B14 and W17.

Training Data
To simulate L1 input, we use two corpora created from Dutch
and Norwegian Wikipedia. For L2 input, we use an existing
English Wikipedia corpus (Gulordava et al., 2018). We follow
standard practices for data preprocessing: limit the vocabu-
lary to the 50k most frequent words for each corpus, replace
the remaining tokens with the unknown symbol, and exclude
sentences with more than 5% unknown tokens. Each prepro-
cessed corpus is divided into the standard 80/10/10 split for
training, validation and test sets. The corpus statistics are set
out in Table 1.

Model
We use an LSTM language model, namely the baseline imple-
mentation of van Schijndel and Linzen (2018)2, adopting their
architecture and hyperparameters: two hidden layers (650
units each), with 650-dimensional word embeddings, a learn-
ing rate of 20, a dropout rate of 0.2 and a batch size of 128.
The models are trained for 30 epochs (without early stopping)
and are tested every 10 epochs, unless specified otherwise.

The model’s task is to predict the next word wi given its
preceding context, which yields a probability distribution
P(wi|w1...wi−1). The model’s performance is measured by

2https://github.com/vansky/neural-complexity. Note
that van Schijndel and Linzen (2018) trained the model for 40 epochs,
but we stop after 30 epochs due to very small improvements after
that.

https://github.com/vansky/neural-complexity


Table 2: Log-frequencies of each word type per L1:L2 training
condition. Mean (M) and standard deviation (SD) are shown.

English 50:50 75:25
M SD M SD M SD

B14 (Dutch–English data)
Cognate 3.32 0.56 3.18 0.54 3.08 0.55
Control 3.05 0.69 2.75 0.71 2.43 0.77

W17 (Norwegian–English data)
Cognate 2.85 0.65 2.64 0.64 2.46 0.64
Control 2.79 0.51 2.50 0.52 2.20 0.53

perplexity, the inverse probability of the (unseen) test data:

PPL =

(
N

∏
i=1

P(wi|w1...wi−1)

)− 1
N

(1)

where N is the total number of tokens in the test set. Lower
perplexity indicates a higher probability assigned to the test
data, i.e., a better fit of the language model to the test data.

Model Evaluation
To estimate whether our model successfully learns two lan-
guages, we first report the model’s perplexity on the Wikipedia
test data. This indicates the model’s overall linguistic accu-
racy, i.e., its ability to predict the following word in natural
language sentences.

Our main goal is to determine under which conditions, if
any, the bilingual model displays a cognate effect. For this, we
use surprisal (S), a commonly used measure thought to reflect
the cognitive effort of processing a word in a given context
(Hale, 2001; Smith & Levy, 2013):

S (wi) =− log2 P(wi|w1...wi−1) (2)

We expect the model to display lower surprisal values for
cognates than their controls on two sets of test stimuli: 21
pairs of B14’s noun sentence stimuli and 28 pairs of W17’s
semantically constraining sentences. We also measure the size
of the cognate effect for a given pair of words as the difference
in surprisal values: a greater difference between the control
and the cognate words occurring in the same context indicates
a larger effect size:

∆S(wi) = Scontroli −Scognatei (3)

In all the statistical analyses, we use mixed-effects models,
as implemented in lme4 package (Bates, Mächler, Bolker, &
Walker, 2015) for R (R Core Team, 2020).

Simulations
Using the described architecture and data sets, we train mono-
lingual and bilingual models under different conditions of
input presentation, as described below. Each model is trained
with 5 different random seeds (i.e., initializations of model

Table 3: Characteristics of the six bilingual models.

Variables Type of bilinguals
Model L1

pretr.
Lang.
mix.

L1:L2
ratio

Unbal./
balanc.

Simult./
sequen.

PT-MX-50 + + 50:50 Un-/bal. Sequen.
PT-MX-25 + + 75:25 Unbal. Sequen.
NPT-NMX-50 − − 50:50 Balanc. Sequen.
NPT-NMX-25 − − 75:25 Unbal. Sequen.
NPT-MX-50 − + 50:50 Balanc. Simult.
NPT-MX-25 − + 75:25 Unbal. Simult.

weights) to ensure the results are robust. We evaluate the
models on linguistic accuracy and their ability to predict the
cognate facilitation effect observed in B14 and W17.

Monolingual Models
We first train monolingual models on each of the three lan-
guages independently: English, Dutch, and Norwegian. We
report each model’s linguistic accuracy (perplexity) on the test
set for the respective language. These are used as monolin-
gual points of comparison to evaluate the performance of the
bilingual models.

Bilingual Models
The bilingual models are trained on samples from two lan-
guages’ data, keeping the total number of sentences constant.
The vocabulary for the bilingual models is the unified vocabu-
lary for the L1 and L2 corpora. There are various ways to train
the model on two languages, depending on the relative amount
of training data in each language and the order of presentation.
We explore these differences by manipulating three variables:
1. L1 pretraining. We consider models with pretraining (pre-
trained, PT) and without pretraining (non-pretrained, NPT).
NPT models are trained on data from two languages in parallel.
PT models are first trained on the L1 data for 30 epochs and
then on combined bilingual data for 10 more epochs. Unlike
NPT models, PT models are saved for further testing after every
epoch during bilingual training.
2. Language mixing. Within each training epoch, we either
present the model with L1 data followed by L2 data (non-
mixed models, NMX), or with randomly shuffled combined
L1–L2 sentences (mixed models, MX).
3. L1:L2 ratio. We combine either 75% of the L1 and 25% of
the L2 corpora, or 50% each. These proportions are arbitrary,
as our aim is to compare models trained on different and equal
proportions of L1:L2. Manipulating this ratio changes the
cumulative frequencies of English cognates and control words
in the training data, as shown in Table 2.

The 3 variables with 2 values each result in 8 bilingual mod-
els. We do not consider the 2 pretrained non-mixed models,
because our preliminary simulations showed that a model can-
not learn L2 from non-mixed input if its exposure to L1 is
much higher than to L2. This leaves us with 6 bilingual mod-
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Figure 1: Mean model perplexities for (a) non-pretrained
(NPT) and (b) pretrained (PT) models, on the L1 Dutch (NL)
or Norwegian (NO), or L2 English (EN) Wikipedia test sets.

els. We use the values of the 3 variables above to refer to each
model: e.g., PT-MX-25 is a pretrained mixed model with 25%
L2 in the bilingual part of its training data. Table 3 shows the
characteristics of all 6 models and how they can be related to
various types of bilingualism: unbalanced bilingualism (larger
exposure to L1 than to L2) vs. balanced bilingualism (approx-
imately equal exposure), and simultaneous bilingualism (both
languages are acquired from birth) vs. sequential bilingualism
(learning an L2 later in life). Note that the mapping between
model variants and types of bilinguals is approximate: e.g.,
PT-MX-50 sees equal amounts of L1 and L2 in the bilingual
data, yet overall it is exposed to more L1 due to pretraining.

Results
We are primarily interested in whether the bilingual models
exhibit the cognate effect and under which conditions. First,
however, we present the models’ overall linguistic accuracy.
All results are averaged over 5 random initializations.

Models’ Linguistic Accuracy
We first look at the overall linguistic accuracy of each bilingual
model in comparison to the monolingual models, to see how

well the bilingual models learn two languages. The models’
perplexity over time is shown in Figure 1. Note that the values
cannot be compared across panels, as the test sets are different
(except the L2 English test set), and the absolute perplexity
values vary substantially across languages (Gerz, Vulić, Ponti,
Reichart, & Korhonen, 2018). We observe similar patterns
in each of the two language pairs. First, L1 test perplexity is
low (< 45) and stable across training epochs for all models
(top panels in each subplot), indicating that L1 learning is
successful and that L2 learning does not jeopardize L1 lin-
guistic accuracy. Second, the L2 English perplexity for most
of the bilingual models is only somewhat higher than for the
monolingual English model (bottom panels in Figure 1a). One
exception is NPT-NMX-25, which has high (> 145) perplex-
ity on the L2 test set compared to all other models (< 100)
and does not improve over time. This suggests that when a
model is exposed predominantly to one language (L1) and
sees that language first within each epoch, it cannot achieve
high linguistic accuracy in the other language (L2), an issue
we return to in the discussion. Lastly, all -25 models have
lower L1 perplexity, but higher L2 perplexity than the corre-
sponding -50 models: accuracy in a given language increases
with its share in the training data. To summarize, our model
displays general learning patterns that are consistent with the
conditions of L1 and L2 input data presentation, defending
our use of this model for the study of bilingualism.

Cognate Facilitation Effect in the Model
Here, we analyse the relationship between words’ cognate
status and models’ surprisal values, to see if the models display
the cognate facilitation effect. We expect surprisal for cognates
to be lower than for control words. We fit a mixed-effects
linear regression to the surprisal values predicted by each
bilingual model variant (and the monolingual model, as a
sanity check). Fixed effects include cognate status (cognate
vs. control), epoch (to account for the model’s learning over
time), and their interaction. Random effects include intercepts
for model’s random initialization, item, and sentence context.3

As a simple check, we first consider the monolingual En-
glish model. Because the frequencies of cognates and control
words are matched in English, we expect no cognate effect.
Indeed, the model shows no significant effect: the regression
coefficients (b = 0.01 and 0.08, | t |= 0.02 and 0.11 for B14
and W17, respectively) suggest no meaningful differences
between the surprisal values for cognates vs. control words.

The surprisal values for bilingual models are shown in Fig-
ure 2. We first look at the four NPT models (Figure 2a). For
both language pairs, a significant effect of cognate status is
only observed for NPT-NMX-25 (note the gaps between the
pairs of lines): b =−1.79 and−1.70 (| t |= 2.30 and 2.34) on

3Full mixed-effects model structure in R: surprisal ∼ cog-
nate status*epoch + (1|word) + (1|sentence) + (1|initialization). Ran-
dom slopes could not be included due to convergence issues. Some
random intercepts were excluded to ensure model convergence: ran-
dom initialization for NPT-MX-50, random initialization and sentence
for the English model.
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Figure 2: Mean model suprisal values for cognates and control
words from B14 and W17. Ribbons indicate standard error.
Note that the absolute surprisal values on B14 vs. W17 cannot
be compared, because the test data sets are different.

B14 and W17, respectively, meaning lower surprisal values for
cognates than for control words. Additional by-epoch analyses
for this model variant confirmed the presence of the cognate
facilitation effect at each time point for both data sets, except
at epoch 30 on the B14 stimuli.

Next, we look at the two PT models (Figure 2b). We ob-
serve a significant effect of cognate status for PT-MX-25 on
both data sets: b = −1.56 and −1.23 (| t |= 2.37 and 2.03),
again suggesting lower surprisal values for cognates than for
control words. We also observe significant positive interac-
tions between cognate status and epoch for both PT-MX-25
and PT-MX-50 on both data sets, suggesting that the difference
between control and cognate words gets smaller with more

training (the gap between the pairs of lines in Figure 2b de-
creases over time). Again, our by-epoch analyses show that
on the B14 stimuli the cognate effect was significant for most
epochs of the PT-MX-25 model (but not at all for the for PT-
MX-50 model). On the W17 stimuli, the effect was significant
only at epoch 1 for both PT-MX-25 and PT-MX-50.

Cumulative Frequency Analysis
We have observed a consistent cognate facilitation effect in
two of our bilingual models: NPT-NMX-25 and PT-MX-25. Be-
cause our models treat cognates and control words in the same
way, this effect must be attributed to the different cumulative
frequencies of the two types of words in the training data. If
that is the case, a word’s frequency must predict its surprisal
value better than the cognate status does. To test this, we again
consider the surprisal values of NPT-NMX-25 and PT-MX-25
on B14 and W17. Just as before, we fit four mixed-effects
regressions to these values, but this time including cumulative
word frequency as an additional predictor variable.4 The re-
gression analyses show that word frequency is a significant
predictor of surprisal for both language models on both B14
and W17, while cognate status is no longer significant in these
new regressions. For NPT-NMX-25 tested on B14 and W17,
the regression coefficients for frequency are b = −2.43 and
−3.42 (| t |= 4.68 and 5.65), and for cognate status b =−0.22
and −0.81 (| t |= 0.30 and 1.15). Analogously, for PT-MX-25,
b = −2.32 and −3.67 (| t |= 4.96 and 6.77) for frequency,
and b = 0.97 and 0.96 (| t |= 1.28 and 1.53) for cognate status.
This confirms that cumulative frequency explains the cognate
facilitation effect in our models.

Linguistic Accuracy and the Cognate Effect
We have found that cumulative word frequency can predict
surprisal in our two bilingual language models that show the
cognate facilitation effect. Yet, frequency alone cannot deter-
mine the presence of the effect in a given model. Consider two
models trained on the same data under different conditions,
NPT-NMX-25 and NPT-MX-25. Despite identical word fre-
quencies, only the former displays a cognate effect. We know
that these two models differ in their linguistic accuracy, and
here we ask whether a model’s linguistic accuracy (measured
by perplexity) can predict the size of the cognate effect in that
model. We consider by-epoch perplexity values for each of our
six bilingual models and test whether perplexity can predict
the size of the cognate effect (measured as ∆S, see Equation 3)
at a given training time for a given model. To do so, we fit a
series of mixed-effect regressions with ∆S as the dependent
variable, L2 (English) perplexity and epoch (with their inter-
action term) as the fixed effects, and random intercepts over
sentence pair and random initialization. As before, we run
separate analyses for NPT and PT models. For both types of

4For NPT models, we use a word’s total frequency in each bilin-
gual training sample. For PT models, we compute the total number of
times each word is seen during training: F(w)L1×30+F(w)biling.×
10 (where 30 and 10 are the number of L1 pretraining and bilingual
training epochs, respectively).



models, L2 perplexity is a significant predictor of ∆S on both
data sets. For NPT models, b = 0.02 and 0.02 (| t |= 5.26
and 6.22) on B14 and W17, respectively. For PT models, the
respective values are: b = 0.01 and 0.01 (| t |= 4.28 and 3.43).
This suggests that the cognate effect is observed in the models
with higher L2 perplexity, or lower L2 linguistic accuracy.

Discussion
Our main goal was to test whether the cognate facilitation ef-
fect in bilingual speakers can be explained by cumulative word
frequency. To do this, we trained computational language mod-
els on two languages (Dutch–English or Norwegian–English).
We manipulated three variables determining the patterns of
input data presentation to the model – L1 pretraining, language
mixing, and L1:L2 ratio – to explore a number of model vari-
ants. We tested each variant on the stimuli from sentence read-
ing experiments with bilingual speakers (Bultena et al., 2014;
Winther, 2017), and analyzed the models’ predictions for cog-
nate vs. control words. We observed a significant cognate
effect for two (out of six) model variants across both language
pairs. Because our model does not process cognates differently
from other words, the effect observed in our models cannot
be explained by cognates’ special status, as suggested by van
Hell and Dijkstra (2002). Instead, we found that a word’s
frequency predicts its surprisal value better than its cognate
status does. This finding supports the cumulative frequency
hypothesis: the higher frequency of cognates (compared to
non-cognates) facilitates their processing in sentences. At
the same time, we did not test a similar computational model
that would explicitly assign cognates a special status, and we
cannot argue against van Hell and Dijkstra’s proposal based
on our result. While further research is needed in this respect,
we have shown that the cumulative frequency hypothesis can
in principle explain the cognate effect.

The common properties of the two model variants that dis-
played the cognate effect are their higher exposure to L1 than
to L2 and the presentation of L1 before L2. Both of these
characteristics are associated with lower linguistic accuracy in
L2, and our analysis of accuracy confirms that the models’ L2
accuracy can predict the size of the cognate effect. Therefore,
language accuracy (or “proficiency”) also affects the presence
of the cognate effect in a given bilingual model. This mirrors
the trend found in bilingual speakers: the cognate effect is
stronger in less proficient L2 speakers (Bultena et al., 2014;
Pivneva, Mercier, & Titone, 2014; Libben & Titone, 2009).
Therefore, the effect could be due to the lack of exposure to
non-cognate words. In less proficient speakers, cognate words
behave like high-frequency words do in a monolingual setting,
while their control words (matched on L2 frequency) function
like lower-frequency words. With increased proficiency, the
differences in exposure to the two types of words become
smaller, leading to smaller cognate effects.

Based on the finding that the cognate effect in our model
is observed only when the model’s exposure to L2 (relative
to L1) is low, one could argue that in our case the effect is

just an artefact. However, it is important to note the differ-
ences in the amount of data required for successful learning in
humans vs. neural language models. As pointed out by, e.g.,
Linzen (2020), compared to models such as the one used in
this study, humans learn language from considerably less expo-
sure. Therefore, further research is required to reveal the exact
relationship between language exposure, the learning of two
languages, and the presence of a cognate effect in both humans
and models. In particular, the dynamics of bilingual learning
and forgetting in neural language models are not the same as
in human speakers, and one challenge is to better understand
under which conditions of L1 and L2 exposure the model can
successfully learn both languages, and how these conditions
differ from what we know about bilingual learning in human
speakers. Here we have made first steps in this direction. For
example, we showed that with low L2 exposure the order of
L1–L2 presentation within each training epoch has a strong
effect on the model’s L2 proficiency, to the extent that models
pretrained on L1 may be unable to learn L2 if it comes after L1
in each epoch. This result, which may seem anomalous from
the cognitive perspective, helps us better understand how the
model’s variables such as pretraining, language mixing and
L1:L2 ratio map onto L2 learning settings in human speakers.

Our approach and findings align with Frank’s (2021)
desiderata (such as parsimony) for useful models of bilingual
sentence processing. We argue that computational language
models can be used to address open questions in this domain.
Despite the mentioned challenges, such models can be theo-
retically appropriate for drawing conclusions about whether
specific effects in bilingual cognition can be explained by
learning mechanisms implemented in such models, and under
which conditions.
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