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Abstract 

Extruded monoliths are generally adopted in the chemical industry for the advantage of 

reduced pressure drops at high throughput, but a systematic procedure to evaluate their 

performance is not readily available. Key performance indicators for a monolith are the Height 

Equivalent to a Theoretical Plate (HETP) and the pressure drop of its channels. This 

contribution presents for the first time a systematic approach to the analysis of several 

extruded monoliths of industrial relevance. A procedure to derive the HETP correlation for an 

arbitrary extruded monolith is presented, and pressure drop correlations from literature are 

reviewed. The HETP correlations have been validated against 3D numerical simulations. A 

reduced-order model is derived from the HETP and is shown to capture the overall dynamics 

of the 3D simulations with high accuracy without adjustable parameters. Finally, a comparison 

between the extruded monoliths and packed beds is reported and includes pressure drops. 
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Introduction 

In gas separation processes, structured adsorbents can achieve better performance in terms 

of pressure drop with high gas or liquid velocities and faster cycle times than packed bed 

adsorption columns1–4.  Some structured adsorbent applications in gas separation processes 

are carbon capture5–7, air separation8,9, VOC removal10–12 and desiccant cooling13,14.  

Several types of structured adsorbents have been reported in the literature, such as 

foams15,16, fibers5,17 and laminates2,18,19, as potential candidates to overcome the limitations 

of packed beds to handle high flows and good thermal management. Among the different 

structures, extruded monoliths (EMs) with parallel channels offer the great advantage of 

extremely low pressure drops. Moreover, channel shape, wall thickness, and cell density can 

be carefully optimised to enhance the efficiency of EMs in terms of a trade-off between 

pressure drop and mass transfer rate20,21. More recently, additive manufacturing has 

attracted particular interest as an emerging technology to manufacture monoliths 22–24.  

The performance and the design of EMs mainly rely on the definition of the Height Equivalent 

to a Theoretical Plate (HETP) and pressure drop correlations for the different structures. The 

HETP is a measure of the solute’s dispersion within the EM, and its efficiency. Generally, an 

ideal monolith is assumed, and a single representative channel analysed as the constitutive 

element of the structure25,26. The equation for the HETP can be seen as the sum of three 

primary resistances: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝐿𝐿

= 𝑅𝑅𝑎𝑎𝑎𝑎 + 𝑅𝑅𝑆𝑆 + 𝑅𝑅𝑣𝑣         (1)  

Where the terms on the RHS are: the resistance given by molecular diffusion, 𝑅𝑅𝑎𝑎𝑎𝑎, the 

resistance given by diffusion in the solid, 𝑅𝑅𝑆𝑆, and the resistance given by the velocity profile 

in the free cross-section, 𝑅𝑅𝑣𝑣, respectively. 



 
 

Taylor27 first studied the dispersion of a solute inside a channel with no-adsorbing walls and 

its HETP equation for circular free cross-sections. Aris28,29 reviewed the work of Taylor and 

broadened it to elliptical cross-section, and later included also the effect of wall retention in 

the case of a channel coated with an adsorbent . Moreover, Aris36 derived the dispersion in a 

parallel plate geometry and a circular channel as limiting cases for coated channels of annular 

and elliptical cross-section, respectively. 

Golay26 showed the mathematical approach, based on the analysis of moments, to derive the 

HETP for rectangular cross-sections. Several other authors have analysed this configuration 

because of its widespread use in gas and liquid chromatography25,30,31. Dutta and Leighton32–

34 replicated the analysis of moments for general cross-sections for chromatographic 

purposes. They also showed how to split 𝑅𝑅𝑣𝑣 in three independent components namely: 𝑔𝑔1(𝛼𝛼), 

𝑔𝑔2(𝛼𝛼), 𝑔𝑔3(𝛼𝛼). The physical meaning of these contributions will be discussed later. 

Patton et al.35 derived the expression of a general linear driving force approximation for the 

design of an arbitrary monolith. The approximation reduces the monolith’s equivalent 

channel to a hollow cylinder, with the same free cross-sectional area and volume of the solid. 

For rectangular cross-sections, Ahn and Brandani36 pointed out that the resistance given by 

diffusion in the solid should consider the additional dispersion caused by the solute’s diffusion 

in the corners of the solid to avoid underestimation of the HETP. They proposed a simple 

approach that redistributes the solid, in the corners of the geometry, to the free cross-

section’s perimeter, thereby increasing the solid layer’s thickness. By definition,  this new 

“corrected thickness” preserves the solid volume in the channel and accounts for the 

additional dispersion at the corners in the system36,37. 



 
 

In terms of pressure drop correlations, the literature provides different correlations for 

different geometries4,38,39. Generally, the flow is assumed laminar in the channel, and the 

Poisson equation is solved to derive the velocity profile and the pressure drop along the 

channel40. The pressure drop for laminar flow in a channel of an arbitrary, but constant, cross-

section is given by: 

Δ𝐻𝐻
𝐿𝐿

= 𝜂𝜂𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎
𝐻𝐻
𝐴𝐴𝐴𝐴

 𝑓𝑓𝑓𝑓𝑎𝑎Σ
2

             (2)  

Where Σ is a characteristic dimension of the system, and 𝑓𝑓𝑅𝑅𝑒𝑒Σ is the Fanning-Reynolds 

product written with respect to Σ.  Generally, the hydraulic diameter, 𝐷𝐷ℎ, is used as the 

characteristic dimension, Σ41. As shown by Shah and London41, this approach leads to 

different values of the 𝑓𝑓𝑅𝑅𝑒𝑒𝐷𝐷ℎ  for different channels with the same aspect ratio. Shah and 

London41 reported tabulated values of the 𝑓𝑓𝑅𝑅𝑒𝑒𝐷𝐷ℎ for a variety of channel shapes. Yilmaz42 

attempted to generalise the approach of Shah and London to derive an equation of 𝑓𝑓𝑅𝑅𝑒𝑒𝐷𝐷ℎ for 

a given channel of arbitrary cross-section. Although the work of Yilmaz42 is more general than 

what presented by Shah and London41 and can be in principle applied to any geometry, the 

coefficients needed to calculate the  𝑓𝑓𝑅𝑅𝑒𝑒𝐷𝐷ℎ  are not always easy to derive. 

Bahrami et al.40 developed the analytical solution for the 𝑓𝑓𝑅𝑅𝑒𝑒 in an elliptical channel whose 

characteristic length is no longer 𝐷𝐷ℎ, but the square root of the cross-sectional area, √𝐴𝐴. 

Bahrami et al.40 showed that the model can be successfully extended to arbitrary cross-

sections. Also Muzychka and Yovanovich43,44 chose √𝐴𝐴 as characteristic length to derive the 

“equivalent rectangle model” (ERM) for the calculation of the 𝑓𝑓𝑅𝑅𝑒𝑒√𝐴𝐴. The ERM is based on 

the analytical solution of the 𝑓𝑓𝑅𝑅𝑒𝑒√𝐴𝐴 for a rectangular channel. The model can be extended to 

arbitrary geometries through an “effective aspect ratio”, as it will be shown in the following. 



 
 

The ERM has the main advantage to be of simple implementation compared to the models of 

Bahrami et al.40 and Yilmaz42, and it can be used for a variety of cross-sections without the 

need of tabulated values as for the model of Shah and London41. Hence, the pressure drop 

correlation from Muzychka and Yovanovich43 can be chosen to be representative of a general 

correlation for the estimate of pressure drop in an arbitrary monolith. 

This paper aims to analyse different EMs of industrial relevance (e.g. honeycomb, triangular 

and rhombic extruded monolith) and describe their performance in terms of HETP and 

pressure drop for their single representative channel. The derivations follow the work of Ahn 

and Brandani on rectangular channels: first 𝑅𝑅𝑣𝑣 is derived for every structure, followed by the 

redistribution of the solid around the free cross-section to provide 𝑅𝑅𝑆𝑆. The derived HETP 

expressions are validated against full 3D simulations. A simplified reduced model, which 

captures the overall dynamics of 3D simulations with high accuracy, is also derived from the 

HETP. It is followed by a brief overview of the pressure drop correlation proposed by 

Yovanovich and co-workers. The pressure drop correlation, and the HETP are used to compare 

EMs and conventional packed beds. 

Geometries of interest 

The geometries analysed are shown in Fig.1. They take into account several shapes that are 

commonly found in industrial applications. They have been split into two categories: flat and 

rounded geometries. “Flat” geometries are those where the solid diffusion can be 

approximated as the diffusion in a slab. “Rounded” geometries are those where the diffusion 

in the solid can be approximated by the diffusion in a hollow cylinder.   

As discussed in the introduction, the rectangular and hollow cylinder have been already 

studied in great detail and are reported for completeness. 



 
 

The study of the triangular channel is limited to isosceles ones. Indeed, an isosceles triangle 

can be seen as the single representative channel of an ideal EM. It is evident that the study of 

irregular triangles would have very limited relevance for practical applications. 

Two forms of the honeycomb monolith have been considered: the hexagonal free cross-

section and the circular free cross-section. The circular cross-section can be seen as a realistic 

representation of a honeycomb monolith where the adsorbent is deposited as a coating. The 

ideal hexagonal channel represents a monolith extruded directly using the adsorbent 

material. The hexagonal channel with circular cross-section will be denoted as “hex-cir” 

channel, and the hexagonal free cross-section one as “hex-hex” channel.  For the hex-cir 

channel, only the regular hexagon will be investigated. Indeed, coatings of non-regular 

hexagonal channels might result in non-uniform free cross-sections that would require 

specific analysis and not general correlations, which are the main aim in this work. To define 

the geometry of the hex-hex channel two parameters are needed. Here two aspect ratios are 

used, starting from the inner rectangle of aspect ratio 𝛼𝛼𝑟𝑟𝑎𝑎𝑟𝑟 = 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟
ℎ

, and two triangles are 

attached either on the short side or on the long sides. If the triangles are attached on the 

short sides, the second aspect ratio is defined as 𝛼𝛼𝑠𝑠𝑠𝑠 = 𝑖𝑖𝑠𝑠𝑠𝑠
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟

 . If the triangles are attached on 

the long sides, the second aspect ratio is defined as 𝛼𝛼𝑙𝑙𝑠𝑠 = 𝑖𝑖𝑙𝑙𝑠𝑠
ℎ

. The values of the aspect ratios 

for a hex-hex channel with a regular hexagonal free cross-section are 𝛼𝛼𝑟𝑟𝑎𝑎𝑟𝑟 = 1
√3

 , 𝛼𝛼𝑙𝑙𝑠𝑠 = 1
2√3

. 

 

The aspect ratio for the other geometries has been defined as 𝛼𝛼 = 𝑖𝑖/ℎ, where ℎ and 𝑖𝑖 are the 

characteristic dimensions of the geometry highlighted in Fig.1. All the geometries have been 

studied with the same approach proposed by Ahn and Brandani36. A schematic diagram of the 



 
 

procedure used in the analysis of the different channels can be seen in Fig.2. Applying the 

solid redistribution of Ahn and Brandani36, a “corrected” thickness of the solid, 𝑅𝑅𝑆𝑆 can be 

established. The analysis of the moments presented by Dutta and Leighton33 can be used to 

derive expressions for the different contributions to the resistance 𝑅𝑅𝑣𝑣. The remaining 

resistance, 𝑅𝑅𝑎𝑎𝑎𝑎, can be directly estimated from the molecular diffusivity of the solute and 

average velocity inside the channel, as in eq.(3). The new HETP expression for a given channel 

has been validated against 3D simulations. Finally, a simplified reduced model, capturing the 

overall dynamics of the 3D simulations, has been derived from the HETP. 

 

HETP for an arbitrary cross-section 

Generally, the HETP for an isothermal, linear system and flat geometry (grey in Fig.1) is given 

by29  

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 2 𝐷𝐷𝑚𝑚
𝑣𝑣𝑎𝑎𝑎𝑎𝑟𝑟

+ 2𝑘𝑘
3(1+𝑘𝑘)2

𝑤𝑤2

𝐷𝐷𝑠𝑠
𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎 + 𝐶𝐶𝑀𝑀

ℎ2

𝐷𝐷𝑚𝑚
𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎      (3)  

The term 𝐶𝐶𝑀𝑀 depends only on the geometry and, consequently, on the velocity profile. 𝐶𝐶𝑀𝑀 

can be written as33 

𝐶𝐶𝑀𝑀 = 1
6
� 𝑘𝑘
1+𝑘𝑘

�
2
𝑔𝑔1(𝛼𝛼) + 1

105
𝑔𝑔2(𝛼𝛼) + 1

15
� 𝑘𝑘
1+𝑘𝑘

�𝑔𝑔3(𝛼𝛼)      (4)  

where 𝑘𝑘 = (1 − 𝜖𝜖)𝐾𝐾/𝜖𝜖. The function 𝑔𝑔1(𝛼𝛼) quantifies the effect of wall retention with a 

uniform flow in the free cross-section, 𝑔𝑔2(𝛼𝛼) accounts for the resistance given by the flow in 

the same channel with non-adsorbing walls, and 𝑔𝑔3(𝛼𝛼) quantifies the interaction between 

the previous two functions.  



 
 

For rounded geometries, the free cross-section’s curvature must be taken into account when 

writing the expression of the HETP. Aris28 derived the analytical expression of the HETP for a 

hollow cylinder45,46 given by 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 2 𝐷𝐷𝑚𝑚
𝑣𝑣𝑎𝑎𝑎𝑎𝑟𝑟

+ 2𝑓𝑓1𝑘𝑘
(1+𝑘𝑘)2

�2𝑓𝑓𝑤𝑤+𝑤𝑤2�
𝐷𝐷𝑠𝑠

𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎 + 𝐶𝐶𝑀𝑀
𝑑𝑑2

𝐷𝐷𝑚𝑚
𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎       (5) 

where 

𝑓𝑓1 =
2𝑝𝑝4 ln�𝑝𝑝2�

𝑝𝑝2−1
−(3𝑝𝑝2−1)

8(𝑝𝑝2−1)
          (6) 

given 𝑝𝑝 = 𝑓𝑓+𝑤𝑤
𝑓𝑓

. For circular geometries, the dispersivity coefficient can be written as29,45,46 

𝐶𝐶𝑀𝑀 = 1+6𝑘𝑘+11𝑘𝑘2

96(1+𝑘𝑘2)
          (7) 

Derivation of the 𝑔𝑔𝑖𝑖(𝛼𝛼) functions 

The procedure to derive 𝑔𝑔𝑖𝑖(𝛼𝛼) is the same as that reported by Dutta and Leighton32; the 

procedure is valid for any arbitrary cross-section. The integro-differential equations reported 

in the Supplementary Information are solved using COMSOL Multiphysics 5.1 to obtain the 

𝑔𝑔𝑖𝑖(𝛼𝛼) functions. The numerical methodology was validated using the rectangular geometry 

and the analytical expressions derived by Ahn and Brandani36 (see Supplementary 

Information). 

To provide a simple design relationship, the 𝑔𝑔𝑖𝑖(𝛼𝛼) values for triangular and rhombic are fitted 

with the correlations in eq.(8a) and eq.(8b): 

𝑔𝑔𝑖𝑖(𝛼𝛼) = 𝑗𝑗1𝑖𝑖𝛼𝛼5+𝑗𝑗2𝑖𝑖𝛼𝛼4+𝑗𝑗3𝑖𝑖𝛼𝛼3+𝑗𝑗4𝑖𝑖𝛼𝛼2+𝑗𝑗5𝑖𝑖𝛼𝛼+𝑗𝑗6𝑖𝑖
𝛼𝛼3+𝑠𝑠1𝑖𝑖𝛼𝛼2+𝑠𝑠2𝑖𝑖𝛼𝛼+𝑠𝑠3𝑖𝑖

  for triangular              (8a) 

𝑔𝑔𝑖𝑖(𝛼𝛼) = 𝑗𝑗1𝑖𝑖𝛼𝛼𝑗𝑗2𝑖𝑖 + 𝑗𝑗3𝑖𝑖𝛼𝛼𝑗𝑗4𝑖𝑖 + 𝑗𝑗5𝑖𝑖    for rhombic                        (8b) 



 
 

𝑔𝑔𝑖𝑖(𝛼𝛼) = 𝑗𝑗1𝑖𝑖(𝛼𝛼+𝑗𝑗2𝑖𝑖)2

(𝛼𝛼+𝑗𝑗3𝑖𝑖)2
+ 𝑗𝑗4𝑖𝑖     for rectangular            (8c) 

where 𝛼𝛼 ∈ [0.175;11.34] for the triangular channel and 𝛼𝛼 ∈ [0.05;1] for the rhombic channel. 

The correlated parameters are reported in Supplementary Material, and the results for 

triangular and rhombic channels are plotted in Fig.3. Care must be taken when eq.(8) is used 

to derive the values of 𝑔𝑔𝑖𝑖(𝛼𝛼) for the geometries presented. Indeed, eq.(8) is only valid in the 

range of aspect ratios analysed, which would also represent practical EMs. In eq.(8c) the 

correlation derived for a rectangular channel from Ahn and Brandani36 is reported. The 

correlation for the rectangular channel is valid for any arbitrary aspect ratio between 1 and 

∞.  

 

The results for the hex-hex channel are presented in Fig.4. The more the cross-section 

approaches the regular hexagon the lower will be the dispersion. The correlation for the 𝑔𝑔𝑖𝑖(𝛼𝛼) 

functions of the hex-hex channel are reported in the supplementary material. The range of 

aspect ratios analysed is: 𝛼𝛼𝑟𝑟𝑎𝑎𝑟𝑟 ∈ [0.25;1], 𝛼𝛼𝑙𝑙𝑠𝑠 ∈ [0;2.5] and 𝛼𝛼𝑠𝑠𝑠𝑠 ∈ [0;2.83]. 

 

Correlations for the corrected thickness 

To obtain 𝑅𝑅𝑆𝑆, the corrected wall thickness for each geometry needs to be specified. This is of 

particular importance since Ahn and Brandani36 showed that the diffusion in the solid often 

gives the main resistance in gas separation processes. 

The corrected thickness represents a redistribution of the solid from the corners of the 

geometry to the free cross-section’s perimeter. The correction aims to reduce the 2D diffusion 

problem in the solid cross-section to a 1D diffusion problem. The redistribution also preserves 



 
 

the total amount of solid around the geometry. A visual representation is shown in Fig.5 for 

both triangular (flat) and hex-cir (rounded) channels. In a triangular channel, the solute first 

travels from the fluid phase to the grey region of the solid, perpendicular to its perimeter. 

Then, the molecules diffuse through the corners in both vertical and horizontal directions. By 

redistributing the solid, the solute’s diffusion is approximated as a 1D diffusion problem, 

perpendicular to the perimeter. Equivalent considerations can be made for the hex-cir 

channel (Fig.5b). 

 

For flat geometries, a mathematical form to express the corrected thickness is: 

𝑤𝑤𝑟𝑟 = 𝐴𝐴𝑆𝑆
𝐻𝐻

           (9)  

where 𝐴𝐴𝑆𝑆 is the area occupied by the solid at the cross-section, and 𝐻𝐻 is the perimeter of the 

free cross-section. 

Analytical expressions for  𝑤𝑤𝑟𝑟 can be derived from the equation above as a function of the 

system’s characteristic length. For rounded geometries, the corrected thickness has to be 

calculated from eq.(10), which equates the area of the solid around the channel, 𝐴𝐴𝑆𝑆, to the 

area of the solid surrounding a hollow cylinder with the same free cross-section:  

𝑤𝑤𝑟𝑟 =
�4𝐴𝐴𝑆𝑆

𝜋𝜋 +𝑑𝑑2−𝑑𝑑

2
         (10) 

Where 𝑑𝑑 is the diameter of the free circular cross-section (Fig.5). The equation above 

maintains a constant volume of solid around the free circular cross-section. Eq.(9) would lead 

to a different volume of solid if applied to rounded geometries, violating the conservation of 

the mass of solid around the free cross-section during the redistribution. Table 1 provides the 



 
 

equations to calculate the corrected thickness of the different geometries under analysis. The 

procedure to derive the corrected thickness for an arbitrary hex-hex channel is reported in 

Table 2. 

 

 

Having defined the corrected thickness, 𝑅𝑅𝑆𝑆 can be calculated, i.e. the second term of eq.(3) 

or (5), where 𝑤𝑤𝑟𝑟 replaces 𝑤𝑤. The HETP correlations are therefore completely defined for all 

the geometries of interest. For the validation of these correlations, 3D numerical simulations 

of the different channels are reported next.  

3D Numerical model 

For the 3D model, a single representative channel of the monolith is considered. The 

reference system considers the cross-section of the monolith on the xy-plane and the length 

of the channel along the z-axis. The main assumptions of the 3D model are as follows: 

• Isothermal conditions 

• Linear isotherm 

• Trace component system 

• Fully-developed laminar flow in the channel 

• Negligible pressure drop along the channel 

• Negligible axial (z-axis) diffusion in the solid 

• Equilibrium at the fluid-solid interface 

The assumption of negligible pressure drops is close to the realistic behaviour of EMs. The full 

set of material balance equations are reported in the Supplementary Information.  



 
 

The average outlet concentration in the fluid phase is calculated using eq. (11). 

𝑐𝑐𝑎𝑎𝑣𝑣𝑎𝑎|𝐿𝐿,𝑡𝑡 = ∯𝑣𝑣(𝑥𝑥,𝑦𝑦)𝑟𝑟|𝐿𝐿,𝑡𝑡𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑

∯𝑣𝑣(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑
         (11)  

𝜇𝜇 is the first moment of the breakthrough curve, i.e. its mean residence time, and can be 

calculated from an integral mass balance on the system: 

𝜇𝜇 = 𝐿𝐿
𝑣𝑣𝑎𝑎𝑎𝑎𝑟𝑟

�1 + 1−𝜖𝜖
𝜖𝜖
𝐾𝐾�         (12)  

The velocity profile inside the channel is governed by the Navier-Stokes equations in steady-

state viscous flow, with no-slip boundary conditions at the fluid-solid interface. The flow is 

assumed to be fully developed at the free cross-section’s inlet for all the simulations. This 

assumption arises from the fact that the entry length for a gas flowing in a channel is orders 

of magnitude shorter than the column length. The entry length can be estimated as 𝐿𝐿𝑎𝑎𝑒𝑒𝑡𝑡𝑟𝑟𝑑𝑑 ≈

𝐶𝐶0𝑅𝑅𝑒𝑒𝐷𝐷ℎ43, where 𝐶𝐶0 ∈ [0.01,0.06], 𝑅𝑅𝑒𝑒 ∈ [0.1,50] and 𝐷𝐷ℎ~0.001 𝑚𝑚 for most practical 

applications. These values give an 𝐿𝐿𝑎𝑎𝑒𝑒𝑡𝑡𝑟𝑟𝑑𝑑~0.001 𝐿𝐿𝑟𝑟𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑒𝑒.  

The 3D numerical code has been validated against the results from Ahn and Brandani36, based 

on the analytical solution of the velocity profile in a rectangular channel of arbitrary aspect 

ratio.  

The physical parameters used for both 3D and reduced model simulations are listed in Table 

3. The parameters refer to a CO2/N2 system where the solid is a carbon monolith36. 

 

The dimensionless set of equations for the 3D model has been solved using the finite-element 

method in COMSOL Multiphysics 5.1. The integration limit of the simulation was set to twice 

the first moment of the system. The mesh consisted of triangular prismatic elements in both 



 
 

fluid and solid domains. Furthermore, a mesh-refinement study has also been conducted to 

ensure that the results are not dependent on the chosen mesh size. An example of mesh 

refinement is reported in the supporting material. 

From the breakthrough curve, the values of the first and second moment can be defined as: 

1𝑠𝑠𝑡𝑡  𝑀𝑀𝑀𝑀𝑚𝑚𝑒𝑒𝑀𝑀𝑀𝑀  𝜇𝜇 =  ∫ 𝑟𝑟
𝑟𝑟𝑖𝑖𝑖𝑖
𝑑𝑑𝑀𝑀∞

0         (13) 

2𝑒𝑒𝑑𝑑  𝑀𝑀𝑀𝑀𝑚𝑚𝑒𝑒𝑀𝑀𝑀𝑀  𝜎𝜎2 =  2∫ 𝑟𝑟
𝑟𝑟𝑖𝑖𝑖𝑖
𝑀𝑀 𝑑𝑑𝑀𝑀∞

0 − 𝜇𝜇2      (14) 

Since the second moment is strongly affected by numerical oscillations, an exponential 

function of the form 𝑎𝑎𝑒𝑒−𝑏𝑏𝑡𝑡, has been used to approximate the tail of the breakthrough 

curve47. Hence: 

2𝑒𝑒𝑑𝑑  𝑀𝑀𝑀𝑀𝑚𝑚𝑒𝑒𝑀𝑀𝑀𝑀  𝜎𝜎2 =  2∫ 𝑟𝑟
𝑟𝑟𝑖𝑖𝑖𝑖
𝑀𝑀 𝑑𝑑𝑀𝑀𝑡𝑡0

0 + 2 𝑎𝑎
𝑏𝑏
𝑒𝑒−𝑏𝑏𝑡𝑡0 �𝑀𝑀0 + 1

𝑏𝑏
� − 𝜇𝜇2    (15) 

where, 𝑀𝑀0 is the starting time of the exponential decay.  

Finally, the HETP is calculated from the following equation: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝐿𝐿

= 𝜎𝜎2

𝜇𝜇2
          (16) 

Once the 3D model has been validated using a hollow fiber geometry (see Supplementary 

Information), the comparison between 3D simulations and HETP predictions can be made, as 

shown in Fig.6. There is an excellent match between the predicted HETP from eq.(3) and 

eq.(5) with the HETP calculated from 3D simulations for all the geometries analysed. It should 

be noted how the fluid resistance, the sum of molecular diffusion and velocity profile 

resistances, only play a small role in the total spreading of the breakthrough curve. The 

transversal diffusion of the solute in the free cross-section immediately decreases the 



 
 

dispersion caused by the velocity profile, leading to a near plug flow inside the free channel. 

This behaviour has been observed in all the 3D simulations carried out. Indeed, the ratio 

between characteristic times for convection and diffusion along a cross-section, 𝐿𝐿𝐷𝐷𝑚𝑚
𝑣𝑣ℎ2

, is 

generally higher than 1 for gas separations, which explains the homogeneous concentration 

profile at a given cross-section in the channel. Hence, in most gas systems, the optimisation 

of an arbitrary geometry to decrease the dispersion caused by the velocity profile would only 

lead to minor improvements in the monolith’s performance. Particular effort should be aimed 

at reducing the mass transfer resistance in the solid, 𝑅𝑅𝑠𝑠 in eq.(1), which is the leading cause 

of dispersion in the HETP equation.  

Reduced model for channel dynamics 

While the use of the full solution to the 3D model can be used to study a single channel’s 

dynamic response, it is computationally demanding. It is therefore important to be able to 

approximate the breakthrough response using a model of reduced dimensionality. Hereafter 

this will be referred to as the reduced model, where 1D is assumed along the channel’s axis 

for the fluid, and 1D for the solid in a direction perpendicular to the channel axis. The full set 

of modelling equations are included in the Supplementary Information. 

The reduced model has been solved in gPROMS with the method of lines, using orthogonal 

collocation on finite elements to discretise both the fluid and solid domains. The spatial 

discretisation has been refined gradually in order to provide results independent from the 

number of elements used. The thickness of the solid domain has been set equal to the 

simulated geometry’s corrected thickness. It should be noted that the reduced model does 

not include any adjustable parameter.  



 
 

Fig.6 shows the HETP values calculated from the different approaches, confirming that the 

reduced model (blue circles) is in excellent agreement with the 3D simulations (red squares). 

For the triangular and hex-hex geometries the predictions from the model presented by 

Patton et al.35 are also included, showing considerable deviation. In this case, the reduced 

model includes the effective terms from the equivalent hollow cylinder and 𝑅𝑅𝑆𝑆 is calculated 

according to the LDF approximation presented by Patton et al.35. The deviation from the 3D 

simulations can be attributed to two main reasons: the approximation of the channel to a 

hollow cylinder, and the change in the channel’s porosity. The former is important particularly 

for the triangular geometry, as the diffusion process in the triangular channel is substantially 

different from the one of a hollow cylinder, where the curvature of the geometry has to be 

taken into account. The latter is important for both geometries and is a consequence of 

preserving the surface area and volume of the solid. In the hex-hex channel the capacity is 

reduced by 10% and a thinner diffusive length is predicted using the correlation of Patton et 

al.35. This leads to a much lower HETP compared to 3D simulations. With the use of the 

corrected thickness the volume of the solid and the volume of the free channel are preserved, 

keeping the porosity the same as the original system. The preservation of the surface area of 

the cross-section, rather than its volume, leads to a decrease in the triangular channel’s 

porosity in Fig.6 by almost 40%, which explains the sharp increase of the HETP compared to 

the 3D simulations. 

It could be argued that the hex-hex channel should be treated as a flat geometry, and 

consequently  eq.(3) to be used to calculate its HETP. It should be noted that, as the number 

of sides in a polygon increases, the hollow cylinder limit is approached. The hex-hex channel 

approximates the shape of a hollow cylinder, for which eq.(5) holds for the HETP. 

Furthermore, the HETP for a hollow cylinder, eq.(5), tends to the HETP for a flat geometry, 



 
 

eq.(3), for thin films of solid around the free cross-section, as shown by Schisla and Carr46. 

Hence, eq.(5) can be used regardless of the thickness of the solid around the cross-section. 

 

Fig.7 compares the breakthrough curves obtained from the full 3D simulations and the 

reduced model. The values of 𝑣𝑣𝑎𝑎𝑎𝑎𝑟𝑟𝐿𝐿
𝐷𝐷𝑚𝑚

 for each simulation are reported in the supporting 

material. The use of an effective axial dispersion to account for the effect of the fluid velocity 

profile, and the effective thickness to account for the additional resistance to mass transport 

in the corners, results in a reduced model that captures the key physical behaviour, giving an 

excellent agreement. The size of the numerical problem, and hence the computational time, 

is more than an order of magnitude smaller for the reduced model. The reduced model serves 

as an effective tool for fast screening of EMs for different separation processes. 

 

Pressure Drop Correlation 

Dispersion within the channel is not the only parameter to assess an EM’s performance for a 

given separation. Pressure drops are crucial to evaluate the energy penalty of a separation 

process, especially at high throughput. In this section, a brief overview of the ERM model 

developed by Muzychka and Yovanovich43 is presented.  

Firstly, to calculate the pressure drop in a channel, the “effective” aspect ratio has to be 

defined according to Table 4. 

 

Then, 𝑓𝑓𝑅𝑅𝑒𝑒√𝐴𝐴 can be calculated using 



 
 

𝑓𝑓𝑅𝑅𝑒𝑒√𝐴𝐴 = 12

√𝛾𝛾(1+𝛾𝛾)�1−192𝛾𝛾
𝜋𝜋5

tanh� 𝜋𝜋2𝛾𝛾��
        (17)  

The validity of this relationship for hex-hex channels has been checked numerically solving 

the Navier-Stokes equations in COMSOL for each channel. The results are as shown in Fig.8. 

 

In the case where the effective aspect ratio is 1, 𝑓𝑓𝑅𝑅𝑒𝑒√𝐴𝐴 = 14.23. The main benefit of using 

this approach is that this constant value is applicable to the vast majority of industrially 

relevant channels (regular polygons and circular cross-section). The approach of using the 

hydraulic diameter as characteristic length would have led to different values of 𝑓𝑓𝑅𝑅𝑒𝑒𝐷𝐷ℎ for 

every channel even for 𝛼𝛼 = 1. Moreover, each channel would require a separate equation to 

describe the 𝑓𝑓𝑅𝑅𝑒𝑒𝐷𝐷ℎ  for  𝛼𝛼 ≠ 1. 

Coupling eq.(2) and (18) the average velocity and the pressure drop across the monolith can 

be calculated 

𝐹𝐹 = 𝑁𝑁𝐶𝐶𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝐴𝐴          (18)  

Ahn and Brandani31 have shown how to generalize eq.(18) in case of a real monolith 

comprising of slightly dissimilar channels, assuming a distribution of channel sizes. The slightly 

different channel sizes31,49, wall thicknesses31, and flow mal-distributions21 also cause 

additional dispersion in the breakthrough curve. 

Comparison between packed bed and monoliths 

In what follows, a comparison between EMs and a packed bed is presented. The analysis is 

based on their respective pressure drop per theoretical stage. The derivation follows the 

approach of Ruthven and Thaeron2 for a parallel passage contactor. 



 
 

For a packed bed the Ergun equation is used for the pressure drop, with the assumption 

that the particles are small enough to neglect turbulent contributions: 

Δ𝐻𝐻𝑃𝑃𝑎𝑎𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃
𝐿𝐿

= 37.5𝜂𝜂 𝜖𝜖𝑝𝑝𝑣𝑣
𝑓𝑓𝑝𝑝2

�1−𝜖𝜖𝑝𝑝�
2

𝜖𝜖3
         (19) 

For the HETP we assume that 𝐾𝐾 ≫ 𝜖𝜖 : 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑎𝑎𝑟𝑟𝑃𝑃𝑟𝑟𝑃𝑃
𝐿𝐿

= 2𝜖𝜖𝑝𝑝𝐷𝐷𝑎𝑎𝑥𝑥
𝜖𝜖𝑝𝑝𝑣𝑣

+ 2
15

𝜖𝜖𝑝𝑝𝑣𝑣
�1−𝜖𝜖𝑝𝑝�𝐾𝐾

𝑓𝑓𝑝𝑝2

𝐷𝐷𝑠𝑠
       (20) 

Under these conditions, the axial dispersion in the packed bed becomes 𝐷𝐷𝑎𝑎𝑎𝑎 ≈ 0.7𝐷𝐷𝑐𝑐50. 

Equations (2), (3), (19) and (20) can now be used to derive the ratio of the pressure drop per 

theoretical stage, 𝑅𝑅 � 𝐷𝐷𝑚𝑚
𝜖𝜖𝑝𝑝𝑣𝑣𝑓𝑓𝑝𝑝

, 𝐷𝐷𝑚𝑚
𝐾𝐾𝐷𝐷𝑠𝑠

� = �Δ𝐻𝐻 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝐿𝐿
�
𝑝𝑝𝑎𝑎𝑟𝑟𝑘𝑘𝑎𝑎𝑑𝑑 𝑏𝑏𝑎𝑎𝑑𝑑

/ �Δ𝐻𝐻 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝐿𝐿
�
𝐻𝐻𝑀𝑀

, and the full 

details can be found in the Supplementary Information. 

EMs generally exhibit a lower pressure drop per theoretical stage. Therefore, monoliths with 

flat cross-sections show less pressure drop per number of stages compared to a packed bed 

under all practical conditions. The function 𝑅𝑅 � 𝐷𝐷𝑚𝑚
𝜖𝜖𝑝𝑝𝑣𝑣𝑓𝑓𝑝𝑝

, 𝐷𝐷𝑚𝑚
𝐾𝐾𝐷𝐷𝑠𝑠

� is monotonic with respect to its 

variables and as a result a simple comparison is obtained from the limiting values reported in 

Table 5. 

 

 

Note that  

 lim
𝐷𝐷𝑚𝑚
𝐾𝐾𝐷𝐷𝑠𝑠

→0+
𝑅𝑅 � 𝐷𝐷𝑚𝑚

𝜖𝜖𝑝𝑝𝑣𝑣𝑓𝑓𝑝𝑝
, 𝐷𝐷𝑚𝑚
𝐾𝐾𝐷𝐷𝑠𝑠

� = lim
𝐷𝐷𝑚𝑚

𝜖𝜖𝑝𝑝𝑎𝑎𝑅𝑅𝑝𝑝
→∞

𝑅𝑅 � 𝐷𝐷𝑚𝑚
𝜖𝜖𝑝𝑝𝑣𝑣𝑓𝑓𝑝𝑝

, 𝐷𝐷𝑚𝑚
𝐾𝐾𝐷𝐷𝑠𝑠

�      (21) 

and  



 
 

lim
𝐷𝐷𝑚𝑚
𝐾𝐾𝐷𝐷𝑠𝑠

→∞
𝑅𝑅 � 𝐷𝐷𝑚𝑚

𝜖𝜖𝑝𝑝𝑣𝑣𝑓𝑓𝑝𝑝
, 𝐷𝐷𝑚𝑚
𝐾𝐾𝐷𝐷𝑠𝑠

� = lim
𝐷𝐷𝑚𝑚

𝜖𝜖𝑝𝑝𝑎𝑎𝑅𝑅𝑝𝑝
→0+

𝑅𝑅 � 𝐷𝐷𝑚𝑚
𝜖𝜖𝑝𝑝𝑣𝑣𝑓𝑓𝑝𝑝

, 𝐷𝐷𝑚𝑚
𝐾𝐾𝐷𝐷𝑠𝑠

�      (22) 

 

Conclusions 

Simple analytical correlations for HETP and pressure drop of several extruded monoliths of 

industrial relevance have been derived for the first time. The analytical correlations can be 

used to calculate the HETP for aspect ratios of practical relevance. The main advantage of the 

HETP correlation for a given monolith is twofold: a simple yet reliable tool for the preliminary 

design of the EM, and an accurate breakdown of the different resistances that affect the 

performance of the EM under analysis. The resistance due to the molecular diffusivity, 

velocity profile, and solid diffusion have been quantified for the EMs analysed. The corrected 

thickness approach has been shown to be applicable to all geometries considered and the 

resulting HETP expression has been validated against full 3D numerical simulations. The mass 

transfer in the solid caused the maximum dispersion in the system for all the cases studied. 

This is of key importance in the optimisation of EMs, as it highlights the relative importance 

of minimising the diffusion resistance in the solid, rather than the minimisation of the 

dispersion in the gas phase. 

From the HETP correlation, a reduced model has been developed with the aim of providing a 

fast and reliable tool to capture the overall dynamics of the 3D simulations. The reduced 

model considers 1D along the axis of the channel, and 1D for the diffusion in the solid. The 

reduced model predicts the same breakthrough dynamics as the full 3D simulations at a very 

small fraction of the computational cost. It thus provides a very useful tool for the 

optimization of adsorption processes that use extruded monoliths for different separation 



 
 

purposes. The parameters of the reduced model are all predicted from the geometry and the 

physical properties of the system under analysis.  

Pressure drop correlations for such channels were also reviewed. The HETP and pressure drop 

correlations were combined to compare EMs to conventional packed beds obtaining the 

respective pressure drops per theoretical stage. This comparison shows that the monoliths 

perform better than packed beds under all practical conditions, proving that monoliths can 

be an important tool in process intensification and for the deployment of fast-cycle 

adsorption processes limited by the energy penalty associated with large pressure drops. 
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Nomenclature 
 
𝑎𝑎 Fitting parameter of the exponential decay (mol m–3) 

𝐴𝐴 Free cross-sectional area (m2) 

𝐴𝐴𝑆𝑆 Solid area (m2) 

𝑏𝑏 Fitting parameter of the exponential decay (s-1) 

𝑐𝑐 Fluid concentration (mol m–3) 

𝑐𝑐𝑎𝑎𝑣𝑣𝑎𝑎|𝐿𝐿,𝑡𝑡 Average outlet concentration (mol m–3) 

𝐶𝐶𝑀𝑀 Taylor-Aris dispersivity coefficient (-) 

𝑑𝑑 Diameter of the circular cross-section (m) 



 
 

𝐷𝐷𝑐𝑐 Molecular diffusion (m2 s–1) 

𝐷𝐷𝑠𝑠 Diffusion in the solid (m2 s–1) 

𝑓𝑓1 Aris’ curvature factor (-) 

𝑓𝑓𝑅𝑅𝑒𝑒 Fanning-Reynolds product (-) 

𝐹𝐹 Flowrate (m3 s–1) 

𝑔𝑔1(𝛼𝛼) Effect of wall retention with a uniform flow in the free cross- 

section 

𝑔𝑔2(𝛼𝛼) Resistance given by the flow in a channel with no adsorbing walls 

𝑔𝑔3(𝛼𝛼) Interaction term between 𝑔𝑔1(𝛼𝛼) and 𝑔𝑔2(𝛼𝛼) 

ℎ Characteristic length in the y-axis direction of a cross-section (m) 

𝑖𝑖 Characteristic length in the x-axis direction of the free cross- 

section (m) 

𝑖𝑖𝑟𝑟𝑎𝑎𝑟𝑟 Smallest dimension of the rectangle in hex-hex channel (m) 

𝑖𝑖𝑙𝑙𝑠𝑠 Height of the triangle for the hex-hex channel when 𝛼𝛼𝑠𝑠𝑠𝑠 = 0 (m) 

𝑖𝑖𝑠𝑠𝑠𝑠 Height of the triangle for the hex-hex channel when 𝛼𝛼𝑙𝑙𝑠𝑠 = 0 (m) 

𝑘𝑘 Partition coefficient (-) 

𝐾𝐾 Henry’s law constant (-) 

𝐿𝐿 Length of the monolith (m) 

𝑁𝑁𝐶𝐶  Number of channels (-) 



 
 

𝑝𝑝 Ratio of outer and inner diameter of a circular coated channel (-) 

𝐻𝐻 Perimeter of the free cross-section (m) 

𝑅𝑅 Inner diameter of the hollow fiber (m) 

𝑅𝑅𝑎𝑎𝑎𝑎 Axial dispersion resistance (-)  

𝑅𝑅𝑝𝑝 Radius of the particle in the packed bed (m) 

𝑅𝑅𝑆𝑆 Resistance given by the diffusion in the solid (-) 

𝑅𝑅𝑣𝑣 Resistance given by the velocity profile (-) 

𝑀𝑀 Time (s) 

𝑀𝑀0 Initial time of the exponential decay (s) 

𝑣𝑣(𝑎𝑎,𝑑𝑑) Velocity (m s−1) 

𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎  Average velocity (m s−1) 

𝑤𝑤 Thickness of the solid (m) 

𝑤𝑤𝑟𝑟 Corrected thickness of the solid (m) 

𝑥𝑥,𝑦𝑦 Coordinates on the cross-section 

𝑧𝑧 Axial coordinate 

Greek letters  

𝛼𝛼 Aspect ratio (-) 

𝛾𝛾 Effective aspect ratio (-) 

Δ𝐻𝐻 Pressure drop (Pa) 



 
 

𝜖𝜖 Bed void fraction (-) 

𝜖𝜖𝑝𝑝 Void fraction of the packed bed (-) 

𝜂𝜂 Viscosity (Pa s) 

𝜇𝜇 Mean residence time (s) 

𝜎𝜎 Square root of the second moment (-) 

Σ Characteristic length for the pressure drop (m)  
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Figure 1: Geometries analysed. From left to right, from top to bottom: rectangular channel, 
triangular channel, hollow fiber, rhombic channel, hex-cir channel, hex-hex channel with 
𝛼𝛼𝑠𝑠𝑠𝑠 > 0 and hex-hex channel with 𝛼𝛼𝑙𝑙𝑠𝑠 > 0. 

 

Figure 2: Schematic diagram of the procedure used to derive and validate the HETP 
equations for the different geometries and the reduced model. The procedure used to 
derive the HETP is highlighted in the red rectangle. The validation of the HETP equation is 
highlighted in the blue rectangle. 

 

Figure 3: gi(α) functions for the triangular and rhombic channel. Squares are numerical 
results and the solid line is the fitting correlation, eq.(8). 

 

Figure 4: 𝑔𝑔𝑖𝑖(𝛼𝛼) functions for the hex-hex channel. Solid lines are the fitted correlations 
while circles are the results from the numerical simulations: filled symbols for 𝛼𝛼𝑠𝑠𝑠𝑠 > 0 and 
empty symbols for 𝛼𝛼𝑙𝑙𝑠𝑠 > 0. On the y-axis 𝛼𝛼𝑡𝑡 = 𝛼𝛼𝑠𝑠𝑠𝑠 for 𝛼𝛼𝑠𝑠𝑠𝑠 > 0 (filled circles), while 𝛼𝛼𝑡𝑡 = 𝛼𝛼𝑙𝑙𝑠𝑠 
for 𝛼𝛼𝑙𝑙𝑠𝑠 > 0 (empty circles). 

 

Figure 5: Redistribution of the solid for (a) triangular channel and (b) hex-cir channel. 

 

Figure 6: HETP plot for different geometries. Squares are 3D simulation results, and circles are 
simulation results using the reduced model. The dotted line is the fluid resistance only, the 
dashed line is the HETP calculated as in Patton et al.35 (triangular and hex-hex geometries) 
and the solid line the HETP with corrected thickness. 

 

Figure 7: Comparison between 3D simulations (squares) and reduced order model (solid line). 
Geometrical parameters are the same as in Fig. 6.  

 

Figure 8. 𝑓𝑓𝑓𝑓𝑒𝑒√𝐴𝐴 correlation for hex-hex channel. Empty Squares are hex-hex channel with 
𝛼𝛼𝑠𝑠𝑠𝑠 > 0, filled circles hex-hex channel with 𝛼𝛼𝑙𝑙𝑠𝑠 > 0 and solid line eq.(17) with 𝛾𝛾 calculated 
from the correlations in Table 4.  
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Figure 2: Schematic diagram of the procedure used to derive and validate the HETP equations 

for the different geometries and the reduced model. The procedure used to derive the HETP is 

highlighted in the red rectangle. The validation of the HETP equation is highlighted in the blue 
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Figure 3: 𝑔𝑔𝑖𝑖(𝛼𝛼) functions for the triangular and rhombic channel. Squares are numerical 
results and the solid line is the fitting correlation, eq.(8). 
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Figure 4:𝑔𝑔𝑖𝑖(𝛼𝛼) functions for the hex-hex channel. Solid lines are the fitted correlations while 

circles are the results from the numerical simulations: filled symbols for 𝛼𝛼𝑠𝑠𝑠𝑠 > 0 and empty 

symbols for 𝛼𝛼𝑙𝑙𝑠𝑠 > 0. On the y-axis 𝛼𝛼𝑡𝑡 = 𝛼𝛼𝑠𝑠𝑠𝑠 for 𝛼𝛼𝑠𝑠𝑠𝑠 > 0 (filled circles), while 𝛼𝛼𝑡𝑡 = 𝛼𝛼𝑙𝑙𝑠𝑠 for 𝛼𝛼𝑙𝑙𝑠𝑠 >

0 (empty circles). 

  



 
 

 

 

 

 

 

 

 

 

 

 

Figure 5: Redistribution of the solid for (a) triangular channel and (b) hex-cir channel. 

  



 
 

 

 

 

 

 

 

Figure 6: HETP plot for different geometries. Squares are 3D simulation results, and circles are 

simulation results using the reduced model. The dotted line is the fluid resistance only, the 

dashed line is the HETP calculated as in Patton et al.35 (triangular and hex-hex geometries) 

and the solid line the HETP with corrected thickness. 

  



 
 

 

 

 

 

 

Figure 7: Comparison between 3D simulations (squares) and reduced order model (solid line). 

Geometrical parameters are the same as in Fig. 6.  
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Figure 8: 𝑓𝑓𝑓𝑓𝑒𝑒√𝐴𝐴 correlation for hex-hex channel. Empty Squares are hex-hex channel with 
𝛼𝛼𝑠𝑠𝑠𝑠 > 0, filled circles hex-hex channel with 𝛼𝛼𝑙𝑙𝑠𝑠 > 0 and solid line eq.(17) with 𝛾𝛾 calculated 
from the correlations in Table 4. 
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Table 1: Correlations for the corrected thickness of different geometries. 

Triangle 𝑤𝑤𝑐𝑐 = 𝑤𝑤 +
𝑤𝑤2

2ℎ
�1 +

1
sin(arctan(𝛼𝛼/2))� 

Rhombus 

𝑤𝑤𝑐𝑐

=
�1 + 2 𝑤𝑤/ℎ

sin(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝛼𝛼))� �𝛼𝛼 + 2 𝑤𝑤/ℎ
sin(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝛼𝛼−1))� − 𝛼𝛼

4√1 + 𝛼𝛼2
ℎ 

Hex-Cir 
𝑤𝑤𝑐𝑐 =

�4
𝜋𝜋 ��2√3 − 𝜋𝜋� 𝑑𝑑

2

4 + 2√3 𝑤𝑤(𝑑𝑑 + 𝑤𝑤)� + 𝑑𝑑2 − 𝑑𝑑

2
 

Rectangle36 𝑤𝑤𝑐𝑐 =
1 + 𝛼𝛼 + 2𝑤𝑤/ℎ

2(𝛼𝛼 + 1) 𝑤𝑤 

 

 

 

  



 
 

Table 2: Derivation of the corrected thickness for the hex-hex channel 

Steps Hex-Hex with 𝜶𝜶𝒍𝒍𝒍𝒍 > 𝟎𝟎 Hex-Hex with 𝜶𝜶𝒍𝒍𝒍𝒍 > 𝟎𝟎 

1 Calculate 𝐴𝐴𝑖𝑖𝑖𝑖 = (𝛼𝛼𝑙𝑙𝑙𝑙 + 𝛼𝛼𝑟𝑟𝑟𝑟𝑐𝑐)ℎ2 and 𝑑𝑑 =

�4𝐴𝐴𝑖𝑖𝑖𝑖
𝜋𝜋

 

Calculate 𝐴𝐴𝑖𝑖𝑖𝑖 = (1 + 𝛼𝛼𝑟𝑟𝑟𝑟𝑐𝑐𝛼𝛼𝑙𝑙𝑙𝑙)𝛼𝛼𝑟𝑟𝑟𝑟𝑐𝑐ℎ2 

and 𝑑𝑑 = �4𝐴𝐴𝑖𝑖𝑖𝑖
𝜋𝜋

 

2 
Define 𝑏𝑏 = 𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟ℎ

2
− 2𝛼𝛼𝑙𝑙𝑙𝑙𝑤𝑤 �1 −

�1 + � 1
2𝛼𝛼𝑙𝑙𝑙𝑙

�
2
� and  

 𝐵𝐵 = 𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟ℎ
2

+ 2𝛼𝛼𝑙𝑙𝑙𝑙𝑤𝑤 �𝑤𝑤�1 + � 1
2𝛼𝛼𝑙𝑙𝑙𝑙

�
2

+ ℎ
2
� 

Define 𝑏𝑏 = ℎ + 2𝑤𝑤��1 + (2𝛼𝛼𝑙𝑙𝑙𝑙)2 −

2𝛼𝛼𝑙𝑙𝑙𝑙� and  

 𝐵𝐵 = ℎ + 2ℎ �𝛼𝛼𝑟𝑟𝑟𝑟𝑐𝑐𝛼𝛼𝑙𝑙𝑙𝑙 +

𝑤𝑤
ℎ
�1 + (2𝛼𝛼𝑙𝑙𝑙𝑙)2� 

3 Calculate 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 = 2(𝑏𝑏 + 𝐵𝐵) �ℎ
2

+ 𝑤𝑤� Calculate 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 = (𝑏𝑏 + 𝐵𝐵) �𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟ℎ
2

+ 𝑤𝑤� 

4 
Calculate the corrected thickness as 𝑤𝑤𝑐𝑐 =

�4(𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜−𝐴𝐴𝑖𝑖𝑖𝑖)
𝜋𝜋 +𝑑𝑑2−𝑑𝑑

2
 

 

  



 
 

 

Table 3: Physical parameters for 3D simulations36.  

𝐾𝐾    (-) 40 

𝐷𝐷𝑚𝑚 (𝑚𝑚2/𝑠𝑠) 1.7𝑥𝑥10−5 

𝐷𝐷𝑙𝑙  (𝑚𝑚2/𝑠𝑠) 7.4𝑥𝑥10−10 

 

  



 
 

Table 4: Correlations for the effective aspect ratio 

Geometry Effective Aspect Ratio, 𝜸𝜸 

Regular Polygons with 𝑎𝑎𝑙𝑙𝑖𝑖𝑑𝑑𝑟𝑟𝑙𝑙 𝜖𝜖 [4;∞]* 1 

Triangle* [(2𝛼𝛼)0.53 + (2/𝛼𝛼)0.53]−1/0.53 

Rhombus* [(2𝛼𝛼)0.68 + (2/𝛼𝛼)0.68]−1/0.68 

Hex-Hex with 𝛼𝛼𝑙𝑙𝑙𝑙 = 0  
��

√3
2(𝛼𝛼𝑟𝑟𝑟𝑟𝑐𝑐 + 𝛼𝛼𝑙𝑙𝑙𝑙)�

90

+ �
2(𝛼𝛼𝑟𝑟𝑟𝑟𝑐𝑐 + 𝛼𝛼𝑙𝑙𝑙𝑙)

√3
�
90

�

−1/95

 

Hex-Hex with 𝛼𝛼𝑙𝑙𝑙𝑙 = 0 1
1/𝛼𝛼𝑟𝑟𝑟𝑟𝑐𝑐 + 𝛼𝛼𝑙𝑙𝑙𝑙

 

* From Duan and Yovanovich48 

  



 
 

Table 5: Limits of the function 𝑅𝑅 � 𝐷𝐷𝑚𝑚
𝜖𝜖𝑝𝑝𝑣𝑣𝑅𝑅𝑝𝑝

, 𝐷𝐷𝑚𝑚
𝐾𝐾𝐷𝐷𝑙𝑙

� . 

 
𝐥𝐥𝐥𝐥𝐥𝐥

𝑫𝑫𝒎𝒎
𝑲𝑲𝑫𝑫𝒍𝒍

→𝟎𝟎+
𝑹𝑹 �

𝑫𝑫𝒎𝒎

𝝐𝝐𝒑𝒑𝒗𝒗𝑹𝑹𝒑𝒑
,
𝑫𝑫𝒎𝒎

𝑲𝑲𝑫𝑫𝒍𝒍
� 𝐥𝐥𝐥𝐥𝐥𝐥

𝑫𝑫𝒎𝒎
𝑲𝑲𝑫𝑫𝒍𝒍

→∞
𝑹𝑹�

𝑫𝑫𝒎𝒎

𝝐𝝐𝒑𝒑𝒗𝒗𝑹𝑹𝒑𝒑
,
𝑫𝑫𝒎𝒎

𝑲𝑲𝑫𝑫𝒍𝒍
� 

Triangular 601.28 94.39 

Rectangular 1055 165.55 

Rhombic 3341 524.6 

Rounded 936 720 
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