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GLOBAL DYNAMICS FOR THE TWO-DIMENSIONAL STOCHASTIC

NONLINEAR WAVE EQUATIONS

MASSIMILIANO GUBINELLI, HERBERT KOCH, TADAHIRO OH, AND LEONARDO TOLOMEO

Abstract. We study global-in-time dynamics of the stochastic nonlinear wave equations
(SNLW) with an additive space-time white noise forcing, posed on the two-dimensional
torus. Our goal in this paper is two-fold. (i) By introducing a hybrid argument, combining
the I-method in the stochastic setting with a Gronwall-type argument, we first prove global
well-posedness of the (renormalized) cubic SNLW in the defocusing case. Our argument
yields a double exponential growth bound on the Sobolev norm of a solution. (ii) We then
study the stochastic damped nonlinear wave equations (SdNLW) in the defocusing case.
In particular, by applying Bourgain’s invariant measure argument, we prove almost sure
global well-posedness of the (renormalized) defocusing SdNLW with respect to the Gibbs
measure and invariance of the Gibbs measure.
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1. Introduction

1.1. Stochastic nonlinear wave equations. In [21], the first three authors studied the

following stochastic nonlinear wave equations (SNLW) on the two-dimensional torus T2 =

(R/Z)2 with an additive space-time white noise forcing:{
∂2
t u+ (1−∆)u+ uk = ξ

(u, ∂tu)|t=0 = (φ0, φ1)
(x, t) ∈ T2 × R+, (1.1)

where k ≥ 2 is an integer and ξ(x, t) denotes a (Gaussian) space-time white noise on

T2×R+. In the following, we restrict our attention to the real-valued setting. By introducing

an appropriate time-dependent renormalization, they proved local well-posedness of (the

renormalized version of) SNLW (1.1) with (almost) critical initial data. Our main goal in

this paper is to construct global-in-time dynamics to SNLW in the following two settings:

(i) When k = 3, we introduce a hybrid argument, combining the so-called I-method

[8, 9] and a Gronwall-type argument [6], and prove global well-posedness of (1.1).

See Subsection 1.2.

(ii) For k ∈ 2N+ 1, we consider SNLW with a damping term. More precisely, we study

the following stochastic damped nonlinear wave equation (SdNLW):

∂2
t u+ ∂tu+ (1−∆)u+ uk =

√
2ξ. (1.2)

This equation is known as the hyperbolic counterpart of the stochastic quantization

equation studied in the parabolic setting [11]. By exploiting (formal) invariance of

the Gibbs measure for the dynamics, we prove almost sure global well-posedness of

SdNLW (1.2). See Subsection 1.3.

The main difficulty in studying these problems, even locally in time, comes from the

roughness of the space-time white noise. The stochastic convolution Ψ, solving the linear

stochastic wave equation:

∂2
t Ψ + (1−∆)Ψ = ξ, (1.3)

is not a classical function but is merely a distribution for the spatial dimension d ≥ 2.

In particular, there is an issue in making sense of powers Ψk and, consequently, of the

full nonlinearity uk in (1.1). This requires us to modify the equation by introducing a

proper renormalization. In fact, for the models (1.1) and (1.2) without renormalization, a

phenomenon of triviality is known to hold [1, 34]; roughly speaking, extreme oscillations

make solutions to (1.1) (or (1.2)) with regularized noises tend to that to the linear stochastic

wave equation (1.3) (or the trivial solution) as the regularization is removed.

In the following, let us briefly go over the local well-posedness argument in [21] and

introduce a renormalized equation. See also [45]. We first express the stochastic convolution

(with the zero initial data) in terms of a stochastic integral. With 〈 · 〉 = (1 + | · |2)
1
2 , let

S(t) denote the linear wave propagator:

S(t) =
sin(t〈∇〉)
〈∇〉

, (1.4)
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defined as a Fourier multiplier operator. Namely, we set1

S(t)f =
∑
n∈Z2

sin(t〈n〉)
〈n〉

f̂(n)en,

where f̂(n) is the Fourier coefficient of f and en(x) = ein·x. Then, the stochastic convolution

Ψ, solving (1.3), is given by

Ψ(t) =

ˆ t

0
S(t− t′)dW (t′), (1.5)

where W denotes a cylindrical Wiener process on L2(T2):

W (t) :=
∑
n∈Z2

Bn(t)en (1.6)

and {Bn}n∈Z2 is defined by Bn(t) = 〈ξ,1[0,t] · en〉x,t. Here, 〈·, ·〉x,t denotes the duality

pairing on T2 × R. As a result, we see that {Bn}n∈Z2 is a family of mutually independent

complex-valued2 Brownian motions conditioned so that B−n = Bn, n ∈ Z2. By convention,

we normalized Bn such that Var(Bn(t)) = t.

Given N ∈ N, we define the truncated stochastic convolution ΨN = PNΨ, solving the

truncated linear stochastic wave equation:

∂2
t ΨN + (1−∆)ΨN = PNξ

with the zero initial data. Here, PN denotes the frequency cutoff onto the spatial frequencies

{|n| ≤ N}. Then, for each fixed x ∈ T2 and t ≥ 0, we see that ΨN (x, t) is a mean-zero

real-valued Gaussian random variable with variance

σN (t)
def
= E

[
ΨN (x, t)2

]
=
∑
n∈Z2

|n|≤N

ˆ t

0

[
sin((t− t′)〈n〉)

〈n〉

]2

dt′

=
∑
n∈Z2

|n|≤N

{
t

2〈n〉2
− sin(2t〈n〉)

4〈n〉3

}
∼ t logN

(1.7)

for N � 1. We point out that the variance σN (t) is time-dependent. For any t > 0, we see

that σN (t)→∞ as N →∞, which can be used to show that {ΨN (t)}N∈N is almost surely

unbounded in W 0,p(T2) for any 1 ≤ p ≤ ∞.

Let uN denote the solution to SNLW (1.1) with the regularized noise PNξ. Proceeding

with the following decomposition of uN ([26, 4, 11]):

uN = ΨN + vN . (1.8)

Then, we see that the residual term vN satisfies

∂2
t vN + (1−∆)vN +

k∑
`=0

(
k

`

)
Ψ`
Nv

k−`
N = 0. (1.9)

1Hereafter, we drop the harmless factor 2π.
2In particular, B0 is a standard real-valued Brownian motion.
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Note that, due to the deficiency of regularity, the power Ψ`
N does not converge to any limit

as N →∞. This is where we introduce the Wick renormalization. Namely, we replace Ψ`
N

by its Wick ordered counterpart:

:Ψ`
N (x, t) :

def
= H`(ΨN (x, t);σN (t)), (1.10)

where H`(x;σ) is the Hermite polynomial of degree ` with variance parameter σ. See

Section 2. Then, for each ` ∈ N, the Wick power : Ψ`
N : converges to a limit, denoted

by : Ψ` : , in C([0, T ];W−ε,∞(T2)) for any ε > 0 and T > 0, almost surely (and also in

Lp(Ω) for any p <∞). See Lemma 2.3 below. This Wick renormalization gives rise to the

renormalized version of (1.9):

∂2
t vN + (1−∆)vN +

k∑
`=0

(
k

`

)
:Ψ`

N : vk−`N = 0.

By taking a limit as N →∞, we then obtain the limiting equation:

∂2
t v + (1−∆)v +

k∑
`=0

(
k

`

)
:Ψ` : vk−` = 0. (1.11)

Given the almost sure space-time regularity of the Wick powers :Ψ` :, ` = 1, . . . , k, standard

deterministic analysis with the Strichartz estimates and the product estimates (Lemma 2.5)

yields local well-posedness of (1.11) (for v). Recalling the decomposition (1.8), this argu-

ment also shows that the solution uN = ΨN + vN to the renormalized SNLW with the

regularized noise PNξ:

∂2
t uN + (1−∆)uN+ :ukN : = PNξ,

where the renormalized nonlinearity :ukN : is interpreted as

:ukN := :(ΨN + vN )k : =
k∑
`=0

(
k

`

)
:Ψ`

N : vk−`N ,

converges almost surely to a stochastic process u = Ψ + v, where v satisfies (1.11). It is in

this sense that we say that the renormalized SNLW:

∂2
t u+ (1−∆)u+ :uk : = ξ

is locally well-posed (for initial data of suitable regularity).

Remark 1.1. The equation (1.1) is also known as the stochastic nonlinear Klein-Gordon

equation. In the following, however, we simply refer to (1.1) as the stochastic nonlinear

wave equation.

In [21], we treated the equation (1.1) with the mass-less linear part ∂2
t u−∆u. Note that

the same results in [21] with inessential modifications also hold for (1.1) with the massive

linear part ∂2
t u+ (1−∆)u. Conversely, Theorem 1.2 below also holds for SNLW with the

mass-less linear part ∂2
t u − ∆u. We point out, however, that for our second main result

(Theorem 1.7), we need to work with the massive linear part in order to avoid a problem

at the zeroth frequency in the Gibbs measure construction; see [44]. For this reason, we

work with the massive case in this paper.
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1.2. Global well-posedness of the cubic SNLW. Our first goal is to construct global-

in-time dynamics for the renormalized cubic SNLW. In the following, we study (1.11) with

k = 3:

∂2
t v + (1−∆)v + v3 + 3v2Ψ + 3v :Ψ2 : + :Ψ3 : = 0. (1.12)

In [21], it was shown that (1.12) is locally well-posed in Hs(T2)
def
= Hs(T2) × Hs−1(T2)

for s > 1
4 . Furthermore, the following blowup alternative holds almost surely; either the

solution v exists globally in time or there exists some finite time T∗ = T∗(ω) > 0 such that

lim
t↗T∗

‖~v(t)‖Hσ =∞, (1.13)

where ~v = (v, ∂tv) and σ = min(s, 1 − ε) for any small ε > 0. While the blowup al-

ternative (1.13) is not explicitly proven in [21], it easily follows as a consequence of the

(deterministic) contraction argument used to study (1.12) in [21].

In the parabolic setting, there are recent works [29, 30, 20, 27] on global well-posedness

of the parabolic Φ4
d-model via deterministic approaches. The main ingredient in [29, 30] is a

(non-trivial) adaptation of a standard globalization argument for a nonlinear heat equation

by controlling the (weighted) Lp-norm of the smoother part of a solution (corresponding

to v in (1.12)). Due to a weaker smoothing property, however, the situation is much more

involved in the case of the wave equation.

Essentially speaking, the only known way to prove global well-posedness for the deter-

ministic cubic nonlinear wave equation (NLW):

∂2
t v + (1−∆)v + v3 = 0 (1.14)

(except in the small data3 regime) is to exploit the energy E(~v) given by

E(~v) =
1

2

ˆ
T2

(
v2 + |∇v|2

)
dx+

1

2

ˆ
T2

(∂tv)2dx+
1

4

ˆ
T2

v4dx, (1.15)

which is conserved for smooth solutions. There are two sources of difficulty in proving

global well-posedness of the cubic SNLW (1.12).

(i) The first problem comes from the lack of regularity of the solution ~v = (v, ∂tv)

to (1.12). Due to the roughness of the stochastic convolution Ψ, we easily see that

~v ∈ C([0, T ];Hs(T2)) only for s < 1. Namely, for a solution ~v to (1.12), the energy

E(~v) is infinite. In order to overcome this difficulty, we propose to use the I-method

introduced by Colliander-Keel-Staffilani-Takaoka-Tao [8, 9]. See for example [47] on

an application of the I-method to the cubic NLW (1.14) on T2 in the deterministic

setting.

(ii) The second problem comes from the fact that v satisfies the cubic NLW with per-

turbations, which results in the non-conservation of the energy E(~v) even if ~v(t)

were in H1(T2).

The second problem could be easily remedied if Ψ were slightly smoother. Given Ψ ∈
C(R+;L∞(T2)), consider

∂2
t v + (1−∆)v + v3 + 3v2Ψ + 3vΨ2 + Ψ3 = 0. (1.16)

3This includes the construction of solutions near a particular solution.
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In this case, we can apply the globalization argument by Burq-Tzvetkov [6], originally

introduced in the context of the cubic NLW on T3 with random initial data. Namely, by

Cauchy-Schwarz inequality along with (1.16) and Young’s inequality, we have

|∂tE(~v)| =
∣∣∣∣ ˆ

T2

(∂tv)
{
∂2
t v + (1−∆)v + v3

}
dx

∣∣∣∣
≤
(
E(~v)

) 1
2

(
‖Ψ‖CTL∞x

ˆ
T2

v4dx+ ‖Ψ‖CTL6
x

) 1
2

≤ C(T,Ψ)
(
1 + E(~v)

)
for any given T > 0, where CTL

p
x = C([0, T ];Lp(T2)). Then, global well-posedness of (1.16)

in H1(T2) follows from Gronwall’s inequality.

As described above, we can handle each of the difficulties (i) and (ii) by a standard

approach if it occurs one at a time. The main difficulty in proving global well-posedness of

the cubic SNLW (1.12) lies in the fact that we need to handle the difficulties (i) and (ii) at

the same time. This combination of the problems (i) and (ii) makes the problem significantly

harder.

We now state our first main result.

Theorem 1.2. Let s > 4
5 . Then, the renormalized cubic SNLW (1.12) on T2 is globally

well-posed in Hs(T2). More precisely, given (φ0, φ1) ∈ Hs(T2), the solution v to (1.12) exists

globally in time, almost surely, such that (v, ∂tv) ∈ C(R+;Hσ(T2)), where σ = min(s, 1−ε)
for any small ε > 0.

For simplicity, we only consider the case 4
5 < s < 1 such that σ = s. The main approach

is to combine the I-method with a Gronwall-type argument. Let us first recall the main

idea of the I-method. Fix 0 < s < 1. Given N ≥ 1, we define a smooth, radially symmetric,

non-increasing (in |ξ|) multiplier mN ∈ C∞(R2; [0, 1]), satisfying

mN (ξ) =

1, if |ξ| ≤ N,(
N
|ξ|

)1−s
, if |ξ| ≥ 2N.

(1.17)

We then define the I-operator I = IN to be the Fourier multiplier operator with the

multiplier mN :

ÎNf(n) = mN (n)f̂(n). (1.18)

Then, we see that IN acts as the identity operator on low frequencies {|n| ≤ N}, while

it acts as a fractional integration operator of order 1 − s on high frequencies {|n| ≥ 2N}.
From the definition, it is easy to see that If ∈ H1(T2) if and only if f ∈ Hs(T2) with the

bound:

‖f‖Hs . ‖If‖H1 . N1−s‖f‖Hs . (1.19)
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Moreover, by the Littlewood-Paley theory, we have4

‖If‖W s0+s1,p . N
s1‖f‖W s0,p (1.20)

for any s0 ∈ R, 0 ≤ s1 ≤ 1− s, and 1 < p <∞.

Let 4
5 < s < 1. Given initial data (φ0.φ1) ∈ Hs(T2), we consider the I-SNLW:

∂2
t Iv + (1−∆)Iv + I(v3) + 3I(v2Ψ) + 3I(v :Ψ2 :) + I(:Ψ3 :) = 0. (1.21)

The local well-posedness of (1.12) implies local well-posedness of the I-SNLW (1.21). In

view of the blowup alternative (1.13) and (1.19), our main task is to control the growth of

the modified energy E(I~v). Note that there are two sources for the non-conservation of the

modified energy E(I~v), reflecting the problems (i) and (ii) discussed above: (i) The main

part of the nonlinearity is I(v3), not the cubic power (Iv)3, and (ii) there are perturbative

terms: 3I(v2Ψ)+3I(v :Ψ2 :)+I(:Ψ3 :). Indeed, a direct computation with (1.15) and (1.21)

gives

E(I~v)(t)− E(I~v)(0) =

ˆ t

0

ˆ
T2

(∂tIv)
{
− I(v3) + (Iv)3

}
dxdt

− 3

ˆ t

0

ˆ
T2

(∂tIv)I(v2Ψ)dxdt

− 3

ˆ t

0

ˆ
T2

(∂tIv)I(v :Ψ2 :)dxdt

−
ˆ t

0

ˆ
T2

(∂tIv)I(:Ψ3 :)dxdt

=: A1 +A2 +A3 +A4. (1.22)

The first term A1 represents the main commutator part, resulting from the application of

the I-operator, and we estimate this part by establishing a certain commutator estimate

(as in the deterministic setting). On the other hand, the second, third, and fourth terms

A2, A3, and A4 represent the contributions from the perturbative terms in (1.21), which

are to be controlled by a Gronwall-type argument as above.5 The worst contribution comes

from A2. In order to control this term, the standard estimate (1.20) with the fact that

Ψ(t) ∈W−ε,∞(T2) is too crude since it loses a positive power of N . We instead need to use

a finer regularity property of Ψ(t), namely, it is logarithmically divergent from Lp(T2). See

Lemma 2.4 below. At the end of the day, we end up with a Gronwall-type estimate, where

the right-hand side has a logarithmically superlinear growth. Roughly speaking, we obtain

an estimate of the form:

∂tE(I~v)(t) . E(I~v)(t) log
(
E(I~v)(t)

)
. (1.23)

See (3.22) and (3.39) below for precise bounds. We then implement an iterative argu-

ment, proceeding over time intervals of fixed size, by choosing an increasing sequence of the

parameters Nk for the I-operator. See Subsection 3.2 for details.

4Here, W s,r(T2) denotes the usual Lr-based Sobolev space (Bessel potential space) defined by the norm:

‖u‖Ws,r = ‖〈∇〉su‖Lr =
∥∥F−1(〈n〉sû(n))

∥∥
Lr .

When r = 2, we have Hs(T2) = W s,2(T2).
5As we see in Section 3, these terms also contain the commutator parts as well. For simplicity, we ignore

this issue in this part of discussion.
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Remark 1.3. (i) In a standard application of the I-method, one first fixes the large target

time T � 1 and then chooses a parameter N = N(T ) � 1. For our problem, this is

not sufficient. We instead need to choose an increasing sequence of the parameters Nk for

the I-operator over different local-in-time intervals. It would be of interest to investigate

a possible application of this new type of the I-method argument in the deterministic or

random data setting (other than that mentioned in the following remark).

(ii) A standard application of the I-method yields a polynomial (in time) growth bound

on the Sobolev norm of a solution. See, for example, Section 6 in [9]. A close examination

of our hybrid argument yields a double exponential growth bound on the Hs-norm of a

solution. See Remark 3.7. We point out that such a double exponential bound would

follow as a direct consequence of the estimate6 (1.23). While it may be possible to improve

this double exponential bound, we do not know how to do so at this point. Such an

argument would require a new globalization approach. Lastly, we note that, while one may

expect a subpolynomial growth in the deterministic setting, we expect at best a polynomial

growth bound for the (undamped) SNLW due to the polynomial growth (in time) of the

stochastic convolution (which is essentially a Brownian motion in time). Compare this

with the damped case, where the invariant measure argument yields a logarithmic growth

bound; see Remark 1.8.

Remark 1.4. In [45], Thomann and the third author proved almost sure global well-

posedness of the renormalized defocusing cubic NLW on T2 with the random data dis-

tributed by the massive Gaussian free field. The proof in [45] was based on (formal) invari-

ance of the Gibbs measure and Bourgain’s invariant measure argument. We point out that

a slight modification of the proof of Theorem 1.2 provides another proof of this almost sure

global well-posedness result via a pathwise argument (without using the invariant measure

argument).

Remark 1.5. (i) Theorem 1.2 establishes global well-posedness of the renormalized cubic

SNLW (1.12) on T2 in Hs(T2) for s > 4
5 , which leaves a gap to the local well-posedness

threshold s > 1
4 from [21]. It may be possible to refine the I-method part (for example, by

using analysis from [47]) to lower regularities (to some extent). We, however, decided not

to pursue this issue since our globalization argument presented in Section 3 is already quite

involved, and our main goal in this part is to present this hybrid argument of the I-method

with a Gronwall-type argument in its simplest form.

(ii) In a recent work [53], the fourth author extended Theorem 1.2 to the renormalized

cubic SNLW on R2. For this problem, one needs to handle not only the roughness of the

noise but also its unboundedness.

(iii) In [17], Forlano recently adapted our globalization argument in studying the BBM

equation with random initial data outside L2(T).

(iv) At this point, we do not know how to prove global well-posedness of the renormalized

(undamped) SNLW with (super-)quintic nonlinearity. Even with a smoother noise, one

would need to use a trick introduced in [38] to handle the high homogeneity. See for

example [28] for global well-posedness of the stochastic nonlinear beam equations on T3.

6Note that we do not quite obtain the estimate (1.23) for the modified energy E(I~v). See (3.22) and (3.39)
below for the actual bounds.
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Remark 1.6. In order to prove global well-posedness of a stochastic PDE, we employ the

I-method to study the equation (1.12) for v = u−Ψ. As such, our argument is essentially

pathwise and thus entirely deterministic, once we have a control on the relevant stochastic

terms.

In a recent work [7], the third author with Cheung and Li implemented the I-method

to prove global well-posedness of stochastic nonlinear Schrödinger equations (SNLS) below

the energy space. In estimating the growth of the modified energy, the authors used Ito’s

lemma, which lead to a careful stopping time argument (rather than a usual application of

the I-method, where one iterates a local-in-time argument with a control on the modified

energy). The argument introduced in [7] is a natural7 extension of the I-method to the

stochastic setting, which can be applied to a wide class of stochastic dispersive equations.

1.3. Hyperbolic Φ2-model and the Gibbs measure. In this subsection, we consider

the following stochastic damped nonlinear wave equation (SdNLW):

∂2
t u+ ∂tu+ (1−∆)u+ uk =

√
2ξ (1.24)

for k ∈ 2N + 1. This model is known as the so-called canonical stochastic quantization

equation for the Φk+1
2 -model [48]; see also a discussion below. The local well-posedness

argument from [21] for the undamped (renormalized) SNLW is readily applicable to yield

local well-posedness of (the renormalized version of) SdNLW (1.24) for any k ∈ 2N +

1. Moreover, when k = 3, a slight modification of the proof of Theorem 1.2 provides a

deterministic (i.e. pathwise) argument, establishing global well-posedness in the damped

case. As pointed out in Remark 1.5, such a deterministic argument is limited to k = 3 at

this point. In the damped case, however, we can rely on a probabilistic argument in order

to construct global-in-times dynamics for (1.24) with general k ∈ 2N + 1. More precisely,

we construct global-in-time dynamics for (1.24), by exploiting (formal) invariance of the

Gibbs measure with the density:

“d~ρ(u, ∂tu) = Z−1e−E(u,∂tu)dud(∂tu)”, (1.25)

where E(u, ∂tu) denotes the energy (= Hamiltonian):

E(u, ∂tu) =
1

2

ˆ
T2

(
u2 + |∇u|2

)
dx+

1

2

ˆ
T2

(∂tu)2dx+
1

k + 1

ˆ
T2

uk+1dx (1.26)

for the (deterministic undamped) NLW:

∂2
t u+ (1−∆)u+ uk = 0. (1.27)

By drawing an analogy to finite-dimensional Hamiltonian systems, the Gibbs measure ~ρ

was expected to be invariant under the NLW dynamics (1.27). In [45], the third author

and Thomann showed that this is indeed the case. As for SdNLW (1.24), we can view it as

the superposition of the NLW dynamics (1.27) and the Ornstein-Uhlenbeck dynamics (for

the component ∂tu):

∂t(∂tu) = −∂tu+
√

2dW,

7In particular, the authors in [7] studied the growth of the modified energy of a solution u (rather than
the residual part v = u−Ψ) via Ito’s lemma, which is a natural extension of the H1-global well-posedness
result on SNLS by de Bouard and Debussche [14] to the low regularity setting.
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each of which preserves the Gibbs measure ~ρ in (1.25). Hence, we expect the Gibbs mea-

sure ~ρ to be invariant under the dynamics of SdNLW (1.24).

By substituting (1.26) in the exponent of (1.25), we see that the Gibbs measure ~ρ de-

couples into the Φk+1
2 -measure on u and the white noise measure on ∂tu. The dynamical

model (1.24) then corresponds to the canonical stochastic quantization equation8 of the

Φk+1
2 -model; see [48]. For this reason, we also refer to (1.24) as the hyperbolic Φk+1

2 -model.

In order to make our discussion rigorous, let us introduce some notations. Given s ∈ R,

let µs denote a Gaussian measure on periodic distributions, formally defined by

dµs = Z−1
s e−

1
2
‖u‖2Hsdu = Z−1

s

∏
n∈Z2

e−
1
2
〈n〉2s|û(n)|2dû(n). (1.28)

Note that µ1 corresponds to the massive Gaussian free field, while µ0 corresponds to the

white noise. We set

~µs = µs ⊗ µs−1. (1.29)

In particular, when s = 1, the measure ~µ1 is defined as the induced probability measure

under the map:

ω ∈ Ω 7−→ (u1(ω), u2(ω)),

where u1(ω) and u2(ω) are given by

u1(ω) =
∑
n∈Z2

gn(ω)

〈n〉
en and u2(ω) =

∑
n∈Z2

hn(ω)en. (1.30)

Here, {gn, hn}n∈Z2 denotes a family of independent standard complex-valued Gaussian ran-

dom variables conditioned so that gn = g−n and hn = h−n, n ∈ Z2. It is easy to see that

~µ1 = µ1 ⊗ µ0 is supported on Hs(T2) for s < 0 but not for s ≥ 0.

With (1.26), (1.28), and (1.29), we can formally write the Gibbs measure ~ρ in (1.25) as

d~ρ(u, ∂tu) ∼ e−
1
k+1

´
T2 u

k+1dxd~µ1(u, ∂tu). (1.31)

In view of the roughness of the support of ~µ1, the nonlinear term
´
T2 u

k+1dx in (1.31) is

not well defined and thus a proper renormalization is required to give a meaning to (1.31).

Given a random variable X, let L(X) denote the law of X. Suppose that L(u) = µ1.

Then, given N ∈ N, we have

αN
def
= E

[(
PNu(x)

)2]
=
∑
n∈Z2

|n|≤N

1

〈n〉2
∼ logN (1.32)

for N � 1, independent of x ∈ T2. Given N ∈ N, define the truncated renormalized

density:

RN (u) = exp

(
− 1

k + 1

ˆ
T2

: (PNu)k+1(x) : dx

)
, (1.33)

where the Wick power :(PNu)k+1(x) : is defined by

:(PNu)k+1(x) :
def
= Hk+1(PNu(x);αN ).

8Namely, the Langevin equation with the momentum v = ∂tu.
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Then, it is known that {RN}N∈N forms a Cauchy sequence in Lp(µ1) for any finite p ≥ 1.

Thus, there exists a random variable R(u) such that

lim
N→∞

RN (u) = R(u) in Lp(µ1). (1.34)

See [50, 19, 13, 44] for details. In view of (1.33) and (1.34), we can write the limit as

R(u) = exp

(
− 1

k + 1

ˆ
T2

:uk+1(x) : dx

)
.

By defining the renormalized truncated Gibbs measure:

d~ρN (u, ∂tu) = Z−1
N RN (u)d~µ1(u, ∂tu), (1.35)

we then conclude that the renormalized truncated Gibbs measure ~ρN converges, in the

sense of (1.34), to the renormalized Gibbs measure ~ρ given by

d~ρ(u, ∂tu) = Z−1eR(u)d~µ1(u, ∂tu)

= Z−1 exp

(
− 1

k + 1

ˆ
T2

:uk+1(x) : dx

)
d~µ1(u, ∂tu).

(1.36)

Furthermore, the resulting Gibbs measure ~ρ is equivalent9 to the Gaussian measure ~µ1.

Next, we move onto the well-posedness theory of the hyperbolic Φk+1
2 -model (1.24). Let

us first introduce the following renormalized truncated SdNLW:

∂2
t uN + ∂tuN + (1−∆)uN + PN

(
: (PNu)k :

)
=
√

2ξ (1.37)

and its formal limit:

∂2
t u+ ∂tu+ (1−∆)u+ :uk : =

√
2ξ. (1.38)

It is easy to check that the renormalized truncated Gibbs measure ~ρN is invariant under

the truncated dynamics (1.37). See Section 4.

We now state our second result.

Theorem 1.7. The renormalized SdNLW (1.38) is almost surely globally well-posed with

respect to the renormalized Gibbs measure ~ρ in (1.36). Furthermore, the renormalized Gibbs

measure ~ρ is invariant under the dynamics.

More precisely, there exists a non-trivial stochastic process (u, ∂tu) ∈ C(R+;H−ε(T2))

for any ε > 0 such that, given any T > 0, the solution (uN , ∂tuN ) to the renormalized

truncated SdNLW (1.37) with the random initial data (uN , ∂tuN )|t=0 distributed according

to the renormalized truncated Gibbs measure ~ρN in (1.35), converges in probability to some

stochastic process (u, ∂tu) in C([0, T ];H−ε(T2)). Moreover, the law of (u(t), ∂tu(t)) is given

by the renormalized Gibbs measure ~ρ in (1.36) for any t ≥ 0.

In the context of the renormalized (deterministic) NLW:

∂2
t u+ (1−∆)u+ :uk : = 0,

the third author with Thomann proved an analogous result; see [45].

In view of the convergence of ~ρN to ~ρ, the invariance of ~ρN under the truncated SdNLW

dynamics (1.37), and Bourgain’s invariant measure argument [3, 4], Theorem 1.7 follows

once we construct the limiting process (u, ∂tu) locally in time with a good approximation

9Namely, ~ρ and ~µ1 are mutually absolutely continuous.
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property by the solution uN to (1.37). Furthermore, in view of the equivalence of ~ρ, ~ρN ,

and ~µ1, it suffices to study the renormalized SdNLW (1.37) and (1.38) with the Gaussian

random initial data (φ0, φ1) with L(φ0, φ1) = ~µ1.

As in the previous sections, we proceed with the first order expansion. For our damped

model, we let Φ be the solution to the linear stochastic damped wave equation:{
∂2
t Φ + ∂tΦ + (1−∆)Φ =

√
2ξ

(Φ, ∂tΦ)|t=0 = (φ0, φ1),
(1.39)

where L(φ0, φ1) = ~µ1. Define the linear damped wave propagator D(t) by

D(t) = e−
t
2

sin
(
t
√

3
4 −∆

)
√

3
4 −∆

(1.40)

as a Fourier multiplier operator. Then, the stochastic convolution Φ can be expressed as

Φ(t) = ∂tD(t)φ0 +D(t)(φ0 + φ1) +
√

2

ˆ t

0
D(t− t′)dW (t′), (1.41)

where W is as in (1.6). A direct computation shows that ΦN (x, t) = PNΦ(x, t) is a mean-

zero real-valued Gaussian random variable with variance

E
[
ΦN (x, t)2

]
= E

[(
PNΦ(x, t)

)2
] = αN

for any t ≥ 0, x ∈ T2, and N ≥ 1, where αN is as in (1.32). We point out that unlike σN (t)

in (1.7), the variance αN is time independent. This is due to the fact that the massive

Gaussian free field µ1 is invariant under the dynamics of the linear stochastic damped wave

equation (1.39).

Let uN be the solution to (1.37) with L
(
(uN , ∂tuN )|t=0

)
= ~µ1. Then, by writing uN as

uN = vN + Φ = (vN + ΦN ) + P⊥NΦN , (1.42)

where P⊥N = Id−PN , we see that the dynamics of the renormalized truncated SdNLW (1.37)

decouples into the linear dynamics for the high frequency part given by P⊥NΦN and the

nonlinear dynamics for the low frequency part PNuN :

∂2
tPNuN + ∂tPNuN + (1−∆)PNuN + PN

(
: (PNu)k :

)
=
√

2PNξ (1.43)

Then, the residual part vN = PNuN − ΦN satisfies the following equation:{
∂2
t vN + ∂tvN + (1−∆)vN +

∑k
`=0

(
k
`

)
PN

(
:Φ`

N : vk−`N

)
= 0

(vN , ∂tvN )|t=0 = (0, 0),
(1.44)

where the Wick power is defined by

:Φ`
N (x, t) :

def
= H`(ΦN (x, t);αN ). (1.45)

As in the undamped case discussed earlier, for each ` ∈ N, the Wick power :Φ`
N : converges

to a limit, denoted by :Φ` : , in C([0, T ];W−ε,∞(T2)) for any ε > 0 and T > 0, almost surely

(and also in Lp(Ω) for any p < ∞). See Lemma 2.3 below. This allows us to formally

obtain the limiting equation:{
∂2
t v + ∂tv + (1−∆)v +

∑k
`=0

(
k
`

)
:Φ` : vk−` = 0

(v, ∂tv)|t=0 = (0, 0).
(1.46)
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Note that the damped wave propagator D(t) in (1.40) satisfies the same Strichartz esti-

mates as the standard wave propagator S(t) in (1.4). Hence, by following the argument

in [21], we can prove local well-posedness of (1.46), using the Strichartz estimates. In Sec-

tion 4, we instead present a simple argument for local well-posedness of (1.46) based on

Sobolev’s inequality. See Proposition 4.1. This local well-posedness can also be applied to

the truncated equation (1.44), uniformly in N ∈ N. Once we prove (uniform in N) local

well-posedness of (1.44) and (1.46) and check invariance of the truncated Gibbs measure ~ρN
under the truncated SdNLW dynamics (1.37), the rest of the proof of Theorem 1.7 follows

from a standard application of Bourgain’s invariant measure argument, whose details we

omit. See, for example, [40] for further details, where Robert, Tzvetkov, and the third au-

thor extended Theorem 1.7 to the case of two-dimensional compact Riemannian manifolds

without boundary.

Remark 1.8. (i) In Section 4, we present a proof of local well-posedness of (1.46) based on

Sobolev’s inequality and construct a solution v to (1.46) in C([0, T ];H1−ε(T2)) for any ε > 0,

where T = T (ω) is an almost surely positive local existence time. In this argument, we

assume a priori that a solution v belongs only to C([0, T ];H1−ε(T2)) (without intersecting

with any auxiliary function space). As a consequence, we obtain unconditional uniqueness

for the solution v to (1.46). Unconditional uniqueness is a concept of uniqueness which

does not depend on how solutions are constructed; see [23]. As a result, we obtain the

uniqueness of the limiting process u = Φ + v in the entire class:

Φ + C([0, T ];H1−ε(T2)).

Compare this with the solutions constructed in [21], where we assume a priori that they

also belong to some Strichartz space such that the uniqueness statement in [21] is only

conditional (namely in C([0, T ];H1−ε(T2)) intersected with the Strichartz space).

(ii) Let (u, ∂tu) the limiting process be constructed in Theorem 1.7. Then, as a consequence

of Bourgain’s invariant measure argument, we obtain the following logarithmic growth

bound:

‖(u(t), ∂tu(t))‖H−ε ≤ C(ω)
(

log(1 + t)
) k

2

for any t ≥ 0. See [40] for details.

1.4. Remarks and comments. (i) The stochastic nonlinear wave equations have been

studied extensively in various settings; see [12, Chapter 13] for the references therein.

In recent years, we have witnessed a rapid progress on the theoretical understanding of

SNLW with singular stochastic forcing. Since the work [21] on local well-posedness of the

renormalized SNLW on T2, there have been a number of works on the subject: SNLW

with a power-type nonlinearity on T2 and T3 [22, 40, 34, 33, 35, 5, 36] and SNLW with

trigonometric and exponential nonlinearities on T2 [41, 43, 42]. See also [39, 37] for a

related study on the deterministic NLW with random initial data. We also mention the

work [15, 16] by Deya on SNLW with more singular (both in space and time) noises on

bounded domains in Rd and the work [53] by the fourth author on global well-posedness of

the renormalized cubic SNLW on R2.

(ii) In [52], the fourth author introduced a new approach to establish unique ergodicity of

Gibbs measures for stochastic dispersive/hyperbolic equations. In particular, ergodicity of
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the Gibbs measures was shown in [52] for the cubic SdNLW on T and the cubic stochastic

damped nonlinear beam equation on T3. More recently, the fourth author further developed

the methodology and managed to prove ergodicity of the hyperbolic Φk+1
2 -model (1.38) for

any odd integer k ≥ 3; see [54].

(iii) For simplicity of the presentation, we only consider the regularization by the sharp

frequency cutoff PN in this paper. A straightforward modification allows us to treat regu-

larization by a smooth mollifier. Furthermore, by a standard argument, we can show that

the limiting processes obtained through regularization by a smooth mollifier agree with the

limiting processes constructed in Theorems 1.2 and 1.7 via the sharp frequency cutoff PN .

See [37] for such an argument in the context of the deterministic NLW with random initial

data.

2. Preliminary lemmas

In this section, we introduce some notations and go over basic lemmas.

2.1. Preliminary results from stochastic analysis. In this subsection, by recalling

some basic tools from probability theory and Euclidean quantum field theory ([25, 32,

49, 50]), we establish some preliminary estimates on the stochastic convolutions and their

Wick powers. First, recall the Hermite polynomials Hk(x;σ) defined through the generating

function:

F (t, x;σ)
def
= etx−

1
2
σt2 =

∞∑
k=0

tk

k!
Hk(x;σ).

For readers’ convenience, we write out the first few Hermite polynomials:

H0(x;σ) = 1, H1(x;σ) = x, H2(x;σ) = x2 − σ, H3(x;σ) = x3 − 3σx.

Next, we recall the Wiener chaos estimate. Let (H,B, µ) be an abstract Wiener space.

Namely, µ is a Gaussian measure on a separable Banach space B with H ⊂ B as its

Cameron-Martin space. Given a complete orthonormal system {ej}j∈N ⊂ B∗ of H∗ = H,

we define a polynomial chaos of order k to be an element of the form
∏∞
j=1Hkj (〈x, ej〉),

where x ∈ B, kj 6= 0 for only finitely many j’s, k =
∑∞

j=1 kj , Hkj is the Hermite polynomial

of degree kj , and 〈·, ·〉 = B〈·, ·〉B∗ denotes the B-B∗ duality pairing. We then denote the

closure of the span of polynomial chaoses of order k under L2(B,µ) by Hk. The elements

in Hk are called homogeneous Wiener chaoses of order k. We also set

H≤k =

k⊕
j=0

Hj

for k ∈ N.

Let L = ∆ − x · ∇ be the Ornstein-Uhlenbeck operator.10 Then, it is known that any

element in Hk is an eigenfunction of L with eigenvalue −k. Then, as a consequence of the

hypercontractivity of the Ornstein-Uhlenbeck semigroup U(t) = etL due to Nelson [31], we

have the following Wiener chaos estimate [50, Theorem I.22]. See also [51, Proposition 2.4].

10For simplicity, we write the definition of the Ornstein-Uhlenbeck operator L when B = Rd.
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Lemma 2.1. Let k ∈ N. Then, we have

‖X‖Lp(Ω) ≤ (p− 1)
k
2 ‖X‖L2(Ω)

for any p ≥ 2 and any X ∈ H≤k.

Before proceeding further, we recall the following corollary to the Garsia-Rodemich-

Rumsey inequality ([18, Theorem A.1]).

Lemma 2.2. Let (E, d) be a metric space. Given u ∈ C([0, T ];E), suppose that there exist

c0 > 0, θ ∈ (0, 1), and α > 0 such that
ˆ t2

t1

ˆ t2

t1

exp

{
c0

(
d(u(t), u(s))

|t− s|θ

)α}
dtds =: Ft1,t2 <∞ (2.1)

for any 0 ≤ t1 ≤ t2 ≤ T with t2 − t1 ≤ 1. Then, we have

exp

{
c0

C

(
sup

t1≤s<t≤t2

d(u(t), u(s))

ζ(t− s)

)α}
≤ max(Ft1,t2 , e) (2.2)

for any 0 ≤ t1 ≤ t2 ≤ T with t2 − t1 ≤ 1, where ζ(t) is defined by

ζ(t) =

ˆ t

0
τ θ−1

{
log
(

1 +
4

τ2

)} 1
α

dτ. (2.3)

When α = 2, Lemma 2.2 reduces to Corollary A.5 in [18]. While Lemma 2.2 for general

α > 0 follows in an analogous manner, we present a proof for readers’ convenience.

Proof. Let Ψ(t) = ec0t
α − 1 and p(t) = tθ. Then, from the Garsia-Rodemich-Rumsey

inequality ([18, Theorem A.1]) with (2.1), we obtain

d(u(t1), u(t2)) ≤ 8θc
− 1
α

0

ˆ t2−t1

0
tθ−1

{
log
(

1 +
4Ft1,t2
t2

)} 1
α

dt. (2.4)

Note that we have

log(1 +AB) ≤ log(1 +A) + logB ≤ 2 log(1 +A) · logB (2.5)

for A ≥ e− 1 and B ≥ e. Then, it follows from (2.4) and (2.5) with (2.3) that

d(u(t1), u(t2)) ≤ Cθc−
1
α

0 ζ(t2 − t1)
(

log(max(Ft1,t2 , e))
) 1
α , (2.6)

provided that 4
(t2−t1)2

≥ e− 1, which is certainly satisfied for 0 < t2 − t1 ≤ 1. The desired

estimate (2.2) follows directly from (2.6). �

Let Ψ and Φ be the stochastic convolutions defined in (1.5) and (1.41), respectively.

Then, using standard stochastic analysis with the Wiener chaos estimate (Lemma 2.1), we

have the following regularity and convergence result.

Lemma 2.3. Let Z = Ψ or Φ. Given k ∈ N and N ∈ N, let :ZkN : = : (PNZ)k : denote the

truncated Wick power defined in (1.10) or (1.45), respectively. Then, given any T, ε > 0 and

finite p ≥ 1, { :ZkN : }N∈N is a Cauchy sequence in Lp(Ω;C([0, T ];W−ε,∞(T2))), converging

to some limit :Zk : in Lp(Ω;C([0, T ];W−ε,∞(T2))). Moreover, :ZkN : converges almost surely
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to the same limit in C([0, T ];W−ε,∞(T2)). Given any finite q ≥ 1, we have the following

tail estimate:

P
(
‖ :Zk : ‖LqTW−ε,∞x

> λ
)
≤ C exp

(
− c λ

2
k

T
1+ 2

qk

)
(2.7)

for any T ≥ 1 and λ > 0. When q =∞, we also have the following tail estimate:

P
(
‖ :Zk : ‖L∞([j,j+1];W−ε,∞x ) > λ

)
≤ C exp

(
− c λ

2
k

j + 1

)
(2.8)

for any j ∈ Z≥0 and λ > 0.

Proof. In the following, we briefly discuss the case of the stochastic convolution Ψ associated

with the linear wave operator. A straightforward modification yields the corresponding

result for Φ. As for the convergence part of the statement, see [21, Proposition 2.1] and

[22, Lemma 3.1] for the details. As for the exponential tail estimate (2.7), by repeating the

argument in the proof of [21, Proposition 2.1], we have

E
[
|〈∇〉−ε :Ψk(x, t) : |2

]
.

∑
n1,...,nk∈Z2

tk

〈n1〉2 · · · 〈nk〉2〈n1 + · · ·+ nk〉2ε
≤ Cεtk (2.9)

for any ε > 0, uniformly in x ∈ T2 and t ≥ 0. Then, Minkowski’s integral inequality and

the Wiener chaos estimate (Lemma 2.1), we obtain∥∥∥‖ :Ψk : ‖LqTW−ε,∞x

∥∥∥
Lp(Ω)

. p
k
2T

k
2

+ 1
q (2.10)

for any sufficiently large p � 1 (depending q ≥ 1). The exponential tail estimate (2.7)

follows from (2.10) and Chebyshev’s inequality (see also Lemma 4.5 in [55]).

Fix j ∈ Z≥0 and λ > 0. Then, we have

P
(
‖ :Ψk : ‖L∞([j,j+1];W−ε,∞x ) > λ

)
≤ P

(
‖ :Ψk(j) : ‖W−ε,∞x

> λ
2

)
+P
(

sup
t∈[j,j+1]

‖ :Ψk(t) : − :Ψk(j) : ‖W−ε,∞x
> λ

2

)
.

(2.11)

In view of (2.9), we see that the first term on the right-hand side of (2.11) is controlled by

the right-hand side of (2.8). As for the second term on the right-hand side of (2.11), we

first recall from the proof of [21, Proposition 2.1] that∥∥∥|h|−ρ‖δh(:Ψk(t) :)‖W−ε,∞x

∥∥∥
Lp(Ω)

. p
k
2 (j + 1)

k
2

for any sufficiently large p � 1, t ∈ [j, j + 1], and |h| ≤ 1, where δhf(t) = f(t + h) − f(t)

and 0 < ρ < ε. Then, by applying Lemma 4.5 in [55], we obtain the following exponential

bound:

E

[
exp

{
(j + 1)−1

(‖ :Ψk(τ2)− :Ψk(τ1) : ‖W−ε,∞x

|τ2 − τ1|ρ

)α}]
≤ C <∞, (2.12)

uniformly in j ≤ τ1 < τ2 ≤ j + 1 (and j ∈ Z≥0). By integrating (2.12) in τ1 and τ2,

this verifies the hypothesis (2.1) of Lemma 2.2 (under an expectation). Finally, applying
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Lemma 2.2 and then Chebyshev’s inequality, we conclude that

P
(

sup
t∈[j,j+1]

‖ :Ψk(t) : − :Ψk(j) : ‖W−ε,∞x
> λ

2

)
≤ C exp

(
− c λ

2
k

j + 1

)
.

This proves (2.8). �

In order to prove Theorem 1.2, Lemma 2.3 is not sufficient. The following lemma shows

a finer regularity property of Ψ, namely, it is only logarithmically divergent from being a

function. We recall that the I-operator depends on the underlying 0 < s < 1 and N ∈ N.

Lemma 2.4. Let Ψ be as in (1.5) and fix 0 < s < 1. Then, given any x ∈ T2 and t ∈ R+,

IΨ(x, t) is a mean-zero Gaussian random variable with variance bounded by C0t logN ,

where the constant C0 is independent of x ∈ T2 and t ∈ R+,

Proof. Given any x ∈ T2 and t ∈ R+, IΨ(x, t) is obviously a mean-zero Gaussian random

variable (if the variance is finite). By writing Ψ = PNΨ+P⊥NΨ, we separately estimate the

contributions from PNΨ and P⊥NΨ. For the low frequency part, we have IPNΨ = PNΨ

and thus from (1.7), we have

E
[
(IPNΨ(x, t))2

]
= E

[
(PNΨ(x, t))2

]
∼ t logN

uniformly in x ∈ T2. For the high frequency part, it follows from (1.5), and (1.17) that

E
[
(IP⊥NΨ(x, t))2

]
=

ˆ t

0

∑
|n|>N

E
[
|Ψ̂(n, t′)|2

]
m2
N (n)dt′

. t
∑
|n|>N

N2−2s

|n|4−2s

∼ t,

uniformly in x ∈ T2. This proves Lemma 2.4. �

2.2. Product estimates. We recall the following product estimates. See [21] for the proof.

Lemma 2.5. Let 0 ≤ s ≤ 1.

(i) Suppose that 1 < pj , qj , r <∞, 1
pj

+ 1
qj

= 1
r , j = 1, 2. Then, we have

‖〈∇〉s(fg)‖Lr(Td) .
(
‖f‖Lp1 (Td)‖〈∇〉sg‖Lq1 (Td) + ‖〈∇〉sf‖Lp2 (Td)‖g‖Lq2 (Td)

)
.

(ii) Suppose that 1 < p, q, r < ∞ satisfy the scaling condition: 1
p + 1

q ≤
1
r + s

d . Then, we

have ∥∥〈∇〉−s(fg)
∥∥
Lr(Td)

.
∥∥〈∇〉−sf∥∥

Lp(Td)

∥∥〈∇〉sg∥∥
Lq(Td)

.

Note that while Lemma 2.5 (ii) was shown only for 1
p + 1

q = 1
r + s

d in [21], the general

case 1
p + 1

q ≤
1
r + s

d follows from the inclusion Lr1(Td) ⊂ Lr2(Td) for r1 ≥ r2.

3. I-method for the renormalized cubic SNLW

In this section, we prove global well-posedness of the renormalized cubic SNLW (1.12)

on T2 (Theorem 1.2). In Subsection 3.1, we go over preliminary estimates. Then, we

present a proof of Theorem 1.2 in Subsection 3.2.
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3.1. Commutator and other preliminary estimates. In the following, we fix N ∈ N
and 0 < s < 1 and set11 I = IN . Moreover, we use the following notations:

f.N = PN
3
f and f&N = P⊥N

3

f = f − f.N . (3.1)

We first go over basic commutator estimates in Lemmas 3.1, 3.2, and 3.3.

Lemma 3.1. Let 2
3 ≤ s < 1. Then, we have

‖(If)k − I(fk)‖L2 . N−1+k(1−s)‖If‖kH1 (3.2)

for k = 1, 2, 3.

Proof. By the definition of the I-operator and (3.1), we have I(fk.N ) = fk.N for k = 1, 2, 3.

Thus, we have

(If)k − I(fk) =
(
I(f.N + f&N )

)k − I((f.N + f&N )k
)

=
(
f.N + I(f&N )

)k − I((f.N + f&N )k
)

= fk.N − I
(
fk.N

)︸ ︷︷ ︸
=0

+

k−1∑
j=0

(
k

j

)(
f j.N (If&N )k−j − I

(
f j.Nf

k−j
&N

))
.

(3.3)

In the following, we use Hölder’s inequality with 1
2 = j

q + 1
2+δ for (i) some large but finite

q � 1 and small δ > 0 when j ≥ 1 and (ii) q =∞ and δ = 0 when j = 0. Then, by Hölder’s

and Sobolev’s inequalities, we have

‖f j.N (If&N )k−j‖L2 ≤ ‖f.N‖jLq‖If&N‖
k−j
L(2+δ)(k−j)

. ‖f.N‖jH1‖If&N‖k−j
H

1− 2
(2+δ)(k−j)

. N−1+ε‖If‖kH1

(3.4)

for some small ε > 0. Proceeding similarly with the boundedness of the multiplier mN

and (1.19), we have∥∥I(f j.Nfk−j&N

)∥∥
L2 . ‖f j.Nf

k−j
&N ‖L2

≤ ‖f.N‖jLq‖f&N‖L(2+δ)(k−j)

. ‖If.N‖jH1‖f&N‖k−j
H

1− 2
(2+δ)(k−j)

. N−1+k(1−s)‖If.N‖jH1‖f&N‖k−jHs

. N−1+k(1−s)‖If‖kH1

(3.5)

since 2
3 ≤ s < 1. Therefore, the desired estimate (3.2) follows from (3.3), (3.4), and (3.5).

�

Lemma 3.2. Let 0 < σ < 1. Given δ > 0, there exist small σ0 = σ0(δ) > 0 and large

p = p(δ)� 1 such that

‖(If)(Ig)− I(fg)‖L2 . N−
1−σ
2

+δ‖f‖H1−σ‖g‖W−σ0,p (3.6)

for any sufficiently large N � 1.

11Recall that the I-operator also depends on 0 < s < 1.
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Proof. By writing f = f
.N

1
2

+ f
&N

1
2

and g = g.N + g&N , we have

(If)(Ig)− I(fg) =
{

(If
.N

1
2
)(Ig.N )− I(f

.N
1
2
g.N )

}
+
{

(If
.N

1
2
)(Ig&N )− I(f

.N
1
2
g&N )

}
+ (If

&N
1
2
)(Ig)

− I(f
&N

1
2
g)

=: B1 +B2 +B3 +B4.

(3.7)

From the definition of the I-operator with (3.1), we see that

B1 = 0 (3.8)

for any sufficiently large N � 1 since supp
{
F(f

.N
1
2
g.N )

}
⊂ {n ∈ Z2 : |n| ≤ 5

6N} for

N � 1.

For |n1| . N
1
2 and |n2| & N , from the mean value theorem with (1.17), we have

|m(n1 + n2)−m(n2)| . N1−s|n2|−2+s|n1|. (3.9)

Let ?n = {n1, n2 ∈ Z2 : n = n1 + n2, |n1| ≤ N
1
2

3 , |n2| > N
3 }. By (3.9), the fact that

m(n1) ≡ 1 on ?n, and Young’s inequality followed by Cauchy-Schwarz inequality (in n1),

we have

‖B2‖L2 =

∥∥∥∥∑
?n

(
m(n2)−m(n1 + n2)

)
f̂(n1)ĝ(n2)

∥∥∥∥
`2n

. N1−s

∥∥∥∥∥∑
?n

〈n1〉1+σ+δ

|n2|2−s−δ

∣∣∣∣ f̂(n1)

〈n1〉σ+δ

∣∣∣∣∣∣∣∣ ĝ(n2)|
|n2|δ

∣∣∣∣
∥∥∥∥∥
`2n

. N−
1−σ
2

+ 3
2
δ‖〈n1〉−σ−δf̂(n1)‖`1n1‖g‖H−δ

. N−
1−σ
2

+ 3
2
δ‖f‖H1−σ‖g‖H−δ .

(3.10)

As for B3, by Hölder’s inequality, Sobolev’s embedding theorem, and applying (1.20)

twice, we have

‖B3‖L2 ≤ ‖If
&N

1
2
‖L2‖Ig‖L∞

. N−
1−σ
2 ‖f‖H1−σ‖Ig‖W 3δ,δ−1

. N−
1−σ
2

+4δ‖f‖H1−σ‖g‖W−δ,δ−1

(3.11)

for δ > 0 sufficiently small.

Lastly, from (1.20) and Lemma 2.5 (ii), we have

‖B4‖L2 . N2δ‖f
&N

1
2
g‖H−2δ

. N2δ‖f
&N

1
2
‖H2δ‖g‖W−2δ,δ−1

. N−
1−σ
2

+3δ‖f
&N

1
2
‖H1−σ‖g‖W−2δ,δ−1

(3.12)

for δ > 0 sufficiently small.

Putting (3.7), (3.8), (3.10), and (3.11), and (3.12) together, we obtain (3.6). �
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From Lemmas 3.1 and 3.2, we obtain the following commutator estimate. For our appli-

cation, we will use this lemma with g = :Ψ3−k : .

Lemma 3.3. Let 2
3 ≤ s < 1 and k = 1, 2. Given δ > 0, there exist small σ0 = σ0(δ) > 0

and p = p(δ)� 1 such that

‖I(fkg)− (If)kIg‖L2 . N−
1−k(1−s)

2
+δ‖If‖kH1‖g‖W−σ0,p (3.13)

for any sufficiently large N � 1.

Proof. By the triangle inequality, we have

‖I(fkg)− (If)kIg‖L2 ≤ ‖I(fkg)− I(fk)Ig‖L2 +
∥∥(I(fk)− (If)k

)
Ig
∥∥
L2

=: D1 +D2.
(3.14)

By Sobolev’s inequality (with s > 1
2) and the fractional Leibniz rule (Lemma 2.5 (i)), we

have

‖fk‖H1−k(1−s) . ‖fk‖
W
s, 2

1+(k−1)(1−s)
. ‖f‖Hs‖f‖k−1

L
2

1−s
. ‖f‖kHs . (3.15)

Thus, by Lemma 3.2 with σ = k(1− s), (3.15), and (1.19), given δ > 0, we have

‖D1‖L2 . N−
1−k(1−s)

2
+δ‖f‖kHs‖g‖W−σ0,p

. N−
1−k(1−s)

2
+δ‖If‖kH1‖g‖W−σ0,p

(3.16)

for some small σ0 = σ0(δ) > 0 and large p = p(δ) � 1. On the other hand, by Hölder’s

inequality, Lemma 3.1, Sobolev’s embedding theorem, and (1.20), we have

‖D2‖L2 ≤ ‖I(fk)− (If)k‖L2‖Ig‖L∞

. N−1+k(1−s)‖If‖kH1‖Ig‖W 3δ,δ−1

. N−1+k(1−s)+4δ‖If‖kH1‖g‖W−δ,δ−1 .

(3.17)

Putting (3.14), (3.16), and (3.17) together, we obtain (3.13). �

We conclude this subsection by presenting useful estimates for controlling the Gronwall

part of our hybrid I-method argument.

Lemma 3.4. (i) Let k = 0, 1. Then, for any 0 ≤ γ ≤ 1− s, we have∣∣∣∣ ˆ
T2

(∂tIv(t))(Iv(t))kIw(t) dx

∣∣∣∣ . Nγ
(
1 + E

3
4 (I~v)(t)

)
‖w(t)‖

W−γ,4x

for any t ≥ 0, where E is the energy defined in (1.15).

(ii) There exists c > 0 such that∣∣∣∣ ˆ t2

t1

ˆ
T2

(∂tIv)(Iv)2Iw dxdt

∣∣∣∣
.

{ˆ t2

t1

(
E1+cη(I~v)(t) +

η

(t− t1)
1
2

)
dt

}
‖Iw‖

Lη
−1

[t1,t2],x

,

(3.18)

uniformly in 0 < η < 1
8 and t2 ≥ t1 ≥ 0, where LpI,x = Lp(I;Lp(T2)) for a given time

interval I ⊂ R+.
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For our application, we will use Part (i) with w = : Ψ3−k : , k = 0, 1, and Part (ii) with

w = Ψ.

Proof. (i) Let k = 0, 1. Then, by Hölder’s inequality, (1.15), and (1.20), we have∣∣∣∣ˆ
T2

(∂tIv(t))(Iv(t))kIw(t) dx

∣∣∣∣ ≤ ‖∂tIv(t)‖L2‖Iv(t)‖kL4‖Iw(t)‖
L

4
2−k

. ‖∂tIv(t)‖L2‖Iv(t)‖kL4‖Iw(t)‖L4

. NγE(I~v)
1
2

+ k
4 (t)‖w(t)‖W−γ,4 .

(ii) By interpolation with (1.15), we have

‖Iv‖
W
θ, 4

1+θ
. ‖Iv‖θH1‖Iv‖1−θL4 . E

θ
2 (I~v)E

1−θ
4 (I~v) = E

1+θ
4 (I~v)

for 0 ≤ θ ≤ 1. Then, by Sobolev’s inequality, we have

‖Iv‖
L

4
1−θ
. E

1+θ
4 (I~v), (3.19)

where the implicit constant is uniform in θ as long as 0 ≤ θ ≤ θmax < 1. Set θ = 4η. Then,

by Hölder’s inequality (in x), (1.15), (3.19), and Hölder’s inequality (in t), we obtain∣∣∣∣ˆ t2

t1

ˆ
T2

(∂tIv)(Iv)2Iw dxdt

∣∣∣∣ ≤ ˆ t2

t1

‖∂tIv‖L2
x
‖Iv‖L4

x
‖Iv‖

L
4

1−4η
x

‖Iw‖
Lη
−1
x

dt

.
ˆ t2

t1

E1+η(I~v)‖Iw‖
Lη
−1
x

dt

.

(ˆ t2

t1

E
1+η
1−η (I~v)dt

)1−η
‖Iw‖

Lη
−1

[t1,t2],x

,

(3.20)

uniformly in 0 < η < 1
8 .

Next, we estimate the first factor on the right-hand side in (3.20). Let

p = p(η) =
1− η
1− 2η

and q = q(η) =
1

1− 2η
.

This implies that

p′ =
1− η
η

and q′ =
1

2η
.

Then, by Hölder’s and Young’s inequalities, we have(ˆ t2

t1

f(t)dt

)1−η
≤
(ˆ t2

t1

|f(t)|pdt
) 1−η

p

(t2 − t1)
1−η
p′

≤ 1

q

( ˆ t2

t1

|f(t)|pdt
)q· 1−η

p

+
1

q′
(t2 − t1)

q′· 1−η
p′

= (1− 2η)

ˆ t2

t1

|f(t)|
1−η
1−2η dt+ 2η(t2 − t1)

1
2 .

Applying this to the first factor on the right-hand side in (3.20), we obtain( ˆ t2

t1

E
1+η
1−η (I~v)(t)dt

)1−η
.
ˆ t2

t1

(
E

1+η
1−2η (I~v)(t) +

η

(t− t1)
1
2

)
dt. (3.21)

Putting (3.20) and (3.21) together, we obtain (3.18). �
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3.2. Proof of Theorem 1.2. In this subsection, we use the estimates in the previous

subsection and implement an iterative argument to construct a solution to (1.12) on a time

interval [0, T ] for any given T � 1. Unlike the usual application of the I-method (where

the parameter N depends only on the target time T � 1), we will need to construct an

increasing sequence {Nk}k∈Z≥0
of parameters over local-in-time intervals, which allows us

to proceed over a time interval of fixed length at each iteration step.

Fix 4
5 < s < 1 and a target time T � 1. Our main goal is to control growth of the

modified energy E(I~v)(t) on the time interval [0, T ]. We use the following short-hand

notation for the modified energy:

E(t) = E(I~v)(t).

Then, from (1.22), Lemmas 3.1, 3.3, and 3.4, we have

E(t2)− E(t1)

.
ˆ t2

t1

N−1+3(1−s)E2(t)dt

+

2∑
k=1

ˆ t2

t1

N−
1−k(1−s)

2
+δE

k+1
2 (t) ‖ :Ψ3−k(t) :‖

W
−σ0,p
x

dt

+
1∑

k=0

ˆ t2

t1

Nγ(1 + E
3
4 (t))‖ :Ψ3−k(t) :‖

W−γ,4x
dt

+

{ˆ t2

t1

(
E1+cη(t) +

η

(t− t1)
1
2

)
dt

}
‖IΨ‖

Lη
−1

[t1,t2],x

(3.22)

for any t2 ≥ t1 ≥ 0.

Before proceeding to the following crucial proposition, let us introduce some notations.

Given j ∈ Z≥0, set Vj = Vj(ω)

Vj = max
k=1,2

‖ :Ψ3−k : ‖
L∞
[j,j+1]

W
−σ0,p
x

+ max
k=0,1

‖ :Ψ3−k : ‖
L∞
[j,j+1]

W−γ,4x

and define V = V (ω) by

eV
1
3 =

∞∑
j=0

e−θjeV
1
3
j (3.23)

for some θ > 0. Note that V is almost surely finite, since, by applying (2.8) in Lemma 2.3

and choosing θ sufficiently large, we have

E
[
eV

1
3
]

=

∞∑
j=0

e−θjE
[
eV

1
3
j

]
≤
∞∑
j=0

e−θjec(j+1) <∞.

Now, given T � 1, set

MT = max
k=1,2

‖ :Ψ3−k : ‖
L∞T W

−σ0,p
x

+ max
k=0,1

‖ :Ψ3−k : ‖
L∞T W

−γ,4
x

. (3.24)

Then, noting from (3.23) that

V
1
3
j ≤ V

1
3 + θj,
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we have

MT = max
j≤T

Vj ≤ V
1
3 + θT . V + T 3. (3.25)

We also define R = R(ω) by

R =
∞∑
N=1

∞∑
j=1

e−θj logN

ˆ j

0

ˆ
T2

e|INΨ(x,t)|dxdt, (3.26)

where I = IN is the I-operator defined in (1.18). Then, by applying Lemma 2.4 and

choosing θ sufficiently large, we have

E[R] =
∞∑
N=1

∞∑
j=1

e−θj logN

ˆ j

0

ˆ
T2

E
[
e|INΨ(x,t)|

]
dxdt

.
∞∑
N=1

∞∑
j=1

e−θj logNjecj logN <∞.

Thus, R is finite almost surely. In the following, we assume that R = R(ω) ≥ 1.

In the following, we fix ω ∈ Ω such that V = V (ω) <∞ and R = R(ω) <∞ and prove

global well-posedness by pathwise analysis. The following proposition plays a fundamental

role in our iterative argument to prove Theorem 1.2.

Proposition 3.5. Let 2
3 < s < 1, T ≥ T0 � 1, and N ∈ N. Moreover, let V = V (ω) <∞

and R = R(ω) < ∞ be as in (3.23) and (3.25). Then, there exist α = α(s), β = β(s) > 0

with α > β such that if

E(t0) ≤ Nβ (3.27)

for some 0 ≤ t0 < T , then there exists τ = τ(s,N, T, V,R) = τ(s,N, T, ω) > 0 with

τ ≤ t∗(R) ≤ 1 such that

E(t) ≤ Nα (3.28)

for any t such that t0 ≤ t ≤ min(T, t0 + τ).

Proof. Without loss of generality, we assume that E(t) ≥ 1. (This can be guaranteed by

replacing E(t) by E(t) + 1.) Then, from (3.22) with (3.24), we have

E(t)−E(t0)

.
ˆ t

t0

N−1+3(1−s)E2(t′)dt′

+MT

2∑
k=1

ˆ t

t0

N−
1−k(1−s)

2
+δE

k+1
2 (t′)dt′

+MT

ˆ t

t0

NγE
3
4 (t′)dt′

+

{ˆ t

t0

(
E1+cη(t′) +

η

(t′ − t1)
1
2

)
dt′

}
‖IΨ‖

Lη
−1

[t0,t],x

(3.29)

for any t ≥ t0.
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In the following, we assume

max
t0≤τ≤t

E(τ) ≤ 100Nα (3.30)

for some t ≥ t0, where α > β is to be determined later. Then, we show that (3.28) holds

for this t. It follows from the continuity in time of E(t) and (3.27) with α > β that there

exists t1 > t0 sufficiently close to t0 such that (3.30) holds true for t0 ≤ t ≤ t1.

Letting η−1 = n ∈ N, it follows from (3.26) that

‖INΨ‖nLn
[t1,t2],x

=

ˆ t2

t1

ˆ
T2

|INΨ(x, t)|ndxdt ≤ n!

ˆ T

0

ˆ
T2

e|INΨ(x,t)|dxdt

≤ n!eθT logNR.

With n! ≤ nn, this implies

‖INΨ‖Ln
[t1,t2],x

≤ ne
1
n
θT logNR

1
n .

We now choose

n ∼ θT logN + cα log(100N) ∼ T logN � 1.

Then, under the assumption (3.30) and η = n−1, we can estimate the last term on the

right-hand side of (3.29) as{ˆ t

t0

(
E1+cη(t′) +

η

(t′ − t1)
1
2

)
dt′

}
‖IΨ‖

Lη
−1

[t0,t],x

≤
ˆ t

t0

(
E(t′)ne

1
n

(θT logN+cα log(100N)) +
e

1
n
θT logNR

1
n

(t′ − t1)
1
2

)
dt′

≤
ˆ t

t0

(
TE(t′) logN +

R

(t′ − t1)
1
2

)
dt′,

(3.31)

where we used the assumption that n ≥ 1 and R = R(ω) ≥ 1 in the last step.

Next, we define F by

F (t) = max
t0≤τ≤t

E(τ)− E(t0) + max(E(t0), Nβ). (3.32)

Then, under the assumption (3.30), we have we have

Nβ ≤ F (t) ≤ 200Nα (3.33)

for t0 ≤ t ≤ t1. In particular, we have

logF (t) ∼ logN. (3.34)

Moreover, from (3.33), we have
N−1+3(1−s)F 2(t) . N−αF 2(t) ≤ F (t),

N−
1−2(1−s)

2
+δF

3
2 (t) . N−

α
2 F

3
2 (t) ≤ F (t),

N−
1−(1−s)

2
+δF (t) ≤ F (t),

NγF
3
4 (t) . NγF−

1
4 (t)F (t) ≤ F (t),

(3.35)

provided that

α ≤ 1− 3(1− s) = −2 + 3s, δ ≤ min
(

2s−1−α
2 , s2

)
, and γ ≤ β

4 . (3.36)
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Here, γ = γ(s) > 0 is a small constant, appearing in Lemma 3.4. The first condition

in (3.36) with α > 0 requires s > 2
3 . Hence, from (3.29) with (3.31), (3.32), (3.34), and

(3.35) followed by (3.25), we obtain

F (t) − F (t0)

. (1 +MT )

ˆ t

t0

F (t′)dt′ +

ˆ t

t0

(
TF (t′) logF (t′) +

R

(t′ − t1)
1
2

)
dt′

. (1 + V + T 3)

ˆ t

t0

F (t′)dt′ +

ˆ t

t0

(
TF (t′) logF (t′) +

R

(t′ − t1)
1
2

)
dt′

. (1 + V +R+ T )

ˆ t

t0

(
F (t′)(logF (t′) + T 2) +

R

(t′ − t1)
1
2

)
dt′

(3.37)

for any t0 ≤ t ≤ t1 such that (3.33) holds. Denoting by C0 the implicit constant in (3.37),

we define G by

G(t) = F (t)− 2C0R(t− t0)
1
2 . (3.38)

Then, it follows from (3.37) that

G(t)−G(t0) . (1 + V +R+ T )

ˆ t

t0

G(t′)(logG(t′) + T 2)dt′ (3.39)

for any t0 ≤ t ≤ min(t1, t0 + t∗(C0, R)) such that

2C0R(t− t0)
1
2 ∼ 1 (3.40)

(which guarantees G(t) ∼ F (t) in view of (3.38)).

Now, note that the equation

∂tH(t) = κH(t)(logH(t) + T 2)

has an explicit solution

H(t) = exp
(
eκt(logH(0) + T 2)− T 2

)
.

Then, by comparison, we deduce from (3.39) that

G(t) ≤ exp
(
eC(1+V+R+T )(t−t0)(logG(t0) + T 2)− T 2

)
. (3.41)

Recall from (3.38) and (3.32) that G(t0) = Nβ. Then, under the condition

eC(1+V+R+T )(t−t0)(β logN + T 2) ≤ α logN + T 2 − log 2, (3.42)

the bound (3.41) implies

G(t) ≤ 1
2N

α (3.43)

for any t0 ≤ t ≤ min(t1, t0 + t∗(C0, R)). Then, we conclude from (3.32), (3.38), and (3.40)

that

E(t) ≤ F (t) ≤ Nα (3.44)

for any t0 ≤ t ≤ min(t1, t0 + t∗(C0, R)). This in turn guarantees the conditions (3.30)

and (3.33). Therefore, by a standard continuity argument, we conclude that the bounds

(3.43) and (3.44) hold for any t0 ≤ t ≤ t0 + t∗(C0, R) sufficiently close to t0 such that the

condition (3.42) holds.
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Finally, let us rewrite the condition (3.42). Let α = α(s) > β = β(s) satisfy the

conditions (3.36). Then, there exists small 0 < τ ≤ t∗(C0, R) such that

α− eC(1+V+R+T )τβ ≥ c0 > 0. (3.45)

Then, by choosing τ = τ(s,N, T, V,R) > 0 sufficiently small such that

eC(1+V+R+T )τ − 1 ≤ c0 logN − log 2

T 2
, (3.46)

we can guarantee the condition (3.42) and hence the desired bound (3.44) for 0 ≤ t−t0 ≤ τ .

This conclude the proof of Proposition 3.5. �

Remark 3.6. By choosing τ ∼V,R T−1 sufficiently small, we can guarantee the condi-

tion (3.45).

We now present a proof of Theorem 1.2. Fix 4
5 < s < 1 and T � 1. Moreover, we fix

ω ∈ Ω such that V = V (ω) < ∞ and R = R(ω) < ∞. Then, let the parameters α, β, τ be

as in Proposition 3.5.

Fix N0 � 1 (to be determined later). Then, for k ∈ Z≥0, define an increasing sequence

{Nk}k∈Z≥0
by setting

Nk = Nσk

0 (3.47)

for some σ > 1 such that

N
2(1−s)
k+1 Nα

k +N2α
k � Nβ

k+1, (3.48)

which requires β > 2(1 − s). Recalling that α > β and (3.36), we have the following

constraints:

2(1− s) < β < α ≤ 1− 3(1− s),

which imposes the condition s > 4
5 . Suppose that

E(INk~v)(t) ≤ Nα
k (3.49)

for some k and t ≥ 0. Then, by (1.19), Sobolev’s inequality, (3.49), and (3.48), we have

E(INk+1
~v)(t) . ‖INk+1

~v‖2H1 + ‖INk+1
v‖4L4

. N2(1−s)
k+1 ‖~v‖2Hs + ‖v‖4

H
1
2

. N2(1−s)
k+1 ‖INk~v‖

2
H1 + ‖INkv‖

4
H1

. N2(1−s)
k+1 E(INk~v) + E(INk~v)2

. N2(1−s)
k+1 Nα

k +N2α
k

� Nβ
k+1.

(3.50)

We are now ready to implement an iterative argument. Given (φ0, φ1) ∈ Hs(T2), choose

N0 = N0(φ0, φ1, s)� 1 such that

E(IN0~v)(0) ≤ Nβ
0 . (3.51)

By applying Proposition 3.5, we have

E(IN0~v)(t) ≤ Nα
0
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for any 0 ≤ t ≤ τ . By (3.49) and (3.50), this then implies

E(IN1~v)(τ) ≤ Nβ
1 .

Applying Proposition 3.5 once again, we in turn obtain

E(IN1~v)(t) ≤ Nα
1

for 0 ≤ t ≤ 2τ . By (3.49) and (3.50), this then implies

E(IN2~v)(2τ) ≤ Nβ
2 .

After iterating this argument
[
T
τ

]
+ 1 times, we obtain a solution v to the renormalized

cubic SNLW (1.12) on the time interval [0, T ]. Since the choice of T � 1 was arbitrary,

this proves global well-posedness of (1.12).

Remark 3.7. Fix T � 1 and let the other parameters be as above. Then, it follows from

the argument above and (1.19) that

‖~v(t)‖Hs .
(
E(INk~v)(t)

) 1
2 ≤ N

α
2
k

for any 0 ≤ t ≤ T such that kτ ≤ t ≤ (k + 1)τ , k ∈ Z≥0. Then, using (3.47), we have

‖~v(t)‖Hs . exp

(
α

2
σk logN0

)
≤ exp

(
α

2
logN0 · exp

((log σ)t

τ

))
(3.52)

for 0 ≤ t ≤ T . Moreover, in view of (3.51), we choose N0 ∈ N such that 1+E(IN0~v)(0) ∼ Nβ
0

and thus we have

logN0 ∼ log
(
2 + ‖~v(0)‖Hs

)
. (3.53)

In order to reach the target time T , we iteratively apply Proposition 3.5 K ∼ T
τ -many

times. For this purpose, we need to guarantee the condition (3.46). In view of Remark 3.6

and (3.47) with k = K ∼ T
τ , the condition (3.46) now reads as

eC(1+V+R+T )T−1 − 1 ≤ c0σ
T 2

logN0 − log 2

T 2
,

which holds true for any sufficiently large T � 1.

Finally, from (3.52), (3.53), and Remark 3.6, we conclude the following double exponen-

tial bound:

‖~v(t)‖Hs ≤ C exp
(
c log

(
2 + ‖~v(0)‖Hs

)
· eC(ω)t2

)
(3.54)

for any t ≥ 0.

We conclude this section by pointing out that by implementing a more involved version

of Proposition 3.5 (see for example the paper [53] by the fourth author, studying SNLW on

R2), it is possible to improve t2 in (3.54) to tα for some α < 2. For readers’ convenience,

however, we decided to include the current slightly simpler and more intuitive approach,

with a Gronwall-type argument with G logG as in (3.39). We point out that we do not

know how to improve t2 in (3.54) to t at this point.
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4. Almost sure global well-posedness of the hyperbolic Φ2-model

We present a simple local well-posedness argument for (1.46) based on Sobolev’s inequal-

ity. We first consider the following deterministic NLW:{
∂2
t v + ∂tv + (1−∆)v +

∑k
`=0

(
k
`

)
Ξ` v

k−` = 0

(v, ∂tv)|t=0 = (v0, v1)
(4.1)

for given initial data (v0, v1) and a source (Ξ, . . . ,Ξk) with the understanding that Ξ0 ≡ 1.

Given s ∈ R, define X s(T2) by

X s(T2)
def
= Hs(T2)×

(
L2([0, 1];W s−1,∞(T2))

)⊗k
and set

‖ΞΞΞ‖X s = ‖(v0, v1)‖Hs +

k∑
j=1

‖Ξj‖L2([0,1];W s−1,∞)

for ΞΞΞ = (v0, v1,Ξ1,Ξ2, . . . ,Ξk) ∈ X s(T2). Then, we have the following local well-posedness

result for (4.1).

Proposition 4.1. Given an integer k ≥ 2, there exists εk > 0 such that, for 0 ≤ ε < εk,

(4.1) is unconditionally local well-posed in X 1−ε(T2). More precisely, given an enhanced

data set:

ΞΞΞ = (v0, v1,Ξ1,Ξ2, . . . ,Ξk) ∈ X 1−ε(T2), (4.2)

there exist T = T (‖ΞΞΞ‖X 1−ε) ∈ (0, 1] and a unique solution v to (4.1) in the class:

C([0, T ];H1−ε(T2)). (4.3)

In particular, the uniqueness of v holds in the entire class (4.3). Furthermore, the solution

map: ΞΞΞ ∈ X 1−ε(T2) 7→ v ∈ C([0, T ;H1−ε(T2)) is locally Lipschitz continuous.

We point out that Proposition 4.1 is completely deterministic. Once we prove Propo-

sition 4.1, the claimed local well-posedness of the renormalized SdNLW (1.46) follows

from Proposition 4.1 and Lemma 2.3, stating that the (random) enhanced data set

ΞΞΞ = (v0, v1,Φ, :Φ
2 :, . . . , :Φk : ) almost surely belongs to X 1−ε(T2), ε > 0.

Proof. By writing (4.1) in the Duhamel formulation, we have

v(t) = Γ(v)
def
= ∂tD(t)v0 +D(t)(v0 + v1)

+

k∑
`=0

(
k

`

) ˆ t

0
D(t− t′)

(
Ξ` v

k−`)(t′)dt′, (4.4)

where the map Γ = ΓΞΞΞ depends on the enhanced data set ΞΞΞ in (4.2). Fix 0 < T < 1.

We first treat the case ` = 0. From (1.40) and applying Sobolev’s inequality twice, we

obtain∥∥∥∥ˆ t

0
D(t− t′)vk(t′)dt′

∥∥∥∥
CTH

1−ε
x

. T‖vk‖CTH−εx . T‖v
k‖
CTL

2
1+ε
x

. T‖v‖k
CTL

2k
1+ε
x

. T‖v‖kCTHs
x
,

(4.5)
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provided that

0 ≤ ε ≤ 1

k − 1
.

For 1 ≤ ` ≤ k − 1, it follows from Lemma 2.5 (ii) and then (i) followed by Sobolev’s

inequality that∥∥∥∥ˆ t

0
D(t− t′)

(
Ξ` v

k−`)(t′)dt′∥∥∥∥
CTH

1−ε
x

. T
1
2 ‖Ξ` vk−`‖L2

TH
−ε
x

. T
1
2 ‖〈∇〉−εΞ`‖

L2
TL

2
ε
x

‖〈∇〉εvk−`‖CTL2
x

. T
1
2 ‖ΞΞΞ‖X 1−ε‖〈∇〉εv‖k−`

CTL
2(k−`)
x

. T
1
2 ‖ΞΞΞ‖X 1−ε‖v‖k−`

CTH
1−ε
x

,

(4.6)

provided that

0 ≤ ε ≤ 1

2(k − 1)
. (4.7)

Lastly, from (1.40), we have∥∥∥∥ˆ t

0
D(t− t′)Ξk(t′)dt′

∥∥∥∥
CTH

1−ε
x

. T
1
2 ‖Ξk‖L2

TH
−ε
x
≤ T

1
2 ‖ΞΞΞ‖X 1−ε . (4.8)

Putting (4.4), (4.5), (4.6), and (4.8) together, we have

‖Γ(v)‖CTH1−ε
x
≤ C1‖(v0, v1)‖H1−ε + C2T

1
2
(
1 + ‖ΞΞΞ‖X 1−ε

)(
1 + ‖v‖CTH1−ε

x

)k
,

as long as (4.7) is satisfied. An analogous difference estimate also holds. Therefore, by

choosing T = T (‖ΞΞΞ‖X 1−ε) > 0 sufficiently small, we conclude that Γ is a contraction in

the ball BR ⊂ C([0, T ];H1−ε(T2)) of radius R = 2C1‖(v0, v1)‖H1−ε + 1. At this point, the

uniqueness holds only in the ball BR but by a standard continuity argument, we can extend

the uniqueness to hold in the entire C([0, T ];H1−ε(T2)). We omit details. �

Next, we provide a brief discussion on invariance of the truncated Gibbs measure ~ρN
in (1.35) under the dynamics of the renormalized truncated SdNLW (1.37) for uN .

Given N ∈ N, define the marginal probabilities measures ~µ1,N and ~µ⊥1,N on PNH−ε(T2)

and P⊥NH−ε(T2), respectively, as the induced probability measures under the following

maps:

ω ∈ Ω 7−→ (PNu
1(ω),PNu

2(ω))

for ~µ1,N and

ω ∈ Ω 7−→ (P⊥Nu
1(ω),P⊥Nu

2(ω))

for ~µ⊥1,N , where u1 and u2 are as in (1.30). Then, we have

~µ1 = ~µ1,N ⊗ ~µ⊥1,N . (4.9)

From (1.35) and (4.9), we then have

~ρN = ~νN ⊗ ~µ⊥1,N . (4.10)

where ~νN is given by

d~νN = Z−1
N RN (u)d~µ1,N
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with the density RN as in (1.33).

Recalling the decomposition (1.42), we see that the dynamics for the high frequency part

P⊥NuN = P⊥NΦ is given by

∂2
tP
⊥
NΦ + ∂tP

⊥
NΦ + (1−∆)P⊥NΦ =

√
2P⊥Nξ. (4.11)

This is a linear dynamics and thus we can readily verify that the Gaussian measure ~µ⊥1,N is

invariant under the dynamics of (4.11) (for example, by studying (4.11) for each frequency

|n| > N on the Fourier side).

On the other hand, the low frequency part PNuN satisfies (1.43). With (u1
N , u

2
N ) =

(PNuN , ∂tPNuN ), we can write (1.43) in the following Ito formulation:

d

(
u1
N
u2
N

)
+

{(
0 −1

1−∆ 0

)(
u1
N
u2
N

)
+

(
0

PN

(
: (u1

N )k :
))}dt

=

(
0

−u2
Ndt+

√
2PNdW

)
.

(4.12)

This shows that the generator LN for (4.12) can be written as LN = LN1 + LN2 , where LN1
denotes the generator for the deterministic NLW with the truncated nonlinearity:

d

(
u1
N
u2
N

)
+

{(
0 −1

1−∆ 0

)(
u1
N
u2
N

)
+

(
0

PN

(
: (u1

N )k :
))}dt = 0 (4.13)

and LN2 denotes the generator for the Ornstein-Uhlenbeck process (for the second compo-

nent u2
N ):

d

(
u1
N
u2
N

)
=

(
0

−u2
Ndt+

√
2PNdW

)
. (4.14)

Note that (4.13) is a Hamiltonian equation with the Hamiltonian:

E(u1
N , u

2
N ) =

1

2

ˆ
T2

(
(u1
N )2 + |∇u1

N |2
)
dx+

1

2

ˆ
T2

(u2
N )2dx+RN (u1

N ),

where RN is as in (1.33). Then, from the conservation of the Hamiltonian E(u1
N , u

2
N ) and

Liouville’s theorem (on a finite-dimensional phase space), we conclude that ~νN is invariant

under the dynamics of (4.13). In particular, we have (LN1 )∗~νN = 0. On the other hand, by

recalling that the Ornstein-Uhlenbeck process preserves the standard Gaussian measure,

we conclude that ~νN is also invariant under the dynamics of (4.14) since the measure ~νN is

nothing but the white noise (projected onto the low frequencies {|n| ≤ N}) on the second

component u2
N . Thus, we have (LN2 )∗~νN = 0. Hence, we obtain

(LN )∗~νN = (LN1 )∗~νN + (LN2 )∗~νN = 0.

This shows invariance of ~νN under (4.12) and hence under (1.43).

Therefore, from (4.10) and invariance of ~νN and ~µ⊥1,N under (4.12) and (4.11), respec-

tively, we conclude that the truncated Gibbs measure ~ρN in (1.35) is invariant under the

dynamics of the renormalized truncated SdNLW (1.37).

The rest of the proof of Theorem 1.7 follows from a standard application of Bourgain’s

invariant measure argument and thus we omit details. See, for example, [40] for details.
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[20] M. Gubinelli, M. Hofmanová, Global solutions to elliptic and parabolic Φ4 models in Euclidean space,
Comm. Math. Phys. 368 (2019), no. 3, 1201–1266.

[21] M. Gubinelli, H. Koch, T. Oh, Renormalization of the two-dimensional stochastic nonlinear wave equa-
tions, Trans. Amer. Math. Soc. 370 (2018), no 10, 7335–7359.

[22] M. Gubinelli, H. Koch, T. Oh, Paracontrolled approach to the three-dimensional stochastic nonlinear
wave equation with quadratic nonlinearity, to appear in J. Eur. Math. Soc.



32 M. GUBINELLI, H. KOCH, T. OH, AND L. TOLOMEO

[23] T. Kato, On nonlinear Schrödinger equations. II. Hs-solutions and unconditional well-posedness, J.
Anal. Math. 67 (1995), 281–306

[24] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980.
[25] H. Kuo, Introduction to stochastic integration, Universitext. Springer, New York, 2006. xiv+278 pp.
[26] H.P. McKean, Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger, Comm. Math.

Phys. 168 (1995), no. 3, 479–491. Erratum: Statistical mechanics of nonlinear wave equations. IV.
Cubic Schrödinger, Comm. Math. Phys. 173 (1995), no. 3, 675.

[27] A. Moinat, H. Weber Space-time localisation for the dynamic Φ4
3 model, Comm. Pure Appl. Math. 73

(2020), no. 12, 2519–2555.
[28] R. Mosincat, O. Pocovnicu, L. Tolomeo, Y. Wang, Global well-posedness of three-dimensional periodic

stochastic nonlinear beam equations, preprint.
[29] J.-C. Mourrat, H. Weber, Global well-posedness of the dynamic Φ4 model in the plane, Ann. Probab.

45 (2017), no. 4, 2398–2476.
[30] J.-C. Mourrat, H. Weber, The dynamic Φ4

3 model comes down from infinity, Comm. Math. Phys. 356
(2017), no. 3, 673–753.

[31] E. Nelson, A quartic interaction in two dimensions, 1966 Mathematical Theory of Elementary Particles
(Proc. Conf., Dedham, Mass., 1965) pp. 69–73 M.I.T. Press, Cambridge, Mass.

[32] D. Nualart, The Malliavin calculus and related topics, Second edition. Probability and its Applications
(New York). Springer-Verlag, Berlin, 2006. xiv+382 pp.

[33] T. Oh, M. Okamoto, Comparing the stochastic nonlinear wave and heat equations: a case study, Elec-
tron. J. Probab. 26 (2021), paper no. 9, 44 pp.

[34] T. Oh, M. Okamoto, T. Robert, A remark on triviality for the two-dimensional stochastic nonlinear
wave equation, Stochastic Process. Appl. 130 (2020), no. 9, 5838–5864.

[35] T. Oh, M. Okamoto, L. Tolomeo, Focusing Φ4
3-model with a Hartree-type nonlinearity, arXiv:2009.03251

[math.PR].
[36] T. Oh, M. Okamoto, L. Tolomeo, Stochastic quantization of the Φ3

3-model, preprint.
[37] T. Oh, M. Okamoto, N. Tzvetkov, Uniqueness and non-uniqueness of the Gaussian free field evolution

under the two-dimensional Wick ordered cubic wave equation, preprint.
[38] T. Oh, O. Pocovnicu, Probabilistic global well-posedness of the energy-critical defocusing quintic non-

linear wave equation on R3, J. Math. Pures Appl. 105 (2016), 342–366.
[39] T. Oh, O. Pocovnicu, N. Tzvetkov, Probabilistic local Cauchy theory of the cubic nonlinear wave equation

in negative Sobolev spaces, to appear in Ann. Inst. Fourier (Grenoble).
[40] T. Oh, T. Robert, N. Tzvetkov, Stochastic nonlinear wave dynamics on compact surfaces,

arXiv:1904.05277 [math.AP].
[41] T. Oh, T. Robert, P. Sosoe, Y. Wang, On the two-dimensional hyperbolic stochastic sine-Gordon equa-

tion, Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021), 1–32.
[42] T. Oh, T. Robert, P. Sosoe, Y. Wang, Invariant Gibbs dynamics for the dynamical sine-Gordon model,

Proc. Roy. Soc. Edinburgh Sect. A (2020), 17 pages. doi: https://doi.org/10.1017/prm.2020.68
[43] T. Oh, T. Robert, Y. Wang, On the parabolic and hyperbolic Liouville equations, arXiv:1908.03944

[math.AP].
[44] T. Oh, L. Thomann, A pedestrian approach to the invariant Gibbs measure for the 2-d defocusing

nonlinear Schrödinger equations, 6 (2018), 397–445.
[45] T. Oh, L. Thomann, Invariant Gibbs measure for the 2-d defocusing nonlinear wave equations, Ann.

Fac. Sci. Toulouse Math. 29 (2020), no. 1, 1–26.
[46] O. Pocovnicu, Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equa-

tion on Rd, d = 4 and 5, J. Eur. Math. Soc. 19 (2017), 2321–2375.
[47] T. Roy, On the interpolation with the potential bound for global solutions of the defocusing cubic wave

equation on T2, J. Funct. Anal. 270 (2016), no. 9, 3280–3306.
[48] S. Ryang, T. Saito, K. Shigemoto, Canonical stochastic quantization, Progr. Theoret. Phys. 73 (1985),

no. 5, 1295–1298.
[49] I. Shigekawa, Stochastic analysis, Translated from the 1998 Japanese original by the author. Transla-

tions of Mathematical Monographs, 224. Iwanami Series in Modern Mathematics. American Mathe-
matical Society, Providence, RI, 2004. xii+182 pp.

[50] B. Simon, The P (ϕ)2 Euclidean (quantum) field theory, Princeton Series in Physics. Princeton Univer-
sity Press, Princeton, N.J., 1974. xx+392 pp.



GLOBAL DYNAMICS FOR 2-d STOCHASTIC NLW 33

[51] L. Thomann, N. Tzvetkov, Gibbs measure for the periodic derivative nonlinear Schrödinger equation,
Nonlinearity 23 (2010), no. 11, 2771–2791.

[52] L. Tolomeo, Unique ergodicity for a class of stochastic hyperbolic equations with additive space-time
white noise, Comm. Math. Phys. 377 (2020), no. 2, 1311–1347.

[53] L. Tolomeo, Global well-posedness of the two-dimensional stochastic nonlinear wave equation on an
unbounded domain, to appear in Ann. Probab.

[54] L. Tolomeo, Ergodicity for the hyperbolic P (Φ)2-model, in preparation.
[55] N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation,

Probab. Theory Related Fields 146 (2010), no. 3-4, 481–514.

Massimiliano Gubinelli, Hausdorff Center for Mathematics & Institut für Angewandte
Mathematik, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany

Email address: gubinelli@iam.uni-bonn.de

Herbert Koch, Mathematisches Institut, Universität Bonn, Endenicher Allee 60, D-53115
Bonn, Germany

Email address: koch@math.uni-bonn.de

Tadahiro Oh, School of Mathematics, The University of Edinburgh, and The Maxwell In-
stitute for the Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings,
Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom

Email address: hiro.oh@ed.ac.uk

Leonardo Tolomeo, The University of Edinburgh, and The Maxwell Institute for the
Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie
Tait Road, Edinburgh, EH9 3FD, United Kingdom and Mathematical Institute, Hausdorff
Center for Mathematics, Universität Bonn, Bonn, Germany

Email address: tolomeo@math.uni-bonn.de


	1. Introduction
	1.1. Stochastic nonlinear wave equations
	1.2. Global well-posedness of the cubic SNLW
	1.3. Hyperbolic 2-model and the Gibbs measure
	1.4. Remarks and comments

	2. Preliminary lemmas
	2.1. Preliminary results from stochastic analysis
	2.2. Product estimates

	3. I-method for the renormalized cubic SNLW
	3.1. Commutator and other preliminary estimates
	3.2. Proof of Theorem 1.2

	4. Almost sure global well-posedness of the hyperbolic 2-model
	References

