Privacy-Preserving Web Single Sign-On:
Formal Security Analysis and Design

it 1/22

Guido Schmitz

Abstract: Single sign-on (SSO) systems, such as OpenID and OAuth, allow Web sites
to delegate user authentication to third parties, such as Facebook or Google. These
systems provide a convenient mechanism for users to log in and ease the burden of user
authentication for Web sites. Conversely, by integrating such SSO systems, they become

a crucial part of the security of the modern Web.

So far, it has been hard to prove if Web standards and protocols actually meet their
security goals. SSO systems, in particular, need to satisfy strong security and privacy
properties. In this thesis, we develop a new systematic approach to rigorously and
formally analyze and verify such strong properties with the Web Infrastructure Model
(WIM), the most comprehensive model of the Web infrastructure to date.

Our analyses reveal severe vulnerabilities in SSO systems that lead to critical attacks
against their security and privacy. We propose fixes and formally verify that our proposals
are sufficient to establish security. Our analyses, however, also show that even Mozilla's
proposal for a privacy-preserving SSO system does not meet its unique privacy goal. To
fill this gap, we use our novel approach to develop a new SSO system, SPRESSO, and
formally prove that our system indeed enjoys strong security and privacy properties.

ACM CCS: Networks — Network protocols — Protocol correctness; Networks —
Network protocols — Network protocol design; Security and privacy — Formal methods
and theory of security; Security and privacy — Network security — Web protocol

security

Keywords: formal analysis, single sign-on, authentication, privacy, web security

1 Introduction

Many important and security-critical applications in our
modern society are based on the World Wide Web,
for example, social networks, commercial services, or e-
government portals. Users are enabled by this univer-
sal information and communication platform to share
private data, enter contracts, and even make monetary
transactions online.

When users perform such sensitive actions, one import-
ant aspect is to authenticate users in a secure way. This
means that a user needs to prove her identity to the
services she wants to use. Only after successful authen-
tication, a Web service should grant access to its services
and the user’s resources stored at this service. For ex-
ample, a social network needs to ensure that a user suc-
cessfully authenticates herself before the user gets access
to her personal messages and is allowed to post content.

Traditionally, each service authenticates its users on its

own, typically by prompting the user for her username
and password. To this end, the service needs to main-
tain its own password database to be able to verify the
passwords provided by its users. Secure password sto-
rage and management are non-trivial and hard to im-
plement securely. Best practice recommendations (see,
e.g., [17]) are complex, extensive, and updated quite of-
ten. Furthermore, many Web services realize password
management in their own proprietary way leading to
many different implementations in the wild. The hete-
rogeneity of implementations and also responsibilities
spread across many parties make it hard to identify and
fix (common) mistakes and security problems or to up-
date authentication mechanisms, e.g., to support two-
factor authentication. Also, all of these services need to
individually provide user support regarding authentica-
tion, such as password reset procedures.

For users, password management is non-trivial as well.
They have to memorize many different passwords and

it — Information Technology 64 (2022) 1 (© de Gruyter Oldenbourg 1

are confronted with various different authentication
dialogs. Hence, a user can easily provide one of her
passwords to an incorrect, potentially malicious party
by mistake leading to a compromised account.

2 Web Single Sign-On

The concept of Web Single Sign-On (Web SSO) promi-
ses to relieve users and Web services from the burden
of handling passwords. Web SSO systems enable Web
sites, so-called relying parties (RPs), to outsource user
authentication to other entities, so-called identity pro-
viders (IdPs). The task of an IdP in Web SSO is to
authenticate users and attest their identities to RPs.
Typically, some services that users use on a daily basis,
such as email providers or social networks, serve as IdPs.

Many different SSO protocols have been developed so
far and are widely deployed. For the Web, the most im-
portant protocols include OAuth 1.0a [15] (used, for ex-
ample, by Twitter), OAuth 2.0 [16] (used, e.g., by Fa-
cebook), OpenID 2.0 [14] (used, e.g., by Yahoo), Ope-
nID Connect 1.0 [18] (used, e.g., by Google and Mi-
crosoft), and Security Assertion Markup Language 2.0
(SAML) [19] (used, e.g., by Amazon AWS).

Web SSO provides many advantages for all parties. A
user only needs to remember her credentials for one ac-
count (her account at the IdP) to log in at many diffe-
rent parties. If the user is already logged in at the IdP,
the IdP might enable her to log in at many RPs wi-
thout further interaction. Logging in at an RP where
the user did not log in before also becomes easier as the
user does not need to register any authentication data
at this RP. Using the SSO system, the user experience
is always the same in all cases: the user only needs to
interact with a familiar user interface (also reducing the
user’s susceptibility for phishing attacks).

An SSO system allows the RP to outsource almost all
authentication-related tasks to a (set of) IdP(s). Hence,
RPs do not need to develop and set up user registra-
tion and management systems and also do not need to
handle user support concerning authentication (e.g., re-
set lost passwords). Furthermore, RPs are relieved from
storing and protecting user credentials, which, as alrea-
dy mentioned, is not a trivial task.

While an SSO system seems to only bring high respon-
sibility and cost to IdPs at first, also entities acting as
IdPs can benefit from providing an SSO service: The IdP
service provides added value for their users and therefore
makes their services more appealing to new users.

Fundamental to SSO is security: An SSO protocol must
ensure correct authentication, i.e., that nobody except
the user herself should be authenticated under her iden-
tity to an RP. This means, in particular, that an adver-
sary should be unable to authenticate himself to an RP
as some (different) user, i.e., the attacker cannot “break-
in” into the user’s account at that RP. If this property is

not satisfied by the SSO protocol, an adversary can ea-
sily access other users’ data or impersonate these users
at RPs.

Another important but not so obvious aspect is the inte-
grity of the user’s login session. That is that an attacker
should also not be able to force a user to log in at some
RP or even to manipulate a login process such that the
user is logged in under some different account. The out-
come of such attacks would be similar to the attack class
of session swapping: The user might then interact with
the RP under the attacker’s identity and, for example,
store confidential data at the RP that is then accessible
under the attacker’s account at the RP.

While aiming at security, most SSO systems, however,
neglect privacy: IdPs can typically track their users as
they (by design) learn at which RP a user logs in. This
lack of privacy allows IdPs to create extensive user pro-
files and might cause some users not to use SSO at all.
Moreover, IdPs are enabled to decide ad-hoc whether
they allow a user to log in at a specific RP. Therefore,
we need privacy-preserving SSO systems, which do not
reveal to IdPs to which RP a user would like to log in or
has logged in. The design of such systems, however, is
very challenging as privacy can easily be compromised.
Only one SSO system has been proposed with this kind
of privacy in mind: Mozilla’s BrowserID (a.k.a. Mozilla
Persona) [1].

3 Analysis of Web Standards

So far, there has not been a systematic and rigorous me-
thodology to check whether a Web standard (or appli-
cation) meets its security and privacy goals. The typical
approach is to have groups of experts examine a pro-
tocol closely (often during the standardization process),
e.g., by checking whether known attacks are applicable.
These experts might also discuss the protocol in detail
and try to find new attacks, which obviously depends
on the creativity of the analysts. Often, such analyses
lack clear attacker models and make many implicit as-
sumptions. Clearly, the result of such an analysis does
not prove the non-existence of unknown attacks. Fur-
ther, while these experts have some intuition about the
properties they want to prove, they cannot state these
properties in a precise fashion as they only use natural
language to describe a more or less vague concept.

In my thesis [20], we tackle this problem by using formal
methods to specify and analyze the security and priva-
cy of SSO protocols. Our analyses are based on the Web
Infrastructure Model (WIM) [8]. The WIM is the most
comprehensive formal model of the Web infrastructure
to date and can be applied to a wide range of Web appli-
cations and standards. At its core, the WIM is based on
the concept of symbolic analysis by Dolev and Yao [6],
where messages are formal terms that can be assembled

and derived based on an equational theory. Such mes-
sages can be exchanged among principals over a public
network, which can be controlled by an adversary.

The WIM includes many relevant aspects of the Web.
Besides basic infrastructure, such as Web and DNS ser-
vers, the WIM includes a very detailed model of Web
browsers. This browser model captures many Web fea-
tures, such as the handling of DNS, HTTP, and HTT-
PS messages, a detailed structure of windows and do-
cuments, an abstract model of JavaScript, Web storage
and cookies, Web messaging (postMessage) and asyn-
chronous HTTP communication (XMLHTTPRequests),
a rich set of HTTP headers, HTTP redirections as well
as security policies for cross-window navigation and ac-
cess.

The WIM provides a concise view on all of these aspects
and allows the modeling of complex modern Web app-
lications and protocols. We can even capture systems
composed of multi-window browser-based interactions
across several entities.

4 Web SSO in the WIM

We create a generic framework for analyses of Web-
based SSO systems based on the WIM. This framework
provides a generalized definition of Web SSO that sim-
plifies and unifies analyses of such systems and hence,
enables easy comparison of different Web SSO protocols.
Further, we also extend the WIM to express and prove
privacy properties.

To create the generalized definition of Web SSO, we
identify general characteristics of such systems and cap-
ture these in a generic template. This template captures,
for example, important user-driven events such as the
start of a login flow or the user entering her password.
When modeling a concrete SSO system, we refine the
template to create a concrete definition for the SSO sy-
stem. This template simplifies the modeling and analysis
and is also reusable for others to analyze SSO systems.

Based on this generic definition, we identify and specify
properties for the security of SSO systems, namely a
property for authentication, which captures that a user’s
account can only be accessed by its owner, and a pro-
perty for session integrity, which captures the integrity
of a login flow.

To enable privacy analyses, we extend the WIM such
that, roughly speaking, we can comparatively analyze
dynamic runs of a system that are scheduled by an ad-
versary and leave one specific decision to the user. Such
a user decision can, for example, capture that a user at
some point decides at which RP she wants to log in. Ba-
sed on this (non-trivial) extension, we then formulate a
definition for privacy, i.e., that an IdP (as the adversary)
cannot see at which RP a user is logging in. In particu-
lar, we require that the IdP cannot distinguish between
two login flows at different RPs. For this property to be

fulfilled, all information that the user’s IdP can possibly
see in each login flow has to look exactly the same to
the IdP. This foundation allows us to, for the first time,
carry out a systematic and rigorous formal analysis of
privacy for Web SSO systems.

5 Analysis of BrowserlD

As mentioned above, BrowserID is a Web SSO proposed
by Mozilla in 2012 [1]. BrowserID is the only Web SSO
system so far that claims to provide privacy to its users.
This makes BrowserID a very interesting system to ana-
lyze. BrowserID is also quite complex and makes use of
many modern Web features, making it a good example
to exercise the expressiveness of the WIM.

Using our approach, we analyze the security and priva-
cy of BrowserID [8, 9]. As a result of this first rigorous
analysis of an SSO system in the Web infrastructure,
we find severe attacks. These attacks not only affect the
security of BrowserID but also show that BrowserID’s
unique privacy claim does not hold. We propose fixes
for BrowserID and prove that the fixed system provides
security. Regarding privacy, we show that BrowserID,
unfortunately, is broken beyond repair. We reported our
findings to Mozilla, who acknowledged the vulnerabili-
ties and awarded us several bug bounties.

Extraction of the BrowserID model. At first,
BrowserID was envisioned to be integrated into Web
browsers, but to ease adoption, the actual realization
only builds upon native features of the modern Web,
such as Web messaging and Web storage. To achieve
this goal, the protocol implemented in practice deviates
from the original specification. In particular, the envi-
saged browser integration is implemented as a Web ap-
plication hosted by Mozilla. As a result, BrowserID has
become a very complex SSO protocol that, for example,
takes more than 80 steps for a typical login flow.

The BrowserID implementation also extends the original
BrowserID specification with a second mode, in which
Mozilla serves as an IdP that is tightly integrated with
the core of the protocol’s implementation. This so-called
secondary or fallback mode actually constitutes a sepa-
rate protocol.

As pointed out above, the specification of BrowserID
only provides a high-level idea of its real-world coun-
terpart. To get a comprehensive overview of all steps of
the protocol, we manually analyzed the code of Brow-
serID (approx. 47k lines of code, written in JavaScript).
Based on this analysis, we create separate models for
BrowserID’s primary mode and secondary mode using
the WIM, which covers all features needed to describe
BrowserID.

Each model is based on the WIM, i.e., the communica-
tion model as well as generic components, such as brow-

sers and attackers, and contains (1) a definition for Mo-
zilla’s server, which provides the Web application com-
ponent of BrowserID mentioned above along with the
scripts that cover its browser-side parts, (2) a definition
for IdPs (server and scripts), and (3) a definition for RPs
(again, server and scripts). For these models, we follow
our generic definition for SSO systems mentioned above
and refine all generic SSO events such that our gene-
ric properties for security and for privacy are usable in
these models.

Security of BrowserID. During modeling and while
trying to prove the security properties (authentication
and session integrity) for BrowserID, we found several
severe attacks that break the security properties.

In the identity injection attack, a malicious IdP is able
to force the user to sign in at RPs using an identity that
is not owned by the user. The login injection attack al-
lows any malicious party to foist a different identity on
a user. The identity forgery attack allows an attacker to
exploit an error in the identity bridge feature of Brow-
serlD, effectively enabling the attacker to authenticate
himself to any RP as any Gmail or Yahoo user. In the
key cleanup failure attack, an attacker can get hold of
a user’s private key, although the user thinks that her
key is removed from a shared device. Similarly, in the
cookie cleanup failure attack, the attacker is able to link
his key pair to a user’s account due to incorrect usage
of cookies.

For all of the attacks on security mentioned above, we
propose fixes and show that these fixes are indeed suffi-
cient using a formal proof. To this end, we incorporate
our fixes into the BrowserID models and show based on
these models that both modes of BrowserID indeed sa-
tisfy the security properties. This security proof is the
first security proof carried out using the WIM and the
most comprehensive formal analysis of a Web applicati-
on at the time of publication.

Privacy of BrowserID. While trying to analyze
BrowserID’s privacy, we discovered a severe attack (and
several variants of this attack) that completely breaks
privacy. This attack is based on a novel attack vector:
A malicious IdP can check whether a user logs into a
specific RP by analyzing the window structure in the
user’s browser. As it turns out, this problem is not easy
to fix and would require a major redesign of BrowserID.

Further, as BrowserID relies on a central Web applicati-
on provided by Mozilla, this application and its operator
need to be trusted ultimately. Mozilla is able to track all
login activities of BrowserID’s users in all cases. This,
in particular, applies to the secondary mode in which
Mozilla itself serves as an IdP.

6 Design and Analysis of SPRESSO

Based on the lessons learned from BrowserID and in-
spired by BrowserID’s goal, we design a new SSO sy-
stem for the Web: The Secure, Privacy-Respecting Sin-
gle Sign-On System (SPRESSO) [10]. This SSO system
aims to provide security, privacy, and true decentrali-
zation. Furthermore, SPRESSO is designed to be very
easy to use. The protocol is based on native Web fea-
tures only and does not require any third-party add-
ons or extensions, which might complicate adoption or
might break compatibility in the future. In SPRESSO,
email providers become IdPs, and users use their email
addresses to log in. SPRESSO can be seamlessly inte-
grated into RPs, who often already use email addresses
as login names. As a side-effect of SPRESSO’s priva-
cy, RPs can even start an SPRESSO flow automatically
without any negative privacy implications when a user
enters her email address in a login form.

Design. To design SPRESSO, we take a unique ap-
proach: After the initial design draft, instead of coding a
proof-of-concept prototype, we first opt for the creation
of a formal model based on the WIM. For development,
the WIM provides a concise view on the Web infrastruc-
ture and thus, eases design decisions. This approach al-
so enables us to perform a rigorous security and privacy
analysis right away (see below).

For SPRESSO we need to master several challenges: To
create an SSO system, RP and IdP need to be able to
exchange data in some way that provides integrity while
hiding the identity of the RP from the IdP. Also, this
SSO system should be completely decentralized without
the need for a central authority. Moreover, the SSO sy-
stem needs to be usable ad-hoc without any setup in the
users’ browsers. With SPRESSO, we achieve all of the-
se goals and create an easy-to-integrate and easy-to-use
SSO system.

Security Proof of SPRESSO. Based on our model
of SPRESSO built using the WIM, we show that the
SPRESSO protocol indeed satisfies our security proper-
ties. As we designed SPRESSO with lessons learned
from the BrowserID analysis in mind, we designed a
much simpler protocol. As a result, the security analy-
sis is less complex, more straightforward, and easier to
comprehend.

Privacy Proof of SPRESSO. We proved privacy, one
of the main goals of SPRESSO. To this end, we formally
show, based on our model, that a malicious IdP cannot
learn any information about the RP from the authenti-
cation procedure. We show that the IdP’s view is always
the same, independent of the RP chosen by the user.

Our analysis shows that SPRESSO is indeed the first
Web SSO system to provide privacy and also the first

Web SSO system to feature a formal proof for its privacy
and security properties from the beginning.

Proof-of-Concept Implementation. After suc-
cessful analysis of SPRESSO using the WIM, we create
an entirely usable proof-of-concept implementation of
all SPRESSO components. This implementation de-
monstrates that SPRESSO is indeed easy to use and
simple to deploy at RPs and IdPs.

7 Further Analyses and Future Directions

Our work on the WIM also includes security ana-
lyses of other very popular SSO protocols, such as
OAuth 2.0 [11] and OpenID Connect 1.0 [12]. Moreover,
we have also applied the WIM to analyze the W3C Web
Payment specification [5] and enabled an in-depth ana-
lysis of the Financial-Grade API specification [7] that is
based on OAuth and OpenID Connect. All of these ana-
lyses uncovered several severe flaws in these standards.
Our findings have sparked design changes of many of
these protocols and also started the series of the OAuth
Security Workshop (OSW)! to foster the exchange bet-
ween academic researchers, specification bodies, and de-
velopers.

As part of an ongoing international research project,?
we aim to mechanize the WIM to make such analy-
ses even more accessible and reusable by others while
also aiming to ease the manual proof burden. To this
end, we are developing a new framework, DY* [4, 2],
that enables Dolev-Yao-style analyses based on F* a
fully-fledged functional programming language that is
complemented with a powerful theorem prover [21]. We
have already illustrated the expressiveness and usability

of our approach by analyzing complex protocols such as
Signal [4] and ACME [3].

Acknowledgement

This work was partially supported by the Deutsche For-
schungsgemeinschaft (DFG) through Grants KU 1434/10-1
and KU 1434/10-2.

Literature

[1] Ben Adida et al. BrowserID Specification. Specificati-
ons for Mozilla’s Identity Effort. https://github.com/
mozilla/id-specs.

[2] Karthikeyan =~ Bhargavan, Abhishek Bichhawat,
Quoc Huy Do, Pedram Hosseyni, Ralf Kiisters,
Guido Schmitz, and Tim Wiirtele. A Tutorial-Style
Introduction to DY*. In Protocols, Logic, and Strands:
Essays Dedicated to Joshua Guttman on the Occasion
of His 66.66 Birthday, volume 13066 of LNCS, pages
77-97. Springer, 2021.

https://oauth.secworkshop.events/
https://reprosec.org

[3] Karthikeyan =~ Bhargavan, Abhishek Bichhawat,
Quoc Huy Do, Pedram Hosseyni, Ralf Kiisters,
Guido Schmitz, and Tim Wiirtele. An In-Depth
Symbolic Security Analysis of the ACME Standard. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2021)),
pages 2601-2617. ACM, 2021.

[4] Karthikeyan =~ Bhargavan, Abhishek Bichhawat,
Quoc Huy Do, Pedram Hosseyni, Ralf Kiisters, Guido
Schmitz, and Tim Wiirtele. DY*: A Modular Symbolic
Verification Framework for Executable Cryptographic
Protocol Code. In 2021 IEEE European Symposium on
Security and Privacy (EuroS&P 2021), pages 523-542.
IEEE Computer Society, 2021.

[5] Quoc Huy Do, Pedram Hosseyni, Ralf Kiisters, Guido
Schmitz, Nils Wenzler, and Tim Wiirtele. A Formal Se-
curity Analysis of the W3C Web Payment APIs: Attacks
and Verification. In 43rd IEEE Symposium on Security
and Privacy (S&P 2022). IEEE Computer Society, 2022.
To appear.

[6] Danny Dolev and Andrew C. Yao. On the Security of
Public-Key Protocols. IEEE Transactions on Informa-
tion Theory, 29(2):198-208, 1983.

[7] Daniel Fett, Pedram Hosseyni, and Ralf Kiisters. An
Extensive Formal Security Analysis of the OpenID
Financial-grade API. In 2019 IEEE Symposium on Se-
curity and Privacy (S&P 2019), volume 1, pages 1054—
1072. IEEE Computer Society, 2019.

[8] Daniel Fett, Ralf Kiisters, and Guido Schmitz. An Ex-
pressive Model for the Web Infrastructure: Definition
and Application to the BrowserID SSO System. In 35th
IEEE Symposium on Security and Privacy (S€P 2014),
pages 673—-688. IEEE Computer Society, 2014.

[9] Daniel Fett, Ralf Kiisters, and Guido Schmitz. Analy-
zing the BrowserID SSO System with Primary Identity
Providers Using an Expressive Model of the Web. In 20th
European Symposium on Research in Computer Securi-
ty (ESORICS 2015), Proceedings, Part I, pages 43-65.
Springer, 2015.

[10] Daniel Fett, Ralf Kiisters, and Guido Schmitz. SPRES-
SO: A Secure, Privacy-Respecting Single Sign-On Sy-
stem for the Web. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security (CCS 2015), pages 1358-1369. ACM, 2015.

[11] Daniel Fett, Ralf Kiisters, and Guido Schmitz. A Com-
prehensive Formal Security Analysis of OAuth 2.0. In
Proceedings of the 23rd ACM SIGSAC Conference on
Computer and Communications Security (CCS 2016),
pages 1204-1215. ACM, 2016.

[12] Daniel Fett, Ralf Kiisters, and Guido Schmitz. The
Web SSO Standard OpenID Connect: In-Depth Formal
Security Analysis and Security Guidelines. In IEEE
30th Computer Security Foundations Symposium (CSF
2017), pages 189-202. IEEE Computer Society, 2017.

[13] Daniel Fett and Guido Schmitz. Pi and More - eine
Veranstaltungsreihe rund um ,kleine Computer®. In 46.
Jahrestagung der Gesellschaft fiir Informatik (Informa-
tik 2016), volume P-259 of LNI, pages 1195-1196. GI,
2016.

[14] Brad Fitzpatrick, David Recordon, et al. Ope-
nID Authentication 2.0. http://openid.net/specs/
openid-authentication-2_0.html.

[15] E. Hammer-Lahav (Ed.). The OAuth 1.0 Protocol. RFC
5849 (Informational), 4 2010.

[16] D. Hardt (Ed.). The OAuth 2.0 Authorization Frame-
work. RFC 6749 (Proposed Standard), 10 2012.

[17] Open Web Application Security Project (OWASP).
Password storage cheat sheet. https://www.owasp.org/
index.php/Password_Storage_Cheat_Sheet.

[18] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros,
and C. Mortimore. OpenID Connect Core 1.0 in-

corporating errata set 1. http://openid.net/specs/
openid-connect-core-1_0.html.

[19] SAML 2.0 Technical Overview. Committee Draft
02. http://docs.oasis-open.org/security/saml/
Post2.0/sstc-saml-tech-overview-2.0-cd-02.html.

[20] Guido Schmitz. Privacy-Preserving Web Single Sign-
On: Formal Security Analysis and Design. PhD thesis,
University of Stuttgart, 2019.

[21] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem
Rastogi, Antoine Delignat-Lavaud, Simon Forest, Kar-
thikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean Karim Zinzindohoue, and San-
tiago Zanella Béguelin. Dependent types and multi-
monadic effects in F*. In ACM Symposium on Prin-
ciples of Programming Languages (POPL 2016), pages
256-270, 2016.

Dr. Guido Schmitz is a Lecturer in
the Information Security Group (ISG)
at the Royal Holloway University of
London. He graduated from the Univer-
sity of Trier with a Diplom degree in
computer science in 2012, and received

4 his Doctorate (summa cum laude) under
/ the guidance of Prof. Dr. Ralf Kiisters

‘N from the University of Stuttgart in 2019.
Guido Schmitz has been a finalist for the
CAST/GI Dissertation Award for IT-
Security in 2021 as well as for the Ger-
man IT-Security Award in 2016. Besides
his research on formal methods, proto-
col security, and Web technologies, he also organizes events to
inspire others for computer science [13].

Address: Royal Holloway University of London, Information Se-
curity Group, Egham, Surrey, United Kingdom, E-Mail: Gui-
do.Schmitz@rhul.ac.uk

