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Abstract 
Background: Tuberculosis (TB) remains a major challenge in many 
domains including diagnosis, pathogenesis, prevention, treatment, 
drug resistance and long-term protection of the public health by 
vaccination. A controlled human infection model (CHIM) could 
potentially facilitate breakthroughs in each of these domains but has 
so far been considered impossible owing to technical and safety 
concerns. 
Methods: A systematic review of mycobacterial human challenge 
studies was carried out to evaluate progress to date, best possible 
ways forward and challenges to be overcome. We searched MEDLINE 
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(1946 to current) and CINAHL (1984 to current) databases; and Google 
Scholar to search citations in selected manuscripts. The final search 
was conducted 3rd February 2022. Inclusion criteria: adults ≥18 years 
old; administration of live mycobacteria; and interventional trials or 
cohort studies with immune and/or microbiological endpoints. 
Exclusion criteria: animal studies; studies with no primary data; no 
administration of live mycobacteria; retrospective cohort studies; 
case-series; and case-reports. Relevant tools (Cochrane Collaboration 
for RCTs and Newcastle-Ottawa Scale for non-randomised studies) 
were used to assess risk of bias and present a narrative synthesis of our 
findings. 
Results: The search identified 1,388 titles for review; of these 90 were 
reviewed for inclusion; and 27 were included. Of these, 15 were 
randomised controlled trials and 12 were prospective cohort studies. 
We focussed on administration route, challenge agent and dose 
administered for data extraction. Overall, BCG studies including 
fluorescent BCG show the most immediate utility, and genetically 
modified Mycobacteria tuberculosis is the most tantalising prospect of 
discovery breakthrough. 
Conclusions: The TB-CHIM development group met in 2019 and 2022 
to consider the results of the systematic review, to hear presentations 
from many of the senior authors whose work had been reviewed and 
to consider best ways forward. This paper reports both the systematic 
review and the deliberations. 
Registration: PROSPERO (CRD42022302785; 21 January 2022).
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Abstract 
Background: Tuberculosis (TB) remains a major challenge in many 
domains including diagnosis, pathogenesis, prevention, treatment, 
drug resistance and long-term protection of the public health by 
vaccination. A controlled human infection model (CHIM) could 
potentially facilitate breakthroughs in each of these domains but has 
so far been considered impossible owing to technical and safety 
concerns. 
Methods: A systematic review of mycobacterial human challenge 
studies was carried out to evaluate progress to date, best possible 
ways forward and challenges to be overcome. We searched MEDLINE 
(1946 to current) and CINAHL (1984 to current) databases; and Google 
Scholar to search citations in selected manuscripts. The final search 
was conducted 3rd February 2022. Inclusion criteria: adults ≥18 years 
old; administration of live mycobacteria; and interventional trials or 
cohort studies with immune and/or microbiological endpoints. 
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Exclusion criteria: animal studies; studies with no primary data; no 
administration of live mycobacteria; retrospective cohort studies; 
case-series; and case-reports. Relevant tools (Cochrane Collaboration 
for RCTs and Newcastle-Ottawa Scale for non-randomised studies) 
were used to assess risk of bias and present a narrative synthesis of our 
findings. 
Results: The search identified 1,388 titles for review; of these 90 were 
reviewed for inclusion; and 27 were included. Of these, 15 were 
randomised controlled trials and 12 were prospective cohort studies. 
We focussed on administration route, challenge agent and dose 
administered for data extraction. Overall, BCG studies including 
fluorescent BCG show the most immediate utility, and genetically 
modified Mycobacteria tuberculosis is the most tantalising prospect of 
discovery breakthrough. 
Conclusions: The TB-CHIM development group met in 2019 and 2022 
to consider the results of the systematic review, to hear presentations 
from many of the senior authors whose work had been reviewed and 
to consider best ways forward. This paper reports both the systematic 
review and the deliberations. 
Registration: PROSPERO (CRD42022302785; 21 January 2022).
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Introduction
Need for a tuberculosis (TB) vaccine and challenges in 
development
More than 1.5 million people died of tuberculosis (TB) in 2021, 
of whom 214,000 were individuals living with HIV1. An esti-
mated 9.9 million people worldwide became ill with TB, with 
the greatest burden of this disease in Africa and Southeast Asia, 
and with 47% of TB-affected households suffering catastrophic 
costs1. The COVID pandemic has reversed years of progress 
in global targets to end TB, making the search for an effective  
vaccine even more urgent2,3.

The Bacille Calmette-Guérin (BCG) vaccine was the first, and is 
still a century later, the only vaccine approved for humans that 
protects against TB. BCG is an attenuated Mycobacterium bovis 
strain with considerable sequence homology with M. tubercu-
losis. BCG is used both as a vaccine and as immunotherapy. 
BCG vaccine efficacy is highly variable in adults (0–80%)  
being most effective at high latitudes and particularly poor in  
tropical and subtropical regions4,5.

There are several new TB vaccines in development as listed 
in Table 1, targeting initial infection, disease, or drug resistant 
infections6. Vaccine trial design is very challenging because ini-
tial infection is common in early life. This sensitisation is often 
partially immunising but not always sterilising7, leaving both 

reinfection or recrudescent disease a risk for some years after 
initial infection8 and making vaccine trial clinical endpoints  
very difficult to define. In a recent vaccine trial, the M72/AS01E 
candidate vaccine demonstrated 49.7% efficacy against micro-
biologically proven pulmonary TB disease at 3 year follow up 
in a phase 2b clinical trial9 of more than 3,500 BCG-vaccinated 
subjects recruited with evidence of prior TB sensitisation (posi-
tive interferon gamma release assay (IGRA)). Now, a very large 
study is required for full evaluation of the clinical impact for this  
vaccine and the cost has been estimated at GBP 400 million.

Given the wide choice of potential vaccines, uncertainty about 
vaccine trial endpoints, and the huge cost of vaccine trials against 
disease, precise tools are required to select the most promising 
new vaccine candidates for clinical evaluation. As it is very dif-
ficult to detect viable organisms in subjects with TB, an alter-
native vaccine trial design might be to rely on immunological 
endpoints demonstrating infection—but these endpoints may 
be similar in patients experiencing sterilising immunity or 
even subclinical disease10. Controlled human infection models  
(CHIM), also called Human Infection Studies (HIS) might 
offer a further alternative to down-select vaccine candidates 
prior to phase 2b/3 efficacy trials. In CHIM trials, vaccines are 
tested for protection against experimental infection managed in  
volunteer subjects. An optimised TB-CHIM would help with  
vaccine selection, and identification of immune correlates. It  

Table 1. TB Vaccine candidates. Sources: 1- WHO Global TB report 2020, J.Li TB vaccine development: from classic to clinical 
candidates, 2- European Journal of Clinical Microbiology & Infectious Diseases, 2020, 3- Clinical trials.gov. TBVI: TuBerculosis Vaccine 
Initiative; IDRI: Infectious Disease Research Institute; RIBSP: Research Institute for Biological Safety Problems; MoH: Ministry of Health; 
ID: intradermal; IM: intramuscular; GHIT: Global Health Innovative Technology Fund; IAVI: International AIDS Vaccine Initiative; SSI: 
Statens Serum Institut; GSK: GlaxoSmithKline; MRI: Medical Research Institute; SIIPL: Serum Institute of India Pvt. Ltd; VPM: Vakzine 
Projekt Management; ICMR: Indian Council of Medical Research; TB: Mycobacterium tuberculosis; BCG: bacille Calmette-Guerin; MDR: 
multi drug resistant; and HIV: human immunodeficiency virus.

Latest 
Phase

Vaccine candidate Vaccine platform Target population 

I Ad5 Ag85A 
McMaster, CanSino

Viral vector      •    Booster vaccine for adults with latent TB (NCT02337270)

IIa AEC/BC02 
Anhui Zhifei Longcom

Mycobacterial – whole 
cell or extract

     •    Booster vaccine for adults with latent TB (NCT05284812)

MTBVAC 
Biofabri, TBVI 
University of 
Zaragoza

Mycobacterial – live      •     BCG replacement vaccine for infants (NCT03536117), with a 
Phase III planned (NCT04975178)

     •    Adults with latent TB (NCT02933281)

ID93 + GLA-SE 
IDRI, Wellcome 
Trust

Protein/adjuvant      •    Booster vaccine for adults with latent TB (NCT02465216) 
     •    BCG vaccinated healthcare workers (NCT03806686)

TB/FLU-04L 
RIBSP

Viral vector      •    Booster vaccine for adults with latent TB (NCT02501421)

GamTBvac 
MoH, 
Russian 
Federation

Protein/adjuvant      •     BCG vaccinated adults (NCT03878004), Phase III planned 
(NCT04975737)
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Latest 
Phase

Vaccine candidate Vaccine platform Target population 

IIb ChAdOx185A-MVA85A 
(ID, IM, Aerosol) University 
of Oxford 

Viral vector      •     Booster vaccine for infants (NCT00953927), children 
(NCT00679159) adolescents (NCT02178748)

     •     Booster vaccine for adults with HIV and latent TB (NCT01151189)

H4:IC-31 (Aeras-404) 
IAVI, Sanofi Pasteur and 
Intercell 

Protein/adjuvant      •     Booster vaccine for infants (NCT01861730), children and 
adolescents with BCG (NCT02075203)

DAR-901 
Booster 
Dartmouth, 
GHIT

Mycobacterial – whole 
cell or extract

     •    Booster vaccine for adolescents (NCT02712424) 
     •    Booster vaccine for adults with latent TB and HIV (NCT00052195)

H56:IC31 
SSI, Valneva, 
IAVI

Protein/adjuvant      •     Booster vaccine for previously infected adults (NCT03512249) 
and adults with latent TB (NCT01865487)

M72/AS01E 
GSK, Gates 
MRI

Protein/adjuvant      •     Booster vaccine for adults with latent TB (NCT01755598) and 
HIV (NCT04556981)

BCG 
revaccination 
Gates MRI

Mycobacterial – live      •    Booster vaccine for adolescents (NCT04152161)

RUTI 
Archivel 
Farma, S.L

Mycobacterial – whole 
cell or extract

     •     Booster vaccine for MDR-TB (NCT04919239) and with latent TB 
(NCT01136161)

III VPM1002 
SIIPL, VPM

Mycobacterial – live      •     BCG replacement vaccine for infants (NCT02391415), with a 
planned Phase III (NCT04351685)

     •     Phase II/III trial planned for prevention of recurrence in adults 
previously treated with pulmonary TB (NCT03152903)

MIP/Immunovac ICMR, 
Cadila Pharmaceuticals

Mycobacterial – whole 
cell or extract

     •    Therapeutic vaccine for adults with active TB (NCT00265226)

Vaccae 
Anhui Zhiefei, Longcom, 
Biopharmacuetical Co, Ltd

Mycobacterial – whole 
cell or extract

     •     Therapeutic vaccine for adults with active TB (NCT01979900), 
with MDR-TB and HIV (NCT01977768), and prevention of 
disseminated TB in HIV adults (NCT00052195)

SRL172 
IAVI

Mycobacterial – whole 
cell or extract

     •    Booster vaccine for adults with latent TB and HIV (NCT00052195)

would have potential to predict the efficacy of new drug regimens, 
and even offer discovery opportunities regarding pathogenesis  
and correlates of immunity11.

Potential for a TB-CHIM
CHIM have been successfully employed for many decades to 
accelerate vaccine development in enteric infections, and to 
select appropriate clinical trials in vaccines against other infec-
tions11. Very recently, CHIM studies of SARS-CoV-2 have con-
tributed substantially to knowledge of pathogenesis, infectiv-
ity, diagnostic precision of lateral flow tests and post-exposure 
protection against disease12. Notable examples of recent  
vaccines that are being rolled out after clinical development  
accelerated by CHIM are the RTS,S/AS01 E malaria vaccine13  
and the typhoid conjugate vaccine14.

There are significant challenges, however, for a Mycobacterium  
tuberculosis (M.tb) or TB CHIM (TB-CHIM). First, and most 
importantly, is the current concern for safety using wild-type 
M.tb as the infection cannot be reliably eradicated from an 
infected subject; treatment is prolonged (6 months) and toxic 
with potential for serious adverse events; and there is also poten-
tial risk of immunopathology for which treatment options 
may be inadequate or complicated. There is a small risk of  
recurrent infection (~12% cases) after treatment, highest in the 
first year and subsequently receding8. There are reasons for 
optimism, however, that a conditionally replicating wild-type  
mycobacterium, including genetically inserted suicide switches 
to ensure complete sterility post-infection could become avail-
able and transform the study of human TB infection15. In the  
meantime, there are sufficient studies of BCG to show that  
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https://clinicaltrials.gov/ct2/show/NCT02391415
https://clinicaltrials.gov/ct2/show/NCT04351685
https://clinicaltrials.gov/ct2/show/NCT03152903
https://clinicaltrials.gov/ct2/show/NCT00265226
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this organism induces anti-mycobacterial immunity and could 
serve as a model of wild-type infection, useful for vaccine 
testing provided that the vaccine mechanism was not unique  
to M.tb16,17. Further, there are modified BCG models, including  
those with included fluorophores, that will allow diverse  
endpoint measurements to alleviate the current difficulty in 
precise microbiological detection in the site of infection and 
remote sites18,19. Opportunities and limitations of the BCG  
models tested are discussed later in this review.

Need for a TB-CHIM in Africa
There is a reasonable and strong drive to deliver CHIMs in infec-
tion endemic settings so that vaccines, drugs and therapeutics are 
directly tailored to the populations that need them most20. This 
drive is particularly marked in infections where prior exposure 
and the intensity of community infection define the immuno-
logical context in which novel vaccines would be used. In addi-
tion, there is political momentum to ensure that the delivery 
of these needed vaccines to low and middle-income countries  
(LMIC) is not hindered by economic or regulatory factors arising 
in the country of invention. Recently, there has been consider-
able progress in delivering CHIM studies in Africa—examples 
include both falciparum and vivax malaria, pneumococcus,  
N.lactamica and schistosomiasis.

Exposure to both M.tb and non-tuberculous mycobacteria 
(NTM) are very common in Africa, often occurring at a very 
young age. Recurrent TB exposure occurs throughout life owing 
to late diagnosis of infectious cases who circulate in the com-
munity. Exposures that increase susceptibility to mycobacterial  
infection are common. These include but are not limited to  
malnutrition, smoke exposure, HIV, and potentially, other  
infections. In Africa, a TB-CHIM could be transformative 
for testing of vaccines, early-stage drug efficacy studies and  
scientific discovery as the CHIM would recruit relevant popu-
lations with prior mycobacterial experience. As with other  
CHIM studies, a TB-CHIM would use a consistent infec-
tion in well characterized subjects that could be quantitatively 
monitored over time, dramatically reducing the number of 
experimental subjects needed in any study as well as allowing  
much shorter trials.

We reviewed the existing published TB-CHIM options by  
systematic review and conducted two workshop discussions—
one in Europe and one in Africa—to determine if and how a 
TB-CHIM in Malawi could be developed. We have included 
a reflexivity statement21 describing how we have promoted 
equity in our research partnership (see Extended data22). The  
review and workshop discussions are reported here.

Systematic review of human challenge studies 
using M. tuberculosis
Methods
All attendees at the workshops have been included as authors 
(including as part of the collaborative group) of the manuscript; 
all have reviewed the manuscript and given explicit consent for 
their inclusion. Our PROSPERO registered (CRD42022302785; 
21 January 2022) systematic review is reported using the 

PRISMA 2020 checklist23 (see Extended data22) and synthesis  
without meta-analysis (SwIM) reporting guidelines24.

Eligibility criteria
Inclusion criteria: adult humans ≥18 years of age; administra-
tion of live Mycobacterium tuberculosis with either wild-type, 
or genetically modified organism (GMO); Bacillus Calmette-
Guerin (BCG) interventional trials or prospective cohort studies  
with immune and/or microbiological end points.

Exclusion criteria: animal studies; publications with no primary 
data; interventional studies with no administration of live  
bacillus (e.g., viral vector vaccination trials or purified protein 
derivative challenge studies); and case-series, case reports and 
retrospective cohort studies. The studies were grouped24 for nar-
rative synthesis according to the study methodology (randomised  
controlled trial (RCT) versus non-randomised designs); chal-
lenge agent (GMO organism and BCG); administration route 
(intradermal, lung and oral); reporting of adverse and seri-
ous adverse events; confirmation of infection (classical culture,  
molecular diagnostic, and no confirmation); and immune response 
measurement (diverse methodologies reported so narrative  
synthesis applied).

Information sources
MEDLINE (RRID:SCR_002185) (1946 to current) and EBSCO 
CINAHL (RRID:SCR_022707) (1984 to current) databases 
were systematically searched. Table 2 describes the search terms 
and the search strategy. Following application of inclusion and 
exclusion criteria and removal of duplicates, we used Google  
Scholar (RRID:SCR_008878) to search citations in selected  
manuscripts (see CONSORT diagram, Figure 1). The final search 
was conducted on 3rd February 2022.

Selection process
After removal of duplicates, two authors independently assessed 
article titles, abstracts, and full manuscripts in turn to make 
study selection decisions. BM assessed all article titles, abstracts, 
and full manuscripts with secondary independent review by 
AC, SS and PH. Discrepancies were resolved by a third inde-
pendent reviewer (DF) where these occurred. In addition, SG  
read all selected papers.

Data collection
The data extraction tool was piloted by BM, AC, SS and PH 
independently to ensure uniformity of data collection and to 
refine outcome variables. Subsequently, two authors independ-
ently reviewed each manuscript and collected data. Authors then 
met to finalize data collection and resolve any discrepancies. 
No automated tools were used. The completed raw data collec-
tion tool is included in Table S1 as Extended data22. Collected 
data items included: study design; setting (country); participant  
characteristics (number and basic demographics); challenge 
agent and dose; administration route; adverse events; follow 
up period; infection confirmation (site and method) and immu-
nological response measurement assays. We applied relevant 
risk of bias assessment (Cochrane Collaboration25 for RCTs and 
Newcastle-Ottawa Scale26 for non-randomised studies) tools for 
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included studies after data extraction. Risk of bias assessment 
was conducted by two independent reviewers with discrepan-
cies resolved as previously. Given the heterogenous nature of 
the studies with disparate primary and secondary outcomes, we 
focused predominantly on methodological aspects of controlled  
human infection model delivery.

Synthesis methods
We present a narrative synthesis based on study characteris-
tics to describe how TB-CHIM studies have previously been 
delivered. Meta-analysis has not been conducted due to the 
heterogeneity of studies, study inclusion criteria and our 
stated aim to focus on methodological aspects of TB-CHIM  
delivery.

Results
Study selection. A total of 27 studies met inclusion criteria  
(Figure 1). These included 15 RCTs16,27–40; one of which 
was a trial protocol40; and 12 non-randomised interventional  
studies17,41–51. Other articles of potentially of relevance, but with-
out primary data, did not meet eligibility criteria52–61. Only three 
studies were conducted in high-burden settings as shown in  
Table 2 and Table 3.

Study characteristics. Table 3 (RCTs, one (18 participants) 
from South Africa) and Table 4 (non-randomised studies, 
one from Brazil (6 participants) and one from South Africa  
(106 participants)) describe characteristics for studies selected.  
Primary outcome measures for the studies were diverse and as 

Figure 1. Flow diagram for inclusion of studies within the systematic review.

Table 2. Systematic search strategy for MEDLINE. Searches 1 AND 2 AND 3 were combined for the final output. Search terms revised 
for matched CINHAL subject headings before searching this database.

Search Terms

1 “mycobacterium tuberculosis” OR TB OR tuberculos* OR tuberculous OR tubercular OR pthisis OR “pulmonary consumption” 
OR pleurisy OR BCG OR bacill* N3 guerin OR “calmette* vaccine” OR Tuberculosis (MeSH) OR Tuberculosis, Pulmonary (MeSH) 
OR Tuberculosis Vaccines (MeSH) OR Tuberculosis, Pleural (MeSH)

2 “human infection model” OR “human infection stud*” OR “CHI model*” OR “CHI trial*” OR “human challenge” OR “challenge 
model” OR “challenge stud* OR “experimental human infection” OR “controlled human infection” OR Human Experimentation 
(MeSH) 

3 human* OR volunteer* OR participant* OR Humans (MeSH) OR Volunteers (MeSH) OR Healthy Volunteers (MeSH)
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our focus was on CHIM methodology, we focused on admin-
istration route, challenge agent and dose administered in data  
extraction. Figure 2 describes risk of bias assessments for selected 
studies. Three RCTs had a low risk of bias across all assess-
ment domains28,31,33 and three non-interventional studies had an  
overall low risk of bias17,42,45.

We focused on several aspects of CHIM study design to inform 
our workshops discussions. These were participant selec-
tion in mycobacterial challenge studies, challenge agent  

administration route and sampling post-challenge, challenge agent 
strains and doses for intradermal and mucosal routes, micro-
biological confirmation and immunological assays to confirm  
infection as well as reported adverse events.

Participant selection in mycobacterial challenge studies. Par-
ticipant inclusion criteria within the selected studies was highly 
variable. Two studies targeted older adults, either inpatients at 
discharge27 or outpatients35, to explore the indirect effects of 
intradermal BCG on subsequent development of all cause lower 

Table 3. Study characteristics for included randomised controlled trials. *Trial protocol, results not published at time of 
writing. X: not reported; a: mean; b: median; ID: intradermal; PO: per oral; BCG: Bacillus Calmette-Guerin; MTBVAC; live attenuated 
strain Mycobacterium tuberculosis; SSI: Statens Serum Institut; AERAS-422: recombinant BCG with overexpression antigens 
Ag85A, Ag85B, and Rv3407 and expressing mutant perfringolysin; GMO: genetically modified organism; VPM1002: recombinant 
BCG expressing listeriolysin, lacking urease C gene and containing a hygromycin resistance marker; rBCG30: recombinant BCG 
overexpressing antigen Ag85b; TICE: US brand name for intravesical BCG; CFU: colony forming units; TB: tuberculosis.

First Author Year Country n Males Average 
Age

Route Intervention Max 
Dose 
(CFU)

Control Follow up 
(days)

Giamarellos-
Bourboulis27

2020 Greece 150 67 80a ID BCG 
(Bulgaria)

X (0.1ml) Saline 365

Tameris28 2019 South Africa 18 3 29a ID MTBVAC 
(GMO wild TB)

5 x 105 BCG (SSI) 180

Arts29 2018 Netherlands 30 30 X ID BCG (SSI) X BCG 
solvent

118

Hoft30 2017 US 86 X X PO & ID BCG (SSI & 
Connaught)

2 x 1010 
PO 
5 x 105 ID

NA 180

Hoft31 2016 US 24 14 29a ID AERAS-422 
(GMO BCG)

1 x 107 BCG (TICE) 182

Leentjens32 2015 Netherlands 40 40 21b ID BCG (SSI) X Saline 28

Spertini33 2015 Switzerland 36 14 27a ID MTBVAC 
(GMO wild TB)

5 x 105 BCG (SSI) 365

Harris16 2014 UK 49 21 23b ID BCG (SSI) 8 x 105 NA 42

Grode34 2013 Germany 80 80 33a ID VPM1002 
(GMO BCG)

5 x 105 BCG (SSI) 180

Wardhana35 2011 Indonesia 34 8 65 ID BCG (Pasteur) X BCG 
solvent

90

Hoft36 2008 US 35 13 29 ID rBCG30 (GMO 
BCG)

5 x 105 BCG (TICE) 252

Hoft37 2000 US 48 X X PO & ID BCG 
(Connaught) 

2 x 1010 
PO 
3 x 106 ID

PBS 365

Hoft38 1999 US 66 X X ID BCG 
(Connaught & 
TICE)

3 x 106 Saline 90

Hoft39 1999 US 48 X X ID BCG 
(Connaught & 
TICE)

3 x 106 NA 56

TBO41 trial*40 2016 UK 60 X X Aerosol BCG (SSI and 
Bulgaria)

1 x 106 Saline 168
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Table 4. Study characteristics for included non-randomised studies. *Matsumiya used samples taken from the same 
participants as Harris et al.16. X: not reported; a: mean; b: median; ID: intradermal; Bronch: bronchoscopic installation; PO: per 
oral; Neb: nebulised; BCG: Bacillus Calmette-Guerin; SSI: Statens Serum Institut; TICE: US brand name for intravesical BCG; CFU: 
colony forming units.

First Author Year Country n Males Average 
Age

Route Intervention Max Dose 
(CFU)

Follow up 
(days)

Koeken41 2020 Netherlands 22 22 X ID BCG (Bulgaria) X (0.1ml) 90

Davids42 2019 South Africa 106 43 28b Bronch BCG (SSI) 1 x 104 180

Blazevic43 2017 US 5 X X ID BCG (TICE) 2 x 106 85

Minhinnick17 2016 UK 41 13 27a ID BCG (SSI & TICE) 2.4 x 106 28

*Matsumiya44 2015 UK 24 X X ID BCG (SSI) 8 x 105 14

Boer45 2015 Netherlands 12 6 24b ID BCG (SSI) X 378

Minassian46 2012 UK 40 X X ID BCG (SSI) 8 x 106 168

Schreiber47 2010 UK 7 5 27b PO BCG (Moreau) 1 x 107 365

Monteiro-Maia48 2006 Brazil 6 1 35a PO BCG (Moreau) X (100mg) 180

Hoft49 1999 US 69 X X ID BCG (Connaught & TICE) 2 x 108 1095

Ravn50 1997 Denmark 20 12 22a ID BCG (SSI) X (0.1ml) 365

Rosenthal51 1968 US 43 X X Neb X X 90

Figure 2. Risk of bias assessments for included studies. Cochrane collaboration risk of bias tool used for randomised trials. C1: random 
sequence generation (selection bias); C2: allocation concealment (selection bias); C3: blinding of participants and researchers (performance 
bias); C4: blinding of outcome detection (detection bias); C5: incomplete outcome data (attrition bias); C6: selective reporting (reporting 
bias); and C7: other bias. Newcastle-Ottawa Score used for non-randomised studies. D1: bias due to selection; D2: bias due to comparability; 
D3: bias due to outcome measurement; and overall score (0-3 = very high risk of bias; 4-6 = high risk of bias [some concerns]; and 7-9 = low 
risk of bias). Risk of bias assessment includes 26/27 studies. The excluded study is a trial protocol that has not yet reported results (https://
clinicaltrials.gov/ct2/show/NCT02709278). Matsumiya 2015 included non-randomised participants reported in Harris 2013.

Page 9 of 18

Wellcome Open Research 2023, null:null Last updated: 31 JAN 2023

Page 12 of 21

Wellcome Open Research 2023, 8:71 Last updated: 10 FEB 2023

https://clinicaltrials.gov/ct2/show/NCT02709278
https://clinicaltrials.gov/ct2/show/NCT02709278


respiratory tract infections. Prior BCG vaccination was used 
very variably in different studies, either as a specific exclusion  
criterion17,29,31–33,35,41,43,45,50; specific inclusion criterion28,42; or 
with an a priori aim to explore differences in response to myco-
bacterial challenge between BCG naïve and BCG exposed 
groups16,34,44,46. Several studies did not report prior BCG vaccine  
status27,30,36–39,47–49,51. In addition, studies also variably used  
dermal response to purified protein derivative and performed  
interferon-gamma release assays (IGRA) as surrogates of 
immune response when selecting participants. As detailed in  
Table 3 and Table 4, most studies were conducted in  
geographical regions with low TB prevalence. The selection of 
participants for TB CHIM studies in TB endemic areas (great-
est need for context-relevant therapeutics and vaccines) was 
more complex. In South Africa, Davids et al.,42 categorized  
participants using clinical (history of treatment; presence of 
active disease; and household contact of index case), radio-
logical (chest X-ray) and immunodiagnostic features (IGRA or  
QuantiFERON TB Gold-in tube testing) to define “protective”  
and “susceptible” participant phenotypes.

Challenge agent administration route and subsequent sam-
pling. Most included studies employed intradermal administration  
of BCG, modified BCG or modified M.tb and used peripheral 
blood derived endpoints as the most convenient route of both 
administration and sampling. There are a smaller number of 
important pulmonary studies to consider. For example, Davids 
et al.,42 directly instilled BCG into a lung segment of partici-
pants with varying susceptibility phenotypes (e.g., exposed 
but uninfected versus history of recurrent TB), and compared  
BCG with PPD and saline instillation in alternative lung  
segments. That study demonstrated differential responses in bron-
choalveolar lavage (BAL) immune cellular profile between the 
lung segments challenged and subsequently sampled. This study 
established the minimal BCG allowing the detection of responses 
and the safety of this model, the key advantage of which is inter-
rogation of responses at the site of disease and a precise quantity 
of mycobacteria can be delivered to the alveolar compartment. A  
follow-on study to interrogate 6-month post-installation lung 
responses and to directly compare lung versus nasal versus skin 
installation is underway.

BCG administration by nebulised delivery is under investi-
gation in a separate study40 but results are not yet reported.  
Nebulised BCG has been tested in a historical study in both  
adults and children but this study was assessed at high risk 
of bias and the described study methodology are unlikely to 
meet contemporary ethical committee criteria for approval51.  
Oral BCG administration has been explored30,37,47,48 but in this 
review these studies were assessed as at risk of bias and did  
not isolate mycobacteria after challenge. Oral BCG chal-
lenge, however, does show evidence of being immunoregu-
latory of other responses, although evidence is lacking for 
enhanced pulmonary defence induced by mucosally-directed  
vaccination37.

In skin studies, the theoretical environmental risk of  
non-participant population exposure with intradermal adminis-
tration was systematically explored in studies of both wild-type  
BCG16 and genetically modified mycobacterial strains33,34.  
Persistent shedding of viable mycobacteria from ulcerated  

intradermal injection sites was described39,43 but this was at very  
low concentrations, with no recorded transmission such that 
this potential risk was concluded to be extremely low. Clearly  
skin biopsy is a valuable site for sampling in those studies,  
being safe and easily controlled. Reliable mycobacterial  
detection required large punch biopsies.

The natural route of M.tb infection is inhalation of aero-
solized bacteria via the respiratory tract therefore respiratory 
mucosal immune responses to intradermal mycobacterial chal-
lenge may not represent natural exposure, or elicit protective  
pulmonary responses57. Koeken et al.,41 measured alveolar  
macrophage responses to intradermal BCG administration 
but found that induced sputum (a less invasive technique than 
direct bronchoalveolar lavage sampling) was associated with  
cellular activation but the sampling technique likely introduced 
artefact, impairing their ability to infer immune response to  
challenge.

Challenge agent strains and doses, for intradermal and 
mucosal routes. Optimal conditions for intradermal controlled 
human infection with wild-type BCG have been explored, test-
ing different strains17,30,38,39 and doses17. The choice of BCG 
strain did not influence subsequent recovery of bacteria from 
skin punch biopsy after 14 days17 nor significantly alter immune 
responses17,30,38,39 within these studies. Higher BCG doses  
(6 x 105 – 2.4 x 106 CFU) were associated with improved bacterial 
detection from a day 14 skin punch biopsy with no measurable 
impact on adverse side effects17. Early phase trials of intrader-
mal recombinant BCG31,34,36 and attenuated M.tb (MTBVAC)28,33  
vaccine candidates incorporated dose escalation within their  
study designs.

Several recombinant BCG vaccine candidates have been  
compared with standard BCG. These include high dose (1 x 106 
≥ CFU < 1 x 107) AERAS-422 and high dose (5 x 105 CFU) 
VPM1002. AERAS-422 included inserted genes to increase 
antigen expression and the perfringolysin gene to promote  
phagolysome perforation and antigen presentation—see adverse 
reactions section31. VPM1002 included insertion of the listeri-
olysin gene to promote phagolysome perforation and antigen  
presentation and was found to be safe and immunogenic34. 
A recombinant BCG (rBCG30) with an inserted gene to pro-
mote increased antigen expression presented at a dose of 5 x 105  
CFU was also found to be safe and immunogenic35.

The attenuated M.tb strain MTBVAC (double deletion of  
independent virulence factors phoP and fadD26) was trialled at 
several does. The highest dose used was 5 x 105 CFU and was 
found to be safe and immunogenic (n=9) when compared to 
standard BCG in a healthy Swiss population33. Subsequently, 
this dose was used in nine South African adults (TB endemic  
area) with one serious adverse event reported (graded as 
unlikely related to the study vaccine) and similar reactogenic-
ity and immunogenicity compared to BCG28. The infant 
data from this study are not reported as these fall outside of  
SR inclusion criteria.

For bronchoscopically instilled BCG, a lower dose of 1 x 104 CFU 
was used and found to induce significant changes to BAL cellu-
lar profiles, and antibody responses, which were not detectable 
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below this dose. There was clear evidence of differentially 
expressed genes in BAL, and dysregulated proteins42. Doses higher 
than 1 x 105 CFU were not explored within this study. Aerosolized 
BCG doses up to 1 x 106 CFU will be explored in a current (at 
time of writing) trial, however the results are not yet reported40.  
Orally administered BCG has been given in much higher doses 
within studies reporting dosage30,37,47, with administration of 2 
x 1010 CFU in two studies30,37 and 1 x 107 CFU in a third47. The 
potential for differential impact of stomach acid neutralization  
was not systematically explored within the included studies.

Microbiological confirmation after challenge administration. 
Microbiological confirmation of infection and clearance are criti-
cal in a CHIM. Microbiological recovery methods including 
sampling and processing techniques were evaluated in multiple 
studies within this review16,17,33,39,42–44,46. Culture methods were  
the most widely used, supported by molecular techniques.

Hoft et al.,39 used serial skin punch biopsies at days 2, 7 and 14 
after intradermal BCG administration with paired histopathologi-
cal evaluation to examine granuloma formation. Mycobacteria 
were recovered from inoculation site culture in some samples 
but were more reliably detected by PCR (optimal time point 
at D14 with detection in 6/7 samples). Subsequently, a single 
punch biopsy at D14 has been used by the McShane group in 
recent studies16,17,44,46. Optimisation of the punch biopsy tech-
nique is described by Minhinnick et al.,17 who demonstrated  
that BCG could be recovered in all specimens (40/40) by both 
culture on solid agar and qPCR with strong correlation between 
the techniques (r=0.664) and between BCG challenge dose  
and subsequent biopsy CFU count (r=0.749). Harris et al.,  
demonstrated that qPCR estimated copy numbers were 1-2 logs 
higher (detected 48/48 samples) than cultures (detected 45/48  
samples) from punch biopsy16. In addition to D14 punch biopsy,  
Minassian et al.,46 induced suction blisters of the BCG admin-
istration site but these were examined for immunological  
cellular infiltrates and microbiological results were not reported. 
This study demonstrated that BCG was detected in 28/28 punch 
biopsy specimens by qPCR and 19/28 by culture and that quan-
tification by qPCR was a mean 1 log higher than by culture. 
Longitudinal swabbing of the intradermal injection site was  
systematically evaluated by Blazevic et al.,43 who demonstrated 
that paired classical and qPCR microbiological quantifica-
tion techniques demonstrated significant kinetic association.  
Another study, however, was not able to culture BCG by  
longitudinal swabbing of the injection site16. Opportunistic swab-
bing from ulcerated/discharging BCG intradermal injection 
sites was applied in an early phase trial33 with culture recovery 
(5/10 samples) for both interventional (MTBVAC, n=1) and  
control (BCG, n=4) mycobacteria.

In a bronchoscopic BCG installation study, Davids et al.,42 were 
able to recover BCG in 6/54 (11%) of BAL microbiological  
samples.

Measurement of immune response to mycobacterial challenge. 
Early BCG studies were used to describe the now well recog-
nised induction of interferon gamma responses by mycobacteria38. 

There are still no validated immunological correlates of protection 
against M.tb infection57 and indeed most correlates fail in some 
subjects, particularly if dependent on a cellular response49.  
Exciting recent progress, however, has shown the potential of 
transcriptomics62 in defining a signature for active infection, 
and particularly single cell sequencing in defining immunologi-
cal phenotype and linking it to clinical function63. In the mean-
time, therefore, microbiological recovery and quantification 
is critically important as the primary endpoint of a TB-CHIM  
model.

In the studies reviewed, many different research approaches 
were taken to evaluate cellular and humoral responses to BCG. 
These include and are not limited to innate, humoral, and  
cellular responses but the focus has been on interferon gamma 
signatures at cytokine or cellular levels. The literature from  
non-human primate infection with M.tb and human studies 
of active TB are extensive and provide a robust background  
literature against which to check any human challenge find-
ings. This will assist in validating any future TB-CHIM but are  
beyond the scope of this review.

Adverse event reporting
There were no standardised reporting criteria for adverse events 
after mycobacterial administration in these studies, but rather 
an adherence to the internationally accepted adverse event, 
severe adverse event, and adverse events of special interest 
(AE/SAE/AESI) definitions in use in clinical trials. Intrader-
mal injection of BCG was associated with local, and expected 
side effects following routine vaccination64. The maximum  
follow up period for AEs was 90 days. These AEs were reported 
in all included studies incorporating intradermal injection and 
no SAEs were reported in any of the identified studies. Hoft 
et al.,38 reported that all BCG intradermal injection sites were 
healed by 90 days, which may therefore represent a prag-
matic cut off point for reporting serious adverse drug reactions  
(SADR) in TB-CHIM studies. Davids et al., identified the mini-
mal (safest) immunogenic dose (1 x 104 CFU) of bronchoscopically 
instilled BCG42. The investigators found that AEs developed in 
9.4% of participants (10/106), not usually associated with bron-
choscopy, and with no significant difference between BCG,  
purified protein derivative (PPD) and normal saline. All adverse 
events were reported as mild and managed in an outpatient  
setting.

Serious adverse events were reported, however, in studies inves-
tigating candidate TB vaccines (MTBVAC28 and AERAS-42231).  
During a phase two trial in South Africa one participant was 
diagnosed with newly acquired HIV infection and aseptic men-
ingitis three months after randomised allocation to MTBVAC 
vaccination28. The participant was treated with empirical broad-
spectrum antibiotics and anti-tuberculous therapy and was  
discharged from hospital five days after admission with no 
neurological sequelae. Six months of anti-tuberculous ther-
apy were completed before commencement of anti-retroviral 
therapy with the participant reported as well with no detect-
able viral load at study completion by investigators. High dose 
AERAS-422 (n=8) was associated with varicella zoster virus 
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reactivation in two participants31 resulting in discontinuation 
of the vaccine development programme. Investigators within  
this study identified immunological and transcriptomic correla-
tions between TB immunity and varicella zoster virus infection  
but no definitive causative mechanism was identified.

Summary of systematic review findings
There are no data on controlled human infection studies using 
wild-type M.tb. There are considerable data on BCG human 
challenge, modified BCG and modified live M.tb vaccination 
both in carefully observed experimental studies and in vaccine  
trials. These data suggest that:

•    BCG is a safe and acceptable experimental model of  
infection, using skin, pulmonary and oral routes.

•    The intradermal BCG model shows some immune 
responses that resemble those found in TB, but intradermal 
BCG can only be a model of infection and not pulmonary  
TB disease.

•    Intrapulmonary BCG may be a more promising model 
in that the immune responses in lungs are more repre-
sentative of TB, but recovery of inoculated mycobacte-
ria in a quantifiable manner is problematic, making this 
model unlikely to be useful in vaccine testing if micro-
biological endpoints are required. However, an alternative  
readout could be a host biomarker-based one includ-
ing post vaccinated responses associated with protec-
tion (e.g., alveolar polyfunctional T cells, lung resident  
T cells etc.). Another approach using this model could  
be to use alveolar lavage cells and blood post pulmonary 
vaccination in an in vitro killing model with live myco-
bacteria (serving as a proxy for vaccine efficacy). Thus, 
different vaccines given via the intrapulmonary route 
could be compared. An additional potential here is the  
ability to study the route of infection (lung versus skin 
[intradermal] versus gut).

•    Orally administered BCG is not likely to be a useful model 
of TB due to the high doses used, and the inability to  
recover mycobacteria.

•    Vaccination with BCG gives variable results depending 
on age, global location and immune status suggesting 
that any CHIM data obtained from BCG human chal-
lenge must be interpreted with close attention to these  
parameters.

•    Given the safety record of BCG, and recognising the 
BCG limitations, modified BCG including additional anti-
gens or detection systems could be developed to further  
refine the BCG model.

•    In the event that this BCG work was successful, particu-
larly in detecting and controlling the inoculum strain, 
then further consideration of modified wild-type M.tb  
in CHIM models would be warranted.

Workshop discussion of practical considerations 
for development of TB-CHIM
We conducted two workshops (all attendees are listed as authors 
or as part of the “TB Controlled Human Infection Model Devel-
opment Group” in the acknowledgements section) to review 
the current data from human CHIM for TB, and the practi-
cal steps needed to take the work forwards. One workshop  
(residential, 2 days) was held in the UK (24–25 September  
2019, Inglewood Manor, Cheshire, UK) and the other in  
Malawi (21st June 2022, Malawi Liverpool Wellcome Pro-
gramme, Blantyre, Malawi; meeting on-line and face to face).  
Both workshops were supportive of TB-CHIM as a worthy 
research aim, for the urgent reasons introduced earlier in this 
paper, provided that international standards of safety and vol-
unteer consent could be achieved. Several specific topics were  
discussed in detail as below.

Acceptability, specifically in UK and Malawi
In terms of practical steps, both community and stakeholder 
acceptability of a TB CHIM to accelerate vaccine develop-
ment in any specific location (we particularly discussed the UK 
and Malawi) must first be assessed. There are published experi-
ences of this CHIM acceptability enquiry process in both Kenya 
for malaria, and Malawi for pneumococcal carriage65. The  
Malawi stakeholder community has previously included and 
would still include current CHIM researchers; the District Health 
Office; members of the Research Ethics Committee; poten-
tial volunteers; health experts; physicians; and public health  
opinion leaders66.

Neither the malaria nor pneumococcal CHIM were  
first-in-human experiments in Africa. These models were both 
successfully and safely transferred from the UK after con-
siderable experience in a non-endemic population67,68. In our  
Malawi workshop, there were two strongly articulated views. 
One was that the moral imperative to develop vaccines urgently 
for and in Africa made it important to pioneer these tech-
niques in Africa, in relevant populations with endemic disease. 
The differences in immune experience of endemic populations 
might offer either increased risk or protection from the model 
but in either case an experiment conducted in a non-endemic 
region would not be informative about that risk. The alternative  
view was that regulators in Africa would continue to expect  
research protocols to be tested in research-rich environments 
supported by sophisticated health care systems before allowing  
studies of this type in settings with more limited health care  
systems, particularly Malawi. For example, in Kenya, guidance  
states that “CHIM models should be developed in maximally  
resourced settings before introduction to Kenya”. In any  
context, therefore, careful stakeholder engagement and commu-
nity enquiry will be needed to determine where the community  
opinion lies on this spectrum. Guidance by WHO states that  
“there has been increased recognition of the potential value of 
supporting the development of infrastructure and research capac-
ity to enable CHIS to be conducted in disease-relevant local 
populations in LMIC, where this meets local disease/research  
priorities and where such resources may not already exist.”69
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Feasibility evaluation and volunteer recruitment
TB-CHIM using BCG would require appropriate clinical facili-
ties; approved protocols; and recruitment strategy68. Given 
that BCG is used to vaccinate the public in Malawi, offering 
no transmission risk, there is no requirement for containment 
facilities for preparation of the inoculum or to accommodate 
potential volunteers. Modification of BCG, or use of modified  
M.tb in future would require a detailed assessment of transmis-
sion risk and re-evaluation, as well as government regulator’s41  
approval for release of a genetically modified organism.

Selection of volunteers in a TB endemic area allows clinical and 
immunological stratification to high, middle, and low risk of past 
or current TB. In an African study, the risk of adverse events 
was highest in volunteers with positive IGRA tests (Quantiferon) 
and/or abnormal chest radiographs42. The workshops therefore 
concluded that BCG CHIM in Africa should begin with IGRA  
negative healthy volunteers.

Informed consent quality
Informed consent to human challenge studies in any setting 
is a little different to other clinical research studies because 
of the inoculum step proceeding towards disease, rather than 
a study focusing entirely on prevention, observation, or treat-
ment. As such, information for volunteers must be clear and 
comprehensible, with risks explained in an appropriate manner.  
The quality of consent can best be obtained by evaluation of  
volunteer comprehension both before and after participation,  
with lessons learned being iteratively applied to improve the 
quality of the consent process in future70. Further, research  
veterans can offer new volunteers a clear explanation of their 
experience in a more interesting and engaging manner than  
researchers, albeit with the risk of bias if only “research  
champions” are selected. All these methods are applicable and  
in use in Africa.

Challenge agent and route of delivery
There was unanimous assent in our workshop discussions that 
wild-type M. tb could not currently be used in a pulmonary CHIM 
experiment because complete cure could not be guaranteed, 
and tissue damage remains a possibility in pulmonary models. 
Further, evaluation of the bacterial load of infection in the lung 
is not yet possible42. The development of a TB-CHIM must 
therefore consider other agents, primarily BCG, modified BCG  
and modified M.tb.

A BCG model is the currently preferred design from which to 
start a mycobacterial CHIM. BCG has been administered to 
humans for many years by intradermal, oral, and pulmonary 
delivery. Intradermal and oral delivery are well trusted as safe, 
having been used to vaccinate billions of people world-wide71.  
Intradermal BCG has been carefully studied in clinical trials as 
the preferred control in vaccine studies of novel anti-tuberculous 
vaccines that are also injected28,31,33,34,36. Further, the optimal 
dose for immunological discovery experiments has been defined 
and optimised for intradermal studies17,43,46. Reservations remain 
about this model remain, however, as protection from cutane-
ous infection may not represent pulmonary protection, and 
the punch biopsies of the skin are too invasive for repeated 

serial sampling. There are good data, however, that show the 
molecular signature of skin biopsies from tuberculin skin test  
(TST) sites and lungs closely reflect each other both in healthy 
adults and subjects living with HIV72. Exaggerated IL-17 
and Th17 responses found in patients with TB compared to  
subjects with subclinical disease drive the pulmonary damage  
and are also found in TST but not normal skin73. Further, 
dose of BCG delivered, inflammatory response and inhibition  
of BCG growth in vivo74 have all been shown to be closely  
related, suggesting a useful model44. Although successful  
testing of a vaccine in development has not yet occurred with 
this model, a vaccine evaluation of MVA85A showed no  
vaccine effect in the BCG CHIM, consistent with the clinical  
trial of the same vaccine16.

The oral BCG route requires very high dosing30, is  
non-physiological and minimally immunogenic of the sys-
temic compartment, albeit strongly inducing of mucosal  
immunoglobulin30. The pulmonary bronchoscopy instillation 
route is technically difficult and particularly challenging to deter-
mine post-inoculation infection30. Currently an Oxford group 
are working to develop an inhaled model in volunteers with  
previous BCG experience using post-exposure bronchoscopy  
to detect persistent pulmonary BCG75. The instilled and neb-
ulised pulmonary models are highly sophisticated and sim-
pler models would be preferred in vaccine testing. A key aspect 
to address though, is measurement of mycobacterial killing  
versus translocation into lymph nodes.

There are modified BCG models that have shown promise in 
pre-clinical studies and may soon be applicable, subject to  
regulatory approval. A very useful potential immediate modifi-
cation is to use fluorophore insertion to replace microbiological 
BCG measurement with fluorescent signal. This would have the  
enormous advantage of continuously measurable readout over 
time, potentially tracking mycobacterial translocation within 
the lymphatic system. This method, however, will require  
regulatory approval of the genetically modified organism; the 
signal detection technology; and pilot studies to show that the 
bacteriology and optical readouts correlate tightly within a  
measurable range.

Conditionally replicating or suicide strains of M.tb are also in 
development, needing some further testing in animal models to 
be sure of safety and stability of the strains, along with assured 
suicide in human subjects on removal of the conditioning agent. 
It is highly probable that such strains, together with appropri-
ate short-course treatment would be very safe. Although there 
is a theoretical risk of long-term mycobacterial persistence 
in pulmonary and extrapulmonary sites76, this risk is low, and  
steadily decreases each year after exposure. If mycobacterial 
detection challenges could be overcome using the BCG model, 
this would mitigate some of the safety challenges with a future  
conditionally replicating M.tb model.

Different CHIM models that could be applied to TB
The pathogenesis of pulmonary TB leads from primary infection 
to pulmonary granuloma formation, which may lead to exten-
sive caseation, cavitation and transmission at one extreme, whilst 
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at the other extreme, successful walling off of the infection and 
eventual sterilisation. In between, pathogenesis may lead to  
walling off, but failure of sterilisation leading to the risk of sub-
sequent recurrence of disease7,77. Re-infection with a new strain 
remains possible, but disease is often immunising and re-infection  
in otherwise healthy adults is considered less common. Many 
cured patients following TB, however, have longstanding residual 
lung damage demonstrable by both CT scanning and pulmonary 
function testing. TB-CHIM models of pulmonary disease 
might similarly result in lung damage and would therefore  
be unethical. TB-CHIM of primary infection, or re-infection  
followed by full early natural sterilisation should be considered.  
TB-CHIM of primary infection would have limited applicabil-
ity to TB-endemic regions where most people develop measur-
able anti-mycobacterial immune responses at a very young age. A  
TB-CHIM of value in Africa would therefore be a model of 
re-infection, either resulting in natural sterilising immunity in  
otherwise healthy control subjects or the CHIM being control-
led at an early stage to prevent any tissue damage. At this point,  
intradermal models are accessible and pulmonary models are 
less so. The main purpose of the CHIM would be to evaluate  
vaccines as a means of preventing re-infection.

Non-human primate models of virulent M.tb disease are  
critical in vaccine research and pathogenesis discovery78–80. The 
macaque is susceptible to severe TB and intravenous BCG has 
been shown to be protective, with protection associated with 
greatly increased numbers of antigen specific CD4 T cells in 
the lung and bronchoalveolar lavage81. Repeated limiting (low)  
dose (RLD) infection models82 have increased the sensitivity 
of this model with less severe disease that has allowed compari-
son of protective effects from less effective vaccines83. The RLD 
approach may be of great benefit in developing safe human  
challenge models, and the responses observed in NHP will inform 
future TB-CHIM design and aims.

Mycobacterial confirmation
Mycobacterial confirmation of BCG challenge has been con-
sistently possible in some studies using homogenised biopsy 
tissue cultured on Middlebrook agar for 5 weeks17. Accurate 
determination of copy number has been determined using PCR 
techniques developed in Oxford and applied to the same biopsy 
tissue. BCG detection on swabs of purulent indurated BCG 
inoculation sites has been possible but not in a quantitative man-
ner suitable for vaccine evaluation43. Culture and PCR from 
nasal fluid and BAL, correlating with immune responses in these  
compartments has been possible, but BCG and immune response 
detection in stools are problematic37. Overall, given the pref-
erence for intradermal models, optimisation of less invasive 
or micro-biopsy sampling and culture/PCR is the immediate  
priority, with transfer to an optical readout being a most appealing  
future prospect.

Immunogenicity endpoints
It is very difficult to make an early diagnosis of pulmonary M.tb 
infection because the mycobacteria are not only contained in 
macrophages, but also surrounded by a ball of inflammatory 
cells and fibroblasts7,77, long before the formation of sterilising 

granulomas, which themselves show variable structure and  
function84. Very recent breakthrough studies of exhaled aerosol 
have demonstrated whole mycobacteria in patients with  
subclinical disease85 but this is a recent discovery; identification  
is by morphology rather than culture; the application is not 
yet widespread. In the absence of microbiological endpoints,  
vaccine efficacy studies have utilised the conversion of previ-
ously interferon-gamma-release-assay (IGRA) negative recruits 
to become IGRA positive as confirmation of infection10. This 
endpoint has limitations as the immunological response to  
M.tb shows variation between subjects, and can be altered by  
concurrent infection (e.g., HIV and COVID-19). Nevertheless, just 
as in prevention of infection vaccine trials, an interferon-based  
signal is currently the most reliable endpoint in a TB-CHIM, 
whether it be a release assay or a transcriptome-based assay. 
Alternative endpoints may potentially include measurement 
of polyfunctional T cells in the blood and resident in the lung. 
Transcriptomic studies have shown potentially improved pre-
cision in predicting the progression of subclinical (“latent”)  
disease to active disease62, and these studies have subsequently 
been confirmed with PET/CT scanning to confirm current  
active infection in subjects lacking any symptoms86.

In the development of a TB-CHIM, consideration must be given 
to compartmental differences in immune response. Circulating  
blood lymphocytes, respiratory tract mucosal tissue, broncho-
alveolar lavage87 and skin will exhibit different populations 
and percentages of macrophage, T cell and innate cell pheno-
types, albeit with substantial overlap. Any endpoint must be  
validated for reproducibility and reliability in reporting  
infection, ideally by comparison with a microbiological endpoint.

Vaccine testing and power calculation
Many novel vaccine development strategies are in advanced dis-
covery stages, even reaching pre-clinical and phase 1, first in 
human evaluation. These include repeat BCG, modified BCG 
including M.tb antigens88, modified M.tb, vector delivered 
antigens and RNA vaccines, delivered by a variety of routes, 
with and without BCG boosting6. Pre-clinical evaluation can 
include transcriptional profiling ex vivo, or in animal models,  
computer modelling and human studies. If an intradermal 
BCG was used as a vaccine testing TB-CHIM, what would be 
the power of this study? In a proof-of-concept design, Harris 
et al., used 12 subjects in each of four groups to compare BCG  
naïve/vaccinated and MVA85A vaccine vs. placebo16. No power  
calculation was included in this study, and although a study 
using area under curve of microbiological endpoints would  
be ideal, multiple biopsy and multiple bronchoscopy endpoints  
are not likely to be feasible in a TB-CHIM. To be most  
useful, TB-CHIM studies must report accurate, reproducible  
data with a much smaller number of subjects than clinical  
trials—for example, a maximum of 200 subjects tested.

Antimicrobials and drug discovery
After many years of frustration, there are now more than 25 
new drugs or drug combinations to treat TB in a registered clini-
cal pipeline89. It is widely accepted that combination therapy 
has been successful in limiting the emergence of drug-resistant 
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TB (MDR-TB) by the targeting of distinct essential biological  
functions. Furthermore, with the use of combination therapies 
it has been possible to shorten treatment duration and reduce 
relapse. However, identifying optimum combinations from 
a pharmacokinetic and pharmacodynamic perspective is not 
without significant challenges, and whilst in vitro and in vivo 
(animal) pre-clinical models that assess anti-TB drug activity 
are available, the combination of models that is most predictive  
of clinical treatment outcome remains unclear. This forms a  
significant barrier to the prioritization of promising drug 
regimens and there remains therefore significant room to 
improve the evidence base prior to commitment to Phase II/III  
clinical studies. A human challenge model that can be used to 
uncover drug combination synergies that translate clinically  
has the potential to accelerate the TB drug development pipe-
line. The use of a TB-CHIM to test drugs in development has 
not yet been described and a BCG model has not been used 
in this way. Anti-tuberculous treatment is offered to patients 
developing the rare clinical presentation of disseminated BCG  
disease90. It would therefore be reasonable to expect a TB-CHIM 
using intradermal BCG to report reduced mycobacterial 
growth or accelerated clearance when treated with effective 
regimens or potentially useful novel agents. It is also reason-
able to expect that this model would be safe given the published  
literature reviewed above.

Scientific opportunity
In addition to testing vaccine efficacy and drug potency against 
mycobacteria, there could be wider scientific interest in a 
cutaneous TB-CHIM. There are increasing data to show that 
BCG modifies the human response to infection via interferon 
dependent mechanisms29, by epigenetic modifications and par-
ticularly by modification of macrophage function—“trained  
immunity”63. Early publications showed increased survival 
in young children attributable to protection from respiratory  
infections, and more recent work has confirmed both resilience 
to respiratory viral infections in older adult subjects27,35, and  
enhanced response to influenza vaccination32. TB-CHIM using 
a skin BCG model would potentially allow sophisticated new 
techniques to be applied indirectly to determine non-specific  
effects of BCG in defence against respiratory infection63.

A controlled human infection model of TB in Malawi 
- could it last to utility?
Currently, multiple controlled human infection models are being 
established in populations with endemic infectious disease 
throughout the world including Streptococcus pneumoniae 
in Malawi91, falciparum malaria in Kenya and Gabon, vivax 
malaria in Thailand, hookworm in Brazil; schistosomiasis 
in Uganda, rotavirus in Zambia (using live vaccine not wild-
type virus) and shigella in Kenya. Our group has successfully  
established the controlled human infection model for Strep-
tococcus pneumoniae infection in Malawi. The process of  
introducing this model included robust stakeholder engagement  
activities65,70; assessment by both Malawi and UK national  
ethical and regulatory bodies68; and evaluation of participant 
acceptability67 during the conduct of our feasibility study91. 
Informed by this work, we have now completed a trial to test 

the efficacy of licensed pneumococcal conjugate vaccines and 
measure immunological responses in the Malawian context92.  
The team conducting this study included Malawian doctors, 
nurses, data scientists, microbiologists, immunologists, and social 
scientists. Capacity development of this team was identified as a 
critical determinant of the longevity of this newly established  
tradition of CHIM research in Malawi.

There is a longer established tradition of TB research in Malawi, 
including the detailed study of mucosal immunology93,94. TB 
remains a major cause of morbidity and mortality95 with public  
health interventions designed to control endemic infection  
impaired by the COVID-19 pandemic96. Introduction of a highly 
efficacious TB vaccine could have transformative public health 
benefits. There is both the clinical and laboratory research 
capacity and the driving need for the TB-CHIM in Malawi, 
if acceptability, feasibility, and practical challenges can be  
overcome65.

Conclusions and next steps
There is strong support for a TB-CHIM in the global research 
community. There is sufficient research capacity and local  
support to plan a path to develop a TB-CHIM for vaccine and 
drug testing in both the UK and Malawi. TB controlled human  
infection models in skin and lung have been established in both 
the United Kingdom, USA and South Africa using the BCG 
strain with robust participant safety data reported. There are,  
however, considerations of risk, advantage, and disadvantage  
in human infection models of TB infection in Africa that 
require local and expert consideration. Using a pathway for  
introduction of a relevant and de-risked controlled human infec-
tion model (cutaneous BCG) to Malawi for the first time, we  
now seek to explore if TB-CHIM studies would potentially be 
acceptable in principle. As part of our stakeholder engagement,  
we will co-create the optimal design for the Malawian setting, 
discussing the various trade-offs for each potential approach  
and exploring local acceptability for each model.

Data availability
Underlying data
All data underlying the results are available as part of the article  
and no additional source data are required.

Extended data
Harvard Dataverse: CHIM SR extended and underlying data. 
https://doi.org/10.7910/DVN/U8IIWZ22.

This project includes the following extended data:

- PRISMA_2020_checklist.docx

- Reflexivity statement - TB CHIM.docx

- Table S1.xlsx

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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