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ABSTRACT Under vehicle-to-grid (V2G) concept, electric vehicles (EVs) can be deployed to meet

additional energy demand of critical load (CL) in a microgrid. In this article, an incentivized energy trading

approach is introduced to study the interaction between EVs and CL. EV mobility and battery degradation

are studied to ensure they do not deter EV participation. Bidder satisfaction is introduced which allows

EV owners to enforce their energy trading conditions. EV-CL association and discharging scheduling are

considered in a two-phase model. In the first phase, EV-CL association is modeled as a single auction to

determine the winning bids and corresponding payments. Successful bidders are determined by solving a

mixed integer non-linear programming (MINLP) problem, while Vickery-Clarke-Groves (VCG) payment

rule is applied to pay the auction winners. In the second phase, EV discharging scheduling determines the

operating cost and discharging power of associated EVs at each time slot. Simulation results show that

the proposed approach achieves comparable performance with reference schemes and guarantees bidder

satisfaction. Theoretical analysis on economic properties of truthfulness and individual rationality are

verified as well.

INDEX TERMS Auction, electric vehicle, electric vehicle as a service (EVaaS), energy trading, incen-

tivized, microgrid, Vickrey–Clarke–Groves (VCG).

I. INTRODUCTION

D
UE to global concerns on climate change, electric ve-

hicles (EVs) could play a key role towards unlocking

future sustainable energy systems. Under the vehicle-to-grid

(V2G) concept, EVs do not only act as loads but also feed

stored energy back to the grid [1]. The application of EVs

as loads, energy storage systems and energy resources under

the active distribution grid is reviewed in [2]. EVs can be

deployed individually or as part of an aggregation in EV-

enabled microgrids [3]. In the later, EVs are grouped by an

aggregator to create a sizeable capacity for the microgrid [4].

Traditionally, EVs are managed under a centralized system

where the grid manager is assumed to have full informa-

tion and control over participating EVs. However, these

approaches are not scalable considering the large number of

physically distant EVs, and impractical due to the unwilling-

ness of EV owners to share their private information. Hence,

it is important to investigate distributed approaches which

enable scalability and consider the interests of EV owners.

Incentivizing energy trading in distributed EV-enabled mi-

crogrids is both desirable and challenging.

A. BACKGROUND

To address this challenge, economic incentive approaches

are often applied to depict the behaviour of trading entities

[5]. Here, trading entities are motivated to participate in the

market via monetary incentives [6]. Auction is a promising

mechanism used to capture the interactions between sellers

and buyers in decentralized markets [7]. Auctions can be

categorized according to the market design. Auctions in
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which at least one side of the the market consists of a single

buyer or seller are single auctions, while two-sided markets

in which multiple sellers and buyers may be making bids and

offers simultaneously are called double auctions.

Some recent works have applied auction mechanism to

EV-enabled energy scheduling management [8]–[10]. A

multi-round auction is designed in [8] for EV charging in de-

centralized environments and a dynamic charging scheduling

algorithm is presented. In [9], a double auction mechanism

is designed for energy scheduling management where dis-

charging EVs trade energy with either the grid or charging

EVs, and a new price adjustment strategy is proposed. A

two-sided market made up of EV drivers and charger owners

is cleared by a price-based double auction in [10]. Several

factors such as EV driver preferences and charger location

are considered in the allocation and scheduling process. It

is generally assumed that bidders voluntarily represent their

true valuation. However, bidders could misrepresent their

valuations in order to maximize their utility. Vickrey-Clarke-

Groves (VCG) mechanism is effective in ensuring the prop-

erties of incentive compatibility [11]. In VCG mechanism,

bidding truthfully is a weakly dominant strategy, so there is

no incentive for bidders to misrepresent their valuations.

Several recent works have applied VCG mechanism to

a wide range of EV-enabled energy trading applications.

In [12], EVs are incentivized to trade charging/discharging

energy in active distribution systems and VCG-based pric-

ing rule is applied to determine the payments EVs should

make/receive. In [13], an incentive-based charging mech-

anism is designed for energy trading between EVs and

charging stations, and VCG-based pricing rule is applied

to determine the price EVs should pay. Double auction

models are considered in [14] where autonomous EVs are

incentivized to participate in dynamic energy trading with

energy aggregators and two incentive payment schemes are

proposed. Multiple buyers and multiple sellers are involved

in the auctioning process in these works; therefore, it is not

inapplicable in a one-sided market. In [15], two extensions of

second price auction mechanisms were applied and studied

for EV charging control in smart grids, where EVs are

required to declare limited valuation to the auctioneer. This

poses implementation difficulties in a market environment

that requires entire valuation declaration.

In [16], an online continuous progressive second price-

based auction scheme is proposed for EV charging in fast

charging reservation systems. In [17], an auction mecha-

nism for V2G systems is proposed and a feedback-based

price scheme is designed to incentivize EV participation.

An auction mechanism is designed in [18] to stimulate EV

discharging in V2G systems. In [19], an auction mechanism

is proposed to jointly incentivize discharging EVs and utilize

local generation to charge EVs during emergency demand

response periods. The incentives from these auction mech-

anisms may not cover battery degradation incurred during

energy trading; hence, EV owners may incur revenue loss if

they are not compensated. An auction-based scheme which

enables local energy trading among EVs and considers bat-

tery wear-out cost is proposed in [20]. A battery degrada-

tion model is also presented to depict a practical energy

trading environment. However, the scheme employs a naive

auction process which does not examine essential economic

properties such as truthfulness and individual rationality. The

auction models in the literature do not consider EV mobility.

Ideally, EVs are distributed within the microgrid and would

need to travel from one location to another to supply energy

[21].

B. OUR CONTRIBUTIONS

In this article, we introduce an incentivized energy trading

approach, where physically distant EVs are chosen to balance

demand-supply mismatch. In the proposed approach, EVs

enforce their conditions to participate in the bidding process

such as the minimum and maximum amount of energy they

are willing to sell. This ensures EVs are not subjected to

unfair trade conditions where winning bidders sell an unde-

sirable amount of energy as it is with centralized systems

and protects the battery from deep discharge. The major

contributions of this article are as follows.

• We formulate the EV-CL association problem as a single

auction and the discharging scheduling optimization

problem for EVs distributed with the microgrid. The

auction determines the winning bids and the corre-

sponding payments, while the discharging scheduling

determines the discharging power of associated EVs for

all time intervals.

• A number of practical constraints such as energy de-

mand, power balance and state of charge (SoC) limits

are captured in the problem formulation. The approach

incentivizes EV owners for losses incurred during EV-

CL interaction such as distance traveled, battery degra-

dation and V2G reserve capacity. We introduce bidder

satisfaction which allows EV bidders to enforce their

energy trading conditions.

• The proposed energy trading model is evaluated in com-

parative studies with centralized and exiting schemes.

Simulations results demonstrate that the model guaran-

tees bidder satisfaction, as well as the economic proper-

ties of truthfulness and individual rationality.

II. SYSTEM MODEL

A. SYSTEM DESCRIPTION

Electric vehicle as a service (EVaaS) describes a system

where suitable EVs in the microgrid are chosen to exchange

energy with CL [3]. The energy trading process between

EVs and CL is modeled using a one-sided auction with the

aggregator acting as an auctioneer, as shown in Fig. 1. The

aggregator coordinates the auction between EVs and CL

through dedicated communication networks. Charging sta-

tions are utilized as sources for EVs to exchange energy with

CL. The proposed approach assumes that the discharging rate

of EVs are fixed and energy transfer losses in the charging

stations are not considered.

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3249469

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Umoren et al.: VCG-Based Auction for Incentivized Energy Trading in Electric Vehicle Enabled Microgrids

FIGURE 1. One-sided energy market with EVs and CL in a microgrid.

B. BATTERY DEGRADATION MODEL

EV battery degradation creates a common concern for EV

owners when considering EVaaS participation. Due to natural

limitations, the EV battery has a limited amount of charge cy-

cles, where a charge cycle is a complete charge and discharge

process. At the end of the estimated number of charge cycles

specified by the manufacturer, the battery will start losing

capacity and its performance will decrease significantly [22].

Increased charge cycles due to EVaaS participation would

accelerate the battery degradation, resulting in revenue loss

to the EV owner. The capacity loss and high cost of battery

sum up the major financial liabilities of the EV owners and

require a compensation [23]. Without assessing the battery

degradation cost, it would be challenging to design an incen-

tive mechanism to compensate EV owners [4]. When derived,

the battery degradation cost is then counted into the objective

function to determine the operating cost of participating EVs

[24].

We consider a linear battery model which assumes the

number of charge cycles multiplied by the depth of discharge

(DoD) corresponds to 1 cycle of 100% DoD, i.e., 5 cycles of

20% DoD as equivalent to 1 cycle of 100% DoD. The DoD

of a battery is the inverse of the state of charge (SoC) and

can be represented as the SoC subtracted from 100% charge

(1−SoC). We can calculate the cost per cycle of a battery

as a fraction of the battery capital cost and the number of

charge circles [25]. The cost per cycle bpc of a battery and

total degradation cost Cdeg can be expressed as

bpc =
Cbat

Lc

, (1)

Cdeg = bpc · SoC, (2)

where Cbat is the battery capital cost in British Pounds (£)

and Lc is the number of charges cycles. The linear estimation

for capacity degradation of battery energy storage could

render non-negligible (explicit and implicit) errors. Taking

these factors into consideration, it is impractical to use a

linear model to represent battery degradation cost. However,

we can take the linear estimation as a reference model to

benchmark the performance of the other models.

DoD is an important factor in charge cycle estimation

because the relationship between different DoD cycles and

equivalent 100% DoD cycles is not linear [26]. For every

DoD level, the value of the battery lifetime throughput LT ,

measured in kWh, can be expressed as

LT = Lc · v
cap ·DoD, (3)

where vcap is the battery capacity and DoD is the DoD for

which Lc was determined [27]. Based on the relationship

between DoD and charge cycle, the battery degradation cost

per kWh bd can be expressed as

bd =
Cbat

LT

. (4)

For an EV to participate in EVaaS energy trade, sufficient

energy has to be stored in the battery. The energy stored in

the battery could be self-generated or purchased. Based on

this, the EV incurs a charge cost Cch. From the charge cost,

the valuation of energy unit can be expressed as

µ̄ =
Cch

vavail
, (5)

where vavail is the available energy in the EV battery. For EV

to avoid making financial losses, the discharge cost should

cover the charge cost and compensate battery degradation.

This can be expressed as

Cdis ≥ Cch + Cdeg. (6)

This ensures battery related liabilities do not become finan-

cial burden to EV owners.

C. DESIGN TARGETS

In this article, key properties of the VCG mechanism such

as truthfulness and individual rationality, as well as bidder

satisfaction, are main targets. Hence, the proposed auction

mechanism should be designed to achieve the following

properties.

Truthfulness: An auction is truthful or incentive-

compatible if participating EVs achieve maximum utility

by revealing the true value of the energy stored in their

batteries. In other words, the bid submitted by participating

EVs equal their private valuation, i.e., µ = µ̄, where µ is

the energy unit bid and µ̄ is the valuation of energy unit.

This property ensures that EVs cannot improve their utility

by either bidding lower or higher than their true valuations;

thus, preventing market manipulations.

Individual Rationality: An auction is individually ratio-

nal if the utility of participating EVs is nonnegative whether

they win or lose, i.e., U ≥ 0, where U is the utility of EV.

This property guarantees that no auction winner is paid less

than what it bids; thus, ensuring EVs will not be worse off

after EVaaS participation.
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Bidder Satisfaction: An auction is satisfactory if partici-

pating EVs can enforce their energy trading conditions. This

property guarantees that no bidder will be subjected to sell

an undesirable amount of energy; thus, ensuring that the

accepted bid volume from auction winners is within desirable

limits, i.e., vmin ≤ v ≤ vmax, where v is the desirable

amount of tradable energy, vmin and vmax are the lower and

upper bonds, respectively.

III. VCG-BASED AUCTION FOR EV-CL ASSOCIATION

We consider an auction model for EV-CL association. Let

i = {1, 2, ..., N} denote a set of EVs within the microgrid

which are available to participate in EVaaS operation. The

auction starts with the CL announcing its energy demand,

total energy demand time period and location information to

the aggregator which acts as an auctioneer. The auctioneer

distributes a request for energy with the CL information to

EVs within the microgrid. The ith EV sends a four-tuple

bid bi = (di, µi, v
min
i , vmax

i ) to the auctioneer, where di
denotes the estimated transportation distance between the ith
EV and CL, in km; µi denotes energy unit cost of the ith
EV, measured in British Pounds (£) per kWh; vmin

i denotes

the minimum tradeable energy of the ith EV, in kWh; vmax
i

denotes the maximum tradeable energy of the ith EV, in

kWh. The auctioneer then determines the winning bids and

the corresponding payments. The auction process is carried

out in two stages: winner determination stage and price

determination stage. The auction winner is derived in the

winner determination stage and the payment to the auction

winner is actualised in the price determination stage.

A. WINNER DETERMINATION

Considering the winner determination problem is an opti-

mization problem with binary and continuous variables and

nonlinear functions in the objective function and constraints,

we formulate it as a mixed integer non-linear programming

(MINLP) problem. Let αi denote the binary variable, where

αi = 1 if the ith EV wins the auction and 0 otherwise. The

objective is to minimize the energy cost of EVs balancing

CL demand, provided the energy stored in the EV batteries is

sufficient. The energy cost includes the transportation cost

of EVs from its current location to the CL. For EVs to

exchange energy with CL, they would have to transport the

energy to the CL location. The auction is conducted few

hours before the actual delivery, like the day-ahead energy

market where auction takes place a day in advance. This

allows sufficient travel time for EVs. Energy is consumed

during transportation and this needs to be accounted for.

The energy consumption of driving EV is influenced by

several factors such as road topology, driving patterns, traffic,

weather conditions, etc [28]. These factors would determine

the consumed SoC, transportation cost and EV arrival time

and need to be studied towards practical implementation.

In this article, we assume an average energy consumption

rate of 0.2 kWh per kilometre distance driven. Hence, the

required energy for transportation of the ith EV vtransi can

Algorithm 1 Winner and Price Determination

Input: N , bi = (di, µi, v
min

i , vmax

i ), V , αi = 0
Output: αi = 1, vi, ρi

Winner Determination

1: Make a list of CL and EVs within the Area.

2: Calculate the required energy for transportation of EVs

vtrans

i = ecrdi.

3: Sort µi in non-descending order.

4: Initialise: CV = 0

5: while list of CL to EVs is not empty do

6: Find EV-CL association with the least energy cost in (7).

7: if vmin

i ≤ vi + vtrans

i ≤ vmax

i and CV + vi = V then

8: Update αi = 1 and CV = CV + vi
9: else

10: break

11: end if

12: end while

Price Determination

13: Calculate the energy cost without the ith EV Ck.

14: Calculate the energy cost with the ith EV C∗

k .

15: Compute payment ρi for the ith EV based on (8).

16: return αi, vi, ρi

be expressed as the average consumption rate multiplied by

the distance between the ith EV and CL, i.e., vtransi = ecrdi.
The winner determination problem can be formulated as

follows

min
αi,vi

N∑

i=1

µi(vi + vtransi )αi (7)

Subject to

N∑

i=1

viαi = V (7a)

vmin
i ≤ vi + vtransi ≤ vmax

i (7b)

Constraint (7a) ensures the energy from auction winners vi
equals the CL energy demand V . Constraint (7b) ensures that

the requested energy is within the limits of the ith EV.

B. PRICE DETERMINATION

In VCG mechanism, we determine the payment of each EV

based on the harm it causes to other participants. From the

winner determination stage, the energy cost of the ith EV

is represented by Ci, which is the cost of per kWh energy

multiplied by the requested energy (Ci = µi(vi + vtransi )).
The payment made to the ith EV can be calculated as

ρi = min
∑

k ̸=i

Ck

︸ ︷︷ ︸
without ith EV

−
∑

k ̸=i

C∗
k

︸ ︷︷ ︸
with ith EV

. (8)

In (8) k serves as an iterative factor which iterates through

all the values excluding the ith EV, ∗ is the set of winning

bidders chosen in (7). The left part of the equation represents
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the total energy cost for other participants when the ith
EV is not participating, while the right part represents the

total energy cost for the other participants when the ith EV

participates.

The utility of each EV is the difference between its valua-

tion and final payment (after price determination). The utility

of the ith EV is calculated as follows

Ui = ρi − Ci. (9)

While the winning bidders from the winner determination

stage are guaranteed to make profit, the utility of the losing

bidders is 0, i.e., Ui > 0 if αi = 1 and Ui = 0 if αi = 0.

Market manipulation can lead to a lack of trust in the

fairness of the market. VCG mechanism elicits truthful rev-

elation. EV Bidders cannot improve their utility by either

bidding lower or higher than their true valuation, as utility

is determined by the bids of others. By preventing market

manipulations, VCG mechanism ensures fairity, thereby mo-

tivating more EVs to participate in EVaaS.

C. AUCTION ALGORITHM

We develop an algorithm that finds the successful bidders and

corresponding payment to the auction winners. The proposed

strategy is effective in selecting EVs with minimum energy

cost. The algorithm starts with computing N EVs and their

four-tuple bids bi. The CL energy demand V is also obtained.

The transportation distance of the ith EV di is used to

compute the required energy for transportation of the ith EV

vtransi = ecrdi. The EVs are sorted in non-decreasing order

of their energy unit cost, i.e., µ1 ≤ µ2 ≤ ... ≤ µN . A counter

for energy demand of CL CV is initialized. Out of the list

of EV to CL links, find EV-CL association with the lowest

energy cost. The tradeable energy of the ith EV is verified

such that vmin
i ≤ vi + vtransi ≤ vmax

i . The energy balance

constraint (7a) is then verified such that CV + vi = V . If all

requirements are satisfied, the decision variable is modified

as α = 1 and the counter is updated accordingly. The process

repeats until the list ends or the resources ends that can be

tracked using the counter. VCG payment rule is applied to

determine the payment of the ith EV. The energy cost without

the ith EV Ck and with the ith EV C∗
k is derived. This is then

used to compute the payment to the auction winners ρi. The

procedure is summarized in Algorithm 1.

As mentioned earlier in section II, bidder satisfaction is a

key design feature of the proposed auction mechanism. By

applying constraint (7b) in the algorithm, winning bidders

(EV owners) do not experience any inconveniences beyond

their acceptable levels. In other words, this constraint protects

bidders from unfair trade conditions, which is common in

centralized models where the aggregator finds the optimal

solution at the expense of participating EVs.

IV. ENERGY EXCHANGE SCHEDULING FOR EV-CL

ASSOCIATION

A. EV MODELING

EV battery capacity indicates the maximum amount of en-

ergy that can be extracted from the battery in a single dis-

charge. We define the SoC of the EV battery as the ratio of

the available energy to the battery capacity. The SoC of the

ith EV can be mathematically represented as

SoCi =
vavaili

vcapi

, (10)

where vavaili is the available energy of the ith EV and vcapi is

the battery capacity of the ith EV. To prolong the life of the

EV battery and protect it from degradation, deep discharge

should be avoided. After discharging, the remaining energy

should cover the energy requirements for battery protection

and EV transportation. The maximum tradeable energy vmax
i

included in the bid ensures that the battery is protected from

discharging beyond its user-specified minimum SoC. Based

on the accepted amount of energy vi derived from Algorithm

1, the minimum SoC of the ith EV can be mathematically

represented as

SoCmin
i =

vavaili − (vi + vtransi )

vcapi

. (11)

B. CL MODELING

A load profile is a representation of the energy usage of a

consumer, showing the demand variation over a period of

time. The load profile of the CL is essential to determining

the discharging power of EVs at each time slot. The load

behaviour is influenced by several factors such as time, day,

weather condition, season, economic factors and random

effect. The CL power demand can be forecasted using tech-

niques such as regression method, time-series method, fuzzy

logic, neutral networks and similar day approach [29], [30].

In this article, we adopt the similar day approach to estimate

the CL power demand at each time slot by averaging the

power demand of the same time slot from historical data with

similar characteristics (e.g., day of week, weather, etc.). The

estimated CL power demand can be expressed as

Dt =
1

M

M∑

m=1

D̂m,t +∆D, (12)

∆D = D̂t − D̃t, (13)

where M is the number of data points selected, Dm,t is the

measurement obtained in the mth similar day at time slot t,
∆D is the bias caused by the forecasting errors, D̂t is the

actual observed CL power demand at time slot t and D̃t is

the forecasted CL power demand at time slot t.
We can calculate the CL energy demand as the sum of

the CL power demand over a time period, where the total

time period T is divided into time slots such that the interval

length is given by ∆t = 1 h. The CL energy demand can be

mathematically represented as
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V =
T∑

t=1

Dt. (14)

C. EV DISCHARGING SCHEDULING

We consider the discharging schedule of the auction winners

αi derived in (7). Since the auction takes place few hours

in advance, we assume the farthest EV will arrive at the

CL location, plug in and be available ahead of the discharg-

ing schedule. The scheduling for discharging of EVs is an

operating cost minimization problem to determine the best

schedule for discharging EVs to supply power to CL at each

time slot. Let T indicate the total scheduling intervals, while

t defines the value of each parameter or variable at any time

instant. We can calculate the operating cost as the sum of the

energy, transportation and battery degradation costs. The EV

discharging scheduling problem can be formulated as follows

min
Pi

N∑

i=1

T∑

t=1

ρiPi,t +

N∑

i=1

ρiv
trans
i +

N∑

i=1

T∑

t=1

bdiPi,t (15)

Subject to

N∑

i=1

Pi,t = Dt (15a)

Pmin
i ≤ Pi,t ≤ Pmax

i (15b)

SoCi,t = SoCi,t−1 −
Pi,t/η

dis ×∆t

vcapi

(15c)

SoCmin
i ≤ SoCi,t ≤ SoCmax

i (15d)

The first term of (15) represents the energy cost, the second

term represents the transportation cost, and the third term

represents the battery degradation cost. Constraint (15a) is

the power balance equation which ensures that power from

discharging EVs at time slot t equals the CL power demand

Dt at time slot t. We assume that the associated EVs have

much more discharging power than the CL power demand.

Constraint (15b) ensures that the discharging power at time

slot t is within the limits of the ith EV, where Pmin
i and Pmax

i

are the minimum and maximum discharging power of the ith
EV, respectively. Constraint (15c) indicates the SoC of the ith
EV at time slot t, where ηdis is the discharging efficiency and

∆t is the length of a single time interval. Constraint (15d)

ensures that the SoC at time slot t is within the limits of

the ith EV for the protection of battery, where SoCmin
i and

SoCmax
i are the minimum and maximum SoC of the ith EV

battery, respectively. Considering the objective function and

constraints in problem (15) are linear, the problem is solved

using off-the-shelf solvers like CPLEX.

The operating cost in (15) is formulated for markets that

pay for energy, transportation and compensation for battery

loss, and the revenue is the sum these payments. For V2G

reserves, revenue is derived from an additional source called

capacity payment. This payment is for the maximum capacity

contracted for the time duration, whether EVs discharge

power or not [27]. The capacity payment is simply the

opportunity cost and time cost for EV owners to abandon

the use of EVs and participate in the V2G reserve [31]. The

capacity payment can be express as

ρc =

T∑

t=1

pcap · P avail
t , (16)

where pcap denotes the capacity price in British Pounds (£)

per kW-h, P avail
t denotes the contracted capacity available in

kW at time slot t and T indicates the time the EV is plugged-

in and available, in hours. It is to be noted that the capacity

price unit, £/kW-h, means £ per kW capacity available during

1 h (whether used or not), and should not be confused with

energy price unit, £/kWh.

We can calculate the operating cost of V2G reserves as

the sum of the capacity price, energy cost, transportation cost

and battery degradation costs. The discharging scheduling for

V2G reserves can be formulated as follows

min
Pi

N∑

i=1

T∑

t=1

pcapi P avail
i,t +

N∑

i=1

T∑

t=1

ρiPi,t+
N∑

i=1

ρiv
trans
i

+

N∑

i=1

T∑

t=1

bdiPi,t (17)

subject to: (15a) - (15d).

The capacity payment for V2G reserves is paid only if

associated EVs are plugged into the charge points of the CL

during the scheduled period.

V. NUMERICAL RESULTS AND DISCUSSIONS

We consider a microgrid where the CL is seeking to buy

energy from EVs with surplus energy. The number of partic-

ipating EVs is Poisson distributed with an average density λ
[32]. Based on the retail price of the Nissan Leaf replacement

battery pack [33], battery cost of £5,000 is assigned to EVs.

We consider an EV battery with 2,000 charge cycles at 100%

DOD. Energy demand of the CL is uniformly chosen from

[40 220] kWh. Energy unit cost of EVs is randomly dis-

tributed over [0.07 0.35] £/kWh. Minimum available energy

in the range of [8 12] kWh and maximum available energy in

the range of [18 25] kWh are randomly generated for EVs.

The data of the EVs and CL and necessary parameters are

passed to the algorithms to find the successful bidders and

their corresponding payment, and then schedule discharg-

ing EVs accordingly. All simulations were performed using

MATLAB.

Fig. 2 shows the data set description for the similar day

profile of the CL used in the study. The CL model introduced

earlier in section IV is used to estimate the CL demand and

analyse the proposed energy trading approach. The estimated

CL power demand at each time slot is based on similar day

approach. The forecasted CL power demand is the average

power demand of the same time slot from historical data with
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FIGURE 3. Discharging schedule of EVs to fulfil CL demand.

similar characteristics. We considered the following char-

acteristics: day of the week, weather, maximum/minimum

temperature. We selected the three most similar days and

used the average to forecast the CL power demand of 24

scheduling intervals.

Fig. 3 shows the discharging schedule for EV-CL associ-

ation. This illustrates a real-world scenario where the base

load demand is met by regular supply from the grid or on-site

generation and supply from V2G reserve is required to meet

peak demand. Based on the forecasted CL power demand,

the discharging power of associated EVs are scheduled to

satisfy the hourly demand of the CL. Fig. 4 shows the effect

of the proposed battery degradation compensation paid to EV

owners. It is observed that in every scenario without compen-

sation EV owners make a significant loss. Without the battery

degradation compensation, EV owners will always incur

financial losses during EV-CL interaction, regardless of the

incentives received from the pricing scheme. This may not

motivate the EV owners to participate in EVaaS. By adding

the monetary equivalent of battery losses to the charge cost,
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FIGURE 4. Compensation for battery degradation during EV-CL interaction.

battery related liabilities are compensated. This demonstrates

that in the absence of battery degradation compensation,

EVaaS participation is not profitable for EV owners.

We evaluate the performances of the proposed allocation

scheme (7) with the centralized scheme in [34] and single

bidding mechanism in [17]. In order to minimize the en-

ergy cost for the CL, [34] and [17] subject EVs to sell an

undesirable amount of energy. The single bidding approach

formulated in [17] is similar to our proposed allocation

scheme. However, our allocation scheme is formulated as a

MINLP problem where the tradeable energy is a continuous

variable bounded by minimum and maximum discharging

energy limits for each EV, while [17] considers only a binary

variable for their integer linear programming (ILP) problem.

We consider [17] as our reference scheme and use it to

study the performance of our proposed allocation scheme.

Different scenarios were considered in Fig. 5 with respect

to CL demand, and for each scenario, the total bids of the

auction winners are computed under the different allocation

schemes. Our proposed allocation scheme outperforms the

reference scheme in every scenario. As expected, the central-

ized scheme would typically give a better performance than a

distributed scheme; however, our proposed allocation scheme

follows the centralized scheme closely in each scenario and

ensures auction winners sell a reasonable amount of energy.

Fig. 6 shows the bids and final payment made to EVs for

different densities of EV distribution. For a CL demand of

60 kWh, λ is uniformly chosen from [0.1 0.9]. Payments

obtained for λ in [0.1 0.3], [0.4 0.6] and [0.7 0.9] are

averaged to form the low, medium and high EV distribution

densities, respectively. The low density represents areas with

a low number of EVs (e.g., rural areas), the high density

represents areas with a high number of EVs (e.g., urban

areas) and the medium density represents areas in-between

the rural and urban areas. It is observed that the total payment

to the auction winners decreases with an increase in EV

distribution density. This can be attributed to the number of

EVs participating in the auction. When there are less EVs, the
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cost gap between progressive lower bids is higher compared

to a scenario that has more EVs. When more EVs join the

auction, the cost for the CL decreases due to the increased

competition between participating EVs. This demonstrates

that EVaaS will benefit the EVs more in rural areas, while

the CL will save cost in urban areas.

To evaluate the performance on bidder satisfaction, we

introduce the bidder satisfaction ratio metric. The bidder

satisfaction ratio is defined as the ratio of the amount of

energy that the bidder sells in the auction to their maximum

tradeable energy. We assume that all bidders want to sell their

maximum tradeable energy; thus, we average the satisfaction

ratio of successful bidders that are not able to sell their

maximum tradeable energy. Fig. 7 shows the bidder satisfac-

tion ratio across the different EV distribution densities with

respect to CL demand, where 0.5 is the satisfactory level.

It can be observed that the bidder satisfaction ratio in our

proposed scheme is above satisfactory level and outperforms

the reference scheme in every scenario. While the auction in

the reference scheme [17] aims at the minimization of energy
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FIGURE 8. Performance on truthfulness.

cost of the CL. This means that the auction in the reference

scheme is carried out at the expense of the bidders, which

is responsible for the bidder satisfaction ratio falling below

satisfactory level.

We evaluate the performance of the proposed VCG-based

auction for EV-CL association on truthfulness and individual

rationality. Fig. 8 shows the performance on guaranteeing

the truthfulness of bidders. We study the changes in utility

under conditions of a random EV submitting untruthful bids

and its private valuation. When the EV increases its bid to

£0.29/kWh, its loses the auction and its utility is 0. This

shows that the EV cannot improve its utility by misrepresent-

ing its valuation, thus protecting the fairness and efficiency

of the trade.

Fig. 9 shows the performance on guaranteeing individual

rationality of bidders. For a CL of 200 kWh, the submitted

bids of the auction winners, as well as their corresponding

payments, are presented. It can be observed that the final

payments to auction winners is no less than their bids,

which means every auction winner has a nonnegative utility.
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Overall, the proposed mechanism verifies the theoretical

analysis on truthfulness and individual rationality and better

incentivizes participating EVs.

VI. CONCLUSION

This paper has presented an incentivized energy trading

approach to analyse the interaction between EVs and CL

in a microgrid. In addition to the VCG payment to auction

winners, the approach compensates EV owners for losses

incurred during EV-CL interaction such as distance traveled,

battery degradation and V2G reserve capacity. By allowing

bidders enforce their energy trading requirements, EVs are

protected from unfair trade conditions, which is common in

centralized models where the aggregator finds the optimal

solution at the expense of participating EVs. The energy trad-

ing model was applied in a scenario where supply from EVs

is required to meet peak demand. Simulation results reveal

that our proposed approach achieves a performance which is

comparable to those given by reference schemes, guarantees

bidder satisfaction and validates theoretical analysis on eco-

nomic properties of truthfulness and individual rationality. In

future work, we will consider a double auction environment

where multiple EVs and multiple CLs compete to sell and

buy energy, respectively. This two-sided market allows CLs

to submit their bids (buy orders) and EVs to submit their asks

(sell orders) to the auctioneer. The auctioneer then matches

the orders to find the most efficient allocation and decides

who trades and at what prices.
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