
This is a repository copy of Higher-power harmonic maps and sections.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/196725/

Version: Published Version

Article:

Wood, Chris orcid.org/0000-0003-3699-9218 and Ramachandran, Anand (2022) Higher-
power harmonic maps and sections. Annals of Global Analysis and Geometry. 6. ISSN 
1572-9060 

https://doi.org/10.1007/s10455-022-09875-9

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Annals of Global Analysis and Geometry (2023) 63:6

https://doi.org/10.1007/s10455-022-09875-9

Higher-power harmonic maps and sections

A. Ramachandran
1
· C. M. Wood

1

Received: 18 April 2022 / Accepted: 3 October 2022 / Published online: 7 November 2022
© The Author(s) 2022

Abstract

The variational theory of higher-power energy is developed for mappings between Rieman-

nian manifolds, and more generally sections of submersions of Riemannian manifolds, and

applied to sections of Riemannian vector bundles and their sphere subbundles. A complete

classification is then given for left-invariant vector fields on three-dimensional unimodular

Lie groups equipped with an arbitrary left-invariant Riemannian metric.
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1 Introduction

In their definitive paper on harmonic mappings of Riemannian manifolds [6], Eells and

Sampson remark: “Although the present work is devoted primarily to the (energy) functional

E and its extremals, there will be the indications that we will want ultimately to consider

other types of energy of maps”. Interestingly, and to the best of our knowledge unbeknown

to the authors of [6], a couple of years earlier Skyrme had used one of those “other types

of energy” to create a mathematically tractable model for the nucleon [25]. The ‘skyrmion’

model has since gained considerable popularity in the physics and mathematical physics

communities; see for example [8, 12, 26–28, 30, 31, 41]. However, despite this, and intense

interest in the theory of harmonic maps, so far there has been little work on establishing a

general theory of the “other types of energy” mentioned in [6]. In this paper, we will make

some moves towards such a theory.
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Let ϕ : (M, g) → (N , h) be a smooth mapping of Riemannian manifolds, with dim M =

m. Viewing the 2-tensors g and ϕ∗h as morphisms T M → T ∗M , the (Dirichlet) energy

of ϕ, which we refer to as its “standard energy”, is obtained by integrating (globally, or

locally, depending on whether M is compact) the trace of the tensor field α = g−1ϕ∗h,

sometimes known as the Cauchy–Green tensor [26]. The higher-power energies of ϕ are a

generalisation of the standard energy obtained by integrating the higher-degree elementary

invariants of α; the terminology reflects that these correspond to higher exterior powers of dϕ.

Geometrically, therefore, they measure the extent to which ϕ deforms higher-dimensional

infinitesimal volume. In particular, the highest-power energy measures the deformation by ϕ

of full volume, and although different to the volume functional per se it has the same critical

points (Remark 2.4), the relationship being analogous to that between energy and length

when m = 1. Furthermore, higher-power energies generalise to higher dimensions some of

well-known properties of standard energy when m = 2, such as conformal invariance and

area majorisation (see Propositions 2.5 and 2.7, Corollary 2.8, and Example 2.9).

More generally, let π : (P, k) → (M, g) be a smooth submersion of Riemannian mani-

folds, and let σ : M → P be a smooth section. At the outset, the Riemannian metrics g, k

are not assumed to have any compatibility properties; for example, π is not necessarily a

Riemannian submersion [19], or semi-conformal as in the theory of harmonic morphisms [7].

Nor is π assumed to be a fibre bundle, or even locally trivial, and there are no assumptions

on the extrinsic geometry of its fibres. Nevertheless, it is possible to define higher-power

vertical energies, as measurements of the total twisting of σ , in the sense of its deviation

from horizontality. The details of these constructions are presented in Sect. 2, where we also

introduce the families of Newton tensors associated to ϕ and σ ; these play an important rôle

in the subsequent variational theory.

In Sect. 3, we derive the Euler–Lagrange equations for the higher-power energy func-

tionals, and thereby characterise their critical points, which we call higher-power harmonic

maps. More precisely, for any integer r = 1, . . . , m we refer to the functional obtained by

integrating the r -th elementary invariant of α as the r -th higher-power energy, and its crit-

ical points as r -power harmonic maps, or more briefly r -harmonic maps. (See the Note on

nomenclature at the end of this Section.) The Euler–Lagrange operator for this variational

problem is denoted by τr (ϕ), and referred to as the r -th higher-power tension field of ϕ,

or more briefly its r -th tension field (Definition 2.10). In contrast to [6], in this paper we

make no attempt to explore the analytic properties of τr (ϕ) (such as existence of solutions,

unique continuation, etc.), and simply remark that for r > 1 it is a second-order quasi-linear

semi-elliptic partial differential operator.

The r -harmonic map equations (Theorem 2.12) emerge as a corollary of more general

computations for the first variation of the r -th higher-power vertical energy functional with

respect to variations through sections (Theorems 3.3 and 3.6). The Euler–Lagrange equations

for this constrained but more general variational problem characterise what we choose to

call r -power harmonic sections, or more briefly r -harmonic sections. Our derivation of

these equations is analogous to the coordinate-free approach for harmonic maps used in

[4], albeit more subtle. Specifically, the analogue in this context of the second fundamental

form (of a mapping) is no longer a symmetric tensor, its asymmetry being a manifestation

of the curvature of the submersion π (Definition 3.1). This notion of curvature, although

somewhat unorthodox at this level of generality, encodes essentially the same geometric and

topological information as the second fundamental form ofπ , ifπ happens to be a Riemannian

submersion (see Proposition 3.5, and compare with Lemma 3.11). It also coincides with the

standard definition of curvature when, for example, π is a vector bundle with linear connection

(Remarks 4.2). Its appearance in the r -harmonic section equations (Theorem 3.6) expresses
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the interaction of the section with the extrinsic geometry of the fibres of π , and means that the

equations simplify if π is flat, i.e. its curvature vanishes. Whilst this is an unduly restrictive

assumption to make (see Proposition 3.5 and Theorem 5.6), the equations simplify in the

same way under the far less onerous condition that π has totally geodesic (t.g.) fibres; for

example, if π is a fibre bundle with Kaluza–Klein geometry (Remarks 3.7). The simplified

Euler–Lagrange operator is called the r -th vertical tension field (Definition 2.14).

It is also of interest, although perhaps not quite so natural, to study sections that are r -

harmonic maps. Since these are critical points of an unconstrained variational problem, the

Euler–Lagrange operator, which is now the r -th tension field τr (σ ), acquires a horizontal

component, which we analyse when π is a Riemannian submersion with t.g. fibres (Theorem

3.14). Interestingly, the curvature of π also appears here. This time a simplification occurs

when σ is a flat section (Definition 3.1), a condition that generalises both the flatness of π

and the horizontality of σ (Remarks 3.2), although it is still somewhat restrictive (Theorem

5.6). Under the same hypotheses (viz. π a Riemannian submersion with t.g. fibres) the

vertical component of τr (σ ) fragments into a linear combination of the vertical tension fields

of r -th and lower power (Theorem 3.10), prompting the definition of a twisted r-skyrmion

(Definition 3.9). It is notable that both the horizontal and vertical components of τr (σ ) involve

the divergence of a Newton tensor. In contrast to the Newton tensors associated to the shape

operator of an isometric immersion or the covariant Hessian of a smooth function [22–24],

in this case the Newton tensors are not in general solenoidal (i.e. divergence-free) if r ≥ 2

(see for example Theorem 5.10 and Lemma 5.18). Indeed, for mappings, the divergence of

the (r − 1)-st Newton tensor is the principle obstruction to a totally geodesic map being

r -harmonic when r ≥ 2 (Remark 2.18). We conclude Sect. 3 with a characterisation of r -

harmonicity for flat sections, and in particular a synopsis of the horizontal case (Theorem

3.15).

In Sect. 4, the results of Sect. 3 are interpreted for Riemannian vector bundles, equipped

with their natural (Sasaki) geometry. We prove two rigidity results: for bundles with compact

base (Theorem 4.5), and for sections of constant length (Corollary 4.15). These generalise

various results that are familiar when r = 1 [13, 18, 37], where ‘rigid’ sections are those that

are parallel; for higher powers r , the ‘rigid’ sections are those that are r -parallel (Definition

4.4), a constraint that becomes increasingly ‘flexible’ as r increases (see for example Theo-

rem 5.8). Nevertheless, rigidity is still a problem. For a section of constant length, this can be

side stepped by working within the corresponding sphere subbundle, a proven methodology

when r = 1 [9]. This further reduces the class of variations, which intuitively increases

the likelihood of critical points. In this context, higher-power energies may be regarded as

measurements of ‘total bending’ [36]. The Euler–Lagrange equations for this restrained vari-

ational problem are derived in Theorem 4.13. When ‘untwisted’ they yield a characterisation

of r -harmonic maps into spheres (Corollary 4.17), a first step towards generalising the classic

work of R. T. Smith [29]. We illustrate this by showing that the Hopf map is a solution of the

2-power harmonic map equations for mappings S3 → S2 (Example 4.19).

The primary example of a Riemannian vector bundle is of course the tangent bundle of

a Riemannian manifold, equipped with the Levi–Civita connection. In Sect. 5, we exam-

ine in detail the various facets of the general theory for an invariant vector field σ on a

3-dimensional Lie group G endowed with a left-invariant metric. For simplicity we assume

that G is unimodular. (This includes all Lie groups that are either compact, nilpotent, or

in this dimension, simple.) The geometric classification of such G was achieved by Mil-

nor in [16], and we present it in Sect. 5 as ‘Milnor’s list’. Milnor’s techniques effectively

reduce computations to classical vector algebra, and using them simplifies our calculations

considerably. To maintain clarity, we adopt a coordinate-free approach as far as possible,
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aiming for both algebraic and geometric cogency. Assuming without loss of generality that

σ has unit length (Corollary 4.16), we refer to r -harmonic sections of the unit tangent bundle

U G → G as r -harmonic directions. Then, denoting the set of invariant r -harmonic direc-

tions by Hr , we obtain a highly geometric classification of H2 (Theorem 5.12), governed

by the absolute values of the principal Ricci curvatures. We also recover the classification of

H1 obtained in [10], which we recast in a more geometric light (Theorem 5.13). En route we

calculate the first vertical Newton tensor of σ , and observe precisely when it is solenoidal

(Theorem 5.10). We identify the subsets Zr ⊆ Hr of absolute minimisers of r -th vertical

energy, i.e. the r -parallel invariant vector fields. By rigidity, these are precisely the invariant

r -harmonic sections of the full tangent bundle T G → G (Theorem 5.8). We also observe

that Hr = Hr−1 ∪Zr for r = 2, 3 (Corollary 5.15), a feature that we suspect is rather specific

to this example. A comprehensive classification, based primarily on the singular values of

the Ricci tensor, is then presented (Theorem 5.16), from which we explicitly determine Hr

and Zr for each geometry on Milnor’s list. We then discover which σ are twisted skyrmions

(Theorem 5.17), and use this to classify the invariant unit vector fields that are r -harmonic

maps G → U G for r = 1, 2, 3 (Theorem 5.21). When r = 3 these are precisely the invariant

minimal immersions, and we recover results of [33].

This paper is a development of research originally carried out in [21, 37]. All manifolds,

mappings, bundles, metrics etc. are assumed smooth (C ∞), and for notational simplicity all

connections are denoted by (undecorated) ∇, with one notable exception (which is ∇v). The

notation X(M) is used for the space of (smooth) vector fields on a (smooth) manifold M .

Note on nomenclature

Phrases such as “r -energy”, “r -harmonic” and “r -th tension field”, and notation such as Er (ϕ)

and τr (ϕ), are used in a number of different generalisations of the standard energy functional

and its associated harmonic maps; for example [5, Chapter 3], [1, 3, 17]. Whilst this is unfor-

tunate, it is perhaps inevitable, given the nature of these generalisations. The nomenclature

“σr -energy” and “σr -harmonic” has been suggested for the theory under discussion here (to

indicate the elementary symmetric polynomials); however, this becomes problematic when

applied to sections rather than just mappings. Given the technical complexity of the scenarios

in which we will be working, we have opted for nomenclature that is as simple as possible,

and which, needless to say, is consistent within the confines of the paper. Whilst there is

admittedly a risk of ambiguity, we will not be referencing any of these other theories.

2 Higher-power energy and Newton tensors

In this section, we describe the basic algebraic setup, and its use to define the higher-power

energies of mappings and the higher-power vertical energies of sections, along with their

associated Newton tensors and tension fields. This is mostly descriptive. However, there are

also results concerning the conformal invariance of higher-power energy (Proposition 2.5)

and its relation to volume (Proposition 2.7).

2.1 Elementary invariants and Newton polynomials

We begin with a brief description of the essential algebraic background.
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Let A be a m × m (real) matrix, with characteristic polynomial:

χ A(λ) = det(A − λ1) =

m
∑

k=0

(−1)kεm−k(A)λk .

Thus:

ε0(A) = 1, ε1(A) = trace(A), εm(A) = det(A),

and in general the r -th elementary invariant εr (A) is a GLm-invariant homogeneous poly-

nomial of degree r , obtained by summing the leading r × r minors of A. The elementary

invariants may be characterised recursively, for example:

ε2(A) =
∑

i< j (Ai i A j j − Ai j A j i ) = 1
2

∑

i, j (Ai i A j j − Ai j A j i )

= 1
2
(trace(A)2 − trace(A2)), (2.1)

and in general by the Newton–Girard identity [35, p. 81]:

r εr (A) =

r
∑

k=1

(−1)k−1εr−k(A) ε1(Ak). (2.2)

The r -th Newton polynomial of A is the following interpolant of the characteristic poly-

nomial:

χr (λ) = χ A,r (λ) =

r
∑

k=0

(−1)kεr−k(A)λk . (2.3)

Thus:

χ0(λ) = 1, χ1(λ) = trace(A) − λ,

and in general χr (λ) may be characterised by the recurrence relation:

χr (λ) = εr (A) − λχr−1(λ). (2.4)

The GLm-invariance of elementary invariants and Newton polynomials allows us to define

εr (α) and χα,r (λ) for any linear endomorphism α of an m-dimensional (real) vector space

V . Evaluation of the Newton polynomials (of α) at α then yields an associated family of

Newton endomorphisms χr (α) : V → V where:

χr (α) = χα,r (α).

In particular:

χ0(α) = 1V , χ1(α) = trace(α)1V − α, (2.5)

and χm(α) = 0 by the Cayley–Hamilton Theorem. For future use, we record the following

additional identities.

Lemma 2.1 For all integers r = 1, . . . , m we have:

i) εr (1 + α) = εr (α) + (m − r + 1)εr−1(α) + · · · +
(

m−1
r−1

)

ε1(α) +
(

m
r

)

.

ii) χr (1 + α) = χr (α) + (m − r)χr−1(α) + · · · +
(

m−2
r−1

)

χ1(α) +
(

m−1
r

)

1V .

iii) χcα,r (cα) = cr χα,r (α), for all c ∈ R.
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Proof (i) follows by expanding the characteristic polynomial χ1+A(λ) = χ A(λ − 1) and

inspecting coefficients, where A is any matrix representing α. Both (ii) and (iii) follow

inductively from (2.4), homogeneity of the elementary invariants being used to obtain (iii).

⊓⊔

We record two further useful properties of Newton endomorphisms, the first of which is

an immediate consequence of Newton’s identity (2.2).

Lemma 2.2 For all r = 1, . . . , m we have:

trace(α ◦ χr−1(α)) = r εr (α).

The second property concerns a differentiable 1-parameter family αt of endomorphisms of

V , with ‘variation vector’ βt = dαt/dt (another endomorphism). The elementary invariants

of αt are then differentiable R-valued functions (of t). Clearly:

d

dt
ε1(αt ) = trace(βt ) = trace(βt ◦ χ0(αt )),

and by (2.1):

d

dt
ε2(αt ) = trace(αt ) trace(βt ) − trace(βt ◦ αt ) = trace(βt ◦ χ1(αt )).

The following result describes the general situation.

Lemma 2.3 [22, Lem. A] For all r = 1, . . . , m we have:

d

dt
εr (αt ) = trace(βt ◦ χr−1(αt )).

2.2 Higher-power harmonic mappings of Riemannianmanifolds

Now let ϕ : (M, g) → (N , h) be a (smooth) mapping of (smooth) Riemannian manifolds,

with dim M = m. The Cauchy–Green tensor of ϕ is the self-adjoint (1, 1)-tensor α on M

metrically dual to ϕ∗h, which is characterised by:

g(α(X), Y ) = ϕ∗h(X , Y ), (2.6)

for all X , Y ∈ X(M). The elementary invariants of α, computed pointwise on tangent spaces,

define m smooth R-valued functions on M , which, being dependent primarily on ϕ (assuming

that g and h are fixed) will be denoted by εr (ϕ) : M → R for all r = 1, . . . , m. Likewise,

the Newton endomorphisms of α define a family of self-adjoint (1, 1)-tensors on M , which

we denote by νr (ϕ) and refer to as the Newton tensors of ϕ.

If {ei } is a local orthonormal tangent frame of (M, g), then:

ε1(ϕ) =
∑

i g(α(ei ), ei ) =
∑

i h(dϕ(ei ), dϕ(ei )) = ‖dϕ‖2.

Furthermore by (2.1) and (2.6):

ε2(ϕ) = 1
2

∑

i, j

(

|dϕ(ei )|
2|dϕ(e j )|

2 − h(dϕ(ei ), dϕ(e j ))
2
)

= 1
2

∑

i, j |dϕ(ei ) ∧ dϕ(e j )|
2

=
∑

i< j |(dϕ ∧ dϕ)(ei ∧ e j )|
2

= ‖dϕ ∧ dϕ‖2.
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In general, it follows from Newton’s identity (2.2) that:

εr (ϕ) = ‖(dϕ)r‖2, (2.7)

where (dϕ)r denotes the r -th exterior power:

(dϕ)r = dϕ ∧ · · · ∧ dϕ,

viewed as an r -form on M with values in ∧r (ϕ−1T N ), with ϕ−1T N → M the pullback

bundle. Thus, εr (ϕ) may be interpreted geometrically as the average infinitesimal distortion

by ϕ of squared r -volume, with εr (ϕ)x = 0 precisely when rank dϕx < r .

The observation that 1
2
ε1(ϕ) is the standard (Dirichlet) energy density of ϕ suggests the

following definition of the r -th higher-power energy of ϕ, or more concisely the r -th energy:

Er (ϕ) =
1

2

∫

M

εr (ϕ) vol(g),

for all integers r = 1, . . . , m, assuming for convenience that M is compact. Then Er is non-

negative, and its zeroes are precisely the mappings ϕ with rank ϕ < r everywhere. Critical

points of Er will be called r -power harmonic maps, or more concisely r -harmonic maps.

Remarks 2.4 (1) In the non-compact case, we proceed (as usual) by considering local r -power

energies:

Er (ϕ; U ) =
1

2

∫

U

εr (ϕ) vol(g),

for all relatively compact open subsets U ⊂ M , and requiring ϕ to be a critical point

with respect to all variations supported on U .

(2) Since εm(ϕ) is the square of the volume density v(ϕ), unless ϕ is an isometric immersion

Em(ϕ) is not the volume of ϕ. In particular, unlike the volume functional, Em depends

on both g and h. Nevertheless the two functionals have the same critical points, see for

example Theorem 5.21.

It has been known ab initio [6, p. 126] that when m = 2 the energy functional is

conformally invariant, that is, dependent only on the conformal structure of the domain.

Higher-power energies exhibit this invariance in higher (even) dimensions.

Proposition 2.5 If m = 2r then Er (ϕ) is conformally invariant. The converse holds provided

rank ϕ ≥ r somewhere.

Proof For clarity in this context, we write εr (ϕ) = εr (ϕ, g) and Er (ϕ) = Er (ϕ, g). If

ρ : M → R+ is a continuous function with ρ2 smooth, then by the homogeneity of the

elementary invariants we have:

εr (ϕ, ρ2g) = ρ−2rεr (ϕ, g).

Since the volume element transforms:

vol(ρ2g) = ρm vol(g),

it follows that:

Er (ϕ, ρ2g) − Er (ϕ, g) =
1

2

∫

M

(

ρm−2r − 1
)

εr (ϕ, g) vol(g), (2.8)

which vanishes if m = 2r . Conversely, if rank ϕ ≥ r somewhere then εr (ϕ, g) > 0 on an

open set, so if (2.8) vanishes for all ρ then certainly m − 2r = 0. ⊓⊔
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It is also well-known that when m = 2 the standard energy majorises area, with equality

precisely for mappings that are weakly conformal [6, p. 126], [14]. Again, higher-power

energies exhibit this in higher (even) dimensions, with the following generalised notion of

weak conformality.

Definition 2.6 A mapping ϕ is r -conformal if ϕ is a branched conformal immersion with

rank ϕ < r on the branch set; thus, 1-conformality is equivalent to weak conformality.

Proposition 2.7 If m = 2r , then εr (ϕ) ≥
(

m
r

)

v(ϕ), with equality precisely when ϕ is r-

conformal.

Proof Let {ei } be a local g-orthonormal tangent frame diagonalising α, and set ρi =

‖dϕ(ei )‖; the eigenvalues of α are therefore ρ 2
i . Then summing over all permutations of

1, . . . m gives:

0 ≤
∑

μ∈Sm

(ρμ(1) · · · ρμ(r) − ρμ(r+1) · · · ρμ(m))
2

= (r !)2
(

εr (ϕ) −
(

m
r

)

ρ1 · · · ρm

)

= (r !)2
(

εr (ϕ) −
(

m
r

)

v(ϕ)
)

.

If ϕ is r -conformal, then for all x ∈ M either ϕ∗h(x) = ρ(x)2g(x), in which case ρ1(x) =

· · · = ρm(x) = ρ(x), or rank dϕx < r , in which case at least r + 1 of the ρi (x) vanish. In

either case:

ρμ(1)(x) · · · ρμ(r)(x) − ρμ(r+1)(x) · · · ρμ(m)(x) = 0, (2.9)

for all μ ∈ Sm , hence εr (ϕ) =
(

m
r

)

v(ϕ). Conversely, given the system (2.9), if one of the

ρi (x) vanishes then so do at least r others, whereas if no ρi (x) vanishes then all are equal;

thus, ϕ is r -conformal. ⊓⊔

Corollary 2.8 Suppose m = 2r and ϕ : M → (N , h) is an r-conformal map of a compact

conformal manifold M. If ϕ is a local (resp. global) minimiser of volume, then ϕ is a local

(resp. global) minimum of Er with respect to any Riemannian metric g in the conformal class

of M; in particular, ϕ is an r-harmonic map.

Example 2.9 Let ϕ : M → (N , h) be a calibrated immersion of a compact 2r -manifold into

a calibrated Riemannian manifold. Then ϕ is a minimum of Er with respect to any metric on

M conformal to ϕ∗h.

The Newton tensors of ϕ may be used to define its higher-power tension fields, as follows.

Definition 2.10 For all r = 1, . . . , m the r -th tension field of ϕ is the following section of

ϕ−1T N :

τr (ϕ) = trace ∇(dϕ ◦ νr−1(ϕ))

=

m
∑

i=1

∇ei
(dϕ ◦ νr−1(ϕ))(ei ),

where {ei } is any local orthonormal tangent frame of (M, g).

Remark 2.11 Since ν0(ϕ) is the identity, we have:

τ1(ϕ) = trace ∇dϕ = τ(ϕ),

the usual tension field of harmonic map theory [6].
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The tension field is of course the Euler–Lagrange operator for the standard energy func-

tional [6], and the following result, which is in fact a corollary of the more general Theorem

3.3, shows that this relationship between tension and energy persists for higher powers.

Theorem 2.12 For all r = 1, . . . , m, a smooth mapping ϕ of Riemannian manifolds is an

r-power harmonic map if and only if τr (ϕ) = 0.

Proof See Corollary 3.4. ⊓⊔

2.3 Higher-power harmonic sections of submersions

We now generalise the situation further as follows. Let π : (P, k) → (M, g) be a smooth

submersion of Riemannian manifolds, with dim P = p. The tangent bundle of P then splits

as an orthogonal direct sum:

T P = V ⊕ H ,

where V = ker dπ , and we refer (as usual) to V (resp. H ) as the vertical (resp. horizontal)

distribution over P . Thus, every tangent vector A ∈ T P splits:

A = Av + Az, (2.10)

where Av ∈ V and Az ∈ H .

Suppose σ is a smooth section of π . The vertical derivative of σ is defined:

dvσ(X) = (dσ(X))v, (2.11)

for all X ∈ T M ; thus dvσ is a section of T ∗M ⊗ σ−1
V . The horizontal derivative d zσ is

defined similarly and is a section of T ∗M ⊗σ−1
H . The vertical energy of σ is then defined:

E
v(σ ) =

1

2

∫

M

‖dvσ‖2 vol(g).

The zeroes of Ev are precisely the horizontal sections, and stationary points of Ev with respect

to variations through sections are usually referred to as harmonic sections; see [38] et seq.

Taking α now to be the vertical Cauchy–Green tensor of σ :

g(α(X), Y ) = k(dvσ(X), dvσ(Y )), (2.12)

and denoting the elementary invariants of α by εv
r (σ ) : M → R, we define the r -th higher-

power vertical energy of σ for all r = 1, . . . , m by:

E
v
r (σ ) =

1

2

∫

M

εv
r (σ ) vol(g). (2.13)

For brevity, we will usually refer to (2.13) as the r -th vertical energy of σ .

Definition 2.13 A section is r -horizontal if the rank of its vertical derivative is everywhere

less than r .

The zeroes of E v
r are precisely the r -horizontal sections; some examples are given in

Theorem 5.8. It follows that E v
r is trivial for all r > p − m, which is the dimension of the

fibres of π . (Since r ≤ m this possibility can only arise if p < 2m; see also Corollary

4.15). Critical points of E v
r with respect to variations through sections will be called r -power

harmonic sections, or r -harmonic sections for short.
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The Newton endomorphisms of α once again define a family of self-adjoint (1, 1)-tensors

on M , which we call the vertical Newton tensors of σ and denote by νv
r (σ ). The higher-power

vertical tension fields of σ are then defined as follows.

Definition 2.14 For all r = 1, . . . , m the r -th vertical tension field of σ is the following

section of σ−1
V :

τ v
r (σ ) = trace ∇v(dvσ ◦ νv

r−1(σ ))

=

m
∑

i=1

∇v
ei

(dvσ ◦ νv
r−1(σ ))(ei ),

for any local orthonormal tangent frame {ei } of (M, g), where ∇v is the pullback of the linear

connection in the vector bundle V → P obtained by orthogonally projecting the Levi–Civita

connection of (P, k).

Since νv
0 (σ ) is the identity, we have:

τ v
1 (σ ) = trace ∇vdvσ = τ v(σ ),

which is the vertical tension field [39]. Its vanishing characterises harmonic sections in the

most commonly encountered situations (viz. fibre bundles with Kaluza–Klein geometry). The

harmonic section equations in their full generality (which we believe are not well-known)

emerge in Corollary 3.8.

Likewise, the higher-power vertical tension fields appear in the Euler–Lagrange equations

for higher-power harmonic sections, and give a complete characterisation in certain situations.

This will be fully described in Sect. 3.

We conclude Sect. 2 with some further technical observations about the higher-power

(vertical) tension fields.

Definitions 2.15 Let Q be a 2-tensor on M (possibly vector bundle-valued), and let T be a

self-adjoint (1, 1)-tensor. Then the T -twisted (metric) trace of Q is the following function

(or section):

trace T Q =
∑

i Q(ei , T ei ) =
∑

i Q(T ei , ei ).

The divergence of T is the following vector field:

div T = trace ∇T =
∑

i ∇ei
T (ei ).

An elementary calculation allows the higher-power vertical tension fields to be expressed

using a twisted trace, at the expense of the divergence of the Newton tensor, as follows.

Theorem 2.16 For all r = 1, . . . , m we have:

τ v
r (σ ) = traceν∇vdvσ + dvσ(divν),

where ν = νv
r−1(σ ).

A similar calculation may be applied to the higher-power tension fields of a mapping.

Alternatively, it may be derived as a corollary of Theorem 2.16, by taking σ to be the graph

of a mapping (see the proof of Corollary 3.4).
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Corollary 2.17 If ϕ : (M, g) → (N , h) is a smooth map, then for all r = 1, . . . , m we have:

τr (ϕ) = traceν∇dϕ + dϕ(divν),

where ν = νr−1(ϕ).

Remarks 2.18 (1) The Newton tensors of maps/sections are typically not solenoidal, see for

example Theorem 5.10 and Lemma 5.18.

(2) If ϕ is a totally geodesic map, then dϕ has constant rank [34], so K (ϕ) = ker dϕ is a

vector subbundle of T M . Then ϕ is an r -harmonic map precisely when divν is a section

of K (ϕ), where ν = νr−1(ϕ). Thus, divν is the obstruction modulo K (ϕ) for ϕ to be

r -harmonic. In particular, a harmonic map need not necessarily be r -harmonic if r ≥ 2.

3 Variational calculus of higher-power energy

We continue to work with sections σ of a submersion π : (P, k) → (M, g), our main aim

being to derive the Euler–Lagrange equations of the higher-power vertical energy functionals

(Theorems 3.3 and 3.6). From these, we also obtain the equations for higher-power harmonic

maps (Corollary 3.4). We also consider the possibility of sections being higher-power har-

monic maps (Theorem 3.10). This introduces twisted higher-power skyrmions (Definition

3.9) and invites a computation of the horizontal component of the higher-power tension fields

(Theorem 3.14). The general situation is complicated, but simplifies when the section is flat.

This includes the horizontal case and allows us to demonstrate that under favourable con-

ditions horizontal sections are indeed higher-power harmonic sections and maps (Theorem

3.15).

In all of this, an important computational and conceptual rôle is played by a generalised

notion of curvature (Definition 3.1 and Proposition 3.5), which we now introduce.

3.1 Curvature of a submersion

Consideration of the variation field of a 1-parameter family of sections of π leads to a natural

generalisation of the notion of curvature, for both π and its sections (Definition 3.1). This

will expedite our calculations, and provide additional geometric insight.

Let ϑv : T P → V and ϑ z : T P → H denote the orthogonal projection morphisms:

ϑv(A) = Av, ϑ z(A) = Az,

defined for all A ∈ T P . An exterior derivative dv and coderivative δv on the space of V -

valued differential forms on P are obtained from the connection ∇v in the bundle V → P ,

in the usual way.

Now let σt be a smooth 1-parameter variation of σ through sections, defined for all t in

some open interval I about 0 ∈ R, with σ0 = σ and associated homotopy:

� : M × I → N ; �(x, t) = σt (x).

Let Vt be the variation field:

Vt (x) =
∂�

∂t

∣

∣

∣

(x,t)
= d�(∂t (x, t)),

where ∂t is the unit vector field on M × I in the positive R-direction. Thus, Vt is a section of

the pullback bundle σ −1
t V → M . In particular, V = V0 is a section of σ−1

V . The vertical
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second fundamental form of � is the following �−1
V -valued 2-tensor on M × I :

∇vdv�(E, F) = ∇v
E (dv�(F)) − dv�(∇E F),

defined for all E, F ∈ X(M × I ), where the geometry of M × I is that of the Riemannian

product, and dv� is the vertical derivative; cf. equation (2.11). Unlike the second fundamental

form of a mapping, this is typically not symmetric; its asymmetry is measured by the exterior

derivative:

dvdv�(E, F) = ∇vdv�(E, F) − ∇vdv�(F, E). (3.1)

If ϑv is viewed as a V -valued 1-form on P , then:

dv� = ϑv ◦ d� = �∗ϑv,

hence:

dvdv� = �∗dvϑv . (3.2)

Definition 3.1 The curvature form � of π is the following V -valued 2-form on P:

� = dvϑv .

The curvature of a section σ of π is the pullback σ ∗�, which is a σ−1
V -valued 2-form on

M . The submersion π is flat if � = 0, and the section σ is flat if σ ∗� = 0. The curvature

3-tensor of π is the following 3-tensor on P:

θ(A, B)C = k(A,�(B, C)), (3.3)

defined for all A, B, C ∈ X(P).

Although the curvature 3-tensor is merely a repackaging of the curvature form, it is

occasionally useful to express the curvature of π in this way (for example, Theorem 3.3).

Remarks 3.2 1) If π is flat then clearly so are all its sections. For an interesting converse,

see Theorem 5.6.

2) Definition 3.1 agrees with standard terminology in the familiar setting of a vector bundle

with linear connection (see Remarks 4.2 (2) and 4.3).

3) The canonical example of a flat submersion is a Riemannian product, projected onto

either factor.

4) If π is a Riemannian submersion, then π is flat if and only if π is totally geodesic (see

Proposition 3.5 and Lemma 3.11).

5) Evaluating Eq. (3.2) at t = 0 shows that a section σ is flat precisely when its vertical

second fundamental form ∇vdvσ is symmetric; see also Remark 4.8 (2). Thus flatness

of sections generalises horizontality.

6) Further ramifications of flatness, both of a submersion and its sections, appear in Theo-

rems 3.3 and 3.14.

We will establish some essential technical properties of the curvature form in Section 3.3.
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3.2 Euler–Lagrange equations for sections of flat submersions

We obtain an interim expression for the first variation of higher-power vertical energy (The-

orem 3.3), which is nonetheless sufficient to derive the equations for higher-power harmonic

maps (Corollary 3.4).

For any vector field X on M , let X̄ denote its natural extension to M × I :

X̄(x, t) = dit (X(x)),

where it is the inclusion:

it : M → M × I ; x �→ (x, t).

Then:

∇∂t
X̄ = 0 = ∇X̄∂t . (3.4)

The calculation in the proof of the following result explains the appearance of the higher-

power vertical tension fields (Definition 2.14).

Theorem 3.3 For all integers r = 1, . . . , m, we have:

d

dt

∣

∣

∣

t=0
E

v
r (σt ) = −

∫

M

(

k(τ v
r (σ ), V ) + traceν θ(dσ, dσ)V

)

vol(g),

where ν = νv
r−1(σ ) and θ is the curvature 3-tensor defined in (3.3). Thus, if π is flat then σ

is an r-harmonic section precisely when τ v
r (σ ) = 0.

Proof We first compute the variation tensor βt of αt , as follows:

g
(

βt (X), Y
)

= ∂t .k
(

dv�(X̄), dv�(Ȳ )
)

= k
(

∇vdv�(∂t , X̄), dvσt (Y )
)

+ k
(

dvσt (X),∇vdv�(∂t , Ȳ )
)

, by (3.4)

= k
(

∇vdv�(X̄ , ∂t ) + dvdv�(∂t , X̄), dvσt (Y )
)

+ k
(

dvσt (X),∇vdv�(Ȳ , ∂t ) + dvdv�(∂t , Ȳ )
)

, by (3.1)

= k
(

∇v
X Vt + �(Vt , dσt (X)), dvσt (Y )

)

+ k
(

dvσt (X),∇v
Y Vt + �(Vt , dσt (Y ))

)

, by (3.2) and (3.4).

Then by Lemma 2.3:

d

dt

∣

∣

∣

t=0
εv

r (σt ) = trace(β ◦ ν) =
∑

i g
(

β(νei ), ei

)

=
∑

i k
(

∇v
ei

V + �(V , dσ(νei )), dvσ(ei )
)

+
∑

i k
(

dvσ(νei ),∇
v
ei

V + �(V , dσ(ei ))
)

= 2k
(

dvV , dvσ ◦ ν
)

− 2 traceν θ(dσ, dσ)V , by (3.3).

Finally, by Stokes’ Theorem:
∫

M

k(dvV , dvσ ◦ ν) vol(g) =

∫

M

k
(

V , δv(dvσ ◦ ν)
)

vol(g)

= −

∫

M

k(V , τ v
r (σ )) vol(g),

by Definition 2.14 of higher-power vertical tension. ⊓⊔
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The curvature of π obstructs Theorem 3.3 from presenting the first variation of E v
r in

divergence form. However, if π is flat then this is no longer a problem, and whilst the

assumption is restrictive it allows us to derive the Euler–Lagrange equations for higher-power

harmonic maps, which are presented as Theorem 2.12 in Sect. 2. In this environment, the

higher-power vertical tension fields devolve into the higher-power tension fields (Definition

2.10).

Corollary 3.4 For all r = 1, . . . , m, a smooth mapping ϕ : (M, g) → (N , h) of Riemannian

manifolds is an r-power harmonic map if and only if τr (ϕ) = 0.

Proof Let (P, k) be the Riemannian product (M × N , g × h), fibred over M by projection

onto its first factor, and let σ be the graph of ϕ:

σ(x) = (x, ϕ(x)),

defined for all x ∈ M . Since π is flat the curvature term in Theorem 3.3 drops out, leaving

the first variation in divergence form:

d

dt

∣

∣

∣

t=0
Er (ϕt ) = −

∫

M

h(τr (ϕ), v) vol(g), (3.5)

where v is the variation field of ϕt at t = 0. ⊓⊔

3.3 General Euler–Lagrange equations

In order to derive the Euler–Lagrange equations for the higher-power vertical energies when

π is not flat we push further the calculation behind Theorem 3.3, leading to an expression

for the first variation in divergence form (Theorem 3.6).

We first establish some basic geometric properties of the curvature form �. Let A denote

the collective shape operator for the fibres of π :

AH V = −ϑv(∇V H), (3.6)

defined for all vertical (resp. horizontal) vector fields V (resp. H ) on P . This is tensorial

in V and H , and V -valued. The following result generalises (with a twist) a well-known

characterisation of the second fundamental form of a Riemannian submersion (cf. Lemma

3.11 and Remark 3.12).

Proposition 3.5 Let V , W (resp. H , K ) are vertical (resp. horizontal) vector fields on P.

Then:

(i) �(V , W ) = 0;

(ii) �(V , H) = −AH V ;

(iii) �(H , K ) = −ϑv[H , K ].

Thus, π is flat precisely when π has t.g. fibres and integrable horizontal distribution.

Proof Let ϑ : T P → T P denote the identity morphism. Then:

ϑ = ϑv + ϑ z,

hence:

� = dvϑv = ϑv(dϑ − dϑ z) = −ϑvdϑ z,
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since dϑ is the torsion of the Levi–Civita connection of (P, k). Therefore, for all A, B ∈

X(P):

�(A, B) = −ϑv
(

∇A(Bz) − ∇B(Az) − [A, B]z
)

= ϑv(∇B(Az) − ∇A(Bz)).

Now (i) is clear, and (iii) follows since ∇ is torsion-free. For (ii), we note that:

�(V , H) = ϑv(∇V H) = −AH V .

⊓⊔

The shape operator A may be extended to a V -valued 2-tensor on P , by precomposition

with the appropriate projections:

A(A, B) = AAz Bv .

(This is not to be confused with O’Neill’s “A tensor” for Riemannian submersions [19].) We

can now recast Theorem 3.3 in a form that is more concise and geometrically meaningful.

Theorem 3.6 Let σ be a section of a submersion π : (P, k) → (M, g) of Riemannian mani-

folds, and let σt be a smooth 1-parameter variation of σ through sections, with σ0 = σ and

variation field V at t = 0. Then for all r = 1, . . . , m, we have:

d

dt

∣

∣

∣

t=0
E

v
r (σt ) = −

∫

M

k(τ v
r (σ ) + traceν(σ ∗

A), V ) vol(g),

where ν = νv
r−1(σ ). Thus, σ is an r-harmonic section if and only if:

τ v
r (σ ) + traceν(σ ∗

A) = 0.

In particular, if π has t.g. fibres then σ is an r-harmonic section precisely when τ v
r (σ ) = 0.

Proof Write Wi = dvσ(νei ) and Hi = dzσ(ei ). Then by Proposition 3.5 (i), (ii):

traceν θ(dσ, dσ)V =
∑

i k(Wi , AHi
V ) =

∑

i k(AHi
Wi , V )

=
∑

i k
(

A(dσ(ei ), dσ(νei )), V
)

= k(traceν(σ ∗
A), V ).

The result now follows from Theorem 3.3. ⊓⊔

Remarks 3.7 1) To deduce that r -horizontal sections are r -harmonic sections from the Euler–

Lagrange equations (rather than directly from their r -energy) is surprisingly subtle. If

ν = νv
r−1(σ ), then we have the following identity (a generalisation of Lemma 2.2 in this

situation):

k(dvσ ◦ ν(X), dvσ(Y )) = k(ιX (dvσ)r , ιY (dvσ)r ),

where the interior products on the right-hand side are (r − 1)-forms on M with values

in the exterior product ∧r−1(σ−1
V ). (The proof is left as an exercise for the reader.)

Thus, σ is r -horizontal if and only if dvσ ◦ ν = 0, in which case both terms of the

Euler–Lagrange operator vanish.

2) In most applications, π is a fibre bundle with connection and k is a ‘Kaluza–Klein’

metric, in which case π has t.g. fibres [34]. Furthermore, π is usually also a Riemannian

submersion, although interestingly this isn’t required for the simplification of the Euler–

Lagrange equations (see also Remark 4.2 (3)).
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Corollary 3.8 Under the same hypotheses as Theorem 3.6, σ is a harmonic section if and

only if:

τ v(σ ) + trace(σ ∗
A) = 0.

If π has t.g. fibres, then σ is a harmonic section precisely when τ v(σ ) = 0.

3.4 Sections that are higher-power harmonic maps

We now explore the relationship between higher-power harmonic sections and sections that

are higher-power harmonic maps. For this, we introduce the following generalisation of an

idea introduced in [25], where the second energy (of a map) was used to perturb the standard

(first) energy.

Definition 3.9 A section σ is a twisted r-skyrmion with coupling constants c1, . . . , cr ∈ R,

ci ≥ 0, c1, cr �= 0, if σ is a critical point with respect to variations through sections of the

hybrid multi-power vertical energy functional:

c1E
v
1 (σ ) + c2E

v
2 (σ ) + · · · + cr E

v
r (σ ).

In order to make the technical details manageable, our comparison between r -harmonic

sections and maps will assume that π is a Riemannian submersion with totally geodesic fibres

(see Remarks 3.7).

Theorem 3.10 Let σ be a section of a Riemannian submersion with t.g. fibres. Then for all

r = 1, . . . , m, we have:

εr (σ ) = εv
r (σ ) + (m − r + 1)εv

r−1(σ ) + · · · +
(

m−1
r−1

)

εv
1(σ ) +

(

m
r

)

,

and for all r = 1, . . . , m − 1, we have:

νr (σ ) = νv
r (σ ) + (m − r)νv

r−1(σ ) + · · · +
(

m−2
r−1

)

νv
1 (σ ) +

(

m−1
r

)

1.

Furthermore, the vertical component of τr (σ ) is related to the higher-power vertical tension

fields by:

τr (σ )v = τ v
r (σ ) + (m − r + 1)τ v

r−1(σ ) + · · · +
(

m−1
r−1

)

τ v
1 (σ ).

Thus, σ is an r-harmonic map precisely when σ is a twisted r-skyrmion with coupling

constants ci =
(

m−i
r−i

)

and the horizontal component of τr (σ ) vanishes.

Proof For clarity in this context, let α (resp. αv) denote the Cauchy–Green (resp. vertical

Cauchy-Green) tensor of σ . Since π is a Riemannian submersion:

g(α(X), Y ) = k(dσ(X), dσ(Y ))

= k(dvσ(X), dvσ(Y )) + k(dzσ(X), dzσ(Y ))

= g(αv(X), Y ) + g(X , Y ).

Thus, α = 1 + αv , and the expressions for εr (σ ) and νr (σ ) follow from Lemma 2.1. Then

τr (σ )v follows by expanding Er (σ ) as a sum of higher-power vertical energies and comparing

the first variations for each using (3.5) and Theorem 3.6. ⊓⊔
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When r = 1, Theorem 3.10 simplifies to:

τ(σ )v = τ v(σ ).

Thus, σ is a harmonic map precisely when σ is a harmonic section and the horizontal com-

ponent of τ(σ ) vanishes. This is familiar in, for example, the theory of ‘harmonic unit vector

fields’, and in that context the horizontal component of τ(σ ) may be expressed as a ‘twisted

Ricci tensor’ [9]. In fact this (second) link with curvature generalises fairly comprehensively

(see Theorem 3.14).

To analyse the horizontal component of τr (σ ) we will need the following (well-known)

decomposition of the second fundamental form of a Riemannian submersion, compiled from

results of [11, 19, 34].

Lemma 3.11 Suppose π : (P, k) → (M, g) is a Riemannian submersion. Let H , K (resp.

V , W ) be horizontal (resp. vertical) vector fields on P. Then:

(i) ∇dπ(H , K ) = 0;

(ii) ∇dπ(V , W ) = −dπ(∇V W );

(iii) g(∇dπ(V , H), dπ(K )) = 1
2

k(V , [H , K ]).

Remark 3.12 Comparison of Proposition 3.5 with Lemma 3.11 shows that a Riemannian

submersion π is flat if and only if π is a t.g. map.

Lemma 3.11 allows us to compute the horizontal component of the second fundamental

form of σ , as follows.

Lemma 3.13 Let σ be a section of a Riemannian submersion π : (P, k) → (M, g) with t.g.

fibres. Then for all X , Y , Z ∈ X(M), we have:

2g(dπ ◦ ∇dσ(X , Y ), Z) = σ ∗θ(X , Y )Z + σ ∗θ(Y , X)Z ,

where θ is the curvature 3-tensor defined in (3.3).

Proof Successive differentiation of the equation π ◦ σ = 1M yields:

∇dπ(dσ, dσ) + dπ ◦ ∇dσ = 0.

Applying first Lemma 3.11:

g(dπ ◦ ∇dσ(X , X), Z) = −g
(

∇dπ(dσ(X), dσ(X)), Z
)

= −2g
(

∇dπ(dvσ(X), dzσ(X)), Z
)

= −k(dvσ(X), [dzσ(X), dzσ(Z)]),

and then Proposition 3.5:

= k
(

dvσ(X),�(dzσ(X), dzσ(Z))
)

= k
(

dσ(X),�(dσ(X), dσ(Z))
)

= σ ∗θ(X , X)Z , by (3.3).

The final identity follows by polarisation. ⊓⊔

Applying Lemma 3.13 to Corollary 2.17, in conjunction with Theorem 3.10, yields the

following expression for the horizontal component of τr (σ ), and allows us to characterise

the harmonicity of flat sections.
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Theorem 3.14 If σ is a section of a Riemannian submersion π : (P, k) → (M, g) with t.g.

fibres, then the horizontal component of τr (σ ) is given by:

g(dπ ◦ τr (σ ), X) = g(divν, X) + traceνσ ∗θ(∗, ∗)X ,

for all X ∈ X(M), where ν = νr−1(σ ). In particular, if σ is flat then:

dπ ◦ τr (σ ) = divν .

Therefore, σ is an r-harmonic map precisely when σ is a twisted r-skyrmion with coupling

constants ci =
(

m−i
r−i

)

and the full Newton tensor νr−1(σ ) is solenoidal.

Since horizontal sections are flat (Remarks 3.2), we obtain the following synopsis of the

horizontal case.

Theorem 3.15 Let σ be a section of a submersion π of Riemannian manifolds.

(i) If σ is r-horizontal, then σ is an r-harmonic section.

(ii) If π is a Riemannian submersion with t.g. fibres and σ is horizontal, then σ is an r-

harmonic map for all r = 1, . . . , m.

Proof Part (i) follows from the fact that r -horizontal sections are the absolute minima of the

r -th vertical energy functional. Part (ii) follows from Theorem 3.14. For, if σ is horizontal

then σ is an r -harmonic section for all r , hence a twisted r -skyrmion for any coupling.

Furthermore, all vertical Newton tensors of σ vanish, so the full Newton tensor νr−1(σ ) is a

constant multiple of the identity (Theorem 3.10), hence solenoidal. ⊓⊔

In certain situations, Theorem 3.15 becomes rigid. This will be one of the topics of the

next Section (see Theorem 4.5 and Corollary 4.15).

4 Higher-power harmonic sections of Riemannian vector bundles

We interpret the results of Sect. 3 when the submersion π is a Riemannian vector bundle, that

is, a vector bundle π : E → M equipped with a linear connection ∇ and holonomy-invariant

fibre metric 〈∗, ∗〉. The most natural way to do this is via the connection map, which we

briefly review in Sect. 4.1, where we also make the “connection” with the curvature form

introduced in Sect. 3.1.

We use our machinery to prove two rigidity theorems, the first of which (Theorem 4.5)

applies when M is compact, and follows directly from the variational characterisation of

higher-power harmonicity. The second (Corollary 4.15) applies to sections of constant length,

and requires analysis of the higher-power vertical tension fields, which in this context can

be viewed as (nonlinear) operators on the space of sections C (E ). These ‘tension operators’

can be expressed in terms of the Riemannian structure of the vector bundle (Theorem 4.7),

revealing further detail about the analytic aspects of the Euler–Lagrange equations. We also

analyse the horizontal component of the (full) higher-power tension fields (of a section,

viewed as a map), noting specifically the appearance of bundle curvature via a Ricci operator

(Theorem 4.11).

The higher-power harmonic section equations for sphere subbundles, with induced

Sasakian geometry, are derived in Theorem 4.13. As a corollary, we obtain the equations

for higher-power harmonic maps into spheres (Corollary 4.17), and in Example 4.19 we

apply the model to the Hopf map.
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4.1 Connectionmap and curvature form

Our analysis makes heavy use of the connection map for ∇, which we briefly review.

The square of E [32] is the pullback bundle π−1
E → E , where:

π−1
E = {(v,w) ∈ E × E : π(v) = π(w)}.

This bundle may be equipped with the pullbacks of both∇ and the fibre metric. The connection

map for ∇ is then the π−1
E -valued 1-form κ on E defined for all A ∈ T E by:

κ(A) = ∇A
χ, (4.1)

where χ is the diagonal section of the square bundle, defined for all v ∈ E by:

χ(v) = (v, v).

Then κ is surjective, and κ|V = ι, where ι : V → π−1
E is the canonical isomorphism

(obtained by amalgamating the canonical identifications of vertical tangent spaces with the

fibre of E to which they are tangent). Given a Riemannian metric g on M , the Riemannian

metric of choice on E is the Sasaki metric, defined:

k(A, B) = g(dπ(A), dπ(B)) + 〈κ(A), κ(B)〉, (4.2)

for all A, B ∈ X(E ) (that is, vector fields on E ). Then π is a Riemannian submersion, with

H = ker κ , which is the horizontal distribution of ∇.

The curvature form K of ∇ is the exterior covariant derivative of κ:

K (A, B) = d∇κ(A, B) = ∇A(κ B) − ∇B(κ A) − κ[A, B]

= R∇(A, B)χ, (4.3)

where R∇ is the curvature tensor of ∇. Thus, K is a π−1
E -valued 2-form on E . We note two

of its properties, that are of particular relevance.
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Proposition 4.1 (i) K is horizontal, that is, K (A, B) = 0 whenever A or B is vertical.

(ii) K measures the failure of κ to intertwine the Levi–Civita connection of the Sasaki metric

with the linear connection in E :

∇A(κ B) − κ(∇A B) = 1
2

K (A, B).

Proof (i) is standard, and (ii) follows, after some computation, from the Koszul characteri-

sation of the Levi–Civita connection (in which the holonomy-invariance of the fibre metric

is crucial). ⊓⊔

Remarks 4.2 1) Since κ|V = ι, it follows from Proposition 4.1 that the canonical isomor-

phism is connection-preserving:

∇A(ιV ) = ι(∇v
AV ), (4.4)

for all vertical vector fields V on E . This fact is crucial.

2) We can now provide confirmation that Definition 3.1 of the curvature form � is consistent

with established terminology. For:

ι ◦ �(A, B) = ι ◦ dvϑv(A, B)

= ι∇v
A(ϑv B) − ι∇v

B(ϑv A) − ι ◦ ϑv[A, B]

= ∇A(κ B) − ∇B(κ A) − κ[A, B], by (4.4)

= K (A, B). (4.5)

3) The Sasaki metric is of Kaluza–Klein type, and placing (4.5) alongside Propositions 4.1

and 3.5 confirms that π has t.g. fibres (see also Remarks 3.7).

4.2 Rigidity theorem

Now let σ be a section of π . Equation (4.1) yields the following (well-known) relationship

between the differential of σ and its covariant derivative, via the connection map:

ι ◦ dvσ(X) = κ(dσ(X)) = ∇Xσ, (4.6)

for all X ∈ T M (after the natural identification of σ−1π−1
E with E ). Thus, σ is horizontal

precisely when σ is parallel.

Remark 4.3 Equations (4.3) and (4.5) reveal the following relationship between the gener-

alised curvature form and the curvature tensor:

ι ◦ σ ∗�(X , Y ) = R∇(X , Y )σ. (4.7)

Thus, σ is flat in the sense of Definition 3.1 precisely when R∇(∗, ∗)σ = 0, as we would

expect.

Plugging (4.6) into (2.12) yields the following characterisation of the vertical Cauchy–

Green tensor for σ :

g(α(X), Y ) = 〈∇Xσ,∇Y σ 〉. (4.8)

It follows from (4.8) that:

εv
r (σ ) = ‖(∇σ)r‖2, (4.9)
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where:

(∇σ)r = ∇σ ∧ · · · ∧ ∇σ

is the r -fold exterior product.

Definition 4.4 A section σ is r -parallel if the rank of ∇σ is strictly less than r at all points

of M . Thus, σ is 1-parallel if and only if σ is parallel in the usual sense, and it follows from

(4.6) that σ is r -parallel precisely when σ is r -horizontal (Definition 2.13).

When M is compact, Theorem 3.15 becomes rigid, as follows.

Theorem 4.5 Let σ be a section of a Riemannian vector bundle with compact base, equipped

with the Sasaki metric. Then for all r = 1, . . . , m the following rigidity applies.

(i) σ is an r-harmonic section if and only if σ is r-parallel.

(ii) σ is an r-harmonic map if and only if σ is parallel.

Proof Consider the variation:

σt = (1 + t)σ, t > −1.

Then by (4.9):

εv
r (σt ) = (1 + t)2r‖(∇σ)r‖2.

Hence, by (2.13):

d

dt

∣

∣

∣

t=0
E

v
r (σt ) = r

∫

M

‖(∇σ)r‖2 vol(g),

which yields (i). Now by Theorem 3.10:

d

dt

∣

∣

∣

t=0
Er (σt ) = 2

∫

M

(

r‖(∇σ)r‖2 + · · · +
(

m−1
r−1

)

‖∇σ‖2
)

vol(g).

Therefore, σ is an r -harmonic map precisely when ∇σ = 0. ⊓⊔

Remarks 4.6 1) Theorem 4.5 is well-known when r = 1, where it says that if M is compact

then every harmonic section of E is parallel [13, 18, 37].

2) There is a generalisation of Theorem 4.5 to the non-compact environment, for sections

of constant length (see Corollary 4.15).

4.3 Higher-power tension operators

To achieve a general characterisation of r -harmonic sections, applicable when the base is

non-compact, we use the canonical isomorphism to realise the higher-power vertical tension

fields as sections of π . Thus, to each section σ of E we associate another section Tr (σ )

defined:

Tr (σ ) = ι ◦ τ v
r (σ ), (4.10)

for all r = 1, . . . , m. Then Tr may be regarded as an operator:

Tr : C (E ) → C (E ),

123



6 Page 22 of 43 Annals of Global Analysis and Geometry (2023) 63 :6

which turns out to be nonlinear for r > 1 (see Remarks 4.10). We refer to Tr as the r -th

tension operator.

We also recall the (standard) definition of the second covariant derivative:

∇2
X , Y σ = ∇X (∇Y σ) − ∇∇X Y σ, (4.11)

which entwines the linear connection in π with the Levi–Civita connection of (M, g).

The following result shows that Tr is a twisted Laplacian with first-order perturbation

and provides further insight into the analytic nature of the higher-power harmonic section

equations.

Theorem 4.7 Let σ be a section of a Riemannian vector bundle E , equipped with the Sasaki

metric. The higher-power tension operators are given by:

Tr (σ ) = traceν∇2σ + ∇divνσ,

for all r = 1, . . . , m, where ν = νv
r−1(σ ). Then σ is an r-harmonic section if and only if

Tr (σ ) = 0.

Proof Applying the canonical isomorphism to Theorem 2.16, and using (4.6), yields:

Tr (σ ) = ∇divνσ + ι(traceν∇vdvσ).

By Proposition 4.1:

ι∇vdvσ(X , Y ) = ι∇v
X (dvσ(Y )) − ι ◦ dvσ(∇X Y )

= ∇X (∇Y σ) − ∇σ(∇X Y ), by (4.4) and (4.6)

= ∇2
X , Y σ. (4.12)

Hence:

ι(traceν∇vdvσ) = traceν∇2σ.

The characterisation of r -harmonic sections follows from Theorem 3.6, since π has t.g. fibres.

⊓⊔

Remarks 4.8 1) If r = 1 then Tr (σ ) = −∇∗∇σ , where ∇∗∇ = − trace ∇2 is the rough

Laplacian. Theorem 4.7 then yields the familiar characterisation ∇∗∇σ = 0 for harmonic

sections σ of E .

2) From Eq. (4.12) in the proof of Theorem 4.7, the curvature R∇(∗, ∗)σ is the antisym-

metrisation of the vertical second fundamental form of σ ; thus, the latter is symmetric if

and only if σ is flat (see also Remarks 3.2 and and 4.3).

Corollary 4.9 With the same hypotheses as Theorem 4.7, if σ is an r-harmonic section of E

then so is cσ for all c ∈ R.

Proof If σ̂ = cσ , then α̂ = c2α by (4.8), and by the homogeneity of the vertical Newton

tensor (Lemma 2.1):

ν̂ = νv
r−1(σ̂ ) = χr−1(α̂) = c2r−2 χr−1(α) = c2r−2ν .

Therefore, by Theorem 4.7:

Tr (σ̂ ) = c2r−1
Tr (σ ), (4.13)

from which the result follows. ⊓⊔
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Remarks 4.10 1) Equation (4.13) shows that Tr is a nonlinear operator on C (E ) if r > 1

(see also Remark 5.14).

2) In general, the r -harmonic sections of E generate a linear subspace of C (E ) only if r = 1.

See however Theorem 5.8 and Remark 5.9 (2) for some interesting exceptions.

We now consider the horizontal component of the full higher-power tension fields τr (σ ),

for later use (see Theorem 5.21). We would expect this to involve the curvature of ∇, and to

this end introduce the following Ricci operator:

S : X(M) ⊗ C (E ) → X(M) ⊗ C (E ); η �→ Sη,

where for any E -valued 1-form η on M the E -valued 1-form Sη is defined:

Sη(X) =
∑

i R∇(X , ei )η(ei ), (4.14)

for any local orthonormal tangent frame {ei } on (M, g).

Theorem 4.11 The horizontal component of τr (σ ) is given by:

g(dπ ◦ τr (σ ), X) = g(divν, X) + 〈Sη(X), σ 〉,

for all X ∈ X(M), where ν = νr−1(σ ) and η = (∇σ) ◦ ν . In particular, if E = T M

equipped with the standard Riemannian structure then:

dπ ◦ τr (σ ) = Ricη(σ ) + divν,

where:

Ricη(σ ) =
∑

i R(σ, η(ei ))ei ,

and R is the Riemann tensor of (M, g).

Proof From equations (4.6) and (4.7), and the holonomy-invariance of ∇, we obtain:

σ ∗θ(Y , Z)X = 〈∇Y σ, R∇(Z , X)σ 〉 = 〈R∇(X , Z)∇Y σ, σ 〉.

Therefore, since ν is self-adjoint:

traceν σ ∗θ(∗, ∗)X =
∑

i 〈R∇(X , ei )∇νei
σ, σ 〉 = 〈Sη(X), σ 〉.

The general result now follows from Theorem 3.14. The simplification achieved for E = T M

exploits the additional symmetries of the Riemann tensor. ⊓⊔

Remark 4.12 Although the Ricci operator S is linear, the dependence of η on σ in Theorem

4.11 is nonlinear if r > 1, since it involves a Newton tensor.

Theorem 4.11 will be used extensively in the final result of the paper (Theorem 5.21).

4.4 Higher-power harmonic sections of sphere bundles

If the bundle has zero Euler class, then the rigidity of Theorem 4.5 can be side-stepped

by confining attention to sections of constant length, say q > 0, and restricting the entire

variational problem to the sphere subbundle:

S E (q) = {v ∈ E : 〈v, v〉 = q2}.

Thus, we study higher-power harmonic sections of S E (q).
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The metric on S E (q) is simply the restriction of the Sasaki metric. It follows from

holonomy-invariance of the fibre metric of E that S E (q) is a holonomy-invariant subbundle.

The horizontal distribution of E is therefore tangent to S E (q), and hence coincides with

the horizontal distribution of S E (q). This simplifies things considerably; for example, the

vertical derivative of a section σ of S E (q) is unchanged when σ is regarded as a section of

E , and consequently so are its higher-power vertical energies and vertical Newton tensors.

There will however be an overall change in the higher-power vertical tension fields, which

we analyze via the first variation.

Theorem 4.13 Suppose σ is a section of E with constant length q > 0. Then σ is an r-

harmonic section of the sphere bundle S E (q) if and only if Tr (σ ) is a pointwise multiple of

σ . The precise equations are:

Tr (σ ) = −
r

q2
‖(∇σ)r‖2σ,

where Tr (σ ) is given by Theorem 4.7.

Proof By Theorem 3.6 and definition (4.2) of the Sasaki metric:

d

dt

∣

∣

∣

t=0
E

v
r (σt ) = −

∫

M

〈Tr (σ ), ιV 〉 vol(g). (4.15)

Now ιV is a section ζ of E , which since σt is a variation through sections of constant length

satisfies:

〈ζ, σ 〉 =
d

dt

∣

∣

∣

t=0
〈σt , σ 〉 =

1

2

d

dt

∣

∣

∣

t=0
〈σt , σt 〉 = 0.

Conversely, if ζ is a section ofE that is pointwise orthogonal toσ then it is possible to construct

a variation of σ in S E (q) with variation field ιV = ζ ; for example, by appropriately rescaling

σ + tζ . It follows that σ is an r -harmonic section of S E (q) if and only if Tr (σ ) = f σ

for some smooth function f : M → R. Since σ has constant length and the fibre metric is

holonomy-invariant:

〈∇Xσ, σ 〉 = 0, 〈∇2
X , Y σ, σ 〉 = −〈∇Xσ,∇Y σ 〉 = −〈α(X), Y 〉,

by (4.8). Therefore, by Theorem 4.7:

q2 f = 〈Tr (σ ), σ 〉 = 〈traceν∇2σ, σ 〉 = − trace(α ◦ ν)

= −r εv
r (σ ) = −r‖(∇σ)r‖2,

by Lemma 2.2 and equation (4.9). ⊓⊔

Remarks 4.14 1) When r = q = 1 the Euler–Lagrange equations of Theorem 4.13 reduce

to:

∇∗∇σ = ‖∇σ‖2σ, (4.16)

which is familiar from [36, 39] and subsequent papers on ‘harmonic unit vector fields’

[9].

2) Theorem 4.13 shows in effect that the higher-power vertical tension fields of a section

σ of S E (q) are obtained, not unexpectedly, by orthogonal projection onto the tangent

bundle T S E (q) those of σ when regarded as a section of E .
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Theorem 4.13 has a number of interesting corollaries. The first is a rigidity result for

higher-power harmonic sections of E with constant length, which should be compared with

Theorem 4.5.

Corollary 4.15 Suppose that σ is a section of E with constant length. Then σ is an r-harmonic

section of E if and only if σ is r-parallel. In particular, σ is an r-harmonic section of E for

all r ≥ rank E .

Proof If σ is a non-zero r -harmonic section of E , then it follows from Theorems 4.7 and 4.13

that σ is an r -harmonic section of S E (q) satisfying (∇σ)r = 0. Furthermore, since σ has

constant length and the fibre metric is holonomy-invariant, ∇σ takes values in the corank 1

subbundle σ
⊥

⊂ E and therefore has rank strictly less than p − m; so σ is r -parallel for all

r ≥ p − m. ⊓⊔

The next corollary reduces the study of higher-power harmonic sections of sphere bundles

to the unit sphere bundle.

Corollary 4.16 Let σ be a section of E with constant length q > 0. Then σ is an r-harmonic

section of S E (q) if and only if (1/q)σ is an r-harmonic section of S E (1).

Proof If σ̂ = σ/q , it follows from equation (4.13) in the proof of Corollary 4.9 that Tr (σ ) is

a multiple of σ if and only if Tr (σ̂ ) is a multiple of σ̂ . ⊓⊔

The final corollary generalises the well-known characterisation of harmonic maps into

spheres first given in [29]. Let Sn denote the unit sphere of Rn+1, equipped with its standard

(induced) Riemannian structure.

Corollary 4.17 A mapping ϕ : (M, g) → Sn is r-harmonic precisely when:

traceν Hϕ + dϕ(divν) + r‖(dϕ)r‖2ϕ = 0,

where Hϕ is the Hessian of ϕ when viewed as a map into Euclidean Rn+1, and ν = νr−1(ϕ).

Proof Let E be the trivial bundle M × Rn+1 → M , equipped with the trivial connection and

Euclidean fibre metric, and let σ be the graph of ϕ (cf. the proof of Corollary 3.4). Then:

∇Xσ = (x, dϕx (X)),

for all X ∈ Tx M and x ∈ M . Now ϕ is an r -harmonic map (into Sn) if and only if σ is an

r -harmonic section of S E (1). It follows from Theorem 4.7 that Tr (σ ) is the graph of the

following Rn+1-valued function:

traceν∇dϕ + dϕ(divν).

Furthermore, (∇σ)r is the graph of (dϕ)r (as sections of the r -th exterior product of E ). Then

extracting the fibre component from the equations of Theorem 4.13 (with q = 1) yields:

traceν∇dϕ + dϕ(divν) = −r‖(dϕ)r‖2ϕ,

as claimed. ⊓⊔

Remarks 4.18 1) For clarity, if we denote the composition of ϕ : M → Sn with the inclusion

map Sn →֒ Rn+1 by ϕ̃, then comparing Corollary 4.17 with Corollary 2.17 shows that

ϕ is an r -harmonic map if and only if:

τr (ϕ̃) = −r‖(dϕ̃)r‖2 ϕ̃.
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Note that the operator on the left-hand side is nonlinear if r > 1 (if r = 1 it is the standard

Laplacian), so the concept of an ‘eigenmap’ really only makes sense if r = 1. (However,

see Example 4.19 immediately below for a near miss.)

2) From Corollary 4.15, ϕ̃ is r -harmonic if and only if rank ϕ̃ < r .

Example 4.19 Let ϕ : S3 → S2 be the Hopf map, defined:

ϕ(u, v) = (2ūv, |v|2 − |u|2),

for all u, v ∈ C satisfying |u|2 + |v|2 = 1, which in Cartesian coordinates is given by:

ϕ(x, y, z, w) =
(

2(xz + yw), 2(xw − yz), z2 + w2 − x2 − y2
)

, (4.17)

for all x, y, z, w ∈ R4 satisfying x2 + y2 + z2 + w2 = 1. For the purposes of calculation,

we will use the following global orthonormal tangent frame on S3:

e1 = (y,−x,−w, z), e2 = (z, w,−x,−y), e3 = (w,−z, y,−x).

We will need to express the Levi–Civita connection of S3 in terms of this frame, for which we

use the Gauss–Weingarten equations. The computations are straightforward, and we record

the results in the following connection matrix:

M∇ =
(

∇ei
e j

)

=

⎛

⎝

0 −e3 e2

e3 0 −e1

−e2 e1 0

⎞

⎠ .

Note that each of e1, e2, e3 is a Hopf vector field.

The Jacobian matrix of ϕ, viewed as a mapping R4 → R3, is:

2

⎛

⎝

z w x y

w −z −y x

−x −y z w

⎞

⎠ ,

from which it follows after comparison with (4.17) that:

dϕ(e1) = 2(−ϕ2, ϕ1, 0), dϕ(e2) = 2(−ϕ3, 0,−ϕ1), dϕ(e3) = 2(0, ϕ3,−ϕ2),

where ϕ1, ϕ2, ϕ3 are the components of ϕ with respect to the standard coordinates of ambient

R3. Note that our frame is not adapted to the vertical/horizontal splitting of T S3. The Jacobian

matrix of ϕ with respect to (e1, e2, e3) is therefore:

J = (Ji j ) =
(

dϕi (e j )
)

= 2

⎛

⎝

−ϕ2 −ϕ3 0

ϕ1 0 ϕ3

0 −ϕ1 −ϕ2

⎞

⎠ .

It is now easy to see that:

‖dϕ‖2 = |dϕ(e1)|
2 + |dϕ(e2)|

2 + |dϕ(e3)|
2 = 8,

and after slightly more computation that:

‖dϕ ∧ dϕ‖2 = |dϕ(e1)|
2|dϕ(e2)|

2 + |dϕ(e1)|
2|dϕ(e3)|

2 + |dϕ(e2)|
2|dϕ(e3)|

2

− (dϕ(e1) · dϕ(e2))
2 − (dϕ(e1) · dϕ(e3))

2 − (dϕ(e2) · dϕ(e3))
2

= 16.

Thus, both the first and second power energy densities of ϕ are constant.
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The Newton tensor of interest is ν = ν1(ϕ). To find it, we first need the Cauchy–Green

tensor α of ϕ, which by Eq. (2.6) and some light computation has the following matrix with

respect to (e1, e2, e3):

4

⎛

⎝

1 − ϕ 2
3 −ϕ2ϕ3 ϕ1ϕ3

−ϕ2ϕ3 1 − ϕ 2
2 ϕ1ϕ2

ϕ1ϕ3 ϕ1ϕ2 1 − ϕ 2
1

⎞

⎠ .

It follows from equation (2.5) and the previous paragraph that ν = 8 − α, and therefore has

matrix:

Mν = 4

⎛

⎝

1 + ϕ 2
3 ϕ2ϕ3 −ϕ1ϕ3

ϕ2ϕ3 1 + ϕ 2
2 −ϕ1ϕ2

−ϕ1ϕ3 −ϕ1ϕ2 1 + ϕ 2
1

⎞

⎠ .

Note that this matrix is symmetric, as expected, i.e. ν is self-adjoint.

We now compute the divergence of ν , component-wise. Using the fact that the ei are

geodesic fields, and ν is self-adjoint, the e1-component is (summing over repeated indices):

g(divν, e1) = g
(

∇ei
(νei ), e1

)

= ei .g(νei , e1) − g
(

νei ,∇ei
e1

)

= ei .g(ei ,νe1) − g(νe2, e3) + g(νe3, e2)

= ei .g(ei ,νe1).

Pulling in information from Mν and J then gives:

1
4

g(divν, e1) = d(1 + ϕ 2
3 )(e1) − d(ϕ2ϕ3)(e2) + d(ϕ1ϕ3)(e3)

= 2ϕ3 J31 − J22ϕ3 − ϕ2 J32 + J13ϕ3 + ϕ1 J33

= ϕ2ϕ1 − ϕ1ϕ2 = 0.

Similar calculations show that the other components also vanish. Thus, in this case ν is

solenoidal.

Turning now to the vector-valued Hessian Hϕ , we compute its components Hϕk
, each of

which is a (symmetric) 2-tensor on S3. The computations are numerous but routine, using

information from M∇ and J to evaluate:

∇ei
dϕk(e j ) = ei .(dϕk(e j )) − dϕk

(

∇ei
e j

)

,

for all k and i ≤ j . For example:

∇e1
dϕ1(e1) = e1.J11 = −2J21 = −4ϕ1.

In summary, the matrices Mk for Hϕk
are:

M1 = −2

⎛

⎝

2ϕ1 0 ϕ3

0 2ϕ1 ϕ2

ϕ3 ϕ2 0

⎞

⎠ , M2 = −2

⎛

⎝

2ϕ2 −ϕ3 0

−ϕ3 0 ϕ1

0 ϕ1 2ϕ2

⎞

⎠

M3 = −2

⎛

⎝

0 −ϕ2 ϕ1

−ϕ2 2ϕ3 0

ϕ1 0 2ϕ3

⎞

⎠ .

It remains to find the ν-twisted trace of Hϕ , which we compute component-wise. For

example, using information from M1 and Mν gives:

traceν Hϕ1 = trace(M1 Mν)
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= −8
(

2ϕ1(1 + ϕ 2
3 ) − ϕ1ϕ

2
3 + 2ϕ1(1 + ϕ 2

2 ) − ϕ1ϕ
2
2 − ϕ1(ϕ

2
2 + ϕ 2

3 )
)

= −32ϕ1.

The other components behave similarly, resulting in:

traceν Hϕ = −32ϕ.

The fact that this is a multiple of ϕ is enough to show that ϕ is a 2-harmonic map. However,

our earlier calculation shows that:

traceν Hϕ = −2‖dϕ ∧ dϕ‖2ϕ,

as required by Corollary 4.17.

Remarks 4.20 1) It is well-known that the Hopf map is an unstable harmonic map [40].

Whether or not ϕ is an unstable 2-harmonic map poses an interesting question.

2) Examples of maps whose Newton tensors are not solenoidal are highlighted in Remark

5.20.

3) The r -harmonicity of the Hopf vector field on S3, as a section of the unit sphere bundle,

will emerge in Sect. 5.

5 Higher-power harmonic vector fields on three-dimensional Lie
groups

Suppose now that M is a three-dimensional Lie group, henceforward denoted G. For sim-

plicity, we assume that G is unimodular (which nevertheless includes all examples that are

compact, or simple). Let g be a left-invariant Riemannian metric on G, and let E = T G with

the standard Riemannian structure, i.e. 〈∗, ∗〉 = g and ∇ is the Levi–Civita connection. We

refer to r -harmonic sections of E as r -harmonic vector fields. Henceforward, we confine our

attention to invariant (i.e. left-invariant) vector fields.

Section 5.1 is mostly descriptive, and lays out the essential geometric and algebraic features

of G, including Milnor’s classification of their Lie algebras.

In Section 5.2, we classify the invariant r -harmonic sections of T G for r = 1, 2 (Theorem

5.8), which by Corollary 4.15 are the zeroes of r -power vertical energy. The main computation

here is that of the first and second vertical energy densities (Lemma 5.5).

In Sect. 5.3, we classify the invariant r -harmonic sections of U G for r = 1, 2. The main

computation is that of the second tension operator, which is to be found in the proof of

Theorem 5.12. This is preceded by a computation of the first vertical Newton tensor and its

divergence (Theorem 5.10). The computation of the first Newton operator is much simpler

(Theorem 5.13). These results, along with those of Sect. 5.2, are combined into a detailed

classification, listing the possibilities for each type of Lie algebra and all its possible metrics

(Theorem 5.16).

Section 5.4 is computationally intensive, and culminates with the classification of invariant

r -power harmonic maps G → U G for r = 1, 2, 3 (Theorem 5.21), preceded by computations

of their second vertical Newton tensor and its divergence (Lemma 5.18), and twisted Ricci

tensors (Lemma 5.19).
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5.1 Geometric and algebraic structure

We briefly review the geometric and algebraic structure of (G, g), following [16] (see also

[15]), highlighting features of particular relevance. We will also take the opportunity to

recycle some (now redundant) notation from previous Sections.

After an orientation for G has been chosen, the metric determines a unique vector cross

product × on the Lie algebra g. The Lie structure map L : g → g is then the unique linear

map satisfying:

L(ϕ × ψ) = [ϕ,ψ], (5.1)

for all ϕ,ψ ∈ g. The image of L is the derived subalgebra g′. Furthermore, every non-trivial

element of ker(L) is orthogonal to a two-dimensional abelian subalgebra, and vice versa.

Noting that every two-dimensional subspace containing a non-trivial central element is an

abelian subalgebra, we deduce the following list of possibilities for the kernel:

K0) ker(L) is zero-dimensional (i.e. L is non-singular) if and only if g has no two-dimension-

al abelian subalgebras. In particular, the centre z of g is trivial.

K1) ker(L) is one-dimensional if and only if g has a unique 2-dimensional abelian subalgebra

h, in which case h = ker(L)⊥. In particular, z is again trivial.

K2) ker(L) is two-dimensional if and only if z is one-dimensional, in which case z = ker(L)⊥.

In particular, the two-dimensional abelian subalgebras are precisely the two-dimensional

subspaces containing z.

K3) ker(L) is three-dimensional if and only if g is abelian.

The unimodularity of G is characterised by L being self-adjoint. Let (σ1, σ2, σ3) be a

positively-oriented orthonormal L-eigenbasis ofg, with eigenvaluesλ1, λ2, λ3. This therefore

satisfies the commutation relations:

[σi , σ j ] = ǫi jk λk σk,

where ǫi jk is the Levi–Civita symbol. We therefore refer toλ1, λ2, λ3 as the principal structure

constants of (G, g), which, being dependent on orientation, are only determined up to sign.

The σi are then principal (structure) directions.

We say that a two-dimensional subspace p ⊂ g (ie. an invariant plane field on G) is a

principal section if p is spanned by principal directions. The following example shows that

principal sections need not be eigenspaces of L .

Example 5.1 Every two-dimensional subalgebra h ⊂ g is a principal section. This is because

two-dimensional unimodular Lie algebras are abelian, so h is orthogonal to an element of

ker(L). Since L is self-adjoint, the condition:

h⊥ ⊆ ker(L),

is equivalent to:

h ⊇ ker(L)⊥ = im(L) = g′.

It follows that h is an ideal; we therefore refer to elements of h as ideal vectors. From (K1)

and (K2) above, the (interesting) possibilities are:

i) If precisely one principal structure constant vanishes, then g′ is two-dimensional and

h = g′.

ii) If precisely two principal structure constants vanish, then g′ = z is one-dimensional and

h is any two-dimensional subspace containing g′.
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The relative signs of the principal structure constants classify g algebraically into one of

the following six types:

su(2), sl(2), e(2), e(1, 1), nil, a,

where e(2) (resp. e(1, 1)) is the Lie algebra of the isometry group of the Euclidean plane E2

(resp. Minkowskian plane M2), nil is the three-dimensional Heisenberg algebra and a is the

three-dimensional abelian Lie algebra. The first two are simple, and the others are solvable.

The Milnor numbers of (G, g) are defined (up to sign) as follows:

μi = 1
2
(λ j + λk − λi ) = 1

2
trace(L) − λi . (5.2)

The Levi–Civita connection is then characterised along principal directions by:

∇σi
σ j = ǫi jk μi σk . (5.3)

In particular:

∇σi
σi = 0,

so the σi are geodesic vector fields (i.e. their integral curves are geodesics).

The Milnor map is the following self-adjoint linear map M : g → g, whose eigenvalues

are the Milnor numbers:

M =
∑

i μi σ
i ⊗ σi = 1

2
trace(L)1g − L, (5.4)

where (σ 1, σ 2, σ 3) is the dual basis; the invariant expression confirms that M is well-defined.

For any ϕ ∈ g and n ∈ N it is convenient to denote by ϕ(n) the n-th iterate of σ under M :

ϕ(n) = Mn(ϕ).

The covariant derivative (5.3) may then be expressed invariantly as follows:

∇ϕσ = ϕ(1) × σ, (5.5)

for all σ ∈ g. (Higher-order iterates will be used extensively in many of our computations.)

The principal structure directions are also principal Ricci directions, with principal Ricci

curvatures:

ρi = Ric(σi , σi ) = 2μ jμk, (5.6)

for {i, j, k} = {1, 2, 3}. The Ricci curvature is therefore non-degenerate if and only if M is

invertible. Furthermore, the vanishing of one principal Ricci curvature implies the vanishing

of another, so the Ricci kernel:

n = {ϕ ∈ g : Ric(ϕ, ψ) = 0 for all ψ ∈ g}

cannot be one-dimensional. If dim(n) = 2, then n is a principal section, although not nec-

essarily a subalgebra or an eigenspace of L . The following result describes the relationship

between these different types of principal section.

Proposition 5.2 Suppose p ⊂ g is a principal section.

(i) p is an eigenspace of M2, the twice-iterated Milnor map, if and only if p is either an

eigenspace of L or a subalgebra.

(ii) p is an eigenspace of Ric2, the twice-iterated Ricci tensor, if and only if p is an eigenspace

of M2 or p = n.
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Proof If {i, j, k} = {1, 2, 3}, then from (5.2) and (5.6):

μ 2
i − μ 2

j = (λ j − λi )λk, (5.7)

ρ 2
i − ρ 2

j = 4(μ 2
j − μ 2

i )μ 2
k . (5.8)

If p is spanned by σi and σ j , then (i) follows from (5.7), bearing in mind that λk = 0 precisely

when p is a subalgebra (Example 5.1), and (ii) follows from (5.8), bearing in mind that in the

non-flat situation μk = 0 precisely when ρi = ρ j = 0. ⊓⊔

The principal sectional curvatures are:

Ki j = K (σi ∧ σ j ) = 1
2
(ρi + ρ j − ρk) = μ jμk + μiμk − μiμ j

= ε2(M) − 2μiμ j . (5.9)

The Riemann tensor is characterised by its action on principal directions as follows:

R(σi , σ j ) = Ki j (σ
j ⊗ σi − σ i ⊗ σ j ). (5.10)

The following classification scheme, which we refer to as Milnor’s list, summarises the

geometric possibilities for each unimodular Lie algebra. By choice of orientation, it may be

assumed that λ1 ≥ λ2 ≥ λ3 with λ1, λ2 ≥ 0, and λ1 = 0 only if λ3 = 0.

a : all structure constants vanish; all left-invariant metrics are flat.

nil : λ1 > 0 and λ2 = λ3 = 0. Then ρ2 = ρ3 < 0 and ρ1 = −ρ2.

e(1, 1) : λ1 > 0, λ2 = 0 and λ3 < 0. Then ρ1 = −ρ3 and ρ2 < −|ρ1|, with ρ1 = ρ3 = 0

precisely when λ1 = −λ3.

e(2) : λ1, λ2 > 0 and λ3 = 0. Then ρ1 = −ρ2 and −|ρ1| < ρ3 < 0, unless λ1 = λ2 in

which case the metric is flat.

sl(2) : λ1, λ2 > 0 and λ3 < 0. Then ρ2 < 0 and ρ1ρ3 ≤ 0, with the |ρi | distinct and

non-zero unless:

λ1 = λ2 in which case ρ1 = ρ2;

λ1 = λ2 − λ3 in which case ρ1 = ρ3 = 0.

su(2) : λ1, λ2, λ3 > 0. Then ρ1 > 0 and ρ2ρ3 ≥ 0, with the |ρi | distinct and non-zero

unless:

λ1 = λ2 = λ3 in which case ρ1 = ρ2 = ρ3;

λ1 = λ2 > λ3 in which case ρ1 = ρ2 > ρ3 > 0;

λ1 > λ2 = λ3 in which case ρ1 > ρ2 = ρ3, with ρ3 �= 0 unless λ1 = 2λ2;

λ1 = λ2 + λ3 in which case ρ2 = ρ3 = 0.

Notable features of the list are:

• Metrics with degenerate Ricci curvature occur in every class except nil.

• Flat metrics are only supported on a and e(2).

• It follows from Example 5.1 that g′ is two-dimensional if and only if g = e(2) or

g = e(1, 1). If G is the isometry group of E2 or M2 then g′ is the Lie algebra of the

translation subgroup. Thus, elements of g′ may be regarded as infinitesimal translations;

all other elements are infinitesimal (Euclidean or Lorentzian) rotations.

Example 5.3 Let G = P SL(2, R), realised as the unit tangent bundle of the hyperbolic plane

H2. If H2 is modelled by the upper half plane then:

UH2 = {(x, y, θ) : θ ∈ S1, x, y ∈ R, y > 0}.
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The natural left-invariant metric g on G is [2]:

ds2 =
1

y2

(

dx2 + dy2 + (dx + ydθ)2
)

.

Define a left-invariant orthonormal tangent frame on G by:

σ1 = y cos θ ∂x + y sin θ ∂y − cos θ ∂θ , σ2 = −y sin θ ∂x + y cos θ ∂y + sin θ ∂θ

σ3 = ∂θ .

(Note that this is not the frame mentioned in [2].) Standard computations of the Lie bracket

on vector fields yield:

[σ1, σ2] = −σ3, [σ2, σ3] = σ1, [σ3, σ1] = σ2.

Therefore, the σi are principal structure directions, with:

λ1 = λ2 = 1, λ3 = −1.

So g is one of the “exceptional” sl(2) metrics on Milnor’s list. From (5.2) and (5.6), its

principal Ricci curvatures are:

ρ1 = −3/2 = ρ2, ρ3 = 1/2,

in accordance with the list.

Remark 5.4 Elements of the Lie algebras e(2), su(2), sl(2) and e(1, 1) may be regarded as

infinitesimal isometries, of E2, S2 (under the isomorphism su(2) ∼= so(3)), H2 and M2,

respectively. However, they are not in general Killing fields when viewed as vector fields on

G. Indeed, by (5.5), (5.4) and the antisymmetry of the scalar triple product we have:
〈

∇ϕσ,ψ
〉

+
〈

ϕ,∇ψσ
〉

= 〈ϕ(1) × σ,ψ〉 + 〈ϕ,ψ (1) × σ 〉

= 1
2

trace(L)
(

〈ϕ × σ,ψ〉 + 〈ϕ,ψ × σ 〉
)

− 〈L(ϕ) × σ,ψ〉 − 〈ϕ, L(ψ) × σ 〉

= 〈L(ϕ) × ψ − ϕ × L(ψ), σ 〉.

So σ is a Killing field on G if and only if the element:

f (ϕ, ψ) = (L(ϕ) × ψ) − (ϕ × L(ψ))

is orthogonal to σ for all ϕ,ψ ∈ g. Since, for example:

f (σ1, σ2) = (λ1 − λ2)σ3,

if λ1 �= λ2 then σ3 cannot be a Killing field.

5.2 Invariant higher-power harmonic vector fields

Suppose σ ∈ g, with:

σ = a1σ1 + a2σ2 + a3σ3, ai ∈ R.

We compute the first and second power vertical energy densities of σ , which for notational

simplicity we abbreviate to ε1 and ε2, respectively.

Lemma 5.5 We have:
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(i) ε1 = ‖∇σ‖2 = ‖M‖2 |σ |2 − |M(σ )|2.

(ii) ε2 = ‖∇σ ∧ ∇σ‖2 = 1
4
|Ric(σ )|2 |σ |2.

Proof i) From (4.9), (5.5) and a well-known identity of classical vector algebra we compute:

ε1 = εv
1(σ ) = ‖∇σ‖2 =

∑

i |∇σi
σ |2 =

∑

i μ 2
i |σi × σ |2

=
∑

i μ 2
i (|σ |2 − a 2

i )

= ‖M‖2 |σ |2 − |M(σ )|2. (5.11)

ii) Using (4.9), (5.5) and (5.6) along with various identities of classical vector algebra we

compute:

ε2 = εv
2(σ ) = ‖∇σ ∧ ∇σ‖2 =

∑

i< j

(

|∇σi
σ |2|∇σ j

σ |2 − 〈∇σi
σ,∇σ j

σ 〉2
)

=
∑

i< j μ 2
i μ 2

j

(

|σi × σ |2 |σ j × σ |2 − 〈σi × σ, σ j × σ 〉2
)

=
∑

i< j μ 2
i μ 2

j |(σi × σ) × (σ j × σ)|2

=
∑

i< j μ 2
i μ 2

j 〈σ, σi × σ j 〉
2 |σ |2

= 1
4
(ρ 2

1 a 2
1 + ρ 2

2 a 2
2 + ρ 2

3 a 2
3 )|σ |2

= 1
4
|Ric(σ )|2 |σ |2.

⊓⊔

In general, if a bundle is flat then so are all its sections (see Remark 3.2). The following

result shows that the converse holds for the case at hand.

Theorem 5.6 Suppose σ is a non-zero invariant vector field on (G, g). Then:

(i) σ is flat if and only if (G, g) is flat.

(ii) σ is parallel if and only if (G, g) is flat and σ is orthogonal to g′.

Proof i) If σ is flat (see Remark 4.3), then it follows from (5.10) that at least two principal

sectional curvatures vanish. Then by (5.9) two principal Ricci curvatures are equal and the

third vanishes. But dim n �= 1 so all the ρi vanish, rendering (G, g) flat.

ii) In the abelian case, all invariant fields are parallel since M = 0. In the non-abelian flat case,

precisely two Milnor numbers vanish and ker(M) = g′. It therefore follows from Lemma

5.5 (i), in particular equation (5.11), that σ is parallel if and only if σ is orthogonal to g′. ⊓⊔

It follows from Corollary 4.15 that Theorem 5.6 classifies all the invariant harmonic

vector fields on G. We now extend that to higher-power harmonicity. First, we clarify some

terminology.

Definition 5.7 An invariant vector field σ is Ricci-flat, or a Ricci null vector, if σ ∈ n (rather

than the weaker condition Ric(σ, σ ) = 0).

Theorem 5.8 With the same hypotheses as Theorem 5.6, σ is an r-harmonic vector field in

precisely the following cases:

(a) r = 1 : (G, g) is flat and σ is orthogonal to g′.

(b) r = 2 : σ is Ricci-flat.

(c) r = 3 : all σ .
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Proof Case (a) is a restatement of Theorem 5.6 (ii), and (c) follows from Corollary 4.15

since T G is a rank 3 vector bundle. By Corollary 4.15, σ is 2-harmonic precisely when σ is

2-parallel, which by Lemma 5.5 (ii) occurs precisely when σ is Ricci-flat. ⊓⊔

Remarks 5.9 1) Non-trivial 2-harmonic invariant vector fields exist only if the Ricci cur-

vature degenerates. From ‘Milnor’s list’, there are no such vector fields if, for example,

g = nil, or g = e(2) with a non-flat metric.

2) If σ is Ricci-flat, then the image of ∇σ : g → g is orthogonal to n, and since dim n �= 1

therefore lies in a fixed (i.e. independent of σ ) rank 1 subbundle. This geometric ‘quirk’

explains why the invariant 2-harmonic vector fields form a linear subspace, contrary to

general expectation (Remarks 4.10).

5.3 Invariant higher-power harmonic directions

An invariant vector field σ may be regarded as a section of the sphere bundle S E (q) where

q = |σ |. By Corollary 4.16, it suffices to consider q = 1, so we focus on r -harmonic sections

of the unit tangent bundle U G, which we refer to as r -harmonic directions, or r -harmonic

unit vector fields, depending on whether we wish to emphasise the Lie algebra or the Lie

group. In the former case especially, it is convenient to regard invariant unit vector fields as

elements of the unit sphere S ⊂ g.

When r = 1, the invariant r -harmonic unit vector fields were classified in [10], which

we revisit in Theorem 5.13. When r = 3 the classification is tautologous: the third vertical

energy of any unit vector field vanishes since the fibres of U G are 2-dimensional. To handle

the outstanding case (r = 2), we compute the second tension operator T2(σ ). This requires

the first vertical Newton tensor, and its divergence (see Theorem 4.7).

Theorem 5.10 Let ν1 = νv
1 (σ ) where σ ∈ S.

(i) For all ϕ ∈ g, we have:

ν1(ϕ) = ε1ϕ − ϕ(2) + 〈ϕ, σ (1)〉σ (1).

(ii) The divergence of ν1 is:

divν1 = σ (2) × σ (1).

Then ν1 is solenoidal in precisely the following situations:

(a) The Ricci curvature is non-degenerate and σ is a principal direction.

(b) The Ricci curvature has rank 1 and σ lies in a principal section containing n⊥.

(c) (G, g) is flat.

Proof i) From (2.4), we have:

ν1 = ε1 − α,

where α is the vertical Cauchy–Green tensor. Using (4.8) and (5.5), for all ϕ,ψ ∈ g we

compute:

〈α(ϕ), ψ〉 = 〈∇ϕσ,∇ψσ 〉 = 〈ϕ(1) × σ,ψ (1) × σ 〉

= 〈ϕ(1), ψ (1)〉 − 〈ϕ(1), σ 〉〈ψ (1), σ 〉, since |σ | = 1

= 〈ϕ(2), ψ〉 − 〈ϕ, σ (1)〉〈σ (1), ψ〉.
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Hence:

α(ϕ) = ϕ(2) − 〈ϕ, σ (1)〉σ (1). (5.12)

ii) Since the σi are geodesic, we compute (cf. Definition 2.15):

divν1 =
∑

i ∇σi
(ν1σi ) =

∑

i μiσi × ν1σi , by (5.5)

=
∑

i 〈σi , σ
(2)〉(σi × σ (1)), by (i)

= σ (2) × σ (1).

It follows that divν1 = 0 if and only if Mσ is an eigenvector of M . If the Ricci curvature

is non-degenerate, then M is invertible by (5.6); so, since M has the same eigenspaces as

L by (5.4), this is the case precisely when σ is a principal direction. If dim n = 2, then

n = im(M); so this is the case precisely when σ lies in a principal section containing

ker(M) = n⊥. Finally, if (G, g) is flat then rank(M) ≤ 1 by (5.6); so this is the case for all

σ . ⊓⊔

We also require the second covariant derivative, which is a straightforward consequence

of equations (4.11) and (5.5).

Lemma 5.11 For all ϕ,ψ ∈ g, we have:

∇2
ϕ,ψσ = 〈ϕ(1), σ 〉ψ (1) − 〈ϕ(1), ψ (1)〉σ − (ϕ(1) × ψ)(1) × σ.

Theorem 5.12 If σ ∈ S, then:

−4 T2(σ ) = |Ric(σ )|2σ + Ric2(σ ),

where Ric2 denotes the twice-iterated Ricci tensor. Then σ is a 2-harmonic direction precisely

when any of the following hold:

(a) σ is a principal direction;

(b) σ is an ideal direction;

(c) σ is a Ricci null direction.

Note Conditions (a), (b) and (c) are not mutually exclusive.

Proof By Theorem 5.10 (i):

traceν∇2σ = ‖M‖2 trace ∇2σ − trace M2∇2σ + ∇2
Mσ, Mσσ − |σ (1)|2 trace ∇2σ.

Now by Lemma 5.11:

∇2
σi , σi

σ = μ 2
i ai σi − μ 2

i σ,

so:

trace ∇2σ =
∑

i ∇2
σi , σi

σ = σ (2) − ‖M‖2σ, (5.13)

and:

trace M2∇2σ =
∑

i μ 2
i ∇2

σi , σi
σ = σ (4) − ‖M‖4σ + 2ε2(M2)σ.

By Lemma 5.11 again:

∇2
Mσ, Mσσ = |σ (1)|2 σ (2) − |σ (2)|2σ − (σ (2) × σ (1))(1) × σ.
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Applying Theorem 5.10 (ii) and equation (5.5) yields:

T2(σ ) = B(σ )σ + ‖M‖2σ (2) − σ (4),

where:

B(σ ) = ‖M‖2 |σ (1)|2 − |σ (2)|2 − 2ε2(M2),

after (somewhat remarkably) three pairs of cancellations, including all terms involving ‖M‖4

and divν1. Now:

B(σ ) =
∑

i, j μ 2
i μ 2

j a 2
j −

∑

i μ 4
i a 2

i −
∑

i �= j μ 2
i μ 2

j

=
∑

i �= j μ 2
i μ 2

j (a 2
j − 1)

= 1
4

∑

i �= j ρ 2
i (a 2

j − 1), by (5.6)

= − 1
4

∑

i ρ 2
i (a 2

i + 1), since a 2
1 + a 2

2 + a 2
3 = 1

= − 1
4
‖Ric‖2 − 1

4
|Ric(σ )|2.

Furthermore:

‖M‖2σ (2) − σ (4) =
∑

i �= j μ 2
i μ 2

j a j σ j = 1
4

∑

i �= j ρ 2
i a j σ j

= 1
4
(
∑

i ρ 2
i )σ − 1

4

∑

i ρ 2
i ai σi

= 1
4
‖Ric‖2σ − 1

4
Ric2(σ ).

When assembling T2(σ ), terms involving ‖Ric‖ cancel, leaving the stated formula.

Comparing our expression for T2(σ ) with Theorem 4.13, it follows that σ is a 2-harmonic

direction precisely when σ is a unit eigenvector of Ric2. Since Ric is symmetric the eigenval-

ues of Ric2 are ρ 2
1 , ρ 2

2 , ρ 2
3 , and the eigenspaces of Ric2 contain those of Ric. It follows that all

one-dimensional eigenspaces of Ric2 are principal lines. Furthermore the two-dimensional

eigenspaces of Ric2 were analysed in Proposition 5.2. If ρ 2
1 = ρ 2

2 = ρ 2
3 , then by (5.8)

either precisely two of the μi vanish, in which case (G, g) is flat (so σ is Ricci-null), or

μ 2
1 = μ 2

2 = μ 2
3 . In the latter case, it follows from (5.7) that either λ1 = λ2 = λ3 (so σ is a

principal direction), or precisely two of the λi vanish. In the latter case, if l ⊂ g is the line

orthogonal to ker(L) then every plane containing l is a subalgebra; so σ is an ideal direction.

⊓⊔

For comparison, we give a similar characterisation of the invariant harmonic unit vector

fields on G (cf. [10, Lemma 5.1]).

Theorem 5.13 If σ ∈ S, then:

T1(σ ) = M2(σ ) − ‖M‖2σ,

where M2 is the twice-iterated Milnor map. Then σ is a harmonic direction precisely when

either of the following hold:

(a) σ is a principal direction;

(b) σ is an ideal direction.

Proof By Remark 4.8 (1) the expression for T1(σ ) follows immediately from Eq. (5.13) in

the proof of Theorem 5.12. Hence, by Theorem 4.13, σ is a harmonic direction if and only

if σ is an eigendirection of M2. Since the eigenspaces of M2 contain those of M , all one-

dimensional eigenspaces of M2 are principal lines. The 2-dimensional eigenspaces were
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determined in Proposition 5.2, and the case μ 2
1 = μ 2

2 = μ 2
3 was analysed in the proof of

Theorem 5.12. ⊓⊔

Remark 5.14 Theorems 5.13 and 5.12 clearly show that T1 is a linear operator, whereas T2

is not (cf. Remarks 4.10).

For r = 1, 2, 3 we denote by Hr ⊆ S the invariant r -harmonic directions, and by Zr ⊆ Hr

those of zero r -th vertical energy. Then H3 = Z3, and comparing Theorems 5.8, 5.12 and

5.13 for r = 2 yields:

H2 = H1 ∪ Z2.

Corollary 5.15 We have Hr = Hr−1 ∪ Zr for r = 2, 3.

It follows from Theorem 5.12 (resp. Theorem 5.13) that the invariant r -harmonic unit

vector fields on (G, g) are determined by the singular values of the Ricci tensor (resp. Milnor

map) when r = 2 (resp. r = 1). To give a unified result, we introduce some further subsets of

S. If λk is distinct from λi and λ j for {i, j, k} = {1, 2, 3} then there is the following principal

circle and its poles:

Ci j = {aiσi + a jσ j : a 2
i + a 2

j = 1}, Pk = {±σk},

and if the principal structure constants are all distinct then we have the polar set:

P = {±σ1,±σ2,±σ3}.

Theorems 5.8, 5.12 and 5.13 may now be summarised as follows.

Theorem 5.16 (i) Suppose the |ρi | are distinct. Then H1 = H2 = P and Z1 = Z2 = ∅.

(ii) Suppose |ρi | = |ρ j | �= |ρk |. Then H1 = H2 = Ci j ∪ Pk and Z1 = Z2 = ∅, unless

ρi = ρ j = 0 and |μi | �= |μ j | in which case H1 = P and Z2 = Ci j .

(iii) Suppose |ρ1| = |ρ2| = |ρ3|. Then H1 = H2 = S and Z1 = Z2 = ∅, unless (G, g) is

flat, in which case:

(a) if G is abelian then Z1 = Z2 = S;

(b) if G is non-abelian, with μk �= 0, then H1 = Ci j ∪Pk , with Z1 = Pk and Z2 = S.

When Theorem 5.16 is placed alongside ‘Milnor’s list’ the following classification scheme

is obtained, which subsumes that of [10, Prop. 5.2].

a : Z1 = Z2 = H1 = H2 = S.

nil : H1 = H2 = S and Z1 = Z2 = ∅.

e(1, 1) : H1 = H2 = C13∪P2 and Z1 = Z2 = ∅, unless λ1 = −λ3 in which case Z2 = C13.

e(2) : H1 = H2 = C12 ∪ P3 and Z1 = Z2 = ∅, unless λ1 = λ2 in which case

Z2 = H2 = S and Z1 = P3.

sl(2) : H1 = H2 = P and Z1 = Z2 = ∅, unless:

λ1 = λ2 in which case H1 = H2 = C12 ∪ P3;

λ1 = λ2 − λ3 in which case H2 = C13 ∪ P2 and Z2 = C13.

su(2) : H1 = H2 = P and Z1 = Z2 = ∅, unless:

λ1 = λ2 = λ3 in which case H1 = H2 = S;

λ1 = λ2 > λ3 in which case H1 = H2 = C12 ∪ P3;

λ1 > λ2 = λ3 �= 1
2
λ1 in which case H1 = H2 = C23 ∪ P1;

λ2 = λ3 = 1
2
λ1 in which case H1 = H2 = C23 ∪ P1 and Z2 = C23;

λ1 = λ2 + λ3 and λ2 �= λ3 in which case H2 = C23 ∪ P1 and Z2 = C23.
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Some notable consequences of the classification are:

• Left-invariant metrics with H1 � H2 are supported only on e(2), sl(2) and su(2), and in

each case H2 = H1 ∪ Z2, as expected.

• If G = SU (2), realised as the 3-sphere, and g is the standard metric (of constant sectional

curvature 1), then λ1 = λ2 = λ3 = 2 and S is precisely the set of (left) Hopf vector

fields on S3. These are all 1-harmonic, and 2-harmonic. (It follows from Theorem 5.10

that the vertical newton tensor νv
1 (σ ) is solenoidal.)

• If g = e(2) or g = e(1, 1) then the infinitesimal translations are 1-harmonic and 2-

harmonic, for all choices of metric. (The vertical Newton tensor is solenoidal only for

the flat metric on e(2).)

• From Example 5.3, in addition to ∂θ we obtain the following 1-parameter family of

1-harmonic and 2-harmonic unit vector fields on UH2:

σt = cos t σ1 + sin t σ2

= y cos(θ + t) ∂x + y sin(θ + t) ∂y − cos(θ − t) ∂θ .

(The vertical newton tensor νv
1 (σt ) is solenoidal for all t .)

5.4 Invariant higher-power harmonic maps

We conclude with a classification of all left-invariant unit vector fields that are higher-power

harmonic maps G → U G, making use of Theorem 3.10. This requires an analysis of twisted

skyrmions (Definition 3.9) for the case at hand. Since H1 ⊆ H2, all invariant 1-harmonic

directions are twisted 2-skyrmions in the bundle U G → G, for all coupling constants. The

following result shows that there are no others.

Theorem 5.17 An element σ ∈ S is a twisted 2-skyrmion in the unit tangent bundle precisely

when σ ∈ H1.

Proof By Eq. (4.15) for the first variation of higher-power vertical energy of sections of

vector bundles, and the argument used to prove Theorem 4.13, σ is a twisted 2-skyrmion if

and only if T1(σ ) + c T2(σ ) is a pointwise multiple of σ for some c > 0, and by Theorems

5.12 and 5.13 this is the case precisely when σ is an eigenvector of:

M2 −
c

4
Ric2 .

Now:

M2(σ ) −
c

4
Ric2(σ ) =

∑

i ηi ai σi ,

where by (5.6):

ηi = μ 2
i − cμ 2

j μ 2
k ,

for {i, j, k} = {1, 2, 3}. Then:

ηi − η j = (μ 2
i − μ 2

j )(1 + cμ 2
k ),

hence ηi = η j if and only if |μi | = |μ j |. So by Theorem 5.13 the classification scheme is

identical to that for H1. ⊓⊔

We also require the second vertical Newton tensor ν2 of σ . (We computed ν1 in Theorem

5.10.)
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Lemma 5.18 Let ν2 = νv
2 (σ ) where σ ∈ H1.

(i) For all ϕ ∈ g, we have:

ν2(ϕ) = ϕ(4) − ε1ϕ(2) + ε2ϕ + (ε1 − |σ (1)|2)〈ϕ, σ (1)〉σ (1).

(ii) Furthermore:

divν2 = (ε1 − |σ (1)|2) divν1.

Proof i) From (2.4):

ν2 = ε2 − ε1α + α2,

where α is the vertical Cauchy–Green tensor, calculated in (5.12). It follows from Theorem

5.13 that σ is an eigenvector of M2:

σ (2) = |σ (1)|2σ. (5.14)

This yields the following simplification:

α2(ϕ) = ϕ(4) − |σ (1)|2〈ϕ, σ (1)〉σ (1).

ii) Since the σi are geodesic, we compute:

divν2 =
∑

i ∇σi
(ν2(σi )) = (ε1 − |σ (1)|2)

∑

i 〈σi , σ
(1)〉μiσi × σ (1)

= (ε1 − |σ (1)|2)σ (2) × σ (1),

and the result follows from Theorem 5.10 (ii). ⊓⊔

Finally, we will need the various twisted Ricci tensors from Theorem 4.11. For r = 1, 2, 3,

we define:

ηr = (∇σ) ◦ νr−1(σ ),

and abbreviate:

Ricr (σ ) = Ricηr (σ ) =
∑

i R(σ, ηr (σi ))σi .

Lemma 5.19 If σ ∈ H1, then:

i) Ric1(σ ) = ε2(M)(σ × σ (1)).

ii) Ric2(σ ) = ε2(M)
(

2 − |σ (1)|2 + ε1

)

(σ × σ (1)).

iii) Ric3(σ ) = ε2(M)
(

1 + (1 − |σ (1)|2)(ε1 − |σ (1)|2) + ε2

)

(σ × σ (1)).

Proof i) Since ν0(σ ) is the identity, it follows from (5.5) and (5.10) that:

Ric1(σ ) =
∑

i R(σ,∇σi
σ)σi =

∑

i μi R(σ, σi × σ)σi

=
∑

i ai μi R(σi , σi × σ)σi . (5.15)

Now by (5.10) again, and (5.9), we compute:

R(σi , σi × σ)σi = R(σi ,
∑

j,k ǫi jk a jσk)σi = −
∑

j,k ǫi jk a j Kik σk

= 2μi

∑

j,k ǫi jk a j μk σk − ε2(M)
∑

j,k ǫi jk a j σk

= 2μi M(σi × σ) − ε2(M)(σi × σ). (5.16)
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Therefore:

Ric1(σ ) = 2M(σ (2) × σ) − ε2(M)(σ (1) × σ)

= ε2(M)(σ × σ (1)), by (5.14).

ii) By Theorem 3.10:

ν1(σ ) = 2 + ν1. (5.17)

Therefore, by Theorem 5.10 and equation (5.5):

η2(ϕ) = (2 + ε1)η1(ϕ) − (ϕ(3) × σ), (5.18)

since by (5.14) the covariant derivative of σ along σ (1) vanishes. Hence, by (5.15):

Ric2(σ ) = (2 + ε1) Ric1(σ ) −
∑

i ai μ
3
i R(σi , σi × σ)σ,

and by (5.16):

∑

i ai μ
3
i R(σi , σi × σ)σ = 2M(σ (4) × σ) − ε2(M)(σ (3) × σ)

= ε2(M)|σ (1)|2(σ × σ (1)), by (5.14).

The result now follows from (i).

iii) By Theorem 3.10 and Eq. (5.17):

ν2(σ ) = ν2 + ν1 + 1 = ν1(σ ) − 1 + ν2. (5.19)

Therefore, by Lemma 5.18 (i) along with equations (5.5) and (5.18) we have:

η3(ϕ) = η2(ϕ) − η1(ϕ) + (ϕ(5) × σ) − ε1(ϕ
(3) × σ) + ε2η1(ϕ)

= (1 + ε1)η2(ϕ) +
(

ε2 − (1 + ε1)
2
)

η1(ϕ) + (ϕ(5) × σ).

Hence, by (5.15):

Ric3(σ ) = (1 + ε1) Ric2(σ ) +
(

ε2 − (1 + ε1)
2
)

Ric1(σ ) +
∑

i ai μ
5
i R(σi , σi × σ)σ,

and by (5.16):

∑

i ai μ
5
i R(σi , σi × σ)σ = 2M(σ (6) × σ) − ε2(M)(σ (5) × σ)

= ε2(M)|σ (1)|4(σ × σ (1)), by (5.14).

The result now follows from (i) and (ii). ⊓⊔

Remark 5.20 It follows from Eq. (5.17) and Theorem 5.10 that the first Newton tensor ν1(σ )

of σ is not in general solenoidal. By Eq. (5.19), Lemma 5.18 and Theorem 5.10, the same is

true of ν2(σ ).

Theorem 5.21 An invariant unit vector field σ is an r-harmonic map G → U G if and only

if σ is a principal direction (r = 1, 2), or σ ∈ H1 (r = 3).

Proof It follows from Theorems 3.10 and 5.17, bearing in mind that τ v
3 (σ ) = 0, that σ is

an r -harmonic map precisely when σ ∈ H1 and dπ ◦ τr (σ ) = 0. By Theorem 4.11 and

equations (5.17) and (5.19):

dπ ◦ τr (σ ) = Ricr (σ ) + divνr−1 + divνr−2.
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Assuming henceforward that σ ∈ H1, it follows from Theorem 5.10, Lemma 5.18 (ii) and

equation (5.14) that:

divν1 = |σ (1)|2(σ × σ (1)), divν2 = (ε1 − |σ (1)|2)|σ (1)|2(σ × σ (1)).

Comparing these with Lemma 5.19, dπ◦τr (σ ) is a multiple of σ×σ (1), and therefore vanishes

if σ is a principal direction. So by Theorem 5.13, it suffices to consider ideal directions σ .

Thus, λk = 0 = ak for some k (Example 5.1). Assuming without loss of generality that

k = 1, it then follows from (5.2) that:

μ2 = 1
2
(λ3 − λ2) = −μ3. (5.20)

Referring to Lemma 5.5 and equation (5.6), this yields the following simplifications:

ε2(M) = −μ 2
2 , |σ (1)|2 = μ 2

2 , ε1 = μ 2
1 + μ 2

2 , ε2 = μ 2
1 μ 2

2 .

i) r = 1. By Lemma 5.19 (i):

dπ ◦ τ1(σ ) = −μ 2
2 (σ × σ (1)).

Since a1 = 0, it follows from (5.20) that μ2 vanishes only when σ is a principal direction.

ii) r = 2. By Lemma 5.19 (ii):

dπ ◦ τ2(σ ) = (1 + μ 2
1 )dπ ◦ τ1(σ ),

which by (i) vanishes precisely when σ is a principal direction.

iii) r = 3. We have:

divν1 + divν2 = μ 2
2 (1 + μ 2

1 )(σ × σ (1)),

and by Lemma 5.19 (iii):

Ric3(σ ) = −μ 2
2

(

1 + (1 − μ 2
2 )μ 2

1 + μ 2
1 μ 2

2

)

(σ × σ (1))

= −μ 2
2 (1 + μ 2

1 )(σ × σ (1)).

Therefore, dπ ◦ τ3(σ ) = 0. ⊓⊔

Remark 5.22 The characterisation of invariant harmonic maps σ : G → U G agrees with that

of [10, Thm. 5.2]. Furthermore, it was shown in [33, Proposition 3.1] and [10, Cor. 5.3] that

σ is a minimal immersion precisely when σ is a harmonic unit vector field, i.e. σ ∈ H1.
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