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Abstract

Infection by parasites or pathogens can have marked physiological impacts on individuals. In
birds, infection may affect moult and feather growth, which is an energetically demanding
time in the annual cycle. Previous work has suggested a potential link between clinically vis-
ible Trichomonas gallinae infection and wing length in turtle doves Streptopelia turtur arriving
on breeding grounds. First, T. gallinae infection was characterized in 149 columbids from 5
species, sampled on turtle dove wintering grounds in Senegal during the moulting period, test-
ing whether infection by T. gallinae is linked to moult. Trichomonas gallinae prevalence was
100%, so rather than testing for differences between infected and uninfected birds, we tested
for differences in moult progression between birds infected by different T. gallinae strains.
Twelve strains of T. gallinae were characterized at the internal transcribed spacer 1 (ITS1)/
5.8S/ITS2 region, of which 6 were newly identified within this study. In turtle doves only, evi-
dence for differences in wing length by strain was found, with birds infected by strain Tcl-1
having wings nearly 6 mm longer than those infected with strain GEO. No evidence was
found for an effect of strain identity within species on moult progression, but comparisons
between infected and uninfected birds should be further investigated in species where preva-
lence is lower.

Introduction

Infection by a parasite or pathogen can have physiological impacts on individuals, even in the
absence of clinical signs (Latorre-Margalef et al., 2009; Lachish et al., 2011; Asghar et al., 2015).
Infections can initiate trade-offs within individuals because immune defences are a costly
investment (Sheldon and Verhulst, 1996); increasing the resources invested in immunity
reduces those that can be invested in growth, reproduction and thermoregulation
(Lochmiller and Deerenberg, 2000; Sanz et al., 2004).

Trichomonas gallinae is the causal agent of trichomoniasis, an emerging infectious disease
linked to mortality in finches in the UK and Europe (Robinson et al., 2010). Trichomonas gal-
linae is historically known as a parasite of columbids and raptors (Stabler, 1954), where it was
generally thought to cause few clinical signs (but see Bunbury et al., 2008) with the exception
of occasional mortality events (Höfle et al., 2004; Rogers et al., 2018). However, the emergence
of a novel strain (termed the type A strain; Gerhold et al., 2008) linked to the finch epizootic
(Lawson et al., 2011) has been associated with mortality in adult and nestling European turtle
doves Streptopelia turtur (Stockdale et al., 2015), in which T. gallinae is found at very high
prevalence in the UK (86%: Lennon et al., 2013; 100%: Stockdale et al., 2015) and Europe
(93% from samples collected using standard T. gallinae sampling and culture techniques:
Marx et al., 2017).

Moult is an energetically demanding stage in a bird’s annual cycle (Rubolini et al., 2002),
with trade-offs demonstrated within individuals overlapping moult and other energetically
demanding activities such as breeding or migrating, compared to individuals undergoing
these processes sequentially (Rubolini et al., 2002; Echeverry-Galvis and Hau, 2013).
Trade-offs between moult and immunity have also been identified (Moreno-Rueda, 2010).
For example, Laysan albatrosses Phoebastria immutabilis with a higher nematode burden
began primary moult later, replaced fewer primary feathers and grew fewer feathers at a
time (Langston and Hillgarth, 1995). Malarial coinfections reduce feather growth in house
martins Delichon urbica (Marzal et al., 2013), although no effect of single haemosporidian
infections was found on the progression of moult in captive yellowhammers Emberiza citri-
nella (Allander and Sundberg, 1997). However, trade-offs may be context-dependent: for
example; Leucocytozoon ziemanni infection is associated with reduced clutch size in
Tengmalm’s owls Aegolius funereus only in low food abundance years (Korpimäki et al., 1993).

Previous work found that turtle doves arriving on UK breeding grounds with clinical signs
(infected by the type A strain responsible for the finch epizootic) of trichomonosis had mark-
edly shorter wings than those without clinical signs (but still carrying the parasite; Stockdale
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et al., 2015), suggesting a potential relationship between infection
with the lethal type A strain and restricted moult. Here, we first
investigated the prevalence and strain identity of T. gallinae in
columbids on turtle dove wintering grounds in Senegal, screening
migratory turtle doves alongside resident laughing doves
Spilopelia senegalensis, black-billed wood doves Turtur abyssini-
cus, Namaqua doves Oena capensis and vinaceous doves
Streptopelia vinacea. Second, we tested whether infection by dif-
ferent strains of T. gallinae influences either wing length or
moult within species, to test whether sub-clinical T. gallinae infec-
tion might restrict moult in columbids.

Methods

Study sites and field data collection

Columbids were caught at a turtle dove wintering roost near
Sandiara, Senegal (14°24′N, 16°47′W) during February–March
2014, and January–March 2015. Birds were caught using mist
nets at roost sites and near watering holes within an area of regen-
erated acacia scrub fenced off to protect against livestock grazing.
Once caught, birds were weighed using a digital balance (±0.1 g),
their maximum wing length measured (Redfern and Clark, 2001;
±0.5 mm) and they had an oral swab taken to test for the presence
of T. gallinae prior to release. A swab (4 mm diameter for turtle
doves, vinaceous doves and laughing doves; 2.5 mm diameter
for black-billed wood doves and Namaqua doves) was moistened
using sterile water, and passed gently down the oesophagus and
into the crop, where it was passed through 2 figure of 8 motions
before being gently removed and inoculated into an In Pouch™
culture kit (Biomed Diagnostics, Oregon, USA). Culture kits
were incubated at 37°C for 3–7 days (Bunbury et al., 2005) and
then processed as detailed below. All birds appeared healthy
when caught, with no visible signs of trichomonosis (caseous
lesions visible in the oral cavity, matted feathers or saliva around
the bill, apparent difficulties swallowing, thin with protruding
breastbone) or any other clinical signs of disease.

Parasite isolation

Following incubation, T. gallinae parasites were either isolated
(2014 samples) or mixed 1:1 with 100% ethanol and shipped to
the UK prior to parasite isolation (2015 samples). Parasites
were isolated following the protocol of Riley et al. (1992), modi-
fied as follows: 2.5 mL of culture or culture/ethanol mix was cen-
trifuged at 3200 rpm for 5 min, then the resulting pellet was
washed with 1 mL of phosphate-buffered saline (PBS) by centrifu-
gation and re-suspended in 200 μL PBS. Samples were stored at
−20°C until DNA extraction.

DNA extraction and detection of parasites

DNA extraction was carried out using a modified ammonium
acetate protocol (Nicholls et al., 2000). Briefly, the parasite pellet
was digested overnight in digestion buffer (20 mM EDTA, 50 mM

Tris, 120 mM NaCl, 1% SDS, pH 8.0) with 50 μg of proteinase
K. Ammonium acetate (4 M) was then used to precipitate out
the proteins, and ethanol precipitated out the DNA. The resulting
DNA pellet was dissolved in 20–50 μL low TE buffer, depending
on the size of the pellet, in a water bath at 65°C. The extracted
DNA was stored at −20°C. Samples were not all individually
quantified but DNA concentrations based on a subset of samples
typically ranged from 0.5 to 60 ng μL−1.

Two polymerase chain reactions (PCRs) were carried out for
each sample, 1 targeting a 400 bp length of the internal tran-
scribed spacer (ITS) ribosomal region using the primer pair

TFR1 (5′-TGCTTCAGTTCAGCGGGTCTTCC-3′) and TFR2
(5′-CGGTAGGTGAACCTGCCGTTGG-3′) (Gaspar da Silva
et al., 2007), and the second targeting a 1000 bp fragment of
the iron hydrogenase (Fe-hyd) gene using the primer pair
TrichhydFOR (5′-GTTTGGGATGGCCTCAGAAT-3′) and
TrichhydREV (5′-AGCCGAAGATGTTGTCGAAT-3′) (Lawson
et al., 2011) to allow for the identification of sub-types. All
PCRs were run on either a GeneAmp 9700 PCR system
(Applied Biosystems, Foster City, CA, USA) or a DNA Engine
Tetrad 2 (Bio-Rad Laboratories Inc., Hercules, CA, USA), and a
negative control of molecular grade water and a positive
control were included in each PCR run. ITS PCRs were carried
out in a 10 μL reaction volume comprising 0.8× Qiagen multiplex
PCR MasterMix (Qiagen, Hilden, Germany), 0.5 μM each of
forward and reverse primers and 1 μL template DNA. The touch-
down PCR protocol consisted of an initial 15 min denaturation at
95°C, followed by 11 cycles of 60 s at 94°C, 30 s at 66°C decreasing
by 1°C per cycle and 60 s at 72°C, then 24 cycles as before
but at an annealing temperature of 55°C, with a final 10 min
extension step at 72°C. The Fe-hyd PCR consisted of: 1× PCR
buffer (Promega, Southampton, UK), 3 mM MgCl2 (Promega,
Southampton, UK), 0.25 μM dNTP mix (Promega,
Southampton, UK), 0.25 μM forward and reverse primers
(Invitrogen, Hertford, UK), 5 U μM

−1 Go Taq Hot Start polymer-
ase (Promega, Southampton, UK) and a volume of molecular
grade water to make the total PCR volume to 49 μL whereby 1
μL of DNA was then added. PCR thermal cycling was performed
as follows: 5 min denaturation at 94°C, then 35 cycles of 45 s at
94°C, 30 s at 53°C and 45 s at 72°C, followed by 5 min at 72°C
for a final elongation. All PCR products were electrophoresed
through a 1.5% agarose gel, which was stained with Gel Red, in
1× TBE buffer and visualized under UV light.

Positive PCR products were either purified using Wizard SV
Gel & PCR Clean-Up System (Promega, Southampton, UK)
and sent for bidirectional Sanger sequencing by Beckman
Coulter Genomics (Takeley, Essex, UK) (n = 52), or prepared
for sequencing on an Illumina MiSeq (n = 101) as part of a
wider project (Thomas, 2017; Thomas et al., 2022). Details of
preparation for Illumina sequencing are published in detail else-
where (Thomas et al., 2022), and summarized in the
Supplementary material.

Sequence analysis

Sequences returned from Sanger sequencing were manually
assessed for sequencing errors, trimmed and aligned in BioEdit
(Hall, 2005). Analysis of MiSeq sequences is described in detail
elsewhere (Thomas et al., 2022), and available in the
Supplementary material. Following processing, all sequences
were queried using the NCBI-BLAST algorithm (Altschul et al.,
1997) to assign strain identity.

Moult score

Each of the 10 primary feathers on the right wing of each bird was
examined to determine the stage of moult, and each bird’s moult
was scored between 0 (moult not started; all feathers old) and 50
(moult completed; all feathers new). Each feather was scored
between 0 (old feather present) and 5 (new feather completely
grown) depending on the proportion of total primary feather
length emerged from the feather sheath, and the totals summed
to provide an index of the stage of moult.
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Statistical analysis

To determine whether T. gallinae strain influenced wing length or
moult, we analysed data for each species separately where sample
sizes and strain variation were sufficient. Namaqua doves were
excluded from analysis because all but 3 individuals carried the
same parasite strain, and vinaceous doves were not analysed
because we only identified the strain from 1 individual. For the
remaining 3 species separately, we removed any strains repre-
sented in only 1 bird, and constructed linear models with wing
length or moult score as the response variable and strain type
and day (to control for the progress of moult throughout the win-
ter) as predictor variables. We then tested the significance of each
variable by removing each variable in turn from the full model
and comparing models with and without the variable. Residuals
were checked for homoscedasticity throughout and response vari-
ables transformed where appropriate.

Results

A total of 149 columbids were caught over 2 winters: 55 European
turtle doves, 43 Namaqua doves, 34 laughing doves, 15 black-
billed wood doves and 2 vinaceous doves.

Trichomonas gallinae prevalence and identity

All birds tested were positive for the presence of T. gallinae. We
obtained good quality sequence from 119 birds (81%; 13 black-
billed wood doves; 23 laughing doves; 41 Namaqua doves; 41 tur-
tle doves and 1 vinaceous dove; Fig. 1); prevalence and sequence
data for turtle doves has been reported elsewhere (Thomas et al.,
2022), but are summarized below for comparison. The most com-
mon strain present, GEO, was identical to one previously isolated
from Australasian columbids [GenBank accession number (here-
after A/N) JQ755287], and was found in 6 black-billed wood
doves, 9 laughing doves, 41 Namaqua doves and 25 turtle
doves. A new strain, with 99% match to the GEO strain and
named GEO-TD was found in 1 turtle dove and 3 laughing
doves (A/N OM417014), 2 of which were coinfected with type
C (see below). Turtle doves had 3 strains only found in this spe-
cies, 4 carrying a strain matching Trichomonas tenax (A/N
U86615), 10 carrying a strain matching Tcl-1 (A/N KF993705)
and 1 carrying a strain matching type III (A/N FN433473).
Seven black-billed wood doves carried a new strain not found
in other species with 99% match to Tcl-1, and named
Tcl-BBWD (A/N OM417010). The type C strain (A/N
EU215362) was found in 13 laughing doves (including 2 coin-
fected with GEO-TD, see above), 2 turtle doves and 1 vinaceous
dove, and the type A strain (A/N GQ150752) was found in 1
black-billed wood dove and 1 Namaqua dove. Two Namaqua
doves were each infected with new strains GEO-NQD (A/N
OM417020) and Sen-NQD (A/N OM417018), and 1 laughing
dove was coinfected by 2 new strains: GEO-LD (A/N
OM417015) and Tcl-LD (A/N OM417016).

Further identification of sub-types classified by the Fe-hyd
gene was possible for 13 birds. We identified 1 known type A,
sub-type A2, in a black-billed wood dove (A/N ON936876); this
strain had previously been isolated from a Madagascar turtle
dove Streptopelia picturata (A/N JF681141). We identified 5 C
sub-types, of which 3 are reported for the first time here. We iso-
lated the C6 sub-type from 2 laughing doves (A/N ON936878):
this sub-type has previously been reported from a booted eagle
Hieraaetus pennatus in Spain (A/N KP099941). As previously
reported (Thomas et al., 2022), we identified sub-type C8-TD
(A/N MT418242) from 1 turtle dove. All 3 novel sub-types
were identified from laughing doves, with C9-LD (A/N

ON93689), C10-LD (A/N ON936881) and C12-LD (A/N
ON936875) isolated from 5, 1 and 1 individual, respectively;
C9-LD (A/N ON936880) was also isolated from 1 vinaceous
dove. We identified 2 Tcl-1 sub-types (T1-TD, A/N MT418249
and T2-TD, A/N MT418246), both reported in turtle doves in
Senegal as part of a separate paper from this study (Thomas
et al., 2022). Finally, we identified a sub-type for the new ITS
strain Tcl-BBWD, which we designated NT1-BBWD (A/N
ON936877), isolated from 2 black-billed wood doves.

Associations with wing length and moult

All birds were infected with T. gallinae, so we could not test for an
effect of infection per se on wing length or moult. No associations
were found between T. gallinae strain and moult score for any of
the 3 species examined (Table 1a). Turtle doves infected by the
GEO strain had wings 5.94 mm shorter on average (with marginal
significance: P = 0.052; overall wing length range 159–180 mm)
than those infected by the Tcl-1 strain (Fig. 2) when controlling
for an increase in moult score with day (Table 1b). No significant
associations were found for laughing doves or black-billed wood
doves (Table 1b).

Discussion

We confirm a high prevalence of infection by Trichomonas spp. in
West African columbids, from both resident and migrant species,
with multiple parasite strains circulating in host populations. To
our knowledge, this is the first investigation of sub-clinical
Trichomonas infection in West African birds, and adds to the
growing literature on this parasite, which may be a cause of con-
servation concern in some host species (Bunbury et al., 2007;
Stockdale et al., 2015). We find some evidence of association
between Trichomonas strain and wing length in turtle doves, sug-
gesting further research to test for differential effects of
Trichomonas strain type on host physiology is warranted.

We found 12 Trichomonas strains circulating in West African
columbids, with further genetic variation at the Fe-hyd region
identified within 2 of these strains (type C and Tcl-1). This
level of strain diversity in a single location is notable, and higher
than that seen in columbids in the UK, either from dead or shot
birds (4 strains at the ITS region; Chi et al., 2013) or from live-
sampled columbids (4 strains at the ITS region; Lennon et al.,
2013). Turtle doves in our study had the highest strain diversity
with 6 strains. As long-distance migrants, they may be exposed
to infection over a wider geographical area and thus be exposed
to a higher diversity of parasite strains (Koprivnikar and Leung,
2015). Only 1 additional strain, type A, was found in a larger-scale
study of 131 turtle doves covering Senegal, Burkina Faso, France
and the UK (Thomas et al., 2022). Laughing doves also showed
high strain diversity with 5 strains isolated from only 24 birds
(Fig. 1).

The most common strain we found, accounting for 63% of
infections and found in all species apart from the vinaceous
dove, was the GEO strain, previously identified from multiple
dove and pigeon species across Europe and into the Middle
East (Marx et al., 2017; Rajabloo, M. et al., unpublished). The
next most common strain was type C, accounting for 12% of
infections, previously widely reported from doves and pigeons
in Europe, the Middle East, China and the USA (e.g. Gerhold
et al., 2008; Marx et al., 2017; Feng et al., 2018; Arabkhazaeli
et al., 2020). Tcl-1, a strain similar to Trichomonas canistome,
accounted for 8% of infections overall but was found in turtle
doves only in this study. Previous studies have identified this
strain only in turtle doves in Europe and Africa, and in stock
doves Columba oenas in Europe (Martínez-Herrero et al., 2014;
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Marx et al., 2017; Thomas et al., 2022). The only other strain
found in more than 5% of individuals was a novel strain with
the highest similarity to Tcl-1 (T. canistome-like), which we desig-
nated Tcl-BBWD. This strain was only found in black-billed
wood doves in this study. Given that the majority of Tcl-1 occur-
rences have been found in a single host species, it may be that
Tcl-like strains have a higher degree of host specificity than
other strains of T. gallinae.

We found a low rate of coinfection by multiple parasite strains,
finding 3 of 34 laughing doves to be infected by 2 strains each;
coinfection was not detected in the other species examined.
This is a similar finding to that in a larger-scale study of turtle
doves only, where only 1% of individuals were found to be coin-
fected by multiple strains of T. gallinae (Thomas et al., 2022), and
may suggest either within-host competition between T. gallinae
strains, or high mortality of coinfected individuals (see Thomas

et al., 2022 for a further discussion of potential reasons behind
this finding).

Interestingly, we did not find type A strain in the migratory
turtle dove, but did isolate this strain from resident black-billed
wood and Namaqua doves. Sequencing at the Fe-hyd region indi-
cated that – at least in the black-billed wood dove – this is not the
same strain as is responsible for the finch epizootic (Robinson
et al., 2010; Lawson et al., 2011). To our knowledge, this is the
first report of a type A strain from the African continent, although
a strain identical at the ITS region to the one we found has been
reported from columbids in Mauritius (Gaspar da Silva et al.,
2007). Current knowledge suggests that type A T. gallinae strains
are more likely to be associated with clinical signs and mortality
than other strains (Sansano-Maestre et al., 2009; Lawson et al.,
2011; Lennon et al., 2013; Stockdale et al., 2015), and a type A
strain has been associated with morbidity and mortality in turtle

Fig. 1. Trichomonas gallinae strain prevalence in African columbid species, for individuals from which good quality sequence was obtained.

Table 1. Results of linear models predicting (a) moult score and (b) wing length in 3 dove species according to Trichomonas gallinae strain, controlling for day

Turtle dove Laughing dove Black-billed wood dove

Sum of square F P Sum of square F P Sum of square F P

(a) Moult score

T. gallinae strain 42.99 0.18 0.91 89.47 0.76 0.51 60.81 0.80 0.47

Day 713.43 8.90 0.006 68.45 1.17 0.33 136.90 1.80 0.31

(b) Wing length

T. gallinae strain 288.05 2.83 0.052 47.66 0.92 0.41 3.75 0.55 0.47

Day 203.69 6.01 0.019 57.90 2.25 0.15 0.07 0.01 0.92

Statistics relate to the comparison of models and without each term, presenting the sum of squares, F and P values. Terms highlighted in bold are significant at p < 0.05; those in italics are

marginally significant at 0.05 < p < 0.1.
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doves in the UK (Stockdale et al., 2015). Given the low prevalence
of type A found in our study, we could not test whether this strain
was associated with reduced wing length as suggested by
Stockdale et al. (2015).

We found turtle doves infected by the GEO strain to have
wings nearly 6 mm shorter on average than those infected by
Tcl-1, but found no evidence for associations between wing length
and strain in laughing doves or black-billed wood doves. Our
sample size for other strains was much smaller, so our study
may not have had sufficient statistical power to detect any effects
of infection by other strains. As long-distance migrants, it may be
that turtle doves have a relatively short time in which to moult,
and thus may be more susceptible to any physiological impacts
of infection from more virulent parasite strains upon wing length
than resident species. However, in passerines, long-distance
migrants spend a similar length of time completing moult com-
pared to residents (Kiat et al., 2019). Whilst these data are not
readily available for columbids, 60–80% of turtle doves previously
caught on migration had begun primary moult on breeding
grounds and suspended moult during migration to complete on
wintering grounds (Mead and Watmough, 1976; Swann and
Baillie, 1979) suggesting that primary moult may occur over a
relatively prolonged period.

Our data suggest that Tcl-1 might be a specialist strain, with
GEO being more generalist and found within all host species
for which we sequenced Trichomonas from more than 1 individ-
ual. This strain has also been isolated from passerines and seed
food resources in the UK (Thomas et al., 2022). Our data are con-
sistent with the suggestion that generalist parasites may be more
virulent, or have a greater impact on their hosts, than specialist
parasites (Leggett et al., 2013), with the seemingly more generalist
GEO exhibiting a marginally higher impact on the host (shorter
wing length) than the seemingly more specialist Tcl-1. Whilst a
larger sample size of birds infected by these and other strains
would be necessary to draw any firm conclusions, our data sug-
gest that further investigation may be warranted. Data from popu-
lations with parasite prevalence <100% would greatly improve our
overall understanding of any impacts of parasite infection per se.
Similarly, studies carried out in populations where individuals
could be caught and sampled regularly over an extended time per-
iod would be extremely valuable in elucidating the epidemiology
and potential within-host strain turnover of T. gallinae parasites.
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