
This is a repository copy of Parallel data-local training for optimizing Word2Vec
embeddings for word and graph embeddings.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/196489/

Version: Accepted Version

Proceedings Paper:
Moon, G.E., Newman-Griffis, D. orcid.org/0000-0002-0473-4226, Kim, J. et al. (3 more
authors) (2020) Parallel data-local training for optimizing Word2Vec embeddings for word
and graph embeddings. In: 2019 IEEE/ACM Workshop on Machine Learning in High
Performance Computing Environments (MLHPC). 2019 IEEE/ACM Workshop on Machine
Learning in High Performance Computing Environments (MLHPC), 18 Nov 2019, Denver,
CO, USA. IEEE , pp. 44-55. ISBN 978-1-7281-5986-7

https://doi.org/10.1109/mlhpc49564.2019.00010

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Parallel Data-Local Training for
Optimizing Word2Vec Embeddings for

Word and Graph Embeddings

Gordon E. Moon
Computer Science and Engineering

The Ohio State University

Columbus, OH, U.S.A.
moon.310@osu.edu

Aravind Sukumaran-Rajam
Computer Science and Engineering

The Ohio State University

Columbus, OH, U.S.A.
sukumaranrajam.1@osu.edu

Denis Newman-Griffis
Computer Science and Engineering

The Ohio State University

Columbus, OH, U.S.A.
newman-griffis.1@osu.edu

Eric Fosler-Lussier
Computer Science and Engineering

The Ohio State University

Columbus, OH, U.S.A.
fosler-lussier.1@osu.edu

Jinsung Kim
School of Computing

University of Utah

Salt Lake City, UT, U.S.A.
u6027797@utah.edu

P. Sadayappan
School of Computing

University of Utah

Salt Lake City, UT, U.S.A.
saday@cs.utah.edu

Abstract—The Word2Vec model is a neural network-based un-
supervised word embedding technique widely used in applications
such as natural language processing, bioinformatics and graph
mining. As Word2Vec repeatedly performs Stochastic Gradient
Descent (SGD) to minimize the objective function, it is very
compute-intensive. However, existing methods for parallelizing
Word2Vec are not optimized enough for data locality to achieve
high performance. In this paper, we develop a parallel data-
locality-enhanced Word2Vec algorithm based on Skip-gram with
a novel negative sampling method that decouples loss calculation
with positive and negative samples; this allows us to efficiently
reformulate matrix-matrix operations for the negative samples
over the sentence. Experimental results demonstrate our parallel
implementations on multi-core CPUs and GPUs achieve signifi-
cant performance improvement over the existing state-of-the-art
parallel Word2Vec implementations while maintaining evaluation
quality. We also show the utility of our Word2Vec implementation
within the Node2Vec algorithm which accelerates embedding
learning for large graphs.

Index Terms—Parallel Machine Learning, Unsupervised
Learning, Learning Latent Representations, Parallel Word2Vec,
Node2Vec, Word Embedding, Graph Embedding

I. INTRODUCTION

The Word2Vec model proposed by Mikolov et al. [1], [2]
belongs to the family of neural network-based static word
embedding techniques that generate a dense vector in a low-
dimensional embedding space for each word in a fixed vocab-
ulary. The embeddings generated by Word2Vec can be utilized
as key features in a wide range of applications such as natural
language processing [3], [4], bioinformatics [5], [6] and graph
mining [7], [8]. While embeddings are often trained once on a
large corpus and re-used for a variety of applications, several
results have demonstrated that for tasks in specific domains,
such as biomedicine, embeddings trained de novo on domain-
specific corpora outperform general-purpose embeddings [9].
Additionally, recent work has shown that training many sets
of embeddings on specific sub-corpora can be used to model
language change over time [10], even for specific tasks like
tracking armed conflicts [11]. The time cost to train a large
number of embedding models limits the expanded use of

embeddings for detailed analysis of multiple datasets. In this
paper, we present improvements to Word2Vec training that
significantly reduce the time required to train high-quality
embeddings.

The main focus of this paper is the adaptation of the
Word2Vec algorithm with a view towards reducing the amount
of data movement from/to memory. Technology trends have
made the cost of data movement increasingly dominant, both
in terms of energy and time, over the cost of performing arith-
metic operations in computer systems. However, the design
and implementation of new algorithms in machine learning
has been largely driven by a focus on the computational
complexity. The inner core computation of the Word2Vec
algorithm (explained in great detail later) involves a large num-
ber of dot-product operations between the embedding vectors
representing different words in the corpus. The dot-product
computation is inherently memory-bandwidth limited because
only two floating point operations are performed per pair of
data elements read from memory. Since the computational
peak performance of all current/emerging processors (multi-
core CPUs, GPUs, FPGAs, etc.) greatly exceeds the peak
memory bandwidth in words/second (often by a factor between
ten and hundred), any algorithm that performs a large number
of dot-products is inherently performance-handicapped, unless
significant re-use of the processed vectors in caches can be
achieved.

The Skip-gram based Word2Vec algorithm (described in
detail later) processes words within small contiguous windows
in the text, using dot-products of the center “focus” word with
other words in the window in the process of trying to move the
vector embedding of the word closer to that of the neighboring
ones in the window (Attraction). Dot-products with a large
number of randomly selected words in the sentence are also
performed with the words in the window, seeking to move
their vector embeddings further from them since they are not
found co-located in the corpus (Repulsion). The random access
to words in the latter negative sampling process leads to very

high data movement without any prospect of reuse of those
randomly fetched vectors. We develop an adaptation to the
way the negative sampling is performed that enables much
higher data reuse for the fetched vectors. This is done by
separating out the computations that seek to align a word
closer to its neighbors in the windows from the negative-
sampling computations, which are performed on mini-batches
of words at a time, using a common set of randomly chosen
words to move away from.

We develop efficient multi-core and GPU implementations
of the adapted Word2Vec algorithm and perform extensive
comparative evaluation of the new algorithms with a num-
ber of state-of-the-art implementations of Word2Vec on both
platforms. We also show the utility of the new Word2Vec
implementation within the Node2Vec algorithm, which accel-
erates embedding learning for large graphs. We demonstrate
significant reduction of data volume from/to main memory
and improved performance over the current state-of-the-art.
We also conduct extensive evaluation on the quality of the
produced embeddings, for a number of application contexts.
Overall, we find that we are able to achieve high performance
with quality of results that are comparable or better than
baselines.

II. SG-NS BASED WORD2VEC ALGORITHM

The basic intuition behind the Word2Vec model proposed
by Mikolov et al. [1], [2] is that similar words tend to
occur in similar contexts. Word2Vec is trained as a language
model, in which the probability of a word in a text corpus
depends on its surrounding context words. Word2Vec has
two primary variants: (1) Continuous Bag-of-Words (CBOW),
which predicts a center word using the average of the words
in a fixed context window on either side, and (2) Skip-
Gram (SG), which models pairwise probabilities of the center
word with each of its context words individually. These two
algorithms therefore result in different numbers of parameter
updates: CBOW only updates the center word once for a
given context window, while SG updates the center word
once for each context word. In practice the algorithms yield
roughly equivalent performance ([12] found better results with
CBOW; [2], [13] with SG); we follow prior work in focusing
on the SG algorithm, which can (unlike CBOW) be interpreted
as implicit factorization of the word co-occurrence matrix [14].
As defined by [1], the SG model seeks to maximize the average
log probability J(θ) given a sequence of N word tokens in
the text corpus.

J(θ) =
1

N

N∑

n=1

∑

−C≤j≤C,j 6=0

log p(wn+j |wn) (1)

where C is the window size around center word wn. The prob-
ability of p(wn+j |wn) is defined with the softmax function as:

p(wn+j |wn) =
exp(<⇀wout

n+j ,
⇀win

n >)
∑V

v=1 exp(<⇀wout
v ,⇀win

n >)
(2)

where V is the size of the fixed vocabulary, ⇀win
n and ⇀wout

v

denote the vector from word wn in the Win matrix and
the vector for word wv in the Wout matrix, respectively.
< ⇀wout

v ,⇀win
n > computes the inner product of word vectors

⇀wout
v and ⇀win

n .

SG and CBOW can be trained using one of two different
objectives. Given a center word wn and an observed target
word wn+j , calculating the full softmax equation in Equation
2 for every word update becomes rapidly intractable as the
vocabulary size V increases. Instead of training probabilisti-
cally with the full softmax, the negative sampling (NS) method
randomly chooses a small number of words in the vocabulary
as negative targets, and trains using a log-bilinear objective
derived from noise-contrastive estimation. The word vectors
are updated based on only the selected negative target words
and a positive target word wn+j , considerably reducing the
number of computations while maintaining a good quality of
solution [2]. Alternatively, the hierarchical softmax (HS) ob-
jective originally proposed by Morin and Bengio [15], which
approximates the full softmax function, can also be used to
reduce the computational complexity of probabilistic training.
Mikolov et al. [2] use the binary Huffman tree structure for
hierarchical softmax to compute the probability distribution
of a given word (root node) along with the path from root to
vocabulary size of leaf nodes. Each path in the tree structure
represents the relative probability to its child node. By the
nature of the binary Huffman tree, the path between the root
node and a leaf node is shorter when the corresponding words
are frequently used together in the corpus. This characteristic
of hierarchical softmax makes neural network based models
more efficient in terms of both elapsed time for training and
accuracy. Typically, SG and CBOW are paired with each of the
negative sampling (SG-NS) and hierarchical softmax (CBOW-
HS), respectively. Hereafter, we concentrate on the skip-gram
based Word2Vec with negative sampling (SG-NS) algorithm.

A. Node2Vec

The Node2Vec algorithm [7] is intended to learn vector-
based representations of nodes in a graph, such that similar
nodes (nodes in similar subgraph structures or nearby nodes)
have similar vectors. Node2Vec consists of sampling R ran-
dom walks of length L starting from each node in the graph;
each walk becomes a sentence for Word2Vec training. So for
V unique nodes, Node2Vec generates a corpus of V × R
sentences of L tokens (node IDs) each. These walks are
then run through off-the-shelf SG-NS based Word2Vec, with
each node and its neighbor nodes in the walk corresponding
to word tokens wn and wn+j in Equation 1, respectively.
Thus, each node in the pre-generated graph dataset becomes a
word in the corpus. The effectiveness of the node embedding
outputs, Win and Wout, are then directly evaluated using
applications such as node classification and link prediction [7],
[8], [16]. Our contribution is to achieve a significant speedup
on the embedding learning part of the Node2Vec algorithm
by transforming the original Word2Vec into our new paral-
lel Word2Vec algorithm. In fact, the Word2Vec embedding
training portion of running Node2Vec on the BlogCatalog
dataset accounts for training time of Word2Vec within the
Node2Vec / total training time of Node2Vec = 72.635360(s)
/ 81.505412(s) ≈ 89.12% of the total run time.

III. RELATED WORK

A. Parallelization of Word2Vec Embeddings

Several efficient data-locality-enhanced schemes have re-
cently been proposed for Word2Vec algorithms because

the original Word2Vec algorithm imposes massive computa-
tions. As shown in Table I, previous studies at parallelizing
Word2Vec can be grouped by the types of machine, platform,
and algorithm used in their implementations.

The original Word2Vec implementation released by
Mikolov et al. [2] adopts HOGWILD! [17], a parallelization
scheme where different word pairs are simultaneously pro-
cessed across multiple threads. HOGWILD! partially over-
comes the limitation of Stochastic Gradient Descent (SGD)
optimization, which is inherently challenging to parallelize.
However, adopting HOGWILD! in the Word2Vec algorithm has
the inevitable limitation that it may lead to a race condition
between different threads when updating the same word vector
in the input and output matrices at the same time. In a

TABLE I: Previous studies on parallelization of Word2Vec.
Context types – Skip-gram (SG) and Continuous Bag-of-
Words (CBOW). Objective types – Negative Sampling (NS)
and Hierarchical Softmax (HS)

Author Machine Platform Algorithm

Mikolov et al. [2] CPUs Shared-memory
CBOW-NS, CBOW-HS,

SG-NS, SG-HS
Ji et al. [18] CPUs Shared-memory SG-NS

Vuurens et al. [19] CPUs Shared-memory SG-HS
Simonton and Alaghband [20] CPUs Shared-memory SG-NS, SG-HS

Rengasamy et al. [21] CPUs Shared-memory SG-NS
Ji et al. [18] CPUs Distributed-memory SG-NS

Ordentlich et al. [22] CPUs Distributed-memory SG-NS
Simonton and Alaghband [20] GPUs Shared-memory SG-NS, SG-HS

Bae and Yi [23] GPUs Shared-memory
CBOW-NS, CBOW-HS,

SG-NS, SG-HS
Canny et al. [24] GPUs Shared-memory SG-NS, SG-HS

shared-memory environment, Ji et al. [18] proposed a parallel
Word2Vec (pWord2Vec) model that maximizes reuse of data
structures by sharing negative samples within the same context
window. The proposed scheme changes the original Level
1 BLAS operations into Level 3 BLAS operations; thereby,
the number of updates and communication cost between
threads are considerably reduced. The main difference between
pWord2Vec and our scheme is the maximum number of input
words (columns in yellow colored matrix Min in Figure
4) sharing the same negative samples. In pWord2Vec, the
maximum number is restricted to the total number of input
words in each context window, which is 2×window size+1.
However, in our approach, the number of columns in matrix
Min is maximized using mini-batch size of all words within
each sentence, regardless of context window, to share the
same negative samples. Vuurens et al. [19] introduced an
efficient caching strategy for updating vectors based on the
SG-HS algorithm. They maintained local copies of the most
frequently used inner nodes in the Huffman tree structure
to maximize data reuse in cache and reduce the number of
memory conflicts. Recently, Rengasamy et al. [21] introduced
a context combining approach (pSGNScc) to further optimize
the data reuse in pWord2Vec. In pSGNScc, multiple correlated
context windows share not only negative samples but also
positive samples. Given the words in the current context
window, pSGNScc utilizes a pre-generated inverse index table
to find related windows according to the word occurrences
in the entire corpus. In their experiments, pSGNScc achieved
1.28X speedup compared to pWord2Vec. In Ordentlich et al.
[22], a distributed SG-NS based Word2Vec algorithm was
proposed in order to reduce the high training latency and
network bandwidth with large-scale datasets. On top of a
Hadoop system, multiple servers learn the distributed word

vectors to achieve the higher throughput in parallel. In the
GPU platform, Simonton and Alaghband [20] developed both
SG-HS and SG-NS based Word2Vec algorithms using shared
memory registers and in-warp shuffle operations on GPUs.
Within a thread block, the use of shared memory registers
significantly reduces the data accessing time compared to the
global memory access. Based on roofline design, Canny et
al. [24] developed a system called BIDMach to improve the
performance of different machine learning algorithms. As it
was reported that their SG-NS based GPU implementation
suffers from the quality of word embeddings (see Table 2
in [20]), their GPU implementation was not included as a
competing model. Bae and Yi [23] implemented four variants
of Word2Vec model using GPUs. Since the computations of
nested loops which iterate over the number of hidden units
are dominant in the original Word2Vec algorithm, the number
of threads used in their GPU implementation is same as the
number hidden units. One of their variants, SG-NS based GPU
implementation, was used as a baseline for our new GPU
implementation.

B. Graph Embeddings

Recently, several graph embedding algorithms based on
random walk sampling have been developed by utilizing
Skip-gram based Word2Vec model to find a low-dimensional
latent representation for each node on the graph [7], [8]. It
is assumed that there exist similarities between the nodes
connected to each other on the random walks. DeepWalk
proposed by Perozzi et al. [8] samples random walks over
the graph and maps them into the Skip-gram based Word2Vec
model for training. To generate node embeddings, they used
SG-HS algorithm instead of SG-NS algorithm used in the
Node2Vec [7]. More recently, Tang et al. [16] proposed a new
edge sampling-based graph embedding algorithm called LINE
which incorporates not only the first-order proximity but also
second-order proximity between the nodes in the graph.

IV. SG-NS BASED WORD2VEC ALGORITHM

In this section, we describe the original SG-NS based
Word2Vec algorithm [2] and main factors that limits the
performance.

log σ(<⇀wout
n+j ,

⇀win
n >) +

T∑

t=1

log σ(−<⇀wout
t ,⇀win

n >) (3)

In the SG-NS based Word2Vec model proposed by Mikolov et
al. [2], given an input word wn, a positive target word wn+j ,
and randomly sampled negative target words w1:T , the log
probability p(wn+j |wn) is replaced by the loss calculation in
Equation 3, where T is the number of negative samples (tar-
gets) and σ(x) denotes the sigmoid logistic function defined as
σ(x) = 1 / (1+exp(−x)). This term is maximized over every
(wn, wn+j) pair in the corpus. Instead of using vocabulary
size of V words as negative targets, randomly selecting only
T words (usually 5 ≤ T ≤ 20) as negative targets considerably
reduces the computational complexity while maintaining good
quality. Algorithm 1 shows pseudo-code for the original SG-
NS based word2vec implementation [2]. It uses context words
as inputs (line 11) and uses the word at the center of the
context window as target (line 15), along with the negative

Algorithm 1 SG-NS based Word2Vec algorithm

Input: corpus: S sentences and a sequence of L word tokens in each
sentence, V : the number of unique words, K: the number of hidden units,
C: window size, T : the number of negative samples, α: learning rate, Win:
(V ×K) input embedding matrix, Wout: (V ×K) output embedding matrix
Output: Win: (V ×K) input embedding matrix

1: Initialize Win and Wout with random numbers
2: repeat
3: for sid = 0 to S − 1 do
4: L ← number of word tokens in sentence sid
5: // Update Wout and Win with both positive and negative samples

6: for i = 0 to L − 1 do
7: center word ← corpus[sid][i]
8: Crand ← random uniform() % C
9: for j = Crand to (2 × C − Crand) do

10: if j ! = C then
11: input ← corpus[sid][i−C+j]
12: Initialize temp[0:K−1] to 0
13: for t = 0 to T do
14: if t == 0 then
15: target ← center word, label ← 1
16: else
17: target ← random uniform() % V , label ← 0
18: end if
19: sum ← 0
20: for k = 0 to K − 1 do
21: sum ← sum + Win[input][k] × Wout[target][k]
22: end for
23: grad ← (label − sigmoid(sum)) × α
24: for k = 0 to K − 1 do
25: temp[k] ← temp[k] + grad × Wout[target][k]
26: Wout[target][k]←Wout[target][k]+grad×Win[input][k]
27: end for
28: end for
29: for k = 0 to K − 1 do
30: Win[input][k] ← Win[input][k] + temp[k]
31: end for
32: end if
33: end for
34: end for
35: end for
36: until convergence

samples (line 17)1. The input word vectors are pulled from
the Win embedding matrix that is kept after training, and the
target word vectors are pulled from Wout embedding matrix,
which is discarded after training. An input vector and a target
vector are multiplied in lines 20-22, in order to compute the
gradient in line 23. While training each epoch, based on this
gradient, Wout and Win matrices are updated (lines 24-27 and
lines 29-31 for Wout and Win, respectively).

Figure 1 depicts an example of sequential updates for SG-
NS based Word2Vec with the sentence “blue is my favorite
color,” where “my” is the center word of the context window.
When the center word “my” is used as a positive target word,
its surrounding words “blue”, “is”, “favorite”, and “color”
are its input words. Then, for each pair of the center word
“my” and one of its input words, two negative target words
are randomly chosen to be negative samples (e.g., “word 2”
and “word 6” are selected as negative targets where “blue”
is the input word). Hereafter, an update with the center word
(positive target word) and an input word is called an Attraction
update (blue arrow in Figures 1 and 2), and an update with

1 [1] define skip-gram using context words as targets and center words as
input; however, the reference Word2Vec implementation operates as we have
described. This difference only changes the order of updates over the full
sequence; in our experiments, Word2Vec had equivalent performance using
both definitions of skip-gram.

Blue is my favorite color.

Input

Target

Update

type
1 0 0 1 0 0 1 0 0 1 0 0

center word

…word 1…word 2…word 3…word 4 word 5…word 6…word 7…word 8… < >

favoriteblue

my

blue blue

negative

word 2

negative

word 6
my

is is is

negative

word 1

negative

word 7

favorite favorite

my
negative

word 4

negative

word 5

color color color

my
negative

word 3

negative

word 8

Fig. 1: An example of updates in the original Word2Vec for the
sentence “blue is my favorite color,” where “my” is the current
center word, and window size and the number of negative
samples are both 2. The update types of “1” and “0” indicate
Attraction and Repulsion updates, respectively.

the negative target word and an input word is called Repulsion
update (red arrow in Figures 1 and 2).

A. Data Movement Analysis for SG-NS Based Word2Vec

S(L(1 + 2(C − Crand)(1 + 4K + 8K(T + 1)))) (4)

S(L(2(C − Crand)(1 + 4K + 8KT))) (5)

To identify the data movement cost of the original SG-NS
based Word2Vec algorithm, we individually analyzed each
line in Algorithm 1. The outer loop in line 3 iterates over
all the S sentences in the corpus, and the loop in line 6
iterates over all the L word tokens in each sentence. Each
loop in line 6 reads a center word (positive target word) from
corpus (1 read). According to the randomly selected context
window size, the loop in line 9 iterates over 2C − 2Crand

surrounding words. Each surrounding input word is read from
corpus (1 read), and K size of temp array is initialized
by zero (K writes). Then the loop in line 13 calculates
vector updates by iterating over one positive and T negative
samples (T + 1 iterations). After selecting a negative sample,
the loop in line 20 multiplies the current input word vector
and target word vector (2K reads). The gradient is then
computed in line 23. The loop in 24 updates Wout by accessing
temp, Wout and Win arrays (4K reads and 2K writes).
After the completion of the update calculation loop, the loop
in line 29 applies the updates to Win (2K reads and K
writes). Overall, the total data movement required for the
original SG-NS based algorithm is shown in Equation 4.
As shown in Equation 5, the data movement cost for only
Repulsion updates can be simply obtained by excluding the
data movement of line 7 and subtracting one iteration of the
loop in line 13 from the total data movement. It is evident
that the main bottleneck of SG-NS based Word2Vec algorithm
is Repulsion updates. More specifically, the data movement
overhead is closely associated with the several vector-vector
multiplications within the loop in line 9. In the next section, we
present a high-level overview and details of our new parallel
Word2Vec algorithm called Parallel decoupled Attraction-
Repulsion based Word2Vec (PAR-Word2Vec) based on Skip-
gram with a novel negative sampling method. In light of our
main goal which is to enhance the algorithm in regards to data
locality, our approach significantly alleviates data movement
overhead involving Repulsion updates. We also compare the

Blue is my favorite color.…word 1 …word 2 …word 3 …word 4 …word 5 …word 6 …word 7 …word 8 word 9…word 10…word 11…word 12…word 13…word 14…word 15…word 16…

batch 0 batch 1 batch 2

< >

Fig. 2: An example of full Attraction and Repulsion updates in the PAR-Word2Vec. In the sentence ”blue is my favorite color,”
where the mini-batch size is set to 2, the input words in each mini-batch share the same negative target words. As marked
by same colored arrows (red, gray and black), the words repelled by each mini-batch are shared negative target words (e.g.,
”word 1”, ”word 6”, ”word 10” and ”word 12” are the shared negative targets for batch 0).

1 8 16 24 32 40 48 56 64 72 80

Batch Size

0

500

1000

T
ra

in
in

g
 T

im
e

(s
)

fo
r

5
 e

p
o
ch

s One Billion Word Benchmark

(a) Time vs. Batch size

1 8 16 24 32 40 48 56 64 72 80

Batch Size

0

0.2

0.4

0.6

0.8

1

S
im

il
ar

it
y
 S

co
re

One Billion Word Benchmark

WordSim-353 SimLex-999

(b) Quality vs. Batch size

Fig. 3: Comparison of averaged training time in seconds and
convergence for 5 executions across different mini-batch sizes
on PAR-Word2Vec-cpu on the One Billion Word Benchmark
dataset, where K = 128.

bl
ue

word 1
word 6
word 10
word 12

word 3
word 4
word 7
word 8
word 11
word 13
word 15
word 16

m
y

word 2
word 5
word 9
word 14

co
lo

r

!"#$

!"#$

!"#$

!%&

!%&

!%&

batch 0 batch 1 batch 2

is

fa
vo

ri
te

Fig. 4: Decoupled full Repulsion updates required in the PAR-
Word2Vec with the sentence ”blue is my favorite color”. In
the decoupled Repulsion phase, the number of shared negative
samples for the mini-batch (i.e., the number of rows in gray
colored matrix) is determined by the first word’s position in the
mini-batch over the sentence. The mini-batches located at the
start or end of the sentence (e.g., batch 0 or batch 2) have a less
amount of shared negative samples, since the context window
size of the input words contained in these mini-batches is
smaller than that of the middle mini-batch (e.g., batch 1).

data movements required for our PAR-Word2Vec with original
SG-NS based Word2Vec algorithms.

V. PAR-WORD2VEC ALGORITHM

In the original Word2Vec algorithm, majority of training
time is spent on the process associated with negative sampling.
Our main contribution is to improve the performance of
negative sampling method by increasing data reuse. In order
to use much larger size of matrix with negative sampling,

we first decouple the full loss calculation in Equation 3
with positive samples, log σ(< ⇀wout

n+j ,
⇀win

n >), and negative

samples,
∑T

t=1 log σ(− < ⇀wout
t ,⇀win

n >), within each sen-
tence. Thereafter, all of the Attraction updates required for
each sentence are batched, and then followed by a batch of
Repulsion updates. After the completion of Attraction updates,
all words included in each sentence are divided into multiple
mini-batches, and the words in the same mini-batch share the
randomly chosen words for Repulsion updates. For example,
in Figure 2, two input words in the same mini-batch (e.g.,
”blue” and ”is” in batch 0) share the negative target words
(e.g., ”word 1”, ”word 6”, ”word 10” and ”word 12”), when
the mini-batch size is set to 2. If the mini-batch size is larger
than or equals to the number of words in the sentence, there
is only one mini-batch and all the words within the sentence
share the same negative samples.

It is important to determine an appropriate mini-batch size to
reduce training time without overly affecting the convergence
rate. To analyze the impact of different mini-batch sizes on
both convergence rate and training time, we conducted an
empirical evaluation with the large text dataset. As depicted in
Figure 3a and Figure 3b, increasing the mini-batch size signif-
icantly reduces training time because of lower computational
complexity without any loss of model quality. Furthermore, in
order to perform the Repulsion phase as similar to the original
SG-NS based algorithm, a different number of shared negative
samples is drawn for each mini-batch according to the first
word’s sentence position in the mini-batch.

Figure 4 illustrates the full set of operations required for
decoupled Repulsion phases in PAR-Word2Vec. We maintain
the Attraction phase as the original SG-NS algorithm, since
the Attraction phase demands an extremely small computation
compared to the Repulsion phase. Based on the mini-batch
processing, however, the Repulsion phase is reformulated with
matrix multiplications, as shown in Figure 4. For each mini-
batch, its shared negative target vectors pulled from the Wout

matrix can be combined to form a temporary target matrix
Mout. Likewise, input vectors pulled from Win matrix are
combined to generate a temporary input matrix Min for the
current mini-batch. Then an efficient matrix multiplication of
two matrices Mout and Min is performed for computing the
gradients. Given the result matrix of gradients, two additional
matrix multiplications compute the update values for corre-
sponding input and target vectors which will be accumulated
to Wout and Win matrices.

Algorithm 2 Parallel CPU implementation (PAR-Word2Vec-
cpu)

Input: corpus: S sentences and a sequence of L word tokens in each
sentence, V : the number of unique words, K: the number of hidden units,
C: window size, T : the number of negative samples, B: mini-batch size,
H: the number of shared negative samples for current batch, α: learning
rate, Win: (V ×K) input matrix, Wout: (V ×K) output matrix, Min:
(B ×K) matrix, Mout: (H ×K) matrix, Mgrad: (H ×B) matrix,
Min up: (B ×K) update matrix, Mout up: (H ×K) update matrix,
shared ns: H size of array
Output: updated Win: (V ×K) input embedding matrix

1: Initialize Win and Wout with random numbers
2: numT ← number of threads
3: #pragma omp parallel num threads(numT)
4: Distribute S sentences of corpus into numT threads
5: tId ← thread id
6: Spt ←

S
numT

7: repeat
8: for sid = tId × Spt to (tId + 1) × Spt − 1 do
9: L ← number of word tokens in sentence sid

10: Win, Wout ← Attraction()
11: Win, Wout ← Repulsion()
12: end for
13: until convergence

Algorithm 3 Attraction() phase on PAR-Word2Vec-cpu

1: // Update Wout and Win with only positive samples
2: label ← 1
3: for i = 0 to L − 1 do
4: center word ← corpus[sid][i]
5: Crand ← random uniform() % C
6: for j = Crand to (2 × C − Crand) do
7: if j ! = C then
8: input ← corpus[sid][i−C+j]
9: target ← center word

10: sum ← 0
11: for k = 0 to K − 1 do
12: sum ← sum + Win[input][k] × Wout[target][k]
13: end for
14: grad ← (label − sigmoid(sum)) × α
15: #pragma simd
16: for k = 0 to K − 1 do
17: temp ← grad × Wout[target][k]
18: Wout[target][k] ← Wout[target][k]+grad×Win[input][k]
19: Win[input][k] ← Win[input][k] + temp
20: end for
21: end if
22: end for
23: end for

A. Details of Parallel CPU implementation

The pseudo-codes for our parallel CPU implementation are
shown in Algorithm 2, 3 and 4. The sets of sentences in the
corpus are disjointly distributed for processing by different
threads (line 4 in Algorithm 2). For each sentence, a Repulsion
phase starts to process after the completion of all Attraction
updates. As shown in Algorithm 3, a decoupled Attraction
phase is performed in the same way as the original Word2Vec
algorithm. Algorithm 4 shows the pseudo-code for the de-
coupled Repulsion phase. In the Repulsion phase, the number
of shared negative samples H for the current mini-batch is
determined by the first word’s position in the mini-batch (lines
4-10). If the first word of the mini-batch is located at the start
or end of the sentence, the corresponding mini-batch requires
fewer shared negative samples, since the context window sizes
of given words are small compared to the other words in the
middle of the sentence. The H shared negative targets are then
randomly selected in line 11. Next, the temporary matrices

Algorithm 4 Repulsion() phase on PAR-Word2Vec-cpu

1: // Update Wout and Win with only shared negative samples
2: label ← 0, num batch ← L / B
3: for batch id = 0 to num batch − 1 do
4: min pos ← batch id × B, max pos ← min pos + B − 1
5: if (min pos <= C − 1) || (L− 1− min pos <= C − 1) then
6: Crep ← random uniform() % C
7: else
8: Crep ← random uniform() % (2× C)
9: end if

10: H ← T × Crep

11: shared ns[0:H−1] ← random uniform() % V
12: memcpy(Min[0:B−1][0:K−1],

Win[corpus[sid][min pos:min pos+B−1]][0:K−1])
13: memcpy(Mout[0:H−1][0:K−1],

Wout[shared ns[0:H−1]][0:K−1])
14: // Multiplication of Mout and MT

in
15: Mgrad[0:H−1][0:B−1]←sgemm(Mout[0:H−1][0:K−1],

MT
in[0:B−1][0:K−1])

16: // Compute gradient
17: Mgrad[0:H−1][0:B−1] ←

(label−sigmoid(Mgrad[0:H−1][0:B−1]))×α
18: // Multiplication of Mgrad and Min

19: Mout up[0:H−1][0:K−1]←sgemm(Mgrad[0:H−1][0:B−1],
Min[0:B−1][0:K−1])

20: // Multiplication of MT
grad

and Mout

21: Min up[0:B−1][0:K−1]←sgemm(MT
grad

[0:H−1][0:B−1],
Mout[0:H−1][0:K−1])

22: Add(Win[corpus[sid][min pos:min pos+B−1]][0:K−1],
Min up[0:B−1][0:K−1])

23: Add(Wout[shared ns[0:H−1]][0:K−1],
Mout up[0:H−1][0:K−1])

24: end for

Min and Mout for keeping input word vectors and shared
negative target vectors are formed by pulling corresponding
weight vectors from Win and Wout, respectively (lines 12
and 13). Then all three matrix-matrix multiplications required
for current mini-batch are efficiently performed using the
cblas dgemm() BLAS-3 routine provided in Intel’s Math
Kernel Library (MKL). In line 15 in Algorithm 4, the first
matrix multiplication of two matrices, Mout and MT

in, is
performed to compute the gradients for the current mini-
batch. The outputs of Mout ·MT

in are stored in an additional
matrix Mgrad. The update values for Wout are then computed
by performing the second matrix multiplication of matrices
Mgrad and Min (line 19) and storing the results in Mout up

matrix. Similarly, the update values for Win can be obtained
by performing the third matrix multiplication, with matrices
MT

grad and Mout (line 21). After completing all computations
from the current mini-batch, the corresponding update values
contained in Mout up and Min up are accumulated to the main
data structures, Wout and Win (lines 22 and 23).

B. Details of Parallel GPU implementation

Algorithm 5 shows the pseudo-code for GPU implementa-
tion on the host for launching a GPU kernel (lines 6-16). In
order to achieve massive parallelism on GPUs, we divide the
corpus of sentences into different thread blocks (line 4 in Al-
gorithm 5). Hence, the thread blocks are processed in parallel,
whereas multiple sentences are processed sequentially within
each thread block (lines 9-16). In line 2, we launch γ × 56
thread blocks as there are 56 Streaming Multiprocessors (SMs)
on an NVIDIA Pascal P100 GPU. γ is the overbooking factor
used to maintain good load balance. Note that the parameter
γ is varied according to the total number of sentences over
the corpus. In order to simultaneously update K dimensions

of each word vector involved in the Attraction and Repulsion
phases, K threads are selected within a thread block (line 3).

Algorithm 5 Parallel GPU implementation (PAR-Word2Vec-
gpu)

1: λ ← α / total number of epochs
2: num blocks ← γ × 56
3: num threads ← K
4: num sen per block ← (S+num blocks−1) / num blocks
5: repeat
6: shared shared vector[1024]
7: start sen id per block ← blockIdx.x × num sen per block
8: end sen id per block←start sen id per block+num sen per block
9: for sid = start sen id per block to end sen id per block do

10: start idx ← sen ptr[sid]
11: end idx ← sen ptr[sid+1]
12: L ← end idx − start idx // L: length of sentence
13: Attraction()
14: syncthreads()
15: Repulsion()
16: end for
17: α← α− λ
18: until convergence

Algorithm 6 Repulsion() phase on PAR-Word2Vec-gpu

1: label ← 0, num batch ← L / B
2: for batch id = 0 to num batch − 1 do
3: min pos ← start idx + (batch id × B), max pos ← min pos+B−1
4: shared Crand[blockIdx.x] ← curand uniform() × (2× C)
5: H ← shared Crand[blockIdx.x] × T
6: shared ns[blockIdx.x×H:blockIdx.x×H+H−1] ← curand()×V
7: memcpy(Min[blockIdx.x×B×K+

(((min pos:max pos−1)−min pos)×K)+threadIdx.x],
Win[corpus[(min pos:max pos−1)]×K+threadIdx.x])

8: memcpy(Mout[blockIdx.x×H×K+(0:H−1)×K+threadIdx.x],
Wout[shared ns[blockIdx.x×H+(0:H−1)]×K+threadIdx.x])

9: // Efficient 2D-tiled matrix multiplication of Mout and MT
in

10: Mgrad ← MatrixMultiplication(Mout, MT
in)

11: syncthreads()
12: Mgrad[blockIdx.x×H×B:blockIdx.x×H×B+H−1] ←

(label −
sigmoid(Mgrad[blockIdx.x×H×B:blockIdx.x×H×B+H−1]))×α

13: syncthreads()
14: // Efficient 2D-tiled matrix multiplication of Mgrad and Min

15: Mout up ← MatrixMultiplication(Mgrad, Min)
16: syncthreads()
17: // Efficient 2D-tiled matrix multiplication of MT

grad
and Mout

18: Min up ← MatrixMultiplication(MT
grad

, Mout)

19: syncthreads()
20: atomicAdd(Win[corpus[(min pos:max pos−1)]×K+threadIdx.x],

Min up[blockIdx.x×B×K+(((min pos:max pos−1)−min pos)×K)
+threadIdx.x])

21: atomicAdd(Wout[shared ns[blockIdx.x×H+(0:H−1)]×K+
threadIdx.x],
Mout up[blockIdx.x×H×K+(0:H−1)×K+threadIdx.x])

22: end for

In the Attraction phase, to obtain the gradient of vector-
vector multiplications of Win and Wout, a warp-level re-
duction is performed by warp shuffling primitives. All the
threads in the warp read 32/K of the word vectors (K
dimensions) from Win and Wout and perform multiplications.
Then the computed gradients are stored in a single space of
shared-memory (shared vector[0]) since all the threads in each
thread block must use the same gradient before computing
the update values. The update values for each word vector
are then accumulated to Win and Wout in global memory
using atomic operations, because multiple thread blocks can
update the same word vector at the same time. At the end
of the Attraction phase, all threads are synchronized before

the start of the Repulsion phase (line 14 in Algorithm 5).
Algorithm 6 shows the pseudo-code for the Repulsion phase
within a GPU kernel. Similar to the Repulsion phase in our
parallel CPU implementation, the number of shared negative
samples H are chosen by the first word’s position in the mini-
batch (lines 3-5). After randomly selecting shared negative
samples (line 6) and forming the input and output matrices
by copying the corresponding word vectors from Win and
Wout for the current batch (lines 7 and 8), three matrix-
matrix multiplications are performed using a 2D register tiling
strategy along with the use of shared-memory (lines 10, 15 and
18). To achieve good performance on GPUs, the judicious use
of shared-memory is crucial. Due to the limited amount of
shared-memory per SM, we use 1024 size of shared-memory,
which provides the best performing occupancy in the current
NVIDIA Pascal GPU (line 6 in Algorithm 5). In order take
advantage of warp execution, the two sub-matrices involved
in each 2D-tiled multiplication are carefully partitioned into
allocated shared memory space. For example, Mout and Min

matrices involved in the first matrix multiplication are divided
into (H × K) / (16 × 32) and (B × K) / (16 × 32) tiles,
respectively. The shared-memory and register tile sizes have
an impact on both data reuse and concurrency. The higher
the tile sizes the higher the data reuse. However, higher tile
sizes demand more resources and thus limit the number of
concurrently active threads (occupancy). The tile sizes were
chosen such that the data movement was minimized while
maintaining good concurrency.

C. Data Movement Analysis for PAR-Word2Vec

S(L(Attractions) +
L

B
(Repulsions)) =

S(L(1+2(C− Crand)(1+8K))+
L

B
(
6HBK
√
τ

+ H+4BK+4HK+2HB))

(6)

S(
L

B
(
6HBK√

τ
+H + 4BK + 4HK + 2HB)) (7)

We analyzed the data movement of our PAR-Word2Vec al-
gorithm based on Algorithms 2, 3 and 4. Our algorithm
iterates over all S sentences, and Attraction and Repulsion
phases are separately performed within each sentence (lines
10 and 11 in Algorithm 2). The data movement cost of the
decoupled Attraction phase is similar to the original SG-
NS algorithm without a negative sampling loop. The loop
in line 3 of Algorithm 3 iterates over all L word tokens
in each sentence and has an associated data movement of
1 + (2C − 2Crand)(1 + 2K + 4K + 2K) for the Attraction
phase. In the Repulsion phase, the loop in line 3 in Algorithm
4 iterates over L

B
mini-batches for the current sentence. First,

the H shared negative samples are randomly chosen and kept
in the shared ns array through the loop in line 11 (H writes).
Then the shared negative word vectors and input word vectors
pulled from Wout and Win matrices are copied to Mout and
Min temporary matrices in lines 12 and 13 (KB + KH
reads and KB+KH writes). Given Mout and Min matrices,
three matrix multiplications are required to perform Repulsion
updates. It is well known that the highest order term in the
number of data elements moved (between main memory and a
cache of size τ words) for efficient tiled matrix multiplication

of two matrices A, (M ×K) and B, (K×N) is 2MNK/
√
τ

(An extensive discussion of both lower bounds and data
movement volume for several tiling schemes may be found
in the recent work of Smith [25]). Hence, the data movement
costs associated with the three matrix multiplications in lines
15, 19 and 21 are 2HKB/

√
τ , 2HBK/

√
τ and 2BHK/

√
τ ,

respectively. The loop in line 17 computes the gradients and
has an associated data movement cost of HB reads and HB
writes. At the end of the Repulsion phase (lines 22 and 23),
the update vectors in Mout and Min matrices are accumulated
to Wout and Win (KB +KH reads and KB +KH writes).
In total, Equation 6 shows the data movement cost for our
PAR-Word2Vec algorithm, where τ is the cache size. Also,
the data movement required for only Repulsion phase of PAR-
Word2Vec is shown in Equation 7.

D. Data Movement Analysis Comparison

For the One Billion Word Benchmark dataset (S =
30,607,741 and L = N/S = 804,269,958 / 30,607,741) with
K = 128, C = 8, T = 5, Crand = 0, Crep = 16, H =
TCrep = 80, and B = 24 on a machine with 35 MB cache2,
based on Equation 4, the total data movement cost of original
SG-NS based Word2Vec algorithm is 85,665,204×106 bytes.
Whereas, based on Equation 6, the total data movement cost
for our PAR-Word2Vec algorithm is only 15,109,321×106

bytes which is approximately 5.67× lower than the original
SG-NS algorithm. Moreover, based on the Equation 5 and 7,
the data movement associated with only Repulsion updates is
greatly reduced by 1 − 19,239,278×105 / 72,487,241×106

≈ 97.3%. On the other hand, both algorithms must have the
same amount of data movements for Attraction updates. The
data movement improvement of our approach can be clearly
proven by the fact that the difference between Equation 4 and 5
(Attraction updates for original SG-NS based Word2Vec), and
the difference between Equation 6 and 7 (Attraction updates
for PAR-Word2Vec) are exactly matched.

VI. EXPERIMENTAL EVALUATION

This section provides both performance and quality assess-
ments for the Word2Vec and Node2Vec algorithms. Our PAR-
Word2Vec implementations on multi-core CPUs and GPUs are
compared with various state-of-the-art implementations.

A. Benchmarking Machines

The detailed configuration of the benchmarking machines
used for experiments is shown in Table II. All the CPU
experiments were run on an Intel Xeon CPU E5-2680 v4
running at 2.4 GHz with 128 GB RAM. The GPU experiments
were run on an NVIDIA Tesla P100 PCIE GPU with 16 GB
global memory.

B. Datasets

Table III and IV show the characteristics of each text and
graph dataset and the details of graph datasets, respectively.
For the direct Word2Vec evaluations, we used two publicly

2Crand = 0 makes the maximum size of context window at current
center word according to the lines 8-9 in Algorithm 1. Crep = 16 corresponds
to the maximum number of Crep, when C = 8 according to the line 8 in
Algorithm 4. B = 24 is chosen to be used for all the experiments in Section
VI.

TABLE II: Machine configuration

Machine Details

CPU

Intel(R) Xeon(R) CPU E5-2680 v4;
14 cores and 28 threads, 128 GB RAM,
76.8 GB/s bandwidth, 35 MB L2 cache;

ICC 18.0.3

GPU

Tesla P100 PCIE;
56 SMs, 64 cores/SM, 16 GB Global Memory,

732 GB/s bandwidth, 4 MB L2 cache;
CUDA 9.2.88

available real-world text datasets – text83 and One Billion
Word Benchmark (1B-Word)4. text8 contains approximately
17 million word tokens from Wikipedia. One Billion Word
Benchmark (1B-Word) corpus contains approximately 0.8
billion word tokens from the WMT 2011 News Crawl data.
In order to evaluate the Node2Vec algorithm, we also used
five publicly available graph datasets: three labeled datasets –
BlogCatalog5, PPI6 and Wikipedia-20067 – and two unlabeled
datasets – Facebook8 and arXiv ASTRO-PH (ASTRO-PH)9.
BlogCatalog is derived from friend and group information
on the BlogCatalog website. Protein-Protein Interactions (PPI)
dataset is a subgraph of the PPI network for Homo Sapiens.
Wikipedia-2006 dataset is derived from word cooccurrence
information from the first 109 bytes of English Wikipedia on
March 3, 2006. The Facebook graph encodes friend relations
between Facebook users. arXiv ASTRO-PH (ASTRO-PH)
dataset is a collaboration network of Astro Physics related
papers in the e-print arXiv between January 1993 to April
2003. Given the directed/undirected graph which represents
the connections between nodes with/without weights, random
walks are pre-generated with the original Node2Vec imple-
mentation released by SNAP (Stanford Network Analysis
Platform)10. Thereafter, the pre-generated random walks are
used as inputs for all the Word2Vec variants. Each random
walk is comprised of a sequence of N/S = 81 nodes.

TABLE III: Statistics of text datasets, and graph datasets
pre-generated by Node2Vec. V is the number of unique
words/nodes, S is the total number of sentences over the
corpus/the total number of random walks over the graph, and
N is the total number of word tokens over the corpus/the sum
of the length of the walks in S.

Dataset V S N
Text

Dataset
text8 71,291 9,385 16,718,843

1B-Word 555,514 30,607,741 804,269,958

Graph
Dataset

BlogCatalog 10,313 103,120 8,352,720
PPI 3,891 38,900 3,150,900

Wikipedia-2006 4,778 47,770 3,869,370
Facebook 4,040 40,390 3,271,590

ASTRO-PH 18,773 187,720 15,205,320

C. Evaluation Metrics

1) Word2Vec Evaluation Metrics: We used standard word
similarity and relatedness evaluations to compare word embed-
dings learned from PAR-Word2Vec and other methods [26].

3http://mattmahoney.net/dc/text8.zip
4http://www.statmt.org/lm-benchmark/
5http://socialcomputing.asu.edu/datasets/BlogCatalog3
6https://downloads.thebiogrid.org/BioGRID
7http://mattmahoney.net/dc/textdata.html
8http://snap.stanford.edu/data/egonets-Facebook.html
9http://snap.stanford.edu/data/ca-AstroPh.html

10https://github.com/snap-stanford/snap/tree/master/examples/node2vec

TABLE IV: Details of graph datasets. E is the total number
of edges and A is the number of different labels for nodes in
the graph.

Dataset Graph type E A
BlogCatalog undirected/unweighted 333,983 39

PPI undirected/unweighted 76,584 50
Wikipedia-2006 undirected/weighted 184,812 40

Facebook undirected/unweighted 88,234 N/A
ASTRO-PH directed/unweighted 198,110 N/A

This task involves inventories of word pairs that have been
assigned a similarity or relatedness score by human annotators
(e.g., (tiger, cat, 7.35), (stock, life, 0.92) [27]). For each word
pair, the cosine similarity of the corresponding embeddings
is calculated. These cosine similarities are then rank-ordered,
and the rankings compared to rank-ordering of the human
judgments using Pearson’s ρ (−1 to 1, higher is better). We
evaluated on the following datasets:
− WordSim-353: 353 pairs rated for similarity of meaning

[28].
− SimLex-999: 999 pairs rated specifically for similarity, and

not relatedness [28].
These evaluations are referred to as “intrinsic”, since they
do not use any learned parameters beyond the word em-
beddings. Analogy completion tasks [1] have often been
used as another “intrinsic” evaluation, together with similar-
ity/relatedness. However, these tasks have well-documented
issues that limit their value as an evaluation metric [29], [30].
We therefore followed prior work [31], [32] by augmenting our
intrinsic evaluation with “extrinsic” evaluations that measure
the quality of word embeddings by plugging them into another
machine learning model that learns to use them as features.
We evaluated on the following tasks:
− Relation extraction: SemEval-2010 shared task 8 [33],

using a CNN model with word and distance embeddings
[34] for nine-way relation classification.

− Sentiment analysis: positive/negative binary classifica-
tion of IMDB movie reviews [35], using a single 100-
dimensional LSTM.
2) Node2Vec Evaluation Metrics: The quality of the trained

node embeddings out of Word2Vec can be evaluated through
such applications as multi-label classification (e.g., classifying
bloggers into categories in BlogCatalog dataset) and link
prediction tasks. [7], [8], [16]. The node embeddings coming
out of the various Word2Vec implementations can just be fed
into the same classification models to evaluate them.
− Multi-label classification: For the evaluations with labeled

graph datasets, the logistic regression model takes the V
× K node embeddings as input and learns the model
based on a logistic function. The trained model predicts the
probability of each class given test embedding vectors.

− Link prediction: We conducted link prediction task with
unlabeled graph datasets based on the edge information.
Link prediction can be considered as a binary classification
by predicting the connection between two nodes. Where
two nodes are connected in the graph, they were labeled
as a positive example. Negative examples were generated
by randomly sampling pairs of nodes not connected to each
other. For a fair evaluation, the numbers of positive and
negative examples used in our experiments were balanced
and we used the same negative samples across all variants

of Word2Vec. Features were generated for each sample
by concatenating the learned embeddings for each pair of
nodes; these features were then plugged into Support-Vector
Machine (SVM) model [36] for training and testing.

D. Word2Vec Implementations Compared

We evaluated PAR-Word2Vec on multi-core CPUs and
GPUs with state-of-the art parallel Word2Vec implementa-
tions. The seven implementations used in our comparisons
are as follows: Word2Vec-cpu [2], pWord2Vec-cpu [18],
wombatSGNS-cpu [20], pSGNScc-cpu [21], accSGNS-gpu
[23], and our PAR-Word2Vec-cpu and PAR-Word2Vec-gpu.
Note that, all compared models are based on SG-NS algorithm.
While Word2Vec-cpu uses Pthreads API, all other CPU im-
plementations, including pWord2Vec-cpu, wombatSGNS-cpu,
pSGNScc-cpu, and our PAR-Word2Vec-cpu, use OpenMP API
and the same Intel’s Math Kernel Library (MKL) for all BLAS
(Basic Linear Algebra Subprograms) operations. It is obvious
that annealing the learning rate is a critical part of having
good quality of embeddings. For all CPU implementations,
during training the model for each epoch, the corpus is read
sentence-by-sentence and the learning rate is reduced based on
this reading progress through the corpus. Whereas, our PAR-
Word2Vec-gpu completes the reading of the entire corpus and
copies it into GPU memory once prior to the start of training
and gradually decreases the learning rate at the end of each
epoch. As shown in line 17 in Algorithm 5, the learning rate
is decreased by α = α − initial α / total number of epochs
at the end of each epoch.

E. Performance Evaluation

For all datasets, including text and graph, we used the
same number of negative samples T = 5 and same size of
embedding vector K = 128. For text and graph datasets,
respectively, we set the window size C to 8 and 10. We
then trained all variants of Word2Vec over 10 epochs with
all datasets. To ensure fairness, 28 threads were used in all
CPU experiments. In addition, all the parameters in all CPU
and GPU implementations were tuned for each dataset and the
best performing configurations were selected. For both PAR-
Word2Vec-cpu and PAR-Word2Vec-gpu, we used B = 24 for
all the experiments. However, the number of thread blocks
were varied according to the total number of sentences in
each dataset; γ = 64 for text8, BlogCatalog, PPI, Wikipedia-
2006, Facebook and ASTRO-PH, and γ = 1024 for 1B-Word
datasets. As suggested in the running scripts of pWord2Vec-
cpu and pSGNScc-cpu, the batch size of both pWord2Vec-cpu
and pSGNScc-cpu were set to 2×C+1. In the process of pre-
generating graph datasets, we used the same p and q values
for BlogCatalog, PPI and Wikipedia datasets as suggested in
[7]. Note that the window size C is randomly selected for each
inner loop in Word2Vec algorithm (e.g., line 8 in Algorithm
1). Furthermore, all negative target words are randomly chosen
from the vocabulary (e.g., line 17 in Algorithm 1). Therefore,
all the experiment results presented in this section are averaged
over 5 different executions.

1) Intrinsic Evaluations of Word Embeddings: Figure 5
shows word similarity scores over training epochs, comparing
all variants of Word2Vec implementations on text datasets. As
shown in Table V, the difference between our PAR-Word2Vec
models and the baselines is not statistically significant in terms

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.5

0.6

0.7

0.8

W
o

rd
S

im
-3

5
3

text8

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.2

0.25

0.3

0.35

S
im

L
ex

-9
9

9

text8

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.58

0.6

0.62

0.64

0.66

0.68

0.7

W
o

rd
S

im
-3

5
3

1B-Word

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.28

0.3

0.32

0.34

0.36

0.38

S
im

L
ex

-9
9

9

1B-Word

Fig. 5: Comparison of word similarity scores over training epoch on text datasets, K = 128. Each point is averaged over five
executions. X-axis: number of training epochs; Y-axis: word similarity scores.

NB = 1 NB = 1*56 NB = 2*56 NB = 4*56 NB = 8*56 NB = 16*56 NB = 32*56 NB = 64*56 NB = 128*56 NB = 256*56

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.4

0.45

0.5

0.55

0.6

0.65

0.7

W
o

rd
S

im
-3

5
3

text8

0 2 4 6 8 10

Training Time (s)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

W
o

rd
S

im
-3

5
3

text8

1 2 3 4 5 6 7 8 9 10

Training Epoch

0.2

0.25

0.3

0.35

S
im

L
ex

-9
9

9

text8

0 2 4 6 8 10

Training Time (s)

0.2

0.25

0.3

0.35

S
im

L
ex

-9
9

9

text8

Fig. 6: Word similarity scores over training epoch and time across different number of thread blocks used in PAR-Word2Vec-
gpu on text8 dataset, K = 128. Each point is averaged over five executions. NB: the total number of thread blocks; X-axis:
number of training epochs and training time in seconds; Y-axis: word similarity scores.

of the converged word similarity scores after training for 10
epochs. For the large 1B-Word dataset, our PAR-Word2Vec-

TABLE V: Mean and standard deviation of converged
WordSim-353 and SimLex-999 scores over 5 different exe-
cutions on text datasets.

Model
text8 1B-Word

WordSim-353 SimLex-999 WordSim-353 SimLex-999
Word2Vec-cpu 0.701 (±0.010) 0.308 (±0.014) 0.653 (±0.004) 0.344 (±0.007)
pWord2Vec-cpu 0.701 (±0.008) 0.296 (±0.008) 0.656 (±0.003) 0.348 (±0.002)

wombatSGNS-cpu 0.694 (±0.013) 0.278 (±0.009) 0.653 (±0.001) 0.350 (±0.002)
pSGNScc-cpu 0.716 (±0.008) 0.301 (±0.009) 0.657 (±0.003) 0.350 (±0.001)

PAR-Word2Vec-cpu 0.705 (±0.008) 0.302 (±0.003) 0.663 (±0.002) 0.341 (±0.003)
accSGNS-gpu 0.704 (±0.004) 0.303 (±0.002) 0.659 (±0.003) 0.337 (±0.002)

PAR-Word2Vec-gpu 0.698 (±0.008) 0.323 (±0.005) 0.680 (±0.004) 0.368 (±0.004)

cpu and PAR-Word2Vec-gpu consistently produced high word
similarity scores on WordSim-353 and SimLex-999 tasks.
This result demonstrate that our sentence-wise decoupled
Attraction-Repulsion based approach is highly beneficial to
performance improvement in terms of both model quality
and speedup. In the large 1B-Word dataset, 27,994,959 /
30,607,741 ≈ 91.46 % of sentences over the corpus include
less than 25 words. The mini-batch size B = 24 that we used
for the experiment with 1B-Word dataset indicates that sharing
the same negative samples for all words within a sentence
would not affect the quality of model at all.

On the small text8 dataset, PAR-Word2Vec-gpu has some
variability; it produces high averaged score for the SimLex-
999 similarity task, but low averaged score for the WordSim-
353 task as shown in Table V. However, PAR-Word2Vec-
gpu has standard deviations that overlap in the ranges (e.g.,
0.698 + 0.008 = 0.706 on WordSim-353 task), implying that
PAR-Word2Vec-gpu yields comparable results on all intrinsic

evaluations. We suspect that issue is related to the number of
thread blocks. As seen in Algorithm 5, each thread block is
processing multiple sentences and the global Win and Wout

matrices are updated after each sentence is processed (local
updates within a sentence; global updates across sentences).
Therefore, different thread blocks are not able to see each
others update until the entire sentences are processed as shown
in Algorithm 6. Hence, the updates would not be the same as
sequential. The more the number of thread blocks the higher
the chance of this incoherence. Especially for the small text8
dataset, this is an issue as average sentence length is around
1000 words (higher the sentence length higher the chance of
this incoherence). For the large 1B-Word dataset, the average
sentence length is less than 25 and therefore this effect may not
be visible for 1B-Word dataset. In order to verify this issue, we
conducted an experiment with varying the number of thread
blocks in text8 dataset. As shown in Figure 6, the results were
mostly matched as we expected: the smaller number of thread
blocks tends to provide a better quality, but slower training
time. Another possible reason is that the method of annealing
learning rate in PAR-Word2Vec-gpu is different from all other
variants (see Section VI.D). Accordingly, to achieve high
performance in terms of both quality and training time, we
had chosen to use 64×56 thread blocks and 1024×56 thread
blocks for text8 and 1B-Word datasets, respectively.

2) Extrinsic Evaluations of Word Embeddings: Table VI
shows performance on the extrinsic relation extraction and
sentiment classification tasks after training for 10 epochs;
performance numbers were averaged over five replicates each
of five embedding runs, to control for random initialization

0 2 4 6 8

Training Time (s)

0.5

0.6

0.7

0.8

W
o

rd
S

im
-3

5
3

text8

0 2 4 6 8

Training Time (s)

0.2

0.25

0.3

0.35

S
im

L
ex

-9
9

9

text8

0 100 200 300

Training Time (s)

0.58

0.6

0.62

0.64

0.66

0.68

0.7

W
o

rd
S

im
-3

5
3

1B-Word

0 100 200 300

Training Time (s)

0.28

0.3

0.32

0.34

0.36

0.38

S
im

L
ex

-9
9

9

1B-Word

Fig. 7: Comparison of word similarity scores over training time on text datasets, K = 128. Each point is averaged over five
executions. X-axis: training time in seconds; Y-axis: word similarity scores.

TABLE VI: Mean and standard deviation of Macro F1 scores
for relation extraction task and accuracy for sentiment analysis
task over 5 different runs each for 5 different embedding
executions, by Word2Vec variants.

Model
text8 1B-Word

Relation Extraction Sentiment Analysis Relation Extraction Sentiment Analysis
Word2Vec-cpu 0.671 (±0.010) 0.795 (±0.006) 0.689 (±0.009) 0.782 (±0.008)
pWord2Vec-cpu 0.669 (±0.006) 0.791 (±0.004) 0.686 (±0.008) 0.779 (±0.007)

wombatSGNS-cpu 0.666 (±0.007) 0.776 (±0.005) 0.691 (±0.010) 0.783 (±0.005)
pSGNScc-cpu 0.666 (±0.009) 0.790 (±0.005) 0.685 (±0.010) 0.784 (±0.006)

PAR-Word2Vec-cpu 0.665 (±0.010) 0.783 (±0.008) 0.691 (±0.008) 0.780 (±0.004)
accSGNS-gpu 0.680 (±0.010) 0.796 (±0.007) 0.689 (±0.006) 0.787 (±0.006)

PAR-Word2Vec-gpu 0.663 (±0.010) 0.807 (±0.004) 0.623 (±0.009) 0.780 (±0.004)

effects in both embedding learning and the models used for
extrinsic evaluations. PAR-Word2Vec-cpu matches the evalu-
ation quality of other CPU implementations, using both text8
and 1B-word datasets. PAR-Word2Vec-gpu yields compara-
ble or superior performance on sentiment classification, but
relation extraction quality drops by 6% with the larger 1B-
word dataset; however, quality with text8 is on par with other
implementations. Taken together with the intrinsic evaluation
results, this suggests that the massive parallelization of our
PAR-Word2Vec-gpu algorithm may be exploring the limits
of HOGWILD!-style data parallelization in word embedding
training.

TABLE VII: Mean and standard deviation of Micro F1 and
Macro F1 scores for multi-label classification, and Micro F1

score for link prediction task over 5 different runs each for 5
different embedding executions, by Word2Vec variants.

Model
BlogCatalog PPI Wikipedia-2006 Facebook ASTRO-PH

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Micro F1

Word2Vec-cpu 0.292 0.192 0.120 0.094 0.338 0.071 0.699 0.723
pWord2Vec-cpu 0.290 0.188 0.124 0.095 0.338 0.070 0.691 0.721

wombatSGNS-cpu 0.291 0.189 0.102 0.079 0.336 0.069 0.692 0.718
pSGNScc-cpu 0.290 0.189 0.120 0.093 0.323 0.054 0.686 0.692

PAR-Word2Vec-cpu 0.290 0.190 0.124 0.096 0.340 0.074 0.687 0.723
accSGNS-gpu 0.279 0.188 0.119 0.093 0.334 0.072 0.698 0.721

PAR-Word2Vec-gpu 0.280 0.186 0.121 0.092 0.326 0.070 0.672 0.720
Avg. standard dev. ±0.001 ±0.001 ±0.007 ±0.006 ±0.002 ±0.002 ±0.001 ±0.002

3) Extrinsic Evaluations of Graph Embeddings: To eval-
uate the multi-label classification task with labeled graph
datasets, we measured Micro F1 and Macro F1 scores through
10-fold cross-validation. For the link prediction task with
unlabeled graph datasets, we only measured Micro F1 score
since the numbers of distinct positive edges and distinct
negative edges used for the SVM training were the identical.
As shown in Table VII, all variants including our CPU and
GPU implementations maintain mostly the same quality of
node embeddings.

4) Speedup: Figure 7 shows the word similarity scores
over elapsed training time with text datasets. Our PAR-

TABLE VIII: Comparison of the training time in seconds per
epoch on text and graph datasets.

Model
Text Dataset Labeled Graph Dataset Unlabeled Graph Dataset

text8 1B-Word BlogCatalog PPI Wikipedia-2006 Facebook ASTRO-PH
Word2Vec-cpu 7.32 315.46 6.43 3.13 2.95 2.55 12.54
pWord2Vec-cpu 2.20 86.63 1.56 0.45 0.55 0.53 2.66

wombatSGNS-cpu 2.09 90.04 1.43 0.47 0.58 0.71 2.88
pSGNScc-cpu 1.72 58.20 1.46 0.70 0.75 0.84 2.77

PAR-Word2Vec-cpu 1.02 37.43 0.83 0.33 0.28 0.31 1.43
accSGNS-gpu 4.79 185.31 2.23 0.66 0.62 1.37 6.44

PAR-Word2Vec-gpu 0.98 32.60 0.72 0.20 0.21 0.27 1.08

Word2Vec-cpu and PAR-Word2Vec-gpu achieved significant
improvement in performance over existing state-of-the-art par-
allel Word2Vec implementations while maintaining the same
evaluation quality. As the results in Table VIII show, PAR-
Word2Vec-cpu achieved approximately 9.01×, 2.41×, 2.51×,
and 1.62× speedup on the large 1B-Word dataset compared
to Word2Vec-cpu, pWord2Vec-cpu, wombatSGNS-cpu, and
pSGNScc-cpu, respectively. For GPU implementations, our
parallel PAR-Word2Vec-gpu launches a kernel with only γ×56
thread blocks with K threads and accSGNS-gpu launches
a large amount of S thread blocks along with K threads.
Although it uses a relatively fewer thread blocks compared to
accSGNS-gpu, PAR-Word2Vec-gpu achieved 5.96× speedup
over accSGNS-gpu while maintaining same or better quality.
With the graph datasets, the range of performance improve-
ments of our CPU and GPU implementations is almost the
same as the performance improvement with text datasets.
On the large ASTRO-PH graph dataset, PAR-Word2Vec-cpu
achieved 8.77×, 1.86×, 2.01×, and 1.93× speedup com-
pared to Word2Vec-cpu, pWord2Vec-cpu, wombatSGNS-cpu,
and pSGNScc-cpu, respectively. Our PAR-Word2Vec-gpu also
consistently outperformed accSGNS-gpu. One of the major
factors that limits our single GPU implementation compared
to our single CPU implementation is synchronization over-
heads. Our GPU implementation uses shared-memory to keep
a slice of Win, Wout and temporary results. This requires
multiple synchronizations (one synchronization per load, store
and update of each data structure). In contrast, our CPU
implementation does not require any synchronization as we
are using the implicit cache to buffer data. Another factor that
affects the GPU performance is atomic operations. Since the
amount of parallelism in GPUs is much higher than CPUs, we
had to use atomic updates to maintain consistency of our data
structures and this negatively impacted performance. We also
found that intra thread-block load imbalance also limited the
GPU performance. Techniques like binning can be employed

to reduce load imbalance.

VII. CONCLUSION

In this paper, we built a parallel word embedding algo-
rithm to enhance data locality, focusing on reduction of data
movement. To achieve high performance, minimizing data
movement is a critical factor, since data movement is much
more expensive than arithmetic operations. We found the main
bottleneck of the original Word2Vec algorithm by conducting a
systematic analysis of data movement. The rearrangement of
data computation enables our proposed algorithm to greatly
reduce the data movement overheads. Experiments on the
large datasets show that our algorithm achieves superior per-
formance over the existing state-of-the-art implementations.
We also presented insights into parallelism versus data-locality
trade-offs as well as performance versus quality trends.

REFERENCES

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[2] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[3] D. Zeng, K. Liu, Y. Chen, and J. Zhao, “Distant supervision for relation
extraction via piecewise convolutional neural networks,” in Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing, 2015, pp. 1753–1762.

[4] P. Nakov, A. Ritter, S. Rosenthal, F. Sebastiani, and V. Stoyanov,
“Semeval-2016 task 4: Sentiment analysis in twitter,” in Proceedings of
the 10th international workshop on semantic evaluation (semeval-2016),
2016, pp. 1–18.

[5] S. Moen and T. S. S. Ananiadou, “Distributional semantics resources
for biomedical text processing,” Proceedings of LBM, pp. 39–44, 2013.

[6] M. Habibi, L. Weber, M. Neves, D. L. Wiegandt, and U. Leser, “Deep
learning with word embeddings improves biomedical named entity
recognition,” Bioinformatics, vol. 33, no. 14, pp. i37–i48, 2017.

[7] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016,
pp. 855–864.

[8] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[9] D. Newman-Griffis and A. Zirikly, “Embedding Transfer for Low-
Resource Medical Named Entity Recognition: A Case Study on Patient
Mobility,” in Proceedings of the BioNLP 2018 workshop. Melbourne,
Australia: Association for Computational Linguistics, jul 2018, pp. 1–11.

[10] W. L. Hamilton, J. Leskovec, and D. Jurafsky, “Diachronic Word Em-
beddings Reveal Statistical Laws of Semantic Change,” in Proceedings
of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Berlin, Germany: Association
for Computational Linguistics, aug 2016, pp. 1489–1501.

[11] A. Kutuzov, E. Velldal, and L. Øvrelid, “Tracing armed conflicts with
diachronic word embedding models,” in Proceedings of the Events and
Stories in the News Workshop. Vancouver, Canada: Association for
Computational Linguistics, aug 2017, pp. 31–36.

[12] M. Sahlgren and A. Lenci, “The effects of data size and frequency
range on distributional semantic models,” in Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2016, pp. 975–980.

[13] O. Levy, Y. Goldberg, and I. Dagan, “Improving distributional similarity
with lessons learned from word embeddings,” Transactions of the
Association for Computational Linguistics, vol. 3, pp. 211–225, 2015.

[14] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix
factorization,” in Advances in Neural Information Processing Systems
27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2014, pp. 2177–2185.

[15] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network
language model.” in Aistats, vol. 5. Citeseer, 2005, pp. 246–252.

[16] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2015, pp. 1067–1077.

[17] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in neural
information processing systems, 2011, pp. 693–701.

[18] S. Ji, N. Satish, S. Li, and P. Dubey, “Parallelizing word2vec in shared
and distributed memory,” arXiv preprint arXiv:1604.04661, 2016.

[19] J. B. Vuurens, C. Eickhoff, and A. P. de Vries, “Efficient parallel learning
of word2vec,” arXiv preprint arXiv:1606.07822, 2016.

[20] T. M. Simonton and G. Alaghband, “Efficient and accurate word2vec
implementations in gpu and shared-memory multicore architectures,” in
High Performance Extreme Computing Conference (HPEC), 2017 IEEE.
IEEE, 2017, pp. 1–7.

[21] V. Rengasamy, T.-Y. Fu, W.-C. Lee, and K. Madduri, “Optimizing
word2vec performance on multicore systems,” in Proceedings of the
Seventh Workshop on Irregular Applications: Architectures and Algo-
rithms. ACM, 2017, p. 3.

[22] E. Ordentlich, L. Yang, A. Feng, P. Cnudde, M. Grbovic, N. Djuric,
V. Radosavljevic, and G. Owens, “Network-efficient distributed
word2vec training system for large vocabularies,” in Proceedings of the
25th ACM International on Conference on Information and Knowledge
Management. ACM, 2016, pp. 1139–1148.

[23] S. Bae and Y. Yi, “Acceleration of word2vec using gpus,” in Interna-
tional Conference on Neural Information Processing. Springer, 2016,
pp. 269–279.

[24] J. Canny, H. Zhao, B. Jaros, Y. Chen, and J. Mao, “Machine learning at
the limit,” in Big Data (Big Data), 2015 IEEE International Conference
on. IEEE, 2015, pp. 233–242.

[25] T. M. Smith et al., “Theory and practice of classical matrix-matrix
multiplication for hierarchical memory architectures,” Ph.D. dissertation,
2018.

[26] T. Schnabel, I. Labutov, D. Mimno, and T. Joachims, “Evaluation
methods for unsupervised word embeddings,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2015, pp. 298–307.

[27] H. Rubenstein and J. B. Goodenough, “Contextual correlates of syn-
onymy,” Communications of the ACM, vol. 8, no. 10, pp. 627–633, 1965.

[28] F. Hill, R. Reichart, and A. Korhonen, “Simlex-999: Evaluating semantic
models with (genuine) similarity estimation,” Computational Linguistics,
vol. 41, no. 4, pp. 665–695, 2015.

[29] A. Rogers, A. Drozd, and B. Li, “The (too Many) Problems of Ana-
logical Reasoning with Word Vectors,” Proceedings of the 6th Joint
Conference on Lexical and Computational Semantics (*SEM 2017), pp.
135–148, 2017.

[30] D. Newman-Griffis, A. M. Lai, and E. Fosler-Lussier, “Insights into
Analogy Completion from the Biomedical Domain,” in BioNLP 2017.
Vancouver, Canada: Association for Computational Linguistics, aug
2017, pp. 19–28.

[31] B. Chiu, A. Korhonen, and S. Pyysalo, “Intrinsic Evaluation of Word
Vectors Fails to Predict Extrinsic Performance,” Proceedings of the 1st
Workshop on Evaluating Vector Space Representations for NLP, pp. 1–6,
2016.

[32] B. Whitaker, D. Newman-Griffis, A. Haldar, H. Ferhatosmanoglu, and
E. Fosler-Lussier, “Characterizing the impact of geometric properties of
word embeddings on task performance,” in Proceedings of the Third
Workshop on Evaluating Vector Space Representations for NLP (RepE-
val). Minneapolis, MN: Association for Computational Linguistics,
2019.

[33] I. Hendrickx, S. N. Kim, Z. Kozareva, P. Nakov, D. Ó Séaghdha,
S. Padó, M. Pennacchiotti, L. Romano, and S. Szpakowicz, “SemEval-
2010 Task 8: Multi-Way Classification of Semantic Relations between
Pairs of Nominals,” in Proceedings of the 5th International Workshop
on Semantic Evaluation. Association for Computational Linguistics,
2010, pp. 33–38.

[34] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, “Relation Classification
via Convolutional Deep Neural Network,” in Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics:
Technical Papers. Dublin City University and Association for Compu-
tational Linguistics, 2014, pp. 2335–2344.

[35] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning Word Vectors for Sentiment Analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Lin-
guistics, 2011, pp. 142–150.

[36] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

