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General-Purpose Methods for Simulating Survival Data for

Expected Value of Sample Information Calculations

Running head: Simulating Survival Data for EVSI Calculations

18 January, 2023

Abstract

Background Expected value of sample information (EVSI) quantifies the expected value to a deci-
sion maker of reducing uncertainty by collecting additional data. EVSI calculations require simulating
plausible datasets, typically achieved by evaluating quantile functions at random uniform numbers using
standard inverse transform sampling (ITS). This is straightforward when closed-form expressions for the
quantile function are available, such as for standard parametric survival models, but these are often un-
available when assuming treatment effect waning and for flexible survival models. In these circumstances,
the standard ITS method could be implemented by numerically evaluating the quantile functions at each
iteration in a probabilistic analysis, but this greatly increases the computational burden. Thus, our study
aims to develop general-purpose methods that standardize and reduce the computational burden of the
EVSI data-simulation step for survival data. Methods We developed a discrete sampling method and
an interpolated ITS method for simulating survival data from a probabilistic sample of survival proba-
bilities over discrete time units. We compared the general-purpose and standard ITS methods using an
illustrative partitioned survival model with and without adjustment for treatment effect waning. Results

The discrete sampling and interpolated ITS methods agree closely with the standard ITS method, with
the added benefit of a greatly reduced computational cost in the scenario with adjustment for treatment
effect waning. Conclusions We present general-purpose methods for simulating survival data from a
probabilistic sample of survival probabilities that greatly reduce the computational burden of the EVSI
data-simulation step when we assume treatment effect waning or use flexible survival models. The imple-
mentation of our data-simulation methods is identical across all possible survival models and can easily
be automated from standard probabilistic decision analyses.

Introduction

Expected Value of Sample Information (EVSI) quantifies the expected value to a decision maker of reducing
uncertainty through a given data collection exercise, such as a randomized clinical trial1. Methods for
computing the EVSI for collecting survival data (i.e. time-to-event data) when there is uncertainty about the
choice of survival model have recently been developed by Vervaart et al2. These methods require, in common
with other EVSI methods, the simulation of plausible study datasets that reflect the study design proposed
for collecting future data and the time-to-event distribution of individuals included in such a study3. This
is typically achieved by evaluating quantile functions at random uniform numbers using standard inverse
transform sampling (ITS). The standard ITS method is straightforward to implement when closed-form
expressions for the quantile function are available, such as for standard parametric survival models, but these
are often not available when assuming treatment effect waning and for flexible survival models.

Sufficient evidence on time-to-event outcomes, such as overall survival and time to progression, is crucial for
accurately determining the long-term effects of new treatments.4 Yet, health technology assessments often
have to rely on immature survival data obtained from trials at an early stage, especially for new cancer
treatments5. This can partly be explained by the introduction of accelerated licensing schemes for new
pharmaceuticals by regulatory bodies such as the European Medicines Agency6,7 and the U.S. Food and
Drug Administration8. Immature survival data require a high degree of extrapolation, which have led to the
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introduction of flexible survival models such as response-based landmark models, mixture cure models, relative
survival models, and model-averaging approaches.9,10 Nevertheless, more complex models do not necessarily
result in plausible extrapolations, and therefore extrapolations are often supplemented with assumptions
about disease progression and treatment mechanisms. For example, the National Institute for Health and
Care Excellence (NICE) recommends that waning of treatment effects is considered in technology appraisals11,
for instance by assuming no more treatment benefit beyond a chosen time point12, or by assuming that the
treatment effect diminishes over the long term13. This is typically implemented in cost-effectiveness models by
adjusting the predicted hazards, thereby altering the survival probabilities generated by parametric survival
models. This poses a challenge for the EVSI data-simulation step for survival data, as closed-form expressions
for the quantile function are often unavailable for custom distributions that incorporate assumptions about
treatment effect waning and for flexible survival models. In these circumstances, the standard ITS method
for simulating survival data could be implemented by numerically evaluating the quantile distributions at
each iteration in a probabilistic analysis, but this can greatly increase the computational burden.

In this article, we address the problem of computing EVSI when we assume treatment effect waning or use
flexible survival models, by developing general-purpose methods that standardize and reduce the computa-
tional burden of the EVSI data-generation step for survival data. We develop a discrete sampling method and
an interpolated ITS method for simulating survival data from a probabilistic sample of discrete survival curve
probabilities. The discrete sampling method samples time cycles using the discrete survival curve probabili-
ties and sets the event times to the half-cycle times. The interpolated ITS method extends this to continuous
time by initially sampling random uniform numbers between 0 and 1, and then interpolating the discrete
survival curve probabilities using cubic splines at the sampled numbers and recording the interpolated cycle
times. We demonstrate in an illustrative case study that, when the general-purpose data-simulation methods
are combined with a recently proposed nonparametric EVSI method2,14, EVSI computations for survival data
can be automated from standard probabilistic decision analyses, irrespective of the assumed data-generating
process.

The article is structured as follows. In the second section, we first describe the standard ITS method and then
introduce the general-purpose methods for simulating survival data. In the third section, we compare the
standard ITS method and the general-purpose data-simulation methods based on an illustrative partitioned
survival model for scenarios with and without adjustment for treatment effect waning. In the final section,
we conclude with a short discussion.

Method

Decision problem

In health technology assessment, cost-effectiveness models are widely used to compare alternative health
technologies in terms of expected costs V and health benefits Q relative to a cost-effectiveness threshold λ.15

There is usually a choice between a small number of D decision options, indexed d = 1, . . . D, such as a new
treatment and standard care. The cost-effectiveness of decision option d can be expressed in terms of net
health benefit, NBd = Qd − Vd/λ, or net monetary benefit, NBd = Qdλ − Vd. A cost-effectiveness model,
which we denote as NBd(θ), predicts the net benefit of decision option d, given a vector of model input
parameters θ, such as probabilities, costs and health-related quality of life weights. We represent our current
knowledge about the cost-effectiveness model parameters in the joint probability distribution p(θ). The joint
distribution p(θ) is typically defined using a combination of statistical models fitted to individual patient
data, external data sources, clinical expert opinion and assumptions about biological plausibility, and there
may also be dependency between elements of θ.

EVSI for a new study

The expected value of the optimal decision given current information is the value of the decision option that
maximizes expected net benefit and can therefore be considered cost-effective,
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max
d

Eθ¶NBd(θ)♢, (1)

A new study would provide data X relating to θ, which could for example be a randomized controlled trial
that collects overall survival data for a new treatment and standard care. Once the study data have been
collected, we update the joint distribution of the cost-effectiveness model parameters with the new data using
Bayes theorem, giving a posterior distribution p(θ♣X).

The expected value of the optimal decision made after collecting X is

max
d

Eθ|X¶NBd(θ)♢. (2)

The value of collecting X is derived from its potential to help a decision maker avoid recommending a
treatment that reduces net benefit, as we may learn that the decision option that is considered cost-effective
given current information turns out to be cost-ineffective given new information. However, as we have not yet
collected X, we must take the expectation over the distribution of all possible datasets, p(X). This requires
simulating plausible datasets from the distribution of the new data, x ∼ p(X). To simulate x, we usually need
to specify a parametric data-generating distribution, p(X♣θ), which depends on the type of data that will be
generated by the proposed study and how it will be used to update the model parameters.3 We can simulate
datasets from p(X) by first sampling from the joint distribution of the model parameters, θ∗ ∼ p(θ), and
then sampling from the parametric data-generating distribution given the parameter sample, x∗ ∼ p(X♣θ∗).
This gives us a pair of samples ¶x∗, θ∗♢ from the joint distribution p(X, θ), and therefore the samples x∗ are
draws from the marginal distribution p(X).

The expected value of the decision made with additional sample information is given by,

EX[max
d

Eθ|X¶NBd(θ)♢]. (3)

The EVSI16 measures the expected value of reducing uncertainty about the optimal decision by collecting
X, which is defined as the difference between equation (3) and equation (1),

EVSI = EX[max
d

Eθ|X¶NBd(θ)♢] − max
d

Eθ¶NBd(θ)♢. (4)

In the next section, we describe the EVSI estimation procedure for collecting time-to-event data.

Computing EVSI for time-to-event data

Time-to-event data

Time-to-event data, such as time to disease progression and time to death, are frequently collected in the
context of clinical trials. A special feature of time-to-event data is censoring, which occurs when the follow-
up time is not long enough to observe the event of interest for all individuals, or when individuals are lost
to follow-up.17 A single time-to-event dataset x, collected between time 0 and tobs, consists of i = 1, . . . , n
survival times xi and censoring indicators δi, x = ¶x1, . . . , xn, δ1, . . . , δn♢, where δi = 1 when xi is an observed
event, and δi = 0 when xi is a censored observation.

To predict outcomes over the long term, censored time-to-event data usually need to be extrapolated beyond
the observed follow-up period using a parametric survival model18. Parametric models are commonly specified
using either the survivor function, S(t, θ), or hazard function, h(t, θ), with time denoted as t.

The survivor function S(t) defines the probability of survival up to time t, given by
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S(t, θ) = P (T > t) = 1 − F (t, θ), 0 < t < inf, (5)

where F (t, θ) is the cumulative distribution function.

The hazard function h(t, θ) defines the instantaneous event rate at time t conditional on survival up to time
t,

h(t, θ) = lim
δt→0



P (t ≤ T < t + δt ♣ T ≥ t)

δt



=
f(t, θ)

S(t, θ)
, (6)

where f(t, θ) is the probability density function.

Most cost-effectiveness models are in discrete-time and therefore evaluate S(t, θ) at fixed time intervals based
on a set amount of time called model cycles, thereby generating a vector of survival probabilities over discrete
time units for each sampled value for θ, from which the distribution of patients across the health states over
time can be constructed. The expected costs, life years and quality-adjusted life years of a new technology
can be estimated by integrating the distribution of patients across the health states and the health state
values, which reflect the costs and health-related quality of life weights associated with each health state.15

Computing the expected net benefits given current information

We can compute the expected net benefits given current information in a probabilistic analysis (PA) using
Monte Carlo simulation. This involves sampling k = 1, . . . , K values, θ(k), from the distribution of the model
parameters, p(θ), and then evaluating the survivor functions, S(tc, θ(k)), given model cycle c = 0, . . . , C.

This results in K vectors of survival probabilities, s(k) = ¶s
(k)
0 , . . . , s

(k)
C ♢, where s

(k)
c = S(tc, θ(k)). We

assume s ⊂ θ, and compute the net benefits conditional on the survival curves and other model parameters,
NBd(θ(k)), for each d. We compute the expected net benefits given current information by averaging over
the K net benefits for each d.

Table 1 illustrates a PA sample where K vectors of survival probabilities s(k) have been generated for a single
decision option d.

Table 1: Probabilistic analysis sample with K

sampled vectors of survival probabilities s(k) for
a single decision option.

Model cycle s(1) s(2) s(3)
. . . s(K)

0 1.00 1.00 1.00 . . . 1.00
1 0.85 0.79 0.88 . . . 0.92
2 0.76 0.70 0.79 . . . 0.88
3 0.69 0.63 0.72 . . . 0.79
...

...
...

...
. . .

...
C 0.00 0.00 0.00 . . . 0.00

C
∑

c=0

s
(k)
c 14.49 10.82 12.11 . . . 18.79
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Simulating Time-to-Event Data

Standard inverse transform sampling method

To compute the expected net benefits given new time-to-event data x, we must first sample plausible datasets
from the distribution of the new data conditional on the sampled parameter values, x(k) ∼ p(X♣θ(k)). We
can simulate random survival times from a parametric survival distribution using standard functions, such
as the rweibull function in R19. These standard functions use inverse transform sampling (ITS), which is
a method for generating random values from an arbitrary distribution. Let F be a continuous cumulative
distribution function (CDF) with inverse CDF (i.e. quantile function) denoted by F −1. The intuition behind
the ITS method is that if we define T = F −1(U), where U ∼ Unif[0, 1], then T is distributed according to F ,
i.e. F (T ). Since the survivor function is defined as S(t, θ) = 1 − F (t, θ), we can generate survival times by
sampling values ui, i = 1, . . . , n, from a uniform distribution on the interval [0, 1] and plugging these into the
inverse survivor function, S−1(ui, θ). The inverse survivor function can be derived from the inverse CDF,
S−1(1 − ui, θ) = F −1(ui, θ), and if U ∼ Unif[0, 1], it follows that 1 − U is also ∼ Unif[0, 1]. We then censor
the survival times at the new follow-up time tnew.

The standard ITS scheme for simulating time-to-event data is given in Box 1.

Box 1: Standard inverse transform sampling scheme for simulating time-to-event data

for k = 1, . . . , K parameter samples θ(k) do

Sample a vector of values u(k) = ¶u
(k)
1 , . . . , u

(k)
n ♢, with each element drawn from Unif[0, 1]

Generate a dataset of n survival times x(k) = ¶x
(k)
1 , . . . , x

(k)
n ♢ by plugging u(k) into S−1(u(k), θ(k))

Censor each element of x(k) at the new follow-up time tnew

end

Sampling from a Weibull distribution, such as by using the rweibull function in R, can result in any value
between 0 and infinity. If we want to ensure that the sampled survival times do not exceed a biologically
plausible time horizon th, which would typically be equal to the time horizon used in the decision model,

then we need to sample u
(k)
i on the interval [p

(k)
1 , 1], where p

(k)
1 is the survivor function evaluated at th,

i.e. S
(

th, θ(k)
)

. If, however, the chance of simulating implausible survival times that exceed th is substantial,
the analyst should consider using a more realistic survival model, in particular models that incorporate
background mortality and other external information9,20. However, this evidence may not be available and
is exactly the evidence that is under consideration to collect in the value of information analysis.

The algorithm in Box 1 could, in theory, be used for any survival model for which we can define a hazard
function, h(t, θ). The hazard could be integrated to produce a cumulative hazard function, H(t, θ), from
which we can derive the survivor function, S(t, θ) = exp[−H(t, θ)]. The survivor function could then be
inverted to produce the quantile function, S−1(·, θ), and survival times could be simulated by evaluating
S−1(·, θ) at a random uniform sample as described in Box 1.

Analytic solutions to the integrals and function inverses, such as implemented in the rweibull function, may
not be available for flexible survival models, such as relative survival models, spline models, mixture cure
models and response-based landmark models9,10, and for custom distributions, including hazard functions
that incorporate assumptions about treatment effect waning. In these circumstances, the integrals and
function inverses could be evaluated numerically, for example by using the integrate() and uniroot()

functions in base R. The flexsurv and msm packages on CRAN also have a function qgeneric() designed
to invert a generic CDF. These numerical methods, however, greatly increase the computational burden of
the EVSI computations, as the integration and inversion steps need to be repeated for each of k = 1, . . . , K
simulations. In Appendix A, we provide a simple example and step-by-step implementation in R of the
standard ITS method based on analytic and numerical solutions. The example illustrates that even for a
simple exponential model, numerically evaluating the integrals and function inverses results in over a 10,000-
fold increase in computational time (Table A1).

In the next section, we will introduce general-purpose methods for simulating survival data that can be
standardized from standard probabilistic decision analyses and greatly reduce the computational burden of
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the standard ITS method when closed-form expressions for the quantile function are unavailable.

Simulating time-to-event data from a vector of survival probabilities over discrete time units

Interpolated inverse transform sampling method
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Figure 1: Illustration of the interpolated inverse transform sampling method for simulating time-to-event
data. A survival time of 3.6 years has been simulated by first sampling a value of 0.32 from a uniform
distribution between 0 and 1, and then interpolating the survival probabilities over discrete time units using
monotone cubic splines at 0.32 and recording the interpolated cycle time of 3.6 years.

We can also use the ITS method to generate x from a vector of survival probabilities over discrete time units, as

illustrated in Figure 1. Our PA sample consists of K vectors of survival probabilities, s(k) = ¶s
(k)
0 , . . . , s

(k)
C ♢,

given model cycle c = 0, . . . , C. We can approximate values from the quantile function by interpolating
the vectors of survival probabilities, S−1(·, s(k)). We can achieve this by fitting monotone cubic splines, a
type of piecewise polynomial interpolation, to each consecutive set of survival probabilities and cycle times,

¶(s
(k)
0 , s

(k)
1 ), (t0, t1)♢, . . . , ¶(s

(k)
C−1, s

(k)
C ), (tC−1, tC)♢. We can then sample survival times from the approximate

quantile function S−1(·, s(k)) using the ITS method.

The interpolated ITS sampling scheme for simulating time-to-event data from a vector of survival probabilities
over discrete time units is given in Box 2.

Box 2: Interpolated inverse transform sampling scheme for simulating time-to-event data from a vector
of survival probabilities over discrete time units

for k = 1, . . . , K vectors of survival probabilities s(k) = ¶s
(k)
0 , . . . , s

(k)
C ♢ do

Sample a vector of values u(k) = ¶u
(k)
1 , . . . , u

(k)
n ♢, with each element drawn from Unif[s

(k)
C , 1]

Generate a dataset of n survival times x(k) = ¶x
(k)
1 , . . . , x

(k)
n ♢ by interpolating s(k) at u(k) using

monotone cubic splines and recording the interpolated cycle times
Censor each element of x(k) at the new follow-up time tnew

end
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Discrete sampling method
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Figure 2: Illustration of the discrete sampling method for simulating time-to-event data. Survival times can
be simulated by sampling from the half-cycle times on the x-axis with probability derived from the survival
probabilities over discrete time units as indicated by the arrows.

An alternative approach for simulating x from a vector of survival probabilities over discrete time units s(k) is
by sampling discrete ‘bins’ of cycle times with probability equal to the cumulative density of each bin, which
is illustrated in Figure 2. We set the value of each bin equal to the half-cycle time tc+0.5, c = 0, . . . , C − 1,
i.e. the midpoint in between each consecutive set of cycle times. We can estimate the cumulative density

of each bin from the survival probabilities, (s
(k)
c − s

(k)
c+1). We can then generate survival times by sampling

¶t0.5, . . . , tC−0.5♢ with probability ¶(s
(k)
0 − s

(k)
1 ), . . . , (s

(k)
C−1 − s

(k)
C )♢.

The discrete sampling scheme for simulating time-to-event data from a vector of survival probabilities over
discrete time units is given in Box 3.

Box 3: Discrete sampling scheme for simulating time-to-event data from a vector of survival probabilities
over discrete time units

for k = 1, . . . , K vectors of survival probabilities s(k) = ¶s
(k)
0 , . . . , s

(k)
C ♢ do

Generate a dataset of n survival times x(k) = ¶x
(k)
1 , . . . , x

(k)
n ♢ by sampling n values from the

half-cycle times, ¶t0.5, . . . , tC−0.5♢, with probability ¶(s
(k)
0 − s

(k)
1 ), . . . , (s

(k)
C−1 − s

(k)
C )♢

Censor each element of x(k) at the new follow-up time tnew

end

Appendix A describes a step-by-step implementation in R of the interpolated ITS and discrete sampling
methods, and a comparison of their computational efficiency with the standard ITS method based on analytic
and numerical solutions.

Computing the expected net benefits given new data

We could compute the expected net benefits given the k = 1, . . . , K sampled datasets for each decision option,

x
(k)
d , using a nested Monte Carlo scheme, but this can be very computationally demanding as it requires
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sampling a large number of values from the posterior distribution of the model parameters conditional on each

simulated dataset, p(θ♣x
(k)
d ). A number of efficient approximation methods have therefore been developed in

recent years that reduce the computational burden of the nested Monte Carlo procedure to EVSI21. One of
these efficient EVSI methods is a nonparametric regression-based method developed by Strong et al. (2015)14

which does not require a parametric distribution for the data. The regression-based method for computing
EVSI relies on estimating the functional relationship between the posterior expected net benefits and the

simulated datasets, thereby avoiding the need to sample from the posterior distributions p(θ♣x
(k)
d ), as is

required for the nested Monte Carlo scheme.

In the regression-based approach, we only require the vectors of k = 1, . . . , K prior net benefits NBd(θ(k))

for each decision option d that we generated in the PA and the corresponding datasets x
(k)
d that we have

simulated using either of the sampling schemes above. The observed net benefits NBd(θ(k)) can be expressed
as a sum of the conditional expectation of the net benefit given the data, E

θ|x(k)

d

¶NBd(θ)♢, which we require

to estimate the EVSI (Equation (4)), and a mean-zero error term, ε(k),

NBd(θ(k)) = E
θ|x(k)

d

¶NBd(θ)♢ + ε(k). (7)

Strong and others (2015)14 explain that the conditional expectation E
θ|x(k)

d

¶NBd(θ)♢ can be thought of as

an unknown function of x
(k)
d . We denote this function g(x

(k)
d ) and substitute this into Equation (7), giving

NBd(θ(k)) = g(x
(k)
d ) + ε(k). (8)

We then summarize x
(k)
d using a low-dimensional summary statistic for each d, T (x

(k)
d ),

NBd(θ(k)) = g¶T (x
(k)
d )♢ + ε(k). (9)

A convenient choice for T (x
(k)
d ) is the number of observed events e

(k)
d and the total time at risk y

(k)
d for

each simulated dataset x
(k)
d , i.e. T (x

(k)
d ) = ¶e

(k)
d , y

(k)
d ♢, which has been shown to give good results for various

survival models.2

We can estimate the posterior net benefits by regressing the prior net benefits, NBd(θ(k)), on the summary

statistic T (x
(k)
d ),

NBd(θ(k)) = g¶T (x
(k)
d )♢ + ε, (10)

where gd is a function of the data x
(k)
d for each d, and ε is an error term with zero mean. We can achieve this

by fitting a generalized additive model (GAM), which is a flexible nonparametric regression model, to each

d and extracting the regression model fitted values ĝ
(k)
d , which are estimates of the posterior net benefits.

The GAM-based EVSI estimate is given by

EVSI ≃
1

K

K
∑

k=1

max
d

ĝ
(k)
d − max

d

1

K

K
∑

k=1

ĝ
(k)
d . (11)

EVSI for an ongoing study

When a trial is ongoing at the point of decision making, there could be value in reducing uncertainty by col-
lecting additional data from the ongoing trial before making an adoption decision. This is especially common
for cost-effectiveness analyses of new cancer drugs, which increasingly rely on immature data obtained from
trials in an early stage5.
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We denote the new data collected between the observed follow-up time tobs and future point tnew as x̃ =
¶x̃1, . . . , x̃ñ, δ̃1, . . . , δ̃ñ♢, where ñ is the number of study participants at risk at tobs. As we have not yet
collected the new data, we need to simulate plausible new data sets conditional on the current data, x̃ ∼
(X̃♣X). The value of extending an existing trial’s follow-up from tobs to future point tnew is given by2

EVSI(ongoing study) = E
X̃|X[max

d
E

θ|X,X̃¶NB(d, θ)♢] − max
d

Eθ|X¶NB(d, θ)♢, (12)

where the first term is the expected value of a decision based on the joint posterior distribution of θ given
both new data, X̃, collected between tobs and tnew, and current data, X, collected between time zero and
tobs, which is computed by averaging over the posterior net benefits of the decision option that maximizes
this quantity conditional on both new data and current data. The second term is the expected value of a
decision based on the joint distribution of θ given current data collected up until tobs.

Events beyond tobs are conditional on survival up to tobs. Therefore, to simulate future survival times for ñ
patients at risk at tobs, we need to sample from a conditional distribution that is left-truncated at tobs. For

the standard ITS scheme in Box 1, this requires evaluating the survivor function at tobs, p
(k)
2 = S

(

tobs, θ(k)
)

,

and then sampling random uniform numbers, u(k), on the interval [p
(k)
1 , p

(k)
2 ], where p

(k)
1 is the survivor

function evaluated at the model time horizon, S
(

th, θ(k)
)

. For the interpolated ITS scheme in Box 2, we

can find p
(k)
2 by interpolating s(k) at tobs, and then sampling u(k) on the interval [s

(k)
C , p

(k)
2 ]. For the discrete

sampling scheme in Box 3, we need to sample from the subset of half-cycle times that are larger than tobs,
i.e. ¶tc+0.5, . . . , tC−0.5♢ for tc+0.5 > tobs.

Model-averaged EVSI

Uncertainty about the choice of survival model is often a key driver of decision uncertainty, particularly
when data are immature22. If we are uncertain about choosing from a set of competing survival models
for extrapolating study data over the long-term, M = Mr, r = 1, . . . , R, then we could account for this in
the EVSI computations2 by using model-averaging.23–25 Before we collect new data X, our beliefs about the
plausibility of each model is represented by the prior model probabilities P (Mr). These could for example be
derived from the Akaike’s Information Criterion (AIC)26 or other measures of model fit and parsimony. In the

PA, we then sample a survival model M
(k)
r with probability P (Mr) before sampling θ

(k)
r from the distribution

of the parameters of the sampled survival model, p(θr, M
(k)
r ). Since this only changes the values for s(k), the

discrete sampling scheme in Box 2 and interpolated ITS scheme in Box 3, as well as the GAM-based EVSI
estimation following equation (11), are identical to the single-model case.

Synthetic case study

Decision problem and model definition

To demonstrate the application of our methods, we developed a simple yet realistic synthetic case study based
on a partitioned survival model (PSM)27 comparing a new treatment (d = 1) with standard care (d = 2).
The PSM uses overall survival (OS) and progression-free survival (PFS) curves to estimate the proportion
of patients in 3 health states: PFS, post-progression survival (PPS) and death, given c = 0, . . . , 360 monthly
model cycles corresponding to an overall time horizon th = 30 years. We assumed OS and PFS follow
independent Weibull distributions for each d, parameterized in terms of log-shape α and log-scale β. The
Weibull model parameters for OS are θos1 = (αos1, βos1) for the new treatment and θos2 = (αos2, βos2) for
standard care, and θpfs1 = (αpfs1, βpfs1) and θpfs2 = (αpfs2, βpfs2) for PFS, respectively. We estimated
the Weibull model parameters using maximum likelihood from a synthetic data set containing 100 OS times
and 100 PFS times for each trial arm with a maximum follow-up of 24 months. Further details about the
synthetic case study data set are given in appendix B. The other model parameters are utility for PFS (Upfs),
utility for post-progression (Upps), drug costs for the new treatment (Cdrug1) in PFS, medical costs for the
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new treatment (Cmed1), medical costs for standard care (Cmed2), annual discount rate (r) and monetary
value of 1 quality-adjusted life year (QALY), (λ). The definitions and prior distributions for the case study
model parameters are given in Table 2, and net benefit functions are given in appendix C.

Table 2: Prior Parameter Distributions for the Partitioned Survival Model Parameters

Weibull survival model parameters Mean, µ Covariance matrix, Σ Distribution

Overall survival
Log shape for new treatment
Log scale for new treatment



αos1

βos1

 

0.312
4.089

 

0.037 −0.036
−0.036 0.056



Bivariate
Normal(µ, Σ)

Log shape for standard care
Log scale for standard care



αos2

βos2

 

0.361
3.842

 

0.029 −0.021
−0.021 0.030



Bivariate
Normal(µ, Σ)

Progression-free survival
Log shape for new treatment
Log scale for new treatment



αpfs1

βpfs1

 

0.161
3.590

 

0.019 −0.010
−0.010 0.021



Bivariate
Normal(µ, Σ)

Log shape for standard care
Log scale for standard care



αpfs2

βpfs2

 

0.209
3.294

 

0.014 −0.004
−0.004 0.013



Bivariate
Normal(µ, Σ)

Utility parameters Mean, µ Standard error, SE Distribution

Utility for progression-free survival Upfs 0.80 0.04 Beta(80,20)

Utility for post-progression survival Upps 0.50 0.05 Beta(50,50)

Cost parameters (monthly) Mean, µ Standard error, SE Distribution

Drug costs for new treatment Cdrug1 1, 200 − Constant

Medical costs for new treatment Cmed1 500 250 Gamma(4,0.008)

Medical costs for standard care Cmed2 500 250 Gamma(4,0.008)

Other parameters Mean, µ Standard error, SE Distribution

Annual discount rate r 0.035 − Constant

Monetary value of 1 QALY λ 80, 000 − Constant

Treatment stopping rule and treatment effect waning

We also considered a scenario with a 2-year treatment stopping rule, after which the drug costs for the new
treatment Cdrug1 = 0. We assumed that, on expectation, the treatment effect on OS and PFS would wane
after stopping treatment at year 2 until there was no more treatment effect by year 4. Treatment effect
waning is commonly implemented in cost-effectiveness models by setting the hazards in the treatment arm
and comparator arm equal at a chosen time point. This approach has a number of limitations. Firstly, this
could lead to counter-intuitive results when the hazard in the comparator arm is below the hazard in the
treatment arm after the treatment duration cut-off, in which case the treatment effect increases during the
waning period12. Secondly, setting the hazards in the treatment and comparator arm equal underestimates
uncertainty about independent survival endpoints. Thirdly, this approach ignores uncertainty about the start
time and duration of the waning period.

To avoid these limitations, we used an alternative approach to implement treatment effect waning. For

k = 1, . . . , K, we first sampled values, t
(k)
w1 and t

(k)
w2 , for the start time and duration of the waning period

from p(tw1) ∼ LogNormal(2.83, 0.69) and p(tw2) ∼ LogNormal(2.83, 0.69), corresponding to mean times
and standard deviations of 24 months for both tw1 and tw2. In practical applications, p(tw1) and p(tw2)
could be estimated from previous studies or by expert elicitation28. We then computed vectors of ‘waning
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hazards’ from the Weibull mean survival probabilities for the new treatment and standard care that in linear

proportions increase from no waning to full waning over the time periods defined by t
(k)
w1 and t

(k)
w2 , and added

these to the sampled Weibull hazards for the new treatment, h
(k)
1 .

The waning-adjusted hazard function for OS and PFS for the new treatment is given by

Waning-adjusted hazard h∗
1(t) =

eθα1

eθβ1



t

eθβ1

eθα1 −1

+FUnif



t − tw1

tw2
♣ 0, 1



max[0, fspline(t, ĥ2−ĥ1)], (13)

where the first term is the Weibull hazard function, FUnif ( · ♣ 0, 1) is a Uniform cumulative distribution

function on the interval [0, 1] evaluated at (t − tw1)/tw2, and fspline(t, ĥ2 − ĥ1) is a spline function fitted to

the difference in mean survival hazards for the new treatment and standard care, ĥ1 and ĥ2, respectively,
with mean survival hazards for treatment option d given by

Mean survival hazards ĥd = − log



1 −
¶s̄d,1, . . . , s̄d,C♢

¶s̄d,0, . . . , s̄d,C−1♢



, (14)

where s̄d,c, c = 0, . . . , C, are mean Weibull survival probabilities over discrete time units for each d, given by

Mean survival probability s̄d,c =
1

K

K
∑

k=1

e
−



tc/e
β

(k)

d

e
α

(k)

d

. (15)

All other model assumptions and net benefit functions are as above.

The expected Weibull survival curves for the scenarios with and without adjustment for treatment effect
waning are given in Figure 3.

Overall survival new treatment

Overall survival standard care

Progression−free survival new treatment

Progression−free survival standard care
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Figure 3: Expected Weibull survival curves for overall survival and progression-free survival for the new
treatment and for standard care without adjustment (left) and with adjustment for treatment effect waning
(right). The expected waning period is represented by the black dotted lines.
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Computations

We assume we want to compute the EVSI for a new study that will collect OS and PFS data for the new
treatment and for standard care. We considered a sample size of n = 100 study participants for each
treatment arm and a study follow-up period tnew = 1, 2, 3, 4, 5 and 10 years. We first performed a PA in
which we sampled K = 2, 000 parameter values θ(k) from the distribution of the model parameters p(θ), and
then evaluated the PSM to obtain the net benefits for each d, NBd(θ(k)).

Simulating overall survival and progression-free survival data

In the scenario without adjustment for treatment effect waning, we simulated OS data sets, x
(k)
os1 for the

new treatment and x
(k)
os2 for standard care, with n = 100 times for each treatment arm using the standard

ITS method, the interpolated ITS method and the discrete sampling method following the sampling schemes
in Box 1, Box 2 and Box 3, respectively. In the scenario with adjustment for treatment effect waning, we
implemented the standard ITS method by numerically integrating the waning hazard function and inverting
the waning survivor function, as analytic solutions are unavailable. The implementation of the interpolated
ITS method and the discrete sampling method is identical to the scenario without treatment effect waning.

We summarized each simulated data set using the number of observed OS events, e
(k)
os1 and e

(k)
os2, and the total

time at risk for OS, y
(k)
os1 and y

(k)
os2, i.e. T (x

(k)
os1) = ¶e

(k)
os1, y

(k)
os1♢ and T (x

(k)
os2) = ¶e

(k)
os2, y

(k)
os2♢.

We simulated PFS data sets for the new treatment and standard care (x
(k)
pfs1 and x

(k)
pfs2) using the same

sampling schemes as for OS for the scenarios with and without adjustment for treatment effect waning. To
prevent double-counting of OS data, we censored the simulated PFS times at the proposed follow-up time or at
the time point at which, if at all, the PFS curve crosses and is set equal to the OS curve, whichever is soonest.

We then computed the number of observed PFS events, e
(k)
pfs1 and e

(k)
pfs2, and the total time at risk for PFS,

y
(k)
pfs1 and y

(k)
pfs2, for each simulated PFS data set, i.e. T (x

(k)
pfs1) = ¶e

(k)
pfs1, y

(k)
pfs1♢ and T (x

(k)
pfs2) = ¶e

(k)
pfs2, y

(k)
pfs2♢.

Computing EVSI via GAM regression

To reduce the number of regression equations14 and improve the stability of the EVSI computations29, we
used the incremental net benefit (INB), defined as INB(θ(k)) = NB1(θ(k)) − NB2(θ(k)). We estimated pos-
terior INB by fitting a single GAM model with INB(θ(k)) as the dependent variable and separate sets of

summary statistics per treatment arm, ¶e
(k)
os1, y

(k)
os1, e

(k)
pfs1, y

(k)
pfs1♢ and ¶e

(k)
os2, y

(k)
os2, e

(k)
pfs2, y

(k)
pfs2♢, as the indepen-

dent variables. We implemented the GAM regression using the R package mgcv30, and specified a tensor
product cubic regression spline basis for the independent variables, with a maximum basis dimension of 4 to
prevent the model from estimating too many coefficients. This has syntax gam(inb ~ te(e_os1, y_os1,

e_pfs1, y_pfs1, k=4) + te(e_os2, y_os2, e_pfs2, y_pfs2, k=4). We extracted the GAM model fit-
ted values, ĝ(k), which are estimates of the posterior INB, and estimated EVSI using the equation given
by

EVSI ≃
1

K

K
∑

k=1

max¶0, ĝ(k)♢ − max
1

K

K
∑

k=1

¶0, ĝ(k)♢. (16)

We computed 95% intervals for the GAM estimator by sampling 2,000 values from a multivariate Normal
distribution of the GAM coefficients, as described in an appendix of the article by Strong et al.31.
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Results

Figure 4 shows the EVSI values and 95% intervals without adjustment for treatment effect waning for follow-
up times of 1, 2, 3, 4, 5 and 10 years. There is excellent agreement between the standard ITS method,
interpolated ITS method and discrete sampling method both for OS only and OS and PFS. The EVSI
reflects diminishing marginal returns for increasing follow-up durations, ranging from 2,711 to 11,311 for OS
only and from 3,387 to 11,547 for OS and PFS, and converges towards the partial EVPI for the respective
sets of model parameters. This indicates that the value of reducing uncertainty about PFS in addition to
OS is relatively small. We did not compute the EVSI for PFS only, since PFS is a composite endpoint
that is defined as time to progression or time to death, whichever is soonest, and therefore also requires the
collection of OS data. The total computation times for the data-simulation procedures in the scenario without
adjustment for treatment effect waning are 12 s, 32 s and 12 s for the standard ITS method, interpolated
ITS method and discrete sampling method, respectively.

The EVSI estimates in the scenario with adjustment for treatment effect waning (Figure 5) are greater
than in the scenario without adjustment for treatment effect waning, reflecting the added value of learning
about treatment effect waning. The EVSI estimates range from 5,433 to 11,961 for OS only and from 6,064 to
12,384 for OS and PFS, almost twice as high for the 1 year follow-up period compared to the scenario without
adjustment for treatment effect waning. The interpolated ITS method and discrete sampling method again
agree closely with the standard ITS method, but at a greatly reduce computational cost. The computation
times for the interpolated ITS and discrete sampling methods are, in fact, the same as in the scenario without
adjustment for treatment effect waning, and approximately 3,600 and 10,000 times faster, respectively, than
the standard ITS scheme that used numerical solutions for the integrals and function inverses.
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Figure 4: EVSI values for the synthetic case study without adjustment for treatment effect waning. Total
computation times for the data-simulation procedures are 12 s (standard ITS), 32 s (interpolated ITS) and
12 s (discrete sampling).
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Figure 5: EVSI values for the synthetic case study with adjustment for treatment effect waning. Total
computation times for the data-simulation procedures are 120,180 s (standard ITS), 33 s (interpolated ITS)
and 12 s (discrete sampling).

Discussion

Strengths and limitations

We developed an interpolated ITS method and a discrete sampling method for simulating survival data from
a probabilistic sample of survival probabilities over discrete time units. Our general-purpose methods greatly
reduce the computational burden of the standard ITS method when closed-form expressions for the quantile
function are unavailable, such as for custom distributions that incorporate assumptions about treatment effect
waning as commonly encountered in practice11, and for flexible survival models, including relative survival
models, spline models, mixture cure models and response-based landmark models9,10. The implementation
of our methods is identical across all possible survival models and can therefore easily be standardized from
standard probabilistic decision analyses.

Generally, the precision of the EVSI estimator is influenced by the number of simulated datasets and the
effective sample size of the simulated data. The discrete sampling method and, to a lesser degree, the
interpolated ITS method, additionally introduce an approximation error that depends on the cycle length. It
is generally recommended that discrete-time health economic models use a short cycle length to reduce the
discrete-time approximation error, which could be as short as 1 week for slowly-progressing chronic diseases.32

Our synthetic case study suggests that the approximation error introduced by our general-purpose methods
is very small even when using a longer cycle length of 1 month in combination with short follow-up times
and a low effective sample size of the simulated data given a rapidly-progressing disease.

We structured the synthetic case study around a PSM, a type of model that is frequently used to inform
reimbursement decisions for new oncology drugs33. The key assumption behind a PSM is that survival
endpoints, such as OS and PFS, are independent. This also implies that dependency between OS and PFS is
not reflected in the EVSI data-simulation procedure when using a PSM. Joint modeling of OS and PFS could
be implemented in a state transition model (STM), which uses transition probabilities to describe ‘movements’
between health states over time. STMs require individual patient data to estimate all relevant transition
probabilities, unlike PSMs that can use digitised Kaplan-Meier data from published trials. OS and PFS data
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can be simulated jointly from a STM by first sampling a PFS time, and then deciding whether the sampled
PFS time is a progression or death event using a binomial experiment with probability derived from the
hazards of transitioning from PFS to PPS and OS.34 If the sampled PFS time is a progression event, residual
time until death can be simulated using the survival distribution for PPS to OS. Since transition probabilities
are typically derived from survival curves fitted to time-to-event data, our data-simulation methods could
also be useful in a STM framework.

If individual patient data are available with a similar study design and at least the same length of follow-up
as the proposed study, study datasets could alternatively be simulated using a two-level resampling method
based on bootstrapping35. In this approach, the observed dataset is first resampled K times with replacement,
and then n values are sampled with replacement from the k = 1, ..., K resampled datasets, thereby generating
K new datasets with n observations each. In most situations, particularly for novel treatments, this type of
data will however not be available.

The key notion behind EVSI is that the prior distribution of the model parameters is updated with simulated
study data in order to estimate the joint posterior distribution given both prior information and the simulated
study data. In EVSI analyses, the prior distribution is often informed by external evidence, such as digitised
Kaplan-Meier data. This may however not match the way in which real world analyses of study data are
conducted, since these may not synthesize the collected study data and the external evidence. Analysts
should therefore ensure that the way in which the study data is analyzed once it has been collected is aligned
with the assumptions underpinning the EVSI analysis.

Despite its routine application in cost-effectiveness analyses, there is currently a lack of guidance on how to
model treatment effect waning.12 In the synthetic case study, we modeled treatment effect waning by speci-
fying probability distributions for the start and duration of the waning period, while preserving uncertainty
about independent survival endpoints using a novel additive hazard approach. This had a large impact on the
EVSI estimates, which highlights the importance of appropriately incorporating uncertainty about treatment
effect waning in the EVSI calculations. There may be other possible approaches to model treatment effect
waning, and these can easily be captured by our data-simulation methods as well.

Conclusion

The increasing prevalence of immature survival data in decision making, particularly for new can-
cer treatments5, has been accompanied by the introduction of increasingly complex approaches for
extrapolation9,10, which complicates the EVSI data-simulation step. Our general-purpose data-simulation
methods greatly reduce the computational burden of the EVSI data-simulation step when custom distribu-
tions that incorporate treatment effect waning or flexible survival models are used for which closed-form
expressions for the quantile function are unavailable. Our methods are straightforward to implement and
can easily be automated from standard probabilistic decision analyses, such as those used in technology
assessments of new pharmaceuticals.11,36–38 This means that our general-purpose methods can be used to
simulate survival data - with a similar accuracy and computational cost - as using the correct closed-form
quantile function for any survival model. Efficient EVSI calculations for survival data can help decision
makers determine whether current evidence is sufficient or whether there is a need for collecting additional
survival data before making an adoption decision.

Data Availability

The analysis code used in this study is available from Github at https://github.com/matverv/sim-surv-data-
evsi.
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Appendices

Appendix A - Methods for Simulating Survival Times

In this appendix we will illustrate how to simulate survival times in R using the 3 methods discussed in
the paper: standard inverse transform sampling (standard ITS), interpolated inverse transform sampling
(interpolated ITS) and discrete sampling.

We will first install (if not installed yet) and load the flexsurv, tidyverse and knitr packages, which we
will use in the example.

if ("flexsurv" %in% rownames(installed.packages()) == FALSE) {

install.packages("flexsurv") # install flexsurv if not installed yet

}

if ("tidyverse" %in% rownames(installed.packages()) == FALSE) {

install.packages("tidyverse") # install tidyverse if not installed yet

}

if ("knitr" %in% rownames(installed.packages()) == FALSE) {

install.packages("knitr") # install flexsurv if not installed yet

}

library(flexsurv) # load flexsurv

library(tidyverse) # load tidyverse

library(knitr) # load knitr

Probabilistic Analysis

We start by running a probabilistic analysis in which we sample k = 1, . . . , K values θ(k) from the prior
distribution of the model parameters, p(θ), which in this example is the rate parameter of an exponential
model that describes overall survival for a single treatment arm.

set.seed(1) # set the seed for reproducibility

K <- 1000 # number of simulations

theta <- rgamma(K, 35, 950) # prior distribution for the exponential rate

We then construct K vectors of survival probabilities by evaluating the exponential survivor function given
the sampled values θ(k) at discrete time cycles.

cycles <- 0:240 # discrete time cycles

surv <- sapply(theta, function (x) {

pexp(cycles, x, lower.tail = F) # evaluate the survivor function

})

The following code produces a plot of the mean survival curve and 95% bounds.

# compute 95% percentiles

ci <- sapply(cycles+1, function (x) {quantile(surv[x,], c(0.025, 0.975))})

# create a dataframe of the sampled survival probabilities and confidence bounds

df_surv <- data.frame(

"Time" = cycles,

"Survival" = rowMeans(surv),

"Upper" = ci[2, ],
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"Lower" = ci[1, ]

)

# plot mean survival and 95% confidence bounds

ggplot(df_surv, aes(Time, Survival)) +

geom_ribbon(aes(ymin = Lower,

ymax = Upper),

fill = "firebrick",

alpha = 0.2) +

geom_line(color = "firebrick")
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Standard Inverse Transform sampling

Simulating Survival Data for a New Study

We can simulate survival times for a new study using the standard inverse transform sampling method by
evaluating the quantile function at random uniform samples between 0 and 1. We can implement this using
the rexp function in base R, which requires 2 arguments: the number of observations (e.g. number of patients
to be included in the new study) and a value for the exponential rate parameter.

n <- 100 # number of patients/observations

# simulate n survival times given theta

times_std1 <- sapply(theta, function (x) rexp(n, x) )
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The output is a matrix of simulated survival times, where rows index the n simulated survival times, and
columns index the K simulations. The first 10 simulated survival times for the first 5 simulations are given
by:

times_std1[1:10, 1:5]

## [,1] [,2] [,3] [,4] [,5]

## [1,] 22.5218924 3.943437 4.373529 8.961688 42.061293

## [2,] 24.0482783 5.001096 8.227731 59.718875 9.319299

## [3,] 0.7739475 32.194231 2.212844 16.903244 49.725231

## [4,] 4.1427170 40.615923 5.390183 90.057154 142.905871

## [5,] 39.9443093 52.405560 19.684164 62.166050 6.600515

## [6,] 29.8874133 17.284868 18.631781 5.463462 26.606568

## [7,] 22.5574594 20.743536 4.572290 5.475647 107.326405

## [8,] 19.8110560 35.331819 38.729165 12.121705 51.730617

## [9,] 6.4400761 4.422201 11.617468 42.017328 52.588304

## [10,] 10.5242127 1.511484 21.624664 9.374594 2.223138

Simulating Survival Data for an Ongoing Study

The rexp function simulates survival times that can take any value between 0 and infinity. If we want to
simulate survival times for an ongoing study, we need to sample survival times that are greater than the
observed follow-up time tobs. We can do this by sampling from a conditional quantile function that is left-
truncated at tobs. We can implement this in R using the following code (we will record the computation time
using the Sys.time() function):

# generate hypothetical observed follow-up times for the n patients

t_obs <- runif(n, 8, 12)

start_t <- Sys.time() # start the clock

# evaluate the survivor function at t_obs given theta

p_2 <- sapply(theta, function (x) pexp(t_obs, x, lower.tail = F))

# sample random numbers on the interval [0, p_2]

r_num <- sapply(1:K, function (x) runif(n, 0, p_2[,x]))

# evaluate the quantile function given theta at the random uniform values

times_std2 <- sapply(1:K, function (x) qexp(r_num[,x], theta[x], lower.tail = F))

ct_std2 <- difftime(Sys.time(), start_t,units = "secs") # stop the clock

Numerical Methods

When closed-form expressions for the quantile function, such as the qexp function, are unavailable, we could
numerically evaluate the integrals and function inverses to produce a quantile function.

In the following code, we define a new exponential survivor function f_surv by first defining the hazard func-
tion, and then integrating the the hazard to produce the cumulative hazard. We can then compute the survival
probabilities by exponentiating the negative cumulative hazards. The f_surv(q, theta) function numer-
ically approximates the analytic exponential survivor function pexp(q, rate=theta, lower.tail=FALSE)

in base R.
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# exponential survivor function

f_surv <- function (q, theta) {

f_haz <- hexp # exponential hazard function

f_cum_haz <- function (q) { # cumulative hazard function

integrate(f_haz, 0, q, rate = theta)$value

}

f_cum_haz <- Vectorize(f_cum_haz)

cum_haz <- f_cum_haz(q)

surv <- exp(-cum_haz) # survival probabilities

return(surv)

}

We can invert the survivor function using the qgeneric function in flexsurv to produce the quantile function.
We can then simulate survival times by evaluating the quantile function at a random uniform sample.

start_t <- Sys.time() # start the clock

# evaluate the survivor function at t_obs given theta

p_2 <- sapply(theta, function (x) f_surv(t_obs, x))

# sample random numbers on the interval [0, p_2]

r_num <- sapply(1:K, function (x) runif(n, 0, p_2[,x]))

# evaluate the quantile function given theta at the random uniform values

times_std3 <- sapply(1:K, function (x) {

sapply(r_num[,x], function (y) qgeneric(f_surv, p = y, theta=theta[x]))

})

ct_std3 <- difftime(Sys.time(),start_t,units = "secs") # stop the clock

Interpolated Inverse Transform Sampling

We can also use inverse transform sampling to simulate survival times from the vectors of survival probabilities
over discrete time units that we generated in the probabilistic analysis. Similar to the standard inverse
transform sampling method, we first sample random uniform numbers. We then interpolate the survival
probabilities using monotone cubic splines at the sampled numbers and record the interpolated cycle times

start_t <- Sys.time() # start the clock

# interpolate the model cycles at t_obs and record the survival probabilities

p_2 <- sapply(1:K, function (x) {

spline(x=cycles, y=surv[,x], xout=t_obs, ties=max, method="hyman")$y

})

# sample random numbers on the interval [min(s), p_2]

r_num <- sapply(1:K, function (x) runif(n, min(surv[,x]) , p_2[,x]) )

# interpolate the survival probabilities at the random uniform numbers

# and record the corresponding cycle time

times_int <- sapply(1:K, function (x) {

spline(x=surv[,x], y=cycles, xout=r_num[,x], ties=max, method="hyman")$y

})
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ct_int <- difftime(Sys.time(),start_t,units = "secs") # stop the clock

Discrete Sampling

An alternative approach for simulating survival times from the vectors of survival probabilities over discrete
time units is by sampling discrete ‘bins’ of cycle times with probability equal to the cumulative density of each
bin. We can estimate the cumulative density of each bin by computing the successive differences between the
survival probabilities at each discrete cycle time, which we then use as probabilities to sample the half-cycle
times.

start_t <- Sys.time() # start the clock

# define the minimum and maximum half-cycle times

t_min <- round(mean(t_obs),0) + 0.5

t_max <- max(cycles-0.5)

# sample from the half-cycle times with probability equal to the

# successive differences between the survival probabilities at each cycle time

times_dis <- sapply(1:K, function (x) {

sample(t_min:t_max, size = n,replace = TRUE,

prob = abs(diff(surv[,x]))[ceiling(t_min):length(abs(diff(surv[,x])))])

})

ct_disc <- difftime(Sys.time(),start_t,units = "secs") # stop the clock

Results

Kernel Density Plot

The kernel density plot in Figure A1 shows that the distribution of the simulated survival times is very
similar across the different methods.

df_times <- gather(as.data.frame(

cbind(

"Standard ITS (analytical)" = c(times_std2),

"Standard ITS (numerical)" = c(times_std3),

"Interpolated ITS" = c(times_int),

"Discrete sampling" = c(times_dis)

)

), factor_key = TRUE)

ggplot(df_times, aes(x=value, color = key)) +

geom_density(alpha=0.4) +

xlab("Simulated Survival Times") +

ylab("Density") +

labs(color = "Method")
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Figure A1: Density plot of the simulated survival times for the exponential example

Computation Time

The computation time for the different data-simulation procedures is given in Table A1. The standard inverse
transform sampling scheme that uses numerical methods for evaluating the quantile function is several orders
of magnitude slower than the other methods.

df_ct <- round(rbind(ct_std2, ct_std3, ct_int, ct_disc), 2)

rownames(df_ct) <- unique(df_times$key)

colnames(df_ct) <- "Computation time in seconds"

knitr::kable(df_ct,

booktabs = TRUE,

caption = "Computation times for the data-simulation procedures for the exponential example",

) %>%

add_footnote(" ",

threeparttable = T,

notation = "none")
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Table A1: Computation times for the data-simulation proce-
dures for the exponential example

Computation time in seconds

Standard ITS (analytical) 0.02
Standard ITS (numerical) 271.26
Interpolated ITS 0.35
Discrete sampling 0.03
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Appendix B - Synthetic case study dataset

We generated a synthetic dataset using evenly spaced OS and PFS times for each d given 4 Weibull distribu-
tions, using the 0.005th, 0.015th, ..., 0.985th, 0.995th quantiles from each distribution. This avoids generating
implausible datasets where PFS exceeds OS or OS for standard care exceeds OS for the new treatment, which
could occur by randomly sampling survival times. We enrolled all patients at time zero and right censored
the survival times at 24 months. We did not apply any other type of censoring. The parameters of the
Weibull distributions that we used to generate the synthetic case study data set are shown in Table B1, and
the Kaplan-Meier plot of the synthetic case study data set is given in Figure B1.

Table B1: Weibull distribution parameters for the synthetic
case study dataset

New treatment Standard care

Overall survival
Weibull log-shape, α 0.30 0.35
Weibull log-scale, β 4.10 3.85

Progression-free survival
Weibull log-shape, α 0.15 0.20
Weibull log-scale, β 3.60 3.30
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Appendix C - Net benefit functions for the synthetic case study

The net benefit function for the new treatment is

NB1(θ) =
λ

12

C
∑

c=0

e(−[ 12
√

1+r−1] tc) ¶Upfs S(tc, θpfs1) + Upps [S(tc, θos1) − S(tc, θpfs1)]♢

−
C

∑

c=0

e(−[ 12
√

1+r−1] tc) ¶Cdrug1 S(tc, θpfs1) + Cmed1 S(tc, θos1)♢,

(17)

and the net benefit for standard care is

NB2(θ) =
λ

12

C
∑

c=0

e(−[ 12
√

1+r−1] tc) ¶Upfs S(tc, θpfs2) + Upps [S(tc, θos2) − S(tc, θpfs2)]♢

−

C
∑

c=0

e(−[ 12
√

1+r−1] tc) ¶Cmed2 S(tc, θos2)♢,

(18)

where S(tc, θd) is the Weibull survivor function evaluated at cycle time tc,

S(tc, θd) = e−(tc/eβd)
e

αd

. (19)
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