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Abstract—The channel state information (CSI) of the sub-carriers
employed in orthogonal frequency division multiplexing (OFDM) systems
has been employed traditionally for channel equalisation. However, the
CSI intrinsically is a signature of the operational RF environment and
can serve as a proxy for certain activities in the operational environment.
For instance, the CSI gets influenced by scatterers and therefore can be
an indicator of how many scatterers or if there are mobile scatterers
etc. The mapping between the activities whose signature CSI encodes
and the raw data is not deterministic. Nevertheless, machine learning
(ML) based approaches can provide a reliable classification for patterns
of life. Most of these approaches have only been implemented in lab
environments. This is mainly because the hardware requirements for
capturing CSI, processing it and performing signal-processing algorithms
are too complex to be implemented in commercial devices. The increased
proliferation of IoT sensors and the development of edge-based ML
capabilities using the TinyML framework opens up possibilities for the
implementation of these techniques at scale on commercial devices. Using
RF signature instead of more invasive methods e.g. cameras or wearable
devices provide ease of deployment, intrinsic privacy and better usability.
The design space of device-free wireless sensing (DFWS) is complex
and involves device, firmware and ML considerations. In this article,
we present a comprehensive overview and key considerations for the
implementation of such solutions. We also demonstrate the viability of
these approaches using a simple case study.

Index Terms—Wireless sensing, machine learning, edge computing,
TinyML.

I. INTRODUCTION

With the rapid proliferation of IoT devices, we are at the cusp

of 64 Billion internet-connected devices. Many of these IoT devices

have onboard sensors, computing and communication functionalities.

In fact, the majority of IoT devices use wireless interfaces to connect

with personal or low-power wide area networks (LPWAN). While

the primary purpose of this device can be context-specific sensing,

the secondary information which accompanies each transmission

can be obtained in form of channel state information (CSI). The

primary usage of such information is to improve the successful recov-

ery of transmitted information and mitigation against environment-

dependent impairments. The CSI can be treated as a signature of

the operation radio environment and thus could be a rich source

for secondary usage. For instance, CSI can be used for optimal

interference coordination to improve transmission reliability or can

be employed in Device Free Wireless Sensing (DFWS). The DFWS

systems harvest CSI to identify Patterns of Life (PoL). These patterns

range from mere presence detection in indoor space to using micro-

doppler signatures for respiratory rate estimation. The capability to

obtain operational environmental intelligence through DFWS can

power a huge range of application segments, ranging from elderly

monitoring to location-based services [1]–[4].

DFWS has been an established area of research in the past few

years. However, the core approach has been the collection of CSI and

offline application of machine learning-based approaches to identify

PoL classes. Practical wide-scale deployments where side information

e.g. CSI or even received signal strength indicator (RSSI) for PoL

identification has received lesser attention. Moreover, with the advent

of edge based ML inference capabilities, it is possible to develop a

new breed of IoT applications which even without connectivity could

perform PoL identification and trigger an appropriate response.

Typically, edge devices have lower computing and memory re-

sources, therefore the deep learning (DL) approaches need to be tuned

for better performance. This typically involves compression and trans-

lation of ML operations into optimal implementation for embedded

firmware. TinyML provides one such framework for low-power MCU

devices. The key driver of the state-of-the-art wave in DFWS is the

accessibility of the CSI in low-cost devices. CSI information is also

present as side information from RF Backscattering Sensor devices.

The design space for the DFWS on-edge IoT devices with ML in-

ference capabilities requires several important design considerations.

These vary from the type of device to, the type of pre and post-

processing required for CSI. To the best of our knowledge, a survey

which highlights these issues in a cohesive manner is highly desirable.

To this end, this paper provides a comprehensive overview of DFWS

techniques, tools, hardware, software and research challenges.

Contribution and Motivation: The motivation and contribution

of this paper can be summarised as follows:

• A short survey on the application of device-free wireless sensing

that considers the enabling technologies, approaches, and tech-

niques that employ the CSI measurements for recognising life

patterns.

• Highlighting the commonly used signal processing techniques,

their complexity and feasibility for implementation on edge

devices for applications requiring real-time inference.

• Showcasing the challenges of deploying some conventional or

even simple DL models on edge devices using TinyML. We

also highlight the available off-the-shelf edge devices and tools

employed for DFWS applications.

• Demonstrating feasibility of implementing DFWS on the edge

with the help of a case study. We study the resource footprint

of changing the structure of the DL models on the performance

of the classification and hence the feasibility of implementation

for ML-enabled micro-controllers.

Organisation: The rest of the paper is organized as follows:

Section II introduces the enabling technologies. Section III gives

the most common applications. Section IV presents some of the

challenges. Section V provides a case study for the use of DL on

the edge for DFWS. Finally, Section VI provides the conclusions.

II. ENABLING TECHNOLOGIES FOR DFWS

In this section, we review the enabling tools and technologies that

are available as key enablers for the DFWS.

A. CSI extraction tools

In order for broader adoption of wireless sensing for daily life,

sensing devices need to be low-cost and capable of performing gener-

alisations with good accuracy. However, these low-cost devices have

limited computing capability. Hence, facilitating the implementation

of complex inference techniques on low-cost devices requires a new

toolchain that supports compression of the trained ML models and



their embedded implementation with a low memory footprint on the

edge device. Furthermore, it is also necessary that the device exposes

a mechanism to access the CSI for performing inferences.

In this section, we present a summary of the tools that enable CSI

collection on the edge devices and then we also highlight tools that

enable DL on the edge. Many off-the-shelf devices have been widely

used to collect CSI measurements. Most of the existing literature

employs Intel WiFi cards like the 5300 WiFi Network Interface Card

(NIC) to extract CSI data. Intel 5300 gives access to 56 OFDM sub-

carriers with a 20 MHz channel bandwidth and 114 sub-carriers for

the 40 MHz bandwidth with a narrow sub-carrier spacing and low

sampling rate [1], [5]–[9]. The Atheros CSI tool is another tool for

collecting CSI measurements from 802.11n WiFi chip sets and it has

been widely used for collecting CSI from Atheros AR9580, AR9590,

AR9344 and QCA9558 NICs [10], [11]. The use of NICs requires a

fully capable computer to be attached for the CSI to be collected and

hence they cannot be deployed as an IoT device. Consequently, for a

realistic wide-scale IoT deployment, alternative approaches must be

explored.

Naturally, a step down from a full-blown personal computer will

be considered a single-board computer (SBC). One such chipset that

allows CSI collection is the BCM4339 by Cypress Semiconductor.

The chipset is employed by the Raspberry Pi B3+/B4 and Nexus 5

mobile phones. There is a comprehensive programming library that

allows the CSI collection at a lower cost than the Intel 5300 and

Atheros. Many applications have been investigated in the literature

that uses the BCM chipset and achieve good recognition accuracy in

recognition [12]–[15]. Again like full fledge mini PCs, SBC-based

IoT deployment has lower mainstream penetration. This is mainly

because SBCs are power-hungry and costly. The end IoT devices

often do not require full-blown operating systems (OS) and have

a dedicated functionality which can be implemented on low-cost

MCUs. SBCs however are good candiate for gateway devices.

PicoScenes is another open-source and powerful tool that provides

access to CSI measurements for various Intel and Atheros NICs

and also for Software Defined Radio (SDR) modules (e.g., USRPs,

BladeRF-X40, HackRF) [16]. PicoSense is the first publicly available

tool to support CSI collection for Intel’s next-gen AX200 NICs series

that enables packet injection and CSI measurement in the Wi-Fi 6

GHz band. This tool will potentially accelerate the research in DFWS.

Very recently, ESP32 by Espressif Systems which is widely used

in developing IoT platforms provided access to the CSI data. The

ESP32 is equipped with full WiFi capability for IEEE 802.11b,

IEEE 802.11g and IEEE 802.11n and provides a wide range of CSI

measurements in three fields of channel frequency responses (i.e.,

Legacy Long Training Field (LLTF), High Throughput LTF (HT-

LTF), and Space-Time Block Code HT-LTF (STBC-HT-LTF)). The

chipset is capable of collecting CSI measurements for up to 114 sub-

carriers. Additional information e.g. RSSI, the noise floor and the

time of packet arrival is also exposed to developers. The fact that

ESP32 is an IoT platform that can be found in many daily used IoT

devices, the low cost as compared to the other competitors and its

compatibility with TFLite for TinyML implementation all make it a

good candidate that fulfils the conditions for real-time applications

with wide adoption. A comprehensive survey on the use of ESP32

for DFWS-enabled edge can be found in [17].

B. 5G & Beyond and its role in DFWS

With the development of 5G networks, high-frequency bands such

as mmWave became a popular type choice for the implementation of

high data rate communication systems. In contrast to the typical com-

munication frequencies for edge devices and mobile communication

(i.e., 433 MHz, 868 MHz, 2.4 GHz, 5GHz ISM bands, GSM and LTE

bands), mmWave provides a wide band of communications and also

provides a sensitive frequency range for human activity recognition.

Hence, the 5G bands of frequencies will allow more adoption for the

DFWS. The use of the mmWaves for DFWS has been addressed in

many papers in the literature [18]–[23]. Even though the wide use of

5G for DFWS is still primitive it shows a huge potential in the next

few years as 5G networks become more popular.

C. Deep learning

Deep Neural Networks (DNNs) have been widely used in the

literature to perform classification and regression inferences for

unseen and uneasy representable physical phenomena with latent

parameters. The advantage of the DNN is to let the computer decide

what features to be given the highest weight during the training phase.

This technique has been widely used to reduce the requirements of

deep analysis of the raw data for features extraction and it has proven

its utility in many application domains.

However, to employ DNN models in low-performance edge devices

for real-time applications, the complexity of the DNN model needs

to be minimal to allow the edge device to undertake fast inference

or even allow the model to fit within the low-edge memory device.

To decrease the complexity, methods of signal denoising, signal

transformations, feature extraction, and dimensionality reduction need

to be employed at the prepossessing phase before the training and

inference. Many DL algorithms have exhibited excellent performance

for DFWS recognition. Namely, Deep Neural Networks (DNNS) for

general-purpose recognition processes, Recurrent Neural Networks

(RNNs) and Long Short Term Memory (LSTM) for times series

and time-dependent sequential dataset-based recognition. Convolu-

tional Neural Networks (CNNs) are also a type of DNNs that are

widely employed for 1D and 2D image-based inference. Generative

Adversarial Networks (GANs) where two neural networks compete

with each other to become more accurate in their predictions are

also used where obtaining a large annotated dataset is difficult or

time-consuming [22]. In GANs, synthesising virtual samples can

be achieved for data augmentation and hence ensuring no over-

fitting and dataset balancing. Even though DL models have proven

excellent performance in DFWS, the classical and simpler techniques

of ML like Gaussian Naive Bayes (GNV), Support Vector Machines

(SVMs), Decision Trees (DTs) and the Ensemble methods have

proven their performance for a long time in the literature [24]. More

about using deep neural networks in DFWS can be found in [25].

Regardless of the adopted ML algorithms, a set of feature ex-

traction and dimensionality reduction is required for simpler, more

robust and high-performance inferences. For example, in an approach

of extracting features from the CSI amplitude and phase, the authors

in [26] applied a linear discriminant analysis and Softmax regression

algorithm to generate a human activity recognition (HAR) model that

classifies 4 types of human activities. The linear discriminant analysis

and the Softmax regression model do not require any type of DNNs

and can achieve an accuracy of classification in the range of 95.4%. In

[27], the authors presented a new approach for a better understanding

of the wireless signal features. They tried to understand the variation

law of the influenced signal by utilizing Dynamic Differential Phase

Analysis (DDPA). The new approach presents a performance metric

for channel change metric to study the target influence in the vicinity

of the receiver. The paper reveals that the DDPA can achieve better

performance in terms of accuracy if it is compared to the traditional

phase and differential phase analysis. Also, a method of using activity

filtering and enhanced correlation features is presented in [28].

The authors employ a method to compensate for the timing offset

between the transmitter and the receiver. The new method improves

the quality and reduces the number of parameters to be entered

into the DNN model. This results in low-complexity models. In

order to differentiate similar human activities, they employed activity

recognition based on the enhanced correlation features of the CSI.

The new approach for features engineering achieved better accuracy

when it is compared to other techniques and it can achieve a very

high accuracy that exceeds 99%. It is also shown that the features



engineering method that they applied can reduce the DNN training

time to less than 20% of the time required by various direct use of

CSI for inference.

Other approaches for DL by employing statistical models for

wireless sensing are presented by [29]. The authors presented the

utilisation of local maximum mean discrepancy to align the data

distribution in multiple subdomains based on kernel Hilbert space

(RKHS) in order to design a deep subdomain adaptive network. The

new method is applied to the HAR application and it achieves an

accuracy of 95.6% and helps in reducing the required time for the

training by the better selection of DNN input features.

III. APPLICATIONS OF DFWS

A. Applications for HAR

The main focus of wireless sensing researchers in the last decade

is on HAR. HAR can be divided into multiple categories such as ges-

ture recognition, presence detection, crowd counting, fall detection,

respiration detection and human pose detection.

In [30], the authors propose a hand gesture recognition based

on CNN classification of gestures. The authors used micro-Doppler

signatures to detect and classify ten different classes. An accuracy

of more than 85.6% was achieved for the ten classes classification

and 93% for the seven classes CNN model. The authors in [31]

proposed a mmWave-based device-free gesture recognition with a

new strategy employing a Taylor criterion ranking to remove the

ineffective neurons from the DNN model to lower the computational

time, complexity and the required storage to build the classification

model. The new dimensionality reduction and model compression

show a significant reduction in the inference time and the required

storage (i.e., 14% for inference time and 27% for the storage) while

sacrificing only 2% of the accuracy.

Multi-target sensing based on multiplexing techniques is intro-

duced in [32]. The authors show that angle division multiplexing

sensing, range division multiplexing sensing and source division

multiplexing sensing can be used to perform multi-target sensing on

a 77GHz testbed. A mean accuracy of more than 96.8% is achieved.

A new method of activity and environment isolation was presented in

[33]. The authors show a HAR DNN-based model that is capable of

removing the environment parameters from the collected CSI data.

The DNN model was trained to recognize 6 activities with good

accuracy.

A gait identification and gesture recognition are also presented

by [34]. The paper shows an extensive study of recognising 40

simple and mixed gestures based on CSI measurements of 1.2 million

samples. The accuracy of the experiment and the trained model

for expert models give an average accuracy of 94.5% and 98.5%

respectively for CSI-based gait identification and gesture recognition.

A complexity-based model selection in a three-phase system for HAR

is presented in [35]. The model chooses between three different

methods for learning based on the size of the collected samples (i.e.,

distance-based classification for a small number of samples, SVM

when representative data can be extracted and RNN when there are

a large number of samples). An accuracy of 96% on average was

achieved for the three-phase system of recognition.

To solve the problem of the dramatic drop in the performance

of the learned model when changing the environmental conditions,

then [36] presented a meta-learning method that is capable of

performing discriminative deep features learning as well as learning

the transferable similarity of evaluation for the training sets. The

authors achieved a 90% accuracy in most of the cases even when

changing the gesture’s environments and conditions.

An enhanced CSI for HAR applications has also been presented

in [37]. In the paper, the authors applied the well-known LSTM and

RNN DL models to automatically extract deeper features and then

applied the softmax regression algorithm for classification based on

enhanced CSI correlation feature matrices. The test was performed

with CSI collection utilising an Intel WiFi 5300 network utilizing 30

sub-carriers CSI. The overall performance shows more than 95% of

accuracy.

A joint localisation and HAR experiment have been presented by

[38]. The paper is a comprehensive study that utilizes three different

techniques of DL (i.e., CNNs for recognition and state machines that

learn temporal dependency information and then RNNs and LSTM

for reinforcement learning agents). The aim of the study is to perform

a traditional HAR. The achieved accuracy of the test is 97% on

average with an average of 82% when testing with two publicly

unseen available datasets.

In order to solve the problem of collecting new data to do HAR in

different environments, the authors in [23] presented a maximum-

minimum adversarial approach that moves the target features to

the distribution of the source features using unsupervised learning

based only on the trained model of the source environment and

without performing any labelling or data collection. The experiment

was conducted on a mmWave scenario at 24 GHz frequency and

interesting results of more than 90% average accuracy for the cross-

scenario device-free activity recognition were achieved.

Even though CSI is the most commonly used for the DFWS, there

are many efforts that use the RSSI information to perform the DFWS.

In [39], the authors utilized the Relative Signal Strength (RSS) of

60 GHz mmWave to perform a HAR experiment to recognise three

different activities (i.e., call, pocket and app browsing). The paper

shows an accuracy of more than 83% on average for most of the

scenarios. In our paper, we will show a case study of the use of RSS

information for the localisation of a person within a closed-room

environment

In the context of HAR, there are too many efforts to mention in

this conference-style paper. However, many interesting efforts can be

found in [26], [40]–[44].

B. Applications in positioning and localisation

The natural use of DFWS that becomes jointly related to the

HAR comes in localisation and positioning, especially for indoor

environments. CSI measurements contain both the amplitude and the

phase of the CSI sample. Hence, it adds more information that can

be employed for more accurate positioning if it is compared to the

well-studied RSSI approach in the literature [45].

In [46], the authors present a use case of CSI to estimate the

location of humans in an indoor environment. The paper employs

a theoretical dataset generation based on signal propagation models

and geometric methods. The paper shows how the CSI information

is used to feed an LSTM DL model for training and inference.

The theoretically generated model is then employed for practical

estimation for indoor localisation using Intel 5300 NIC for real-

time testing. The accuracy of the localisation model in terms of the

estimation error is shown for different geometries and configurations.

A CNN-based model for localisation based on CSI images is

presented in [47]. The paper shows how the CSI measurements for

114 WiFi sub-carriers are used to generate a time series image dataset.

The dataset is then fed into the CNN model for training. The use of

CSI images is widely used by utilizing raw CSI images and also

spectrogram images. The use of 2D-CNNs on these types of images

is computationally expensive. CNN DL models are challenging when

they are to be implemented on sub-megabyte RAM for edge devices.

Fine-grained indoor fingerprinting is presented in [48]. The paper

shows a joint utilisation of RSSI and CSI measurements for more

accurate positioning. Weighted k-Nearest Neighbor (WKNN) is em-

ployed on CSI and RSSI after performing Kalman filtering on the raw

measurements. Kalman filtering is used for smoothing the signal for

denoising and also for dimensionality reduction. This paper presents

a simple approach that does not use the computationally expensive

DL approach while achieving good estimation performance.



Crowd counting is also another application that is embedded in

positioning applications and it is widely studied in the literature.

Here, we mention a couple of use cases [49], [50]. In [49] the

authors examine a transfer learning-based technique based on CSI

measurements on a DNN that is transferred from ResNet, AlexNet

and VggNet transfer learning models for crowd counting. The authors

in [50] presented people counting techniques for the scenarios of

waiting in lines based on naı̈ve Bayes classification that is applied to

statistical features of RF power measurements. An average accuracy

of classification of more than 98% has been achieved

Due to the lack of space in this paper, we cannot mention all the

efforts that had been made in localisation and positioning. Hence, the

reader is encouraged to examine [51], [52].

C. Applications in health care

One of the most common applications that utilise DFWS for a

handful of noninvasive free sensing is within healthcare. During the

COVID-19 pandemic, close proximity of people was to be prevented

and the separation of people within the same indoor environment was

encouraged. Hence, some literature tried to build HAR for healthcare

applications where noninvasive sensing is vital for privacy and health

concerns. In [53], the authors presented a DL approach for joint

localisation and HAR. The paper shows high accuracy for recognition

and localisation even when testing public datasets.

Monitoring multi-person breathing is presented in [54] and [55].

In [54] the authors show how the CSI is used to detect the rate

of breathing for multi-person under different conditions and environ-

ments. A comprehensive study of the CSI phase analysis and filtering

and transformations is presented in this paper by utilising a 5GHz

WiFi band. The success rate of estimating the breathing rate of an

average of more than 96% in an environment of 2 people is shown and

it is more than 91% for 3 people. The paper shows how the success

rate decreases as the number of people in the environment increases.

In [55], the authors used Independent Component Analysis (ICA)

to obtain the breathing information from the CSI that is collected

from Intel 5300 NIC. The mean absolute error of 0.21 beats per

minute in the two-person scenario is interesting bearing in mind that

they employed no DL techniques in the study. More studies on a

respiration rate that utilise CSI collected from smartphones or off-

the-shelf NICs can be also found in [55]–[60].

Human bio-metrics signal sensing is also another direction for

the DFWS in healthcare. In [3], both heart rate and respiration are

jointly estimated from the CSI that can be collected from the WiFi

signals. A mean accuracy of 98.5% for heart rate estimation and

99.1% for respiration has been achieved based on the named WiFi

sleep stage neural network (W2SN) and Cardio Pulmonary Coupling

(CPC) Neural Network. Uncorrelating the testing environment and the

testing results are required in performing sleep stage tests. In [61], a

DL approach based on the collected CSI is used to classify 4 sleep

stages for humans. The CSI here covers the two main parameters that

have been used for accurate sleep stages classification, namely the

respiration and body movement information. More Information on

the state-of-the-art advancements in health care and the future trends

for the use of DFWS can be read through [62]–[64] and the review

paper in [58].

D. Applications in safe driving

An interesting application for employing CSI information comes

with an in-car driver assistant. Automating and predicting some

human activities while driving may give more degree of freedom

for the control system within the car to be ready for sudden changes

and takeovers [65], [66]. In [65], the authors presented an approach

for CSI-based HAR for car drivers with an average recognition

accuracy of 91.3%. A mmWave Doppler radar for 3D head tracking is

presented in [67]. The advances in 3D head tracking allow for a better

TABLE I: Applications of wireless sensing.

Application Surveyed papers

HAR [23], [26], [30]–[44]

Localisation and positioning [45]–[53]

Health care [3], [53]–[64]

Autonomous and safe driving [65]–[71]

Smart agriculture and industry 4.0 [72] [73] [73] [74] [75] [76] [77]

understanding of the capacity to supervise or manoeuvre in driver

assistance systems. Driver authentication applications are shown in

[68]. The authors in [69], presented a CSI-based system to track the

driver’s head. CSI-based driver’s inattention detection and abnormal

driving prediction are presented in [78]. Also, [70] presented a CSI-

based fatigue detection application. The applications for car driver

assistance are unlimited and the horizon is open for more research

efforts. A paper that highlights the potential of CSI-based sensing in

enriching the sensing techniques within smart cars be found in [71].

E. Applications in smart agriculture and industry 4.0

Fundamentally, electromagnetic wave propagation is directly af-

fected by the medium and the signalling channel environment.

Hence, some physical non-human related sensing can be employed

by studying the footprint of the medium changes in terms of the

dielectric constant and then correlating latent parameters to build

sensing models.

For example, the authors in [72] introduced an approach to

measuring the dielectric property of water and ethanol and more

liquids. The estimated permittivity for various types of liquids showed

good agreement with the actual values with an average error of 4.0%.

The permittivity of a dielectric reflects many latent features and could

be transformed into bio-metrics. In smart agriculture, the dielectric

material characteristics could be transformed into an indicator for

minerals, PH-indicator and humidity measures by only employing

CSI collection and regression. In the same analogy, [73], [74], [75],

[76] and [77] provide similar targets in measuring the dielectric

material characteristics. These hidden measurements will provide a

set of huge potentials in smart agriculture and could assist in industry

4.0 and hence a wider adoption due to the low-cost measurements.

The applications of the daily life use of the CSI measurements

as a free source of information are unlimited and are predicted to

gain more attention and work in the next few years. A summary of

the papers that we surveyed to search for the potential applications

can be found in table I. In the next section, we highlight the most

common stressing challenges for the wider usage of the DFWS in

real-time applications.

IV. CHALLENGES OF DFWS ON THE EDGE

In this section, we set a number of challenges that are embedded

in DFWS especially when it is required to be employed on the edge:

Sampling rate of CSI and number of antennas: accurate results

for signal processing techniques in estimation and classification are

related to the sampling rate of the target signal. A higher sampling

rate gives more resolution and freedom in frequency-dependent

feature selection. However, the size of the CSI measurements is

proportional to the number of antennas and frame rate [62]. The rate

of sampling of the CSI depends on the mode of operation, especially

when performing the CSI collection in WiFi environments. In cases

where only passive monitoring of CSI is available, the high sampling

rate of the CSI measurements will not be feasible, and hence some

attacks may be required to generate more packets to update the CSI

information. In active modes of CSI collection, a high data rate gives

access to more CSI samples and hence more complex and fast human

activities like gestures can be detected.



Denoising: raw CSI information is too noisy and hence direct

processing and training for the inference model lead to untrusted and

non-robust even with low-accuracy results. To tackle this problem,

denoising techniques are used in removing the noise components

from the CSI raw data. A windowed moving average filter can be

used to smooth the time series signal of the CSI retracted amplitude.

Also, the Discrete Wavelet Transform (DWT) has been used widely

to remove unwanted white Gaussian noise by calculating the high-

frequency energy of the CSI [4], [17]. Median filter [4], Butterworth

filter with a certain cutoff frequency to remove high-frequency noises

[79] are also some other filtering techniques. Also, the Hampel filter is

a good candidate for denoising the signal, especially when retaining

the original signal is important after the transformation [17], [80].

Some CSI data analysis also requires training on the spectrogram of

the sub-carriers CSIs. Hence, image filtering may also be of interest.

Different filtering techniques can be applied to the images such as

PCA-based denoising, Hamming filters and Wiener convolution [81].

The main difference that decides the adoption of the type of

filtering techniques is the order of the complexity when it is employed

on the edge and if the type of transformation is really feasible for

real-time applications. hence, an extensive study of the complexity

of real-time implementations of DFWS on the edge is required.

Complex real-time signal processing: In order to lower the over-

head of complex denoising techniques or general signal processing,

data segmentation parametrization is a challenge for optimal and

better accuracy. We need to know the best CSI time series length that

represents an activity or a class before performing data annotation.

Deciding the optimal window size for a sample in the CSI time series

for achieving a robust DL model requires extensive testing and a long

training time. Decreasing the number of samples in a CSI data row

and hence decreasing the footprint on the DL model (please refer

to table II for a better understanding of the effect of the size of

the features on the required memory for inference). Transformation

techniques such as DWT are also computationally expensive on

the edge microcontrollers. Short-Time Fourier Transform (STFT)

for example is another computationally expensive transform that

is usually used to identify the direction and time of occurrence

especially when it is used in localisation and HAR applications

[67]. Other transformation techniques are also commonly used in the

analysis of the CSI measurements like Discrete Hilbert Transform

(DHT), Fast Fourier Transform (FFT) and the aforementioned DWT

and all of them are computationally expensive [1].

Features extraction and dimensionality reduction: some of the

aforementioned challenges and computationally expensive operations

on the edge can be eliminated by doing feature extraction before

performing any type of training and inference. Feature extraction

techniques may result in simpler recognition algorithms and in some

cases, we do not need complex recognition techniques like DNNs.

Statistical analysis of the CSI measurements (i.e., amplitude, phase,

temporal differences and power spectral density) such as mean,

median, variance, correlations, kurtosis, and other moments may

contain sufficient data to build the recognition decisions and hence the

raw features are transformed into aggregated single or few features

that are rich of information [1], [17], [22].

Features extraction is required for dimensionality reduction where

the feature selection sometimes results in dimensionality reduction

and elimination of some dimensions. It is well known that the ODFM

sub-carriers of the WiFi signals are orthogonal, but they may contain

the same information and the fingerprint of any single sub-carrier

is similar to one or more of the other sub-carriers. Dimensionality

reduction is usually performed through one or a set of operations like

PCAs, ICA, Linear Discriminant Analysis (LDA), Non-Negative Ma-

trix Factorisation (NMF), Generalised Discriminant Analysis (GDA),

Low Variance Filter (LVF), Backward Feature Elimination (BFE) and

Random Forests (RF) [4], [82]. The key advantages of performing

dimensionality reduction is removing some of the noise in the CSI

Fig. 1: System model.

measurements, compression of the data, searching for latent variables

in terms of factors analysis, getting rid of multicollinearity and

ultimately achieving more immunity to over-fitting [82]. Feature

extraction and dimensionality reduction techniques vary between very

computationally expensive operations like DWT and simple statistical

analyses like mean and variance computations. Again, the key factor

that plays the biggest role in the choice of the technique is affected

by the feasibility of implementation on the edge device for real-time

application.

Inference of the edge: The most common library that can be

used for edge TinyML inference is the TFLite Micro by Google.

With the aforementioned merits that the TFLite provided for edge

computing, multiple graphs for complex DL techniques (e.g., LSTM,

GRUs and RNNs) are not yet feasible in the single and dual-core

edge micro-controllers [83], [84]. Hence, when applying the DL

techniques, we need to study the feasibility of the model to fit

in the memory size of the edge device and then the feasibility of

performing the complex inference algorithms. Bearing all of that

in mind, the overhead of preprocessing, denoising, transformations,

feature extraction and dimensionality reduction is important. The

study of edge ML or the so-called TinyML is a new breed of ML

that allows importing pre-trained models to the edge low-performance

commodity microcontrollers [84].

V. CASE STUDY

In this section, we present a simple case study where the RSSI of

an ambient wireless signal is used for locating a person in an indoor

environment. For the sake of locating the position of a human within

a closed room, we divided the room into a 3 × 3 grid with the aim

to locate the position of the human using a classical classification

problem.

A. System model

We assume a person is moving in a room with a dimension of

5 × 8m2. The room is divided into a grid of 3 × 3 where each

grid cell represents the location of the person at a certain time. As

illustrated in figure 1, the person moves from location C = 1 to

any location on the grid and holds for 2 minutes to allow for data

collection. The system includes a transmitter that transmits a pure

carrier signal at 868 MHz. The reader receives the signal that is

reflected from the body and another version of the signal that is

reflected back from a wall-mounted backscatter tag. The backscatter

tag modulates the ambient carrier (using simple binary amplitude

shift keying (ASK) modulation) and reflects the transmitter-received

signal after modulation by means of changing the antenna impedance

to either 0 or 50 Ω (more details on the principles of the backscatter

communication and power transfer techniques can be seen in our

previous works in [85], [86]). The reflected modulated signal adds

more dimension to the received signal and implicitly adds more

information to the wireless signal so that the received RSSI by

the reader will have more information that may include the spatial



location of the person on the grid and also gives more control in the

denoising of the RSSI signal.

The transmitter is basically a Software Defined Radio (SDR) (i.e.,

BladeRF X40) transmitter that generates only a pure carrier, while the

receiver is the same BladeRF X40 that receives the reflected signals

and stores them into a data file. We perform data collection for 2

minutes on each position on the grid and label the data such that

the received signal indicates the parameters of the sample and the

location is the response to these parameters.

After collecting all the RSSI data from the 9 locations on the grid,

a dataset is generated in a way that each 2 minutes sample of the

data is segmented into M samples with N number of RSSI values

each. Then the dataset will have M rows with N + 1 number of

columns where the value at the N + 1 column reveals the label

that corresponds to the input samples (features). The length N of

the resulting annotated samples, as will be shown later, will affect

the accuracy of the prediction of the location when we perform the

classification process. The objective then is to build a classification

model based on this dataset to perform the inference to predict the

class (position) of the person based on the given RSSI data. To do

the inference, multiple types of ML models are examined. Namely,

Linear SVM, GNB and three hidden layers DNN.

For more enhancement in the localisation accuracy and to build

a continuous model based on the discrete localisation model, the

location of the person in the room can be predicted more accurately

in terms of XY coordinates by performing a probabilistic transfor-

mation of the results of the location on the grid. In essence, we

transform the probability PC of a person being in class C (position

C) into a Euclidean distance. This type of transformation is usually

used in GPS localisation enhancement techniques by the means of

Gaussian Mixed Model (GMM) to simulate the posterior probability.

Having more than one value of probability for the different classes

will lead to building a multi-modal 2-dimensional Gaussian random

variable and hence the mean of the projected two-dimensional space

into the X or the Y axis will define the accurate location of the

person.

B. Inference on the edge

Assuming that the RSSI of the transmitter can be read by a

commodity IoT device such as an ESP32 module that is WiFi enabled,

the set of all samples of the RSSI signal that corresponds to the

location of the person can be collected and then be passed to the

input of any trained ML model. ESP32 is a low-cost edge device

that is capable of carrying processes that consumes less than 512 KB

of RAM. To make sure that the trained model can be fitted within

the memory heap and the firmware of the controller, we need to

compress the trained model. Also, the model needs to preserve the

same performance as if it is working on a fully capable computer.

To this end, we use TinyML tools like TensorFlow Lite (TFLite)

by google to port and compress the model. TFLite is capable of

compressing the 32 bits floating point model weights into 8 bits of

an integer while almost achieving the same performance. The next

subsection presents some results that are collected by measuring the

footprint of the DNN model on the ESP32 microcontroller.

C. Results

Figure 2 shows the confusion matrices for predicting the location

of a person in the room for 3 different models of ML. The confusion

matrices show how we can achieve good accuracy metrics by using

only the RSSI information. An average accuracy of 97.3% is achieved

when applying a three-hidden layer DNN, 96.0% for the linear SVM

and 88.3% for the simple GNB. More deep performance analysis

for the structure of the DNN can be seen next. For the sake of

comparison of the performance for the various ML models on the

edge, we perform a number of tests on the ESP32 by performing
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Fig. 2: Confusion matrices for various types of models. N = 50

parameters/sample.

TABLE II: DNN results for ESP32 edge inference.

RSSI samples DNN RAM (kB) Model size (kB) Inference rate (Hz) Test accuracy

20 80x40x20 50.98 25 2932 95.1%

20 40x20x10 35.67 9 7407 92.8%

40 80x40x20 57.31 31 2377 97.2%

40 40x20x10 38.88 13 5738 94.4%

60 80x40x20 63.64 37 1986 92.2%

60 40x20x10 42.08 16 4698 95.3%

100 80x40x20 76.30 50 1556 99.6%

100 40x20x10 48.48 22 3333 99.6%

the inference and then collecting the required flash memory for the

firmware, RAM memory and the average inference time. Table II

presents the results for inferring (classification) on the edge controller

of the ESP32 for multiple configurations for the DNN and different

input sizes (i.e., number of RSSI samples for inference). A three

hidden layers DNN is used with a number of neurons as shown in

the table.

VI. CONCLUSION

Device-free wireless sensing uncovers very interesting potentials

and applications of wireless signals. The main focus of the DFWS is

to enable the inference of behaviors and activities from the wireless

signal without the need for a full deep understanding of the signaling

environment. Even though the enabling technologies and the state-

of-the-art literature utilize it in many applications, DFWS faces

many challenges due to the embedded randomness and nature of

the wireless environment. The main enabling technology that paved

the way for the utilization of wireless signals for sensing is DL. DL

provides comprehensive tools to perform inferences using complex

parameters that were impossible to correlate to perform inference

before the advancement of the DL.

In this paper, we performed a major survey of the enabling tech-

nologies for the DFWS. Then, we addressed the main applications of

wireless sensing. We also addressed the main challenges that face the

adoption of DFWS in performing robust sensing devices. Then we



presented a case study of the use of backscatter-assisted device-free

wireless sensing with edge TinyML for the application of low-cost

positioning. Finally, we also discussed some open research in the

field of DFWS, especially for the generalization ability of the ML

models.
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