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Safe and Adaptive 3D Locomotion via Constrained

Task-Space Imitation Learning

Jiatao Ding, Member, IEEE, Tin Lun Lam*, Senior Member, IEEE, Ligang Ge,

Jianxin Pang*, and Yanlong Huang

Abstract—Bipedal locomotion has been widely studied in recent
years, where passive safety (i.e., a biped rapidly brakes without
falling) is deemed to be a pivotal problem. To realize safe
3D walking, existing works resort to nonlinear optimization
techniques based on simplified dynamics models, requiring hand-
tuned reference trajectories. In this paper, we propose to integrate
safety constraints into constrained task-space imitation learning,
endowing a humanoid robot with adaptive walking capability.
Specifically, unlike previous work using nonlinear and coupled
capturability dynamics, we first linearize the 3D capture condi-
tions using appropriate extreme values and then seamlessly incor-
porate them into constrained imitation learning. Furthermore, we
propose novel heuristic rules to define control points, enabling
adaptive locomotion learning. The resulting framework allows
robots to learn locomotion skills from a few demonstrations
efficiently and apply the learned skills to unseen 3D scenarios
while satisfying the constraints for passive safety. Unlike deep
enforcement learning, our framework avoids the need of a large
number of iterations or sim-to-real transfer. By virtue of the task-
space adaptability, the proposed imitation learning framework
can reuse collected demonstrations in a new robot platform. We
validate our method by hardware experiments on Walker2 robot
and simulations on COMAN robot.

Index Terms—Bipedal locomotion, constrained imitation learn-
ing, passive safety, 3D walking, humanoid robot.

I. INTRODUCTION

S
AFE walking has been studied from different perspectives,

e.g., collision avoidance [1]–[3] and balance maintenance

[4]–[6]. Recently, the concept of passive safety which was first

exploited in mobile robots navigation [7] has attracted much

attention [8]–[10]. In addition to preserving balance, passive

safety also requires a robot to come to a stop after a finite

number of steps or even zero step [9], which can be ensured

by obeying N - or zero-step capturability constraints [11].

In many previous works, the assumption of a constant

height is made to attain the N-step or zero-step capturability

[11], whereas this requirement will become stringent for 3D
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walking tasks (e.g., climbing stairs or walking across non-

coplanar terrains) where the height variance is inevitable.

There are some extensions of the N/zero-step capturability to

3D cases in terms of divergent component of motion (DCM)

analysis, e.g., [9], [12], [13]. Nevertheless, these works often

involve nonlinear or implicit constraints, and most of them

require extra simplification on the center of mass (CoM)

or center of pressure (CoP) motion. For example, sum-of-

squares programming was used in [12] to calculate the inner

and outer approximations of N -step capture region, requiring

Taylor approximation of the CoM motion. In [9], 3D zero-

step capturability was attained by linearly constraining the

CoM motion, where a specific expression of CoM trajectory

is needed.

Usually, the aforementioned techniques, e.g., model pre-

dictive control (MPC) [4], [9] and nonlinear programming

[12], require a hand-tuned reference trajectory in advance,

which may become infeasible or even unstable for a real

humanoid robot. To overcome these issues, one can adopt

human-inspired locomotion policies, e.g., [14]–[16]. As an

emerging topic, learning from demonstrations (also known as

imitation learning) provides an efficient solution for mimicking

expertise motions. By adopting imitation learning schemes,

skillful gait representations can be obtained [17]–[19]. For

instance, dynamic movement primitives (DMP) were em-

ployed to generate robust walking patterns against external

disturbances in [18] and [19]. However, [17]–[19] focus on

imitation learning without considering safety constraints.

In order to achieve adaptive 3D bipedal locomotion with

a guarantee of passive safety, this paper first derives linear

and decoupled conditions for safe walking, without needing

extra assumptions on the CoM motion. Then, we integrate

these constraints with imitation learning [20] and provide

a framework capable of imitating external demonstrations

while satisfying the safety constraints. In this framework, the

robot learns motions over two-step cycles from demonstrations

simultaneously, with the one-step and zero-step capturability

applied at the first and second steps, respectively. By virtue

of the linear inverted pendulum (LIP) model, desired points in

task space are defined to accomplish the adaptive walking.

The contributions are three-fold. First, we propose a novel

simplification of 3D capturability (Section IV-A and Section

IV-B), which yields linear and decoupled constraints for safe

3D locomotion with the brake capability. Second, we integrate

linearized capture conditions, together with linear feasibility

constraints (Section IV-C), into a constrained imitation learn-

ing framework (Section V), achieving safe locomotion by
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Fig. 1. A flowchart of the proposed approach.

learning from few demonstrates. Third, we design LIP-aided

heuristic rules to choose control points, endowing the learning

framework with task adaptability (Section VI). In Section VII,

we verify our solution by simulations and hardware exper-

iments, showing that our approach needs fewer parameters,

requires a smaller time cost and provides a smoother DCM

convergence than existing MPC strategies.

An overview of the paper’s structure is shown in Fig. 1.

II. RELATED WORK

A. Capturability in LIP-based Locomotion

The LIP model [21], has been used widely in locomotion

control. In [22], based on the LIP model, stable locomotion

was realized by tracking a predefined center of pressure (CoP)

trajectory (equivalent to zero moment point (ZMP) [23] in 2D

cases). Differing from [22] where a CoP trajectory was defined

in advance, in [24]–[26], MPC was used to find the optimal

CoM trajectory by restricting the CoP trajectory within the

support region. In essence, the aforementioned works [22]–

[26] control both the convergent and divergent parts of the

LIP dynamics simultaneously. In contrast, only the DCM

was controlled in [27]. Note that capture point (CP) [28] is

equivalent to DCM in 2D cases.

Built on the concept of DCM/CP, capturability is developed

to measure the ability of a robot to stop after a certain number

of steps. In this line, the N -step (N could be zero or ∞)

capture region is defined as an admissible physical region

which includes all states from which the robot can come to

a stop after taking no more than N steps [11]. In [11], an

analytic solution for computing boundaries of N-step capture

region was provided, where the LIP model was used under the

assumption of a constant height1. However, it is non-trivial to

extend 2D capturability to 3D cases with varying heights.

B. Capturability in 3D Walking

To accomplish 3D walking, [29] proposed to manipulate the

3D DCM by tracking the virtual repellent point. In [30], given

ZMP and vertical CoM trajectories, the time-varying natural

frequency of the variable-height inverted pendulum (VHIP)

was computed and a linear quadratic regulator (LQR) was

formulated to compute the DCM trajectory. However, [29] and

[30] fail to derive the capture conditions explicitly.

Some works aim to provide analytic or approximated

boundaries of the capture region. In [12], using a quadratic

Taylor approximation of height trajectory, the inner and outer

1Strictly speaking, the LIP allows for vertical motion but requires zero
vertical acceleration (i.e., a constant natural frequency).

approximations of the 3D capture region were computed via

the sum of squares. In [13], assuming that the CoM trajectory

only moves along a straight line, the zero-step conditions in

multi-contact scenarios were derived. A linear approximation

was proposed in [9] for walking with passive safety, which

however requires a specific form (i.e., exponential expressions)

of the CoM curve. [31] derived a boundedness condition

for the VHIP model to guarantee capturability, yielding a

non-convex optimization problem. Besides, [31] presumed a

linear CoP trajectory for achieving the zero-step capturablity

and a piecewise constant CoP trajectory for the one-step

capturability, restricting the motion space of the bipedal robot.

More recently, [32] extended instantaneous capture point (ICP)

[11] to instantaneous capture input and provided an analytical

solution for the capture region. However, this work took ZMP

as the control input, prohibiting its applications in scenarios

with non-coplanar contacts.

Unlike the existing work, we propose to linearize the

nonlinear part of the 3D capture region and obtain linear

and decoupled boundaries of N -step, especially zero-step and

one-step, capturability, where extra assumptions on the CoM

motion and CoP motion are avoided.

C. Locomotion by Imitation Learning

For gait control, the MPC schemes, e.g., [24]–[26], require

a hand-tuned reference trajectory beforehand for each robot

and a tedious re-tuning after switching to a new platform.

In contrast, imitation learning provides an efficient tool for

obtaining natural and adaptive motion skills through mimick-

ing an expert, such as DMP [33] and kernelized movement

primitives (KMP) [34]. DMP was used as a pattern generator

to generalize gaits by adjusting the frequency of periodic

movements [17]. In [18] and [19], DMP was employed to

attain robust gaits against external pushes, with the help of

reinforcement learning (RL). [35] integrated KMP with a step

adjustment strategy to synthesize adaptive gaits for real-world

scenarios. Nevertheless, these works [17]–[19], [35] neglect

safety constraints, which are crucial for bipedal locomotion.

Recent progress in RL (e.g., [36]–[38]) show potential appli-

cations on safe walking, but they require a large number of

training iterations and sim-to-real transfer.

To address the above issues, we exploit a constrained

imitation learning approach, linearly constrained KMP (LC-

KMP) [20], to account for safety constraints in 3D walking

tasks. Specifically, we propose to learn task-space actions

[38] in order to satisfy high-level task requirements while

encouraging demonstrations reuse in a different platform.

III. PRELIMINARIES

In 2D cases without height variation, a constant natural

frequency (ω0) of the LIP model is defined as

ω0 =
√
g/zc (1)

with zc being the constant LIP height and g denoting the

gravitational acceleration.
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Given a constant ω0, the 2D DCM (also called CP [28] or

ICP [11]) is defined as

ξγ = cγ + ċγ/ω0, (2)

where ξγ , cγ and ċγ (γ ∈{x, y}) denote the γ-component of

DCM position, CoM position and CoM velocity, respectively.
1) 2D Zero-Step Capture Conditions: To achieve zero-step

capturability, the DCM ξγ should be confined within the

support region (i.e., zero-step capture region C0) [11]. Namely,

ξγ ∈ C0. (3)

Given a rectangular foot size, we expand (3) as

rγ ≤ ξγ−dγ ≤ rγ . (4)

where dγ denotes the γ-component of horizontal step location.

rγ and rγ separately denote the minimal and maximal bounds

of the support region formed by the support foot.
2) 2D One-Step Capture Conditions: To achieve one-step

capturability, the DCM movement should be restricted into the

one-step capture region [11]. That is,

ξγ ∈ C1(ω0), (5)

where C1(ω0) denotes the one-step capture region.

Assuming a rectangular foot, we can explain (5) as

lγe
−ω0T +rγ ≤ ξγ−dγ ≤ lγe

−ω0T +rγ , (6)

where lγ and lγ represent the minimal and maximal bounds

of the step size (i.e., step length (lx) and step width (ly)),

respectively. T is the step duration.

IV. LINEARIZED CONDITIONS FOR SAFE 3D WALKING

Herein, we first derive linear and decoupled capture condi-

tions for 3D walking, based on the VHIP. Then, we provide

feasible constraints for robust walking with passive safety.

A. 3D Dynamics with Variable Height

The VHIP model is used to model 3D walking with varying

height. The CoP (pγ) of VHIP is

pγ = cγ − c̈γ/ω
2, (7)

where ω, representing the varying frequency, is defined as

ω =
√
(g + c̈z)/(cz − dz). (8)

Here, c̈z represents the vertical CoM acceleration, cz denotes

the CoM height and dz denotes the step height.

Following (8), the 3D DCM becomes

ξγ = cγ + ċγ/ω. (9)

B. 3D Capturability Conditions

Let us assume that ω in (7) is bounded by

0 < ω ≤ ω ≤ ω, (10)

where ω and ω denote the lower and upper bounds, respec-

tively. As ξγ in (9) is a monotonic function of ω, we have

ξ
γ
≤ ξγ ≤ ξγ , (11)

where ξ
γ
= min{cγ + ċγ/ω, cγ + ċγ/ω}, ξγ = max{cγ +

ċγ/ω, cγ + ċγ/ω} denote the lower and upper bounds of

DCM, respectively. An illustration is given in Fig. 2.

1) Linear Zero-Step Capture Conditions: Since the support

region is merely determined by the foot size, we can achieve

3D zero-step capture conditions by limiting ξ
γ

and ξγ as

rγ ≤ ξ
γ
− dγ ≤ ξγ − dγ ≤ rγ . (12)

2) Linear One-Step Capture Conditions: Note that in (6)

the one-step capture region only depends on ω, Thus, we can

determine the minimal and maximal capture regions (see Min.

and Max. capture regions in Fig. 2) under varying height, i.e.,

C1 = C1(ω) ∩ C1(ω), C1 = C1(ω) ∪ C1(ω), (13)

where C1 and C1 respectively denote the minimal and maxi-

mal one-step capture regions when the height is varying.

We define the one-step capturability condition by restricting

ξγ within the minimal capture region2, i.e.,

ξγ ∈ C1 ⊂ C1. (14)

Since ξγ is bounded by ξ
γ

and ξγ in (11), the constraint (14)

can be ensured by

ξ
γ
∈ C1, ξγ ∈ C1. (15)

Furthermore, with the definition in (6), we have the one-step

capturability conditions

sγ + rγ ≤ ξ
γ
− dγ ≤ ξγ − dγ ≤ sγ + rγ , (16)

where sγ and sγ are determined by

sγ=max{lγe
−ωT , lγe

−ωT }, sγ=min{lγe
−ωT , lγe

−ωT }.
(17)

Remark 1: Compared with previous works, such as [9],

[12], [13], [31], our linearization does not require extra as-

sumptions/limits on the CoM/CoP movement when deriving

3D capture conditions. Particularly, unlike [12] and [31], our

linear zero/one-step capture conditions facilitate fast deploy-

ment. Moreover, the N -step capture conditions can be directly

obtained by replacing sγ and sγ with N -step capture regions

(explicitly derived in [11]), which however would be a hard

task for [12] and [31].

2The extension of capture region caused by the height variation [12] is
ignored here, which provides an inner approximation (subset) of the physically
admissible region and yields a conservative but reasonable solution.
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Fig. 3. Bipedal walking with support switch. The DS phase at the ending of
the next ((i+1)th) step is ignored.

C. Feasibility Constraints for Safe Walking

To guarantee the safety without losing robustness, we plan

the CoM motion over the current step and the next step (i.e.,

0≤t≤2T ) at the beginning of each step cycle. In particular, at

the current step the one-step capture conditions (16) and (17)

are applied to enhance the robustness, while at the next step

the zero-step capture constraints (12) are used to obtain the

passive safety. Besides, the vertical motion limitation and slip

avoidance are considered to guarantee the feasibility.

1) Capturability Constraints Considering Double Support

Phase: Generally, one step cycle can be divided into a single

support (SS) phase and a double support (DS) phase. In

contrast to many previous works which ignore the DS phase,

we formulate it explicitly for gait synthesis since the DS phase

extends the capture region (see Fig. 2). Specifically, we assume

that one step cycle starts from the middle of the current DS

phase and ends at the middle of the next DS phase, as shown

in Fig. 3. Consequently, two steps are divided into




1st DS (0≤ t≤Td/2),

1st SS (Td/2 < t<T−Td/2),

2nd DS (T−Td/2 ≤ t≤T+Td/2),

2nd SS (T+Td/2<t≤2T ),

(18)

where Td denotes the time period of one DS phase3.

• DCM constraints during the 1st DS: During the 1st DS,

the capture region extends. To gain the one-step capturablity,

the capture region is set to be the sum of the zero-step capture

region relative to the last step location and the one-step capture

region relative to current step location. Following (16) and

(12), we have

rγ+min{di−1
γ , sγ+diγ}≤ξ

γ
≤ξγ≤rγ+max{di−1

γ , sγ+diγ},

(19)

where di−1γ and diγ denote the previous and current step

locations, respectively.

• DCM constraints during the 1st SS: The physically admis-

sible region for DCM movement within the 1st SS coincides

with the one-step capture region. By substituting the current

step location diγ into (16), the DCM movement is limited by

sγ+rγ+diγ≤ξ
γ
≤ξγ≤ sγ+rγ+diγ . (20)

• DCM constraints during the 2nd DS: At this stage, capture

region also extends, which is determined by the one-step

capture region relative to the current step location and the zero-

step capture region relative to the next step location. Namely,

rγ+min{sγ+diγ ,d
i+1
γ }≤ξ

γ
≤ξγ ≤rγ+max{sγ+diγ , d

i+1
γ },

(21)

3Considering that the robot may rest on one leg in an emergency case, we
ignore the DS at the end of the next step, leading to a more safe solution.

where di+1γ denotes the next step location.

• DCM constraints during the 2nd SS: To guarantee the

passive safety, the DCM movement relative to the next step

location should lie into the zero-step capture region, i.e.,

rγ+di+1γ ≤ξ
γ
≤ξγ≤ rγ+di+1γ . (22)

2) Constraints on the Vertical Motion: A constraint on cz
and dz is imposed to address the physical limitations, i.e.,

0 < z ≤ cz − dz ≤ z (23)

where z and z are the lower and upper bounds of the vertical

height. Here, z and z are chosen to satisfy the joint limits.

Furthermore, as in (8) ω relies on g + c̈z , we introduce an

additional constraint to ensure the viability of (10), i.e.,

(cz − dz)(ω)
2 ≤ (g + c̈z) ≤ (cz − dz)(ω)

2. (24)

3) Friction Cone Constraints: Using the single-mass VHIP

model, the following constraints are added to prevent slippage:

−u ≤ c̈γ/(g + c̈z) ≤ u, (25)

where u is the friction coefficient.

So far, we have obtained linear constraints for feasible 3D

walking, complying with passive safety requirements.

V. CONSTRAINED GAIT IMITATION LEARNING

Now, we exploit the constrained imitation learning frame-

work LC-KMP [20] to learn gaits, where the acceleration

profile is also incorporated in this work. We first explain how

the linear constraints for gait learning are formulated (Sec-

tion V-A), and subsequently, we show how these constraints

are integrated into the framework of LC-KMP (Section V-B).

A. Linear Constraints for Gait Learning

For the sake of brevity, we formulate the linear constraints

by taking the DCM constraints during the 2nd SS as an

example, while the other constraints in Section IV-C can be

tackled in a similar way. Following (9) and (11), the sufficient

and necessary conditions for (22) are

rγ+di+1γ ≤ cγ + ċγ/ω≤ rγ+di+1γ ,

rγ+di+1γ ≤ cγ + ċγ/ω≤ rγ+di+1γ .
(26)

Let us denote η = [cx, cy, cz, ċx, ċy, ċz, c̈x, c̈y, c̈z]
⊤. At the

time tn, the constraints in (26) can be rewritten as (taking the

first arrow for example)

g⊤

n,1η(tn) ≥ cn,1, g⊤

n,2η(tn) ≥ cn,2, (27)

with

gn,1=[1, 0, 0, 1/ω, 0, 0, 0, 0, 0], cn,1=rγ+di+1γ ,

gn,2=[−1, 0, 0,−1/ω, 0, 0, 0, 0, 0], cn,2=−(rγ+di+1γ ),
(28)

B. LC-KMP with Acceleration Learning

Assuming that we have access to H demonstrations4 D =
{{tn,h,ηn,h}

N
n=1}

H
h=1, where N denotes the length of trajec-

tory and ηn,h ∈ ℜ9 corresponds to the Cartesian trajectory

point at the nth time step from the hth demonstration. We use

43∼ 5 demonstrations under the same mode are sufficient in our evalua-
tions. Data collection is explained in Section VII-A
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Gaussian mixture model (GMM) to model the joint probability

distribution P(t,η) [34], [39], [40], yielding

P(t,η) =
∑M

m=1
πmN (µm,Σm), (29)

where πm, µm =

[
µt,m

µη,m

]
and Σm =

[
Σtt,m Σtη,m

Σηt,m Σηη,m

]
respectively

correspond to the prior probability, mean and covariance of the

mth Gaussian component in GMM. Subsequently, Gaussian

mixture regression (GMR) [34], [39] is used to retrieve a

probabilistic reference trajectory Dr = {tn, µ̂n, Σ̂n}
N
n=1,

which encapsulates the distribution of demonstrations.

Let us write η(t) in a parametric form (see [20]), i.e.,

η(t) = Θ(t)Tw, (30)

where Θ represents a matrix consisting of basis function

vectors and w denotes an unknown parameter vector. The

constrained imitation learning can be addressed by solving

argmax
w

∑N

n=1
P(η(tn)|µ̂n, Σ̂n),

s.t. g⊤

n,fη(tn) ≥ cn,f , n∈{1, 2, . . . , N}, f ∈{1, 2, . . . , F}
(31)

with gn,f∈ℜ
9 and cn,f∈ℜ denoting the f th linear constraint

acting on η(tn) (see Section V-A).

With the definition of multivariate Gaussian distribution, we

can rewrite (31) as

argmin
w

N∑

n=1

1

2
(Θ(tn)

⊤w−µ̂n)
⊤
Σ̂

−1
n (Θ(tn)

⊤w−µ̂n)+
λ

2
w⊤w

s.t. g⊤

n,fη(tn) ≥ cn,f , n∈{1, 2, . . . , N}, f ∈{1, 2, . . . , F}.
(32)

Here, λ
2w

⊤w with λ > 0 acts as a regularization term.

By introducing Lagrange multipliers α and the kernel trick,

the constrained problem (32) can be solved. Specifically, given

a query time t∗, LC-KMP predicts the corresponding trajectory

point as

η(t∗) = k∗(K + λΣ)−1(µ+ΣG̃α∗) (33)

where

k∗ =
[
k(t∗, t1) k(t

∗, t2) . . . k(t∗, tN )
]
,

K=




k(t1, t1) k(t1, t2) . . . k(t1, tN )
k(t2, t1) k(t2, t2) . . . k(t2, tN )

...
...

. . .
...

k(tN , t1) k(tN , t2) . . . k(tN , tN )


 ,

Σ = blockdiag(Σ̂1, Σ̂2, ..., Σ̂N ),

µ = [µ̂1, µ̂2, ..., µ̂N ],

Gn= [gn,1, gn,2, ..., gn,Nf
], ∀n ∈ {1, 2, ..., N},

G̃ = blockdiag(G1,G2, ...,GN ).

(34)

Note that k(ti, tj) ∈ ℜ9×9 in (34) are defined using a

kernel function k(·, ·). α∗ is the optimal Lagrange multiplier.

Please refer to [41] for more details on the kernelization

process. Therefore, we can generate safe 3D locomotion by

incorporating all linear constraints defined in Section IV-C into

demonstration learning.

CoM

dγdi

dγdi-1
di+1dγ

cγ(0)cr

cγ(T/2)cr

cγ(T)cr

(cγ(2T))cr

(pγ)lilx

lily

li+1lx

li+1ly

Fig. 4. Horizontal movement assuming zero CoP movement, i.e., pγ coincides
with the support center diγ at each step.

VI. HEURISTICS FOR TASK-SPACE ADAPTATION

In real-world environments, the robot often needs to adapt

the learned skills to new scenarios, i.e, meeting task variation

requirements. Here, we address the gait adaptation problem

by defining proper desired points in terms of the CoM states,

enabling the learning framework with locomotion adaptability.

Particularly, we focus on the task space movements.

We define four desired points for every two steps (at the

time {0, T/2, T, 2T}), where the first and fourth points are

used to determine the start and end states while the second

and third points account for the task variation. To comply with

the constraints in Section IV-C, the CoM position, velocity

and acceleration at each desired point are defined. For the

horizontal motion, the LIP model is used to choose the desired

status. For the height variation, heuristic rules are adopted.

A. Desired Points for Horizontal Movement Adaptation

1) Boundary CoM Positions for the Current Step: The main

goal for the current step is to accomplish the desired walking

task. We define the first (at t = 0) and the third (at t = T )

desired points (relative to the current support center diγ) as

cr
γ(0)=(di−1

γ −diγ)/2, cr
γ(T )=(di+1γ −diγ)/2. (35)

where cr
γ(0) locates at the middle of the last and the current

step locations while cr
γ(T ) locates at the middle of the current

and the next step locations. An illustration is given in Fig. 4.

2) Boundary CoM Positions for the Next Step: To obtain

the passive safety, we expect the robot to stop at the next

((i+1)th) step. To achieve the highest stability, we set the

fourth (at t = 2T ) desired position (relative to di+1γ ) as

cr
γ(2T )=0. (36)

3) CoM Position at t = T/2: Assuming zero CoP move-

ment at each step cycle (see Fig. 4), the horizontal CoM

trajectory of a LIP is determined by

c̈γ − ω2
0cγ = 0. (37)

The CoM trajectory governed by (37) is fully determined

by two boundary conditions, e.g., the CoM positions at the

time 0 and T . An analytical solution for (37) is [42]

cγ(te)=
[
cosh(ω0te)

sinh(ω0te)
ω0

][
cγ(0)
ċγ(0)

]
, (38)

where sinh(·) and cosh(·) denote the hyperbolic sine and

cosine functions, respectively. te is the elapsed time within the

current step. [cγ(0) ċγ(0)]
T comprises the initial CoM position

and velocity determined by solving (38) under the constraints

cγ(te=0) = cr
γ(0), cγ(te=T ) = cr

γ(T ). (39)
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z

dzdi-1

di+1dz

cz(0)cr cz(T/2)cr crcz(2T)
cz(T)cr

li+1lz

lilz dzdi

t0 T 2T

zc

T/2

zc

Fig. 5. A heuristic vertical trajectory for walking with varying height.

As a result, the CoM position at the time T/2 is computed by

(38) using te = T/2.

4) CoM Velocities and Accelerations: Once the desired

CoM positions and [cγ(0) ċγ(0)]
T are determined, we can

resort to the LIP model again to compute the velocity and

acceleration for each desired point, i.e.,
[
ċγ(te)

c̈γ(te)

]
=

[
ω0 sinh(ω0te) cosh(ω0te)
ω2
0 cosh(ω0te) ω0sinh(ω0te)

][
cγ(0)
ċγ(0)

]
. (40)

Note that the robot is always expected to stop at the end of

the next step, so we set

ċr
γ(2T )= c̈r

γ(2T )=0. (41)

B. Desired Points for Vertical Movement Adaptation

To accommodate height variation requirements, Specifically,

we assume a piecewise linear height trajectory as the reference

and calculate the vertical height using the nominal LIP height

zc and the vertical step location dz , see Fig. 5.

1) Vertical Movement for the Current Step: At the current

step, the vertical CoM position of each desired point is

cr
z(0)=di−1z +zc, cr

z(T/2)=(di−1z +diz)/2+zc, cr
z(T )=diz+zc,

(42)

where cr
z(0), c

r
z(T/2) and cr

z(T ) separately denote the desired

vertical positions at the time {0, T/2, T}. di−1z and diz sepa-

rately denote the previous and current vertical step locations.

The vertical velocity and acceleration are then computed by

ċr
z(0)= ċr

z(T/2)=(diz−di−1z )/T, ċr
z(T )=(di+1z −di−1z )/(2T ),

c̈r
z(0)= c̈r

z(T/2)= c̈r
z(T )=0,

(43)

where {ċr
z(0), ċ

r
z(T/2), ċ

r
z(T )} and {c̈r

z(0), c̈
r
z(T/2), c̈

r
z(T )} sepa-

rately comprise the reference vertical velocity and acceleration

at the time {0, T/2, T}.

2) Vertical Movement for the Next Step: To stop at the next

step, we set the fourth desired point as

cr
z(2T )=di+1z + zc, ċr

z(2T )= c̈r
z(2T )=0, (44)

where di+1z is the next vertical step location.

{cr
z(2T ), ċ

r
z(2T ), c̈

r
z(2T )} is the desired status when t = 2T .

Remark 2: It should be highlighted that the ending state

defined in (36) and (41) ensures that the robot can stop with

a single support foot, yielding safe locomotion in the scenario

with a limited stepping zone. The designed CoM status at the

four discrete points meet the feasible constraints defined in

Section IV-C. However, with these desired points the CoM

trajectory (see Fig. 4 and Fig. 5) does not necessarily comply

with the VHIP dynamics in (7) strictly.

Fig. 6. Walker2 robot walks on a flat ground for data collection.

TABLE I
PARAMETERS SETUP FOR THE WALK2 ROBOT

lx[m] -0.15 lx[m] 0.35 |ly |[m] 0.18 |ly |[m] 0.3

rx[m] -0.11 rx[m] 0.15 ry[m] -0.08 ry[m] 0.08

ω[m] 3.4 ω[m] 5.1 z[m] 0.51 z[m] 0.71

C. Task Adaptation Using LC-KMP

Let us denote all desired points defined in Section VI-A and

VI-B as D̄ = {t̄i, µ̄i, Σ̄i}
4
i=1, where µ̄i ∈ ℜ9 comprises the

desired CoM position, velocity and acceleration at the time t̄i
and Σ̄i ∈ ℜ9×9 is the covariance at each time that is used

to control the adaptation precision associated with µ̄i, i.e.,

how precisely the adapted CoM trajectory can pass through

the desired point µ̄i at the time t̄i.
Then we can simply concatenate D̄ with Dr, resulting in

an extended reference trajectory D̃ = D̄ ∪ Dr. By learning

D̃ instead of Dr, an adapted trajectory that passes through all

four desired points while satisfying the linear constraints can

be obtained.

Remark 3: We can reuse the collected demonstrations in a

different robot platform. All we need to do is to scale the

demonstrative motions following the kinematic relationship

and then define the corresponding desired points.

In summary, by using the LIP-aided heuristic rules, the con-

strained imitation learning is able to plan safe 3D locomotion

while accounting for the task variation demand.

VII. EVALUATIONS

This section verifies the advantages of our method. We first

introduce the experimental setup (Section VII-A). Then, we

conduct simulations on a VHIP (Section VII-B) and compare

our method with MPC-based approaches in [9], [43] and [44]

(Section VII-C). Afterwards, we conduct hardware experi-

ments on Walker2 [45] (Section VII-D). Finally, we extend

our framework to the COMAN robot [46] (Section VII-E).

A. Setup

We collect four demonstrations for LC-KMP by using the

Walker2 robot [45] and apply these motions in the following

evaluations. Regarding data collection, the robot repeatedly

executes a periodic walking task on a flat ground (lz=0m,

lx = 0.1m, |ly|=0.2m, T =0.7s and zc=0.61m), where the

estimated CoM trajectory (i.e., pelvis center) is recorded as

the demonstration. One demonstration is showcased in Fig. 6.

The Gaussian kernel k(ti, tj) = exp(−h(ti−tj)
2) with h=14

and the regularized coefficient λ=20 are used for LC-KMP.

The other physical parameters are summarized in Table I.
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Fig. 7. Demonstrations (green curves) and the modelling of demonstrations using GMM. The red ellipses depict Gaussian components.
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Fig. 9. DCM profiles generated using LC-KMP.

TABLE II
TRACKING ERRORS OF COM POSITIONS

Error[m]
Time[s]

0 0.35 0.7 1.4

cx -1.7e-5 2.2e-5 -1.3e-4 -9.2e-5

cy 2.4e-5 4.3e-4 -2.8e-3 -5.8e-5

cz 2.6e-4 -1.3e-4 -5.6e-4 2.3e-4

B. Safe Gait Learning with Task Adaptation for VHIP

In this test, the desired step lengths for the current and the

next steps are separately set to be 0.25m and 0.2m, and the

first and second step heights are separately set to be 0.07m and

−0.07m. Note that the step lengths and heights are different

from the ones in demonstrations.

The adapted CoM trajectories are illustrated in Fig. 8,

showing that the proposed method can generate a 3D trajectory

that passes through the desired points, albeit that 2D periodic

gaits are used as demonstrations. Note that these 2D demon-

strations have negligible height variation, see cdemo
z in Fig. 7.

Although a piecewise linear height trajectory is assumed in

Section VI-B, continuous vertical motion meeting the task

adaptation requirement is obtained, see the smooth cz and ċz
in Fig. 8. Numerical analysis in Table II indicates that position

tracking errors at these desired points are below 3×10−3m,

which is acceptable for a locomotion task. Thus, with only

four desired points, the adaptive trajectory are generated.

The DCM trajectories corresponding to the adapted CoM

trajectories are plotted in Fig. 9, where the DS accounts for

20% of the whole period. Note that in Fig. 9 the DCM

boundaries are unchanged after 0.77s, since the DS phase at

the end of the next step is ignored. The actual DCM profiles

(plotted by yellow curves) computed using the varying ω fall

into the capture region. Therefore, we can conclude that the

one-step capturablity constraints are satisfied at the current

step and zero-step capturablity constraints are respected at the

next step. Also, the passive safety is attained as the CoM state

ends with zero velocities (i.e., ċx= ċy= ċz=0 m/s) at t=1.4s.

C. Comparison with MPC-based Approaches

In order to evidence the advantages of our solution, we

compare it with vanilla linear MPC (LMPC) [43], linear MPC

(LMPC) [9] and nonlinear MPC (NMPC) [44].

In [43], the 3D CoM trajectory was generated by a vanilla

LMPC approach under the assumption of a bounded natural

frequency (see (10)). The CoP stability was preserved in

[43], where however the passive safety was overlooked. As

an extension of [43], the passive safety was studied in [9],

where the CoP movement over the whole prediction horizon

was constrained and the zero-step capturability constraint was

imposed at the end of the prediction horizon.

In [44], an NMPC was designed to generate 3D gaits where

nonlinear CoP constraints induced by height variation were

considered. However, the safety requirements were missing

there. To make a fair comparison, we consider an improved

version of [44] as a baseline, i.e., the constraints defined in

(36), (41) and (44) are imposed at the end of the prediction

horizon. Subsequently, NMPC [44] is used to generate safe

3D gaits via sequential quadratic programming (SQP).

We consider two tasks: one is a 2D task (Task 1) with

a constant CoM height (0.61m) and a constant step length

(0.15m), and the other (Task 2) is the 3D task discussed in

Section VII-B. For all MPC approaches, the prediction horizon

is 1.4s and time interval is 0.025s. The CoM trajectories

generated by different approaches are plotted in Fig. 10 and

the corresponding DCM trajectories at the second step are

depicted in Fig. 11.

1) Safety Performance: In Fig. 11, only the vanilla LMPC

[43] violates the zero-step captuability constraints considering

the generated ξy goes beyond the support region in Fig. 11.

While LMPC [9], NMPC [44] and our approach all obey the

safety constraints, we compare their DCM trajectories against

the desired DCM values (assuming the robot stops at the

second step), which are plotted by the dotted black lines in

Fig. 11. Table III and Table IV summarise the maximal and
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Fig. 10. CoM trajectories generated by different approaches.
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Fig. 11. DCM trajectories generated by different approaches. Red and blue
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region. The dotted black lines represent the desired DCM values.

TABLE III
MAXIMAL DCM (ABSOLUTE) ERRORS AT THE SECOND STEP

Method
Error[m] Task 1 Task 2

ξx ξy ξx ξy
LMPC [9] 0.0405 0.0257 0.0446 0.0242

NMPC [44] 0.0373 0.0412 0.0454 0.0403

Ours 0.0180 0.0170 0.0219 0.0167

average errors at the second step, showing that our approach

has the smallest DCM errors in both tasks and thus a smoother

DCM convergence towards the passive safety is achieved.

2) Computing Efficiency: The computational costs needed

by different approaches5 are reported in Table V. Compared

with the vanilla LMPC [43] which ignored the safety con-

straints, LMPC with safety concerns [9] needs a larger time

cost (around seven times of the vanilla LMPC in both tasks).

Specifically, in LMPC, the extreme ωs in linear constraints

(see ω and ω in (10) and (11)) impose very strict restrictions

to the optimizer and increase the number of constraints (two

linear DCM constraints in [9] against one nonlinear DCM

constraint in [44]), thus it has a larger computing cost than

NMPC [44]. Although NMPC [44] does not tackle the extreme

cases, it relies on multiple QP optimization within each

iteration loop, leading to an extra time cost. As a result,

the computational cost of NMPC is more expensive than our

solution which only requires solving a single QP. Therefore,

we can conclude that our work is most efficient for gait

planning when safety constraints are included.

D. Hardware Experiments on Walker2 Robot

We here verify our approach on a real Walker2 robot, where

rich locomotion tasks are tested, including stone stepping, stair

climbing, leg stretching and brake motion.

5All optimization problems are solved using the ‘quadprog’ function
provided in Matlab optimization toolbox.

TABLE IV
AVERAGE DCM (ABSOLUTE) ERRORS AT THE SECOND STEP

Method
Error[m] Task 1 Task 2

ξx ξy ξx ξy
LMPC [9] 0.0210 0.0153 0.0245 0.0140

NMPC [44] 0.0180 0.0170 0.0219 0.0167

Ours 0.0179 0.0099 0.0169 0.0095

TABLE V
TIME COSTS NEEDED BY DIFFERENT GENERATORS

vanilla LMPC [43] LMPC [9] NMPC [44] Ours

Solver QP QP SQP QP

Safety ✗ ✓ ✓ ✓

Task 1 time[s] 0.34±0.04 2.40±1.32 0.96± 0.73 0.38±0.03

Task 2 time[s] 0.36±0.04 2.67±1.53 1.08± 0.76 0.43±0.03

1) Safe 3D Walking on Uneven Terrains: In this setting,

the robot first climbs a stone and then walks on a non-

coplanar surface (the first row in Fig. 12). The corresponding

trajectories are plotted in Fig. 13. From Fig. 12 (i)(b)−(i)(d)

and the forward motion (i.e., x component) during 4.2s∼5.6s

in Fig. 13, we can see that the robot makes a larger step

(i.e., lx=0.2m) than the demonstrated step in order to climb

the stone (5cm in height). Then, the robot walks straight on

the non-coplanar surface, see Fig. 12(i)(d)−(i)(f). Finally, the

robot comes to a stop on the stepping stone, as evidenced by

the lateral (y component) CoM trajectory after 10s in Fig. 13.

The case of climbing a stair (stair height 10cm, T =0.7s) is

shown in the second row of Fig. 12. The supplementary video

shows another evaluation, where the robot climbs the stair

with a lower step frequency (T =1s) by using a simple time

scaling. Note that in this climbing task, the tuning of the KMP

parameters (h and λ) is not needed. However, when using

the traditional MPC framework, e.g., [9], [44], the prediction

horizon needs to be altered and the control parameters (usually

more than ten parameters) should also be tuned.

2) Adaptive Walking with Leg Stretching: In this case, the

robot walks with stretched knees. The sagittal CoM and DCM

trajectories are plotted in Fig. 14. Observing the actual CoM

profile (magenta curve) in Fig. 14 (z component), the robot

increases the vertical height (5cm) by stretching knee joints

after 4s so that it walks with almost a straight leg, which

can be found in the third row of Fig. 12. After 5s, the robot

walks forward with lx=0.1m and then walks backward with

lx=−0.05m (see x component during 9.8s∼13.3s in Fig. 14).

Thus, we can conclude that the adaptive and safe locomotion

in 3D challenging scenarios can be accomplished by merely

learning 2D periodic motions. We also test several other tasks,

including sudden brake when walking on uneven terrains,

please see the supplementary video.
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Fig. 12. Walker2 walks safely in real-world scenarios. The first, second and third rows showcase the applications to stone stepping, stair climbing and
aperiodic walking with stretched legs. The red arrows above each row indicate walking directions and the orange arrow in (iv)(b) indicates leg stretching.
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E. Transfer Demonstrations to A Different Robot Platform

We now generalize the learned skills to the COMAN robot,

with nominal zc = 0.457m, lx = 0.1m and |ly| = 0.145m.

Following the kinematic relationship, we scale the original

demonstrations collected on the Walker2 robot through linear

transformation. To comply with the actuation capability, the

desired step duration is set as 0.8s.

1) 3D Walking with Varying Height and Step Length:

Figure 15 shows that the COMAN robot first walks across

stairs (the stair height is 4cm, step length lz = 0.15m) and

then crouches across a low passage (reducing the CoM height

by 4cm). Note that the safe gait is generated by learning from

Walker2’s motion, where the time-consuming iterative search

Fig. 15. COMAN robot walks safely in a 3D scenario by learning from the
Walker2’s demonstrations. The first row shows the motions for stair climbing
and the second row shows the snapshots when crouching across a passage.

or fine tuning is avoided, bringing advantages compared with

the DRL framework [36]–[38] and MPC strategy [9], [44].

2) Comparison Studies on Safe 3D Locomotion: In order to

further illustrate the advantages of our solution, we compare

our framework with two typical approaches for 3D locomotion

planning, including the DCM-based gait planner [30] and the

NMPC approach [47]. In [30], given a height trajectory, the

time-varying natural frequency ω was first calculated. Then,

LQR was employed to generate 3D DCM trajectories. Finally,

the CoM profiles were computed by (8). By doing so, the zero-

step capturability was obeyed in [30], whereas the ending CoM

status was not confined into the support center of one single

support foot. In [47], the safety constraints were ignored.

We consider two brake motions after climbing stairs: one

is an emergency brake (Brake Task) after making a large step

(with lx=0.2m), the other is a robust brake against an external

push force (Robust Task). In both tasks, we generated the

CoM trajectories by LQR [30], NMPC [47] and our method

separately, and mapped the CoM position to the pelvis center.

The actual CoM trajectories are plotted in Fig. 16. From

Fig. 16, we can see that all methods accomplish the stair

climbing task successfully, see the height (cz) variation during

4s∼6s. Nevertheless, when using NMPC [47] and LQR [30],
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Fig. 16. Real CoM trajectories of the COMAN robot.

the robot falls down in both tasks when it attempts to stop

(see the rapid increase in cx and the rapid decrease in cz after

6s). In contrast, using our solution, the robot stops safely in

both tasks (see the constant cx and cz in yellow lines after

6s). More details can be found in the supplementary video.

VIII. CONCLUSIONS

In this paper, we have developed a task-space imitation

learning framework for bipedal locomotion, where linear

safety constraints are derived and integrated into a constrained

learning approach. Throughout the extensive experiments,

we have shown that our method can learn from a few 2D

demonstrations and generalize the learned skills to unseen

3D scenarios while strictly obeying the safety constraints.

Due to the task-space adaptation property, we can reuse the

demonstrations in a different platform.

Taking imitation learning as the core, our method holds

two key advantages over MPC approaches: 1) the empirical

reference trajectory is not needed, reducing the dependence

on the simplified models; 2) our method generates safe and

adaptive 3D gaits efficiently while providing a smoother

convergence. Our method has a key advantage over the DRL-

based framework [36]–[38], i.e., the need of a large number

of iterations is avoided. Since we learn the task-space policy,

high-level locomotion requirements can be met easily. In the

future, it would be of interest to extend our framework to

highly dynamic motions, e.g., jumping and running.
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