
On the competitive facility location problem

with a Bayesian spatial interaction model

Shanaka Perera1, Virginia Aglietti1,2 and Theodoros Damoulas1,2

1Department of Computer Science, University of Warwick, Coventry, UK
2The Alan Turing Institute, London, UK
Address for correspondence: Shanaka Perera, Department of Computer Science, University of Warwick, Coventry CV4
7AL, UK. Email: msb15sp@mail.wbs.ac.uk

Abstract

The competitive facility location problem arises when businesses plan to enter a new market or expand their
presence. We introduce a Bayesian spatial interaction model which provides probabilistic estimates on
location-specific revenues and then formulate a mathematical framework to simultaneously identify the
location and design of new facilities that maximise revenue. To solve the allocation optimisation problem,
we develop a hierarchical search algorithm and associated sampling techniques that explore geographic
regions of varying spatial resolution. We demonstrate the approach by producing optimal facility locations
and corresponding designs for two large-scale applications in the supermarket and pub sectors of Greater
London.
Keywords: Bayesian spatial interaction model, competitive facility location, multiresolution, optimisation problem,
spatial data

1 Introduction

The geographical placement of a new business facility is of critical importance for commercial suc-
cess. Growth in e-commerce continues to challenge the existence of physical retail stores. In Great
Britain, online sales as a proportion of total retail sales have tripled in a decade, reaching 21% in
2019 (ONS, 2020). Therefore, it is essential to understand how customers interact with physical
business facilities in order to design new commercial centres in competitive markets.We propose a
modelling framework that accounts for customer behaviour to identify the optimal criteria for a
company to enter a newmarket or expand its presence in a geographical region.We aim to address
three of the most pivotal question facility planners’ face: the number of sites, their geographical
locations, and design.
The formulation of optimal location models varies with the industry and purpose of the site.

When locating facilities such as warehouses or manufacturing plants, the main focus is on the
proximity to the customer, which is explained with proximity-based models (Harold, 1929). In
the context of locating emergency departments such as fire and ambulance services, the plan is
to have the fewest number of sites so that all demand is covered within the stipulated maximum
service response time, which is addressed with the location set covering problem (Murray,
2018; Toregas et al., 1971). In contrast, competitive facility location problems emphasise indus-
tries such as retail businesses and commercial services, which consider competition among stores
when choosing their sites (Berman et al., 2009; Drezner, 2014). These companies compete to at-
tract customers buying power in a given area to capture market share.
One of the earliest probabilistic approaches for estimating market share was proposed by Huff

(1963) based on the gravity model (Reilly, 1931). Huff’s formulation states that the value or utility
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gained by a customer visiting a shopping centre is proportional to the store’s floor space and in-
versely related to the power of the distance. Instead of the power function, it has been shown
that exponential decay with additional store attraction better explain customer behaviour
(Drezner, 2006; Wilson, 1971). Customers are assumed to patronise shopping centres based on
their satisfaction indicated by a utility function (Drezner, 2014). The competitive location facility
problem integrates the spatial interaction between customers and stores into the optimisation
model according to utility models (Benati & Hansen, 2002; Freire et al., 2016).
Inspired by the literature on gravity models, we develop a Bayesian spatial interaction model,

henceforth named BSIM, which provides probabilistic predictions about revenues generated at
business facilities given their features and the potential customers’ characteristics in a specified re-
gion in space. We model the probability of a customer visiting each facility in a region through
Gaussian densities in geographic space. Specifically, each density is centred on a facility with vari-
ance that is further determined by its attractiveness which in turn modelled as a function of intern-
al and external characteristics (e.g., floorspace, distance to public transport access points) and
customer perspective (e.g., customer rating). The revenues for each facility are then obtained by
combining the probability of a customer visit with a proxy of the individuals buying power, which
we assume to be a function of their socio-demographic characteristics. In general, spatial inter-
action models assume a fixed demand, but in most realistic situations, prices or availability of spe-
cific quality could affect the total number of customers patronising the stores or products. Hence,
we integrate such demand elasticities by adding dummy facilities as proposed by Leonardi and
Tadei (1984) and Drezner and Drezner (2012). We adopt a Bayesian approach (van de Schoot
et al., 2021) that enables us to adequately account for the uncertainty associatedwith the customer
interactions with the facilities. Our framework not only gives accurate predictions but also produ-
ces interpretable results that can support experts’ decision-making processes. Moreover, this ap-
proach allows us to infer quantities at the business facility or customer level, such as revenue flow
from customers to businesses. In BSIM, the posterior distributions of interest are intractable, and
their approximation poses significant computational challenges.We address this issue by resorting
to variational inference (Jordan et al., 1999)
We adopt the BSIMmethod tomodel customer behaviour and estimate revenue generated at the

new stores. Our approach provides not only point estimates but also probability density estimates
of revenues at optimal locations. Thus, the proposed competitive location modelling framework
offers many advantages for decision-making over classical frequentist methods found in the
literature.
In competitive facility location problems, the goal is to maximise the estimated market share or

revenue of the business. Formulating the objective function of the optimisation model depends on
the current state in the market of the company that searches for new sites. For instance, when a
business with a chain of existing facilities plans to add several new stores, the objective is to in-
crease market share captured by the chain, not just the additional site (Drezner et al., 2012;
Küçükaydin et al., 2011). We present the objective function of the optimisation problem consid-
ering three different scenarios: a company entering into a new market, a franchise expanding its
presence in a competitive environment, and a business expanding in a monopolistic market.
The objective function is maximised to choose the best locations and designs simultaneously
from a given set of potential sites and structures, in terms of store characteristics, within a set
budget.
In the process of establishing new facilities, the users are unable to provide an exhaustive set of

potential sites, or this set is too large that it becomes computationally expensive. We propose a
hierarchical search method that starts with a broad area and narrow the search to several regions
to explore the neighbouring locations using a quadtree approach. The initial set of candidates are
formed ensuring that more potential sites are situated in areas with a high-density ratio between
customer purchasing power and existing facilities. We adopt a non-parametric approach, kernel
density estimation, to estimate the probability density functions (Bishop, 2006). According to
the density ratio, the samples are generated from a multiresolution grid structure (Samet, 2006)
and an inhomogeneous Poisson point process (Lewis & Shedler, 1979). We evaluate the perform-
ance of thesemethods and regular grid sampling using synthetic experiments and demonstrate that
the multiresolution grid structure outperforms other approaches.
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In the literature, the applications for competitive facility location problems are limited to syn-
thetic experiments and, real-world applications are restricted to small regions or applied at the ag-
gregate level because access to large scale spatial data is usually expensive (Benati & Hansen,
2002; Drezner & Drezner, 2012; Freire et al., 2016). In contrast, we develop a granular level spa-
tial dataset with supermarket characteristics for Greater London by utilising data from commer-
cial and open sources. We demonstrate the BSIM and estimate the parameters to derive customer
interactions with supermarkets in London. Two real-world applications are presented to identify
optimal facility locations: establishing new supermarket stores for a couple of chains and a new
company entering the pub market in London.
Our main contributions are (a) we develop a Bayesian spatial interaction model (BSIM) that can

be used to make probabilistic predictions of revenues or demand generated at business facilities
and formulate the relationship between distance and attractiveness of facilities jointly, using a
facility-specific probability distribution; (b) we formulate an optimisation problem to simultan-
eously identify optimal facility locations and corresponding designs in competitive environments
and provide probability density estimates of revenues at new sites; (c) we propose a search algo-
rithm based on the quadtree method to explore geographic regions of varying spatial resolution
hierarchically; and (d) we demonstrate the optimal facility locations and their designs to establish
new stores in Greater London for two industries.
To the best of our knowledge, we are the first to present a fully integrated competitive fa-

cility problem that includes both the spatial interaction modelling component and the store
location optimisation framework that was demonstrated in one of the major cities in the
world using a large-scale dataset with over 1,000 supermarkets, 1,500 pubs, and 150,000
customer regions.
The paper is organised as follows. In the next section, we introduce the BSIM and formulate the

optimisation problem. In Section 3, we demonstrate and evaluate the optimal location search us-
ing synthetic experiments. In Section 4, we introduce a comprehensive spatial dataset. Next, in
Section 5, we demonstrate the optimisation framework using a couple of real-world applications.
Finally, conclusions and future research directions are discussed in Section 6.

2 Methodology

In this section, first we introduce the Bayesian spatial interaction model (BSIM). Next, we intro-
duce the competitive facility location problem and a framework to search for optimal sites.

2.1 Bayesian spatial interaction model (BSIM)

Suppose there areN customers and the nth customer is residing in locationmn ∈ R2 having socio-
demographic characteristics denoted by vn ∈ RP. Consider a set of available stores S where each
store s ∈ S located at ls ∈ R2 with store characteristics of ϕs ∈ RD in a bounded region τ. The cus-
tomer n ∈ N allocate their demand based on the utilities uns perceived by customer n for selecting
each store s ∈ S. In the BSIM, utilities are modelled by evaluating the probability density function
(PDF) of truncated Gaussian distribution ψ(μs, Σs), centred on a facility μs = ls and has a diagonal
covariance matrix Σs = σ2SI that indicates the store attraction. This captures the likelihood for the
nth customer to visit the sth store,

uns = ψ(μs, Σs) =
exp −d2ns/2σ2s

( )
2πσ2s 1 − exp −d2T/2σ2s

( )( ) , 0 ≤ dns ≤ dT,

0, otherwise,

⎧⎪⎨
⎪⎩ (1)

where dns denotes the Euclidean distance between the customer and store locations dns = ‖mn − ls‖2
and dT is the maximum distance a customer would travel, beyondwhich the densities are set to zero
in the truncated Gaussian distribution. For illustration purposes, consider three stores where each
has a truncated Gaussian distribution centred on the store, as shown in Figure 1.

J R Stat Soc Series C: Applied Statistics, 2023, Vol. 00, No. 0 3

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/advance-article/doi/10.1093/jrsssc/qlad003/7033342 by guest on 20 February 2023



Variance of the Gaussian σ2s is formulated as a function of store characteristics ϕs and the non-
observable store characteristics εs ∈ R,

σ2s = exp (λ⊤ϕs + εs), (2)

where λ represents a shared coefficients across the stores. Next, the probability pns, for a customer
n to visit a given store s, is defined by

pns =
uns∑S
j=1 unj

. (3)

Note that we normalise the PDF calculated for the customer with respect to the store by the total
PDF respect to all the stores within the consideration set to arrive at a value which falls in the
interval of [0, 1]. Most spatial interaction models assume a fixed demand, but in most realistic
situations, prices or availability of specific quality might affect the total number of customers
using the facilities or products. We further introduce lost demand as proposed by Leonardi
and Tadei (1984) and Drezner and Drezner (2012). The lost demand is assumed to be attracted
by a dummy facility which is treated as an additional competing facility. Henceforth, we ad-
vance the model by introducing utility term und assuming a dummy facility in addition to the
existing alternatives,

pns =
uns∑S

j=1 unj + und
. (4)

It is now observed that the choice probabilities for a given customer (pn), no longer always add
up to unity,

pn =
∑S
s=1

pns =
∑S

n=1 uns∑S
j=1 unj + und

≤ 1. (5)

The dummy facility is assumed to be located at the same distance dD for all customers. The dis-
tance dD represents a reasonable extent (dD ≤ dT) shoppers willing to travel. The revenue at-
tracted by the dummy facility is considered to be the unsatisfied demand by the existing

Figure 1. Illustration of the truncated Gaussian centred on three sample stores: (a) 3D visualisation and (b) 2D
visualisation. The white dots indicate the store location. There is a hard border around the distributions beyond
which the PDF is equal to zero.
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facilities. We set the variance of the Gaussian placed on the dummy facility as σ2d = dT/4 to ob-
tain approximately 0.99 area under the curve within the maximum distance, a customer travel
to a store. Hence, the constant utility term und is given by

und =
exp −d2D/2σ2d

( )
2πσ2d 1 − exp ( − d2T/2σ

2
d)

( ) , 0 ≤ dD ≤ dT

0, otherwise.

⎧⎪⎨
⎪⎩ (6)

The budgeted spending of a customer n is denoted by gn is assumed to be a linear function of
customer socio-demographics,

gn = β⊤vn. (7)

Finally, the revenue or demand at a given store s is

rs =
∑N
n=1

gnpns. (8)

Finally, the complete data likelihood is

p(Y | β, λ, ε, σ2) =
∏S
s=1

N ys
∑N
n=1

β⊤vn
ψ(μs, Σs)∑S

j=1 ψ(μj, Σj) + und
, σ2

∣∣∣∣∣
)(
, (9)

with Y = {y1, . . ., yS} and the model assumes constant-variance (σ2) for the Gaussian noise. The
graphical representation for the BSIM is presented in Figure 2.

2.1.1 Prior distributions
We assign prior distributions to all model parameters. First, we define a hierarchical prior distri-
bution for β, which we assume to be a Gaussian with mean μβ and covariance α−1I,

p(β|α) =N (β; μβ, α
−1I).

Following the standard practices, we introduce a Gamma prior distribution with shapeω1 > 0 and
scale ω2 > 0 for the hyper-parameter α,

p(α) =Gam(α; ω1, ω2).

Similarly, we assign a Gamma prior distribution with shape ρ1 and scale ρ2 for the likelihood pre-
cision parameter γ,

p(γ) =Gam(γ; ρ1, ρ2).

Finally, the following Gaussian prior distributions are selected for λ and ε,

p(λ) =N (λ; μλ, ϱλI),

p(ε) =N (ε; με, ϱεI).

2.1.2 Posterior distribution
The full vector of model parameters is denoted by θ = {β, λ, α, ε, γ}. Posterior probability given by

p(θ|D) =
p(D|θ)p(θ)

∫ p(D|θ)p(θ) dθ , (10)
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where the marginal density takes the form

p(D)= ∫ · · · ∫ p(D|β, λ, γ)p(β|α)p(α)p(λ)p(ε)p(γ) dβ dαdλ dε dγ. (11)

2.1.3 Inference
Our goal is to estimate the posterior distribution over all parameters given the data, i.e., , p(θ|D).
Since marginal density is analytically intractable [equation (11)], we resort to approximate infer-
ence by employing scalable Variational Inference (VI) (Jordan et al., 1999). The details of this are
presented in the Supplementary Material. We assume customers make their choices according to
the BSIM, and the estimated posterior parameters are used for the optimisation problem in locat-
ing new facilities.

2.2 Optimal facility location

We consider the problemwhere a company wants to find the optimal store facility to maximise the
market share. An increase in revenue of new facilities is assumed to increase market share, thus
maximising revenue is equivalent to maximising market share. The optimisation problem aims
to identify the optimal locations with store characteristics to gain maximum forecasted revenue
within a set budget constraints. We consider an environment in which the customers are already
served by existing stores L. Let L̃ denote the set of potential locations to open new facilities in a
bounded region τ. For a given set of newly open stores L∗ ⊆ L̃, the customer demand is split based
on the utilities unl perceived by consumer n for selecting each facility l ∈ L∗. Suppose a discrete
number of designs R is available and let r ∈ 1. . .R represent a particular design. The features of
a new store located at l with design r are denoted by ϕlr. Thus, we obtain the truncated
Gaussian PDF by

Zlrn =
exp −d2nl/2 exp (λ

⊤ϕlr)
( )

2π exp (λ⊤ϕlr) 1 − exp ( − d2T/2 exp (λ
⊤ϕlr))

( ) , 0 ≤ dnl ≤ dT

0, otherwise.

⎧⎪⎨
⎪⎩ (12)

Figure 2. Plate diagram for the graphical representation for the BSIM. Specifically, this express the spatial
interaction between S number of stores with each store revenue ys, located at ls with store features ϕs and N
number of customers located at mn with P-2 characteristics �wn. We use Gaussian distributions as priors for β, λ, ε
and gamma distributions for γ, α. The diagram represents random variables with circles, known values with grey
filled circles while black filled circles indicate fixed parameters of prior and hyper-prior distributions, edges denote
possible dependence, and plates denote replication.
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Let xlr be a binary variable set to one if and only if the company decides to locate a store at l ∈ L̃
with design r. Then, the utility unl can be written as

unl =
∑R
r=1

Zlrnxlr. (13)

Consequently, the probability for customer n to visit new store l is calculated as

pnl =
unl

unL + und +
∑

l′∈L̃ unl′
, (14)

where unL represents the total utility derived by customer n from all the existing stores. Total rev-
enue generated by the new store locations L∗ formulated by

yL∗ =
∑
l∈L̃

∑N
n=1

gn
unl

unL + und +
∑

l′∈L̃ unl′
. (15)

Let clr be the cost of locating a facility with design r at l ∈ L̃. Suppose, the available budget for
locating new facilities is B ∈ R, and, thus, the budget constraint is obtained by

∑
l∈L̃

∑R
r=1

clrxlr ≤ B. (16)

2.2.1 Objective function
The objective function of the optimisation model depends on the current state in the market of the
company that searches for new sites. Thus, we formulate three unique objective functions denoted
by ν(xlr).
Case I:Consider a company that wants to find the optimal store location to enter a newmarket.

The objective is to maximise the revenue of the new facilities, and the objective function is ex-
pressed by

∑N
n=1

gn

∑
l∈L̃

∑R
r=1 Zlrnxlr

unL + und +
∑

l∈L̃
∑R

r=1 Zlrnxlr
. (17)

Case II: Suppose a company already has a chain of existing facilities in a market L̂ ⊂ L wants to
build new stores to expand their presence. In this scenario, the company would wish to maximise
the revenue of the new facility and make sure their existing facilities revenues are less affected.
Henceforth, the objective would be to maximise the total revenue of the current and new stores
owned by the company. The objective function is

∑N
n=1

gn

∑
l′∈L̂ unl′ +

∑
l∈L̃

∑R
r=1 Zlrnxlr

unL + und +
∑

l∈L̃
∑R

r=1 Zlrnxlr
. (18)

Case III: The following scenario is where the market is a monopoly in which all the facilities are
owned by one franchise. The objective would be to locate new facilities while optimising the total
revenue generated from the market. The objective function is given by∑N

n=1

gn
unL +

∑
l∈L̃

∑R
r=1 Zlrnxlr

unL + und +
∑

l∈L̃
∑R

r=1 Zlrnxlr
. (19)
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2.2.2 Optimisation problem
Given the above definitions, we formulate the optimisation problem that is applicable for all three
cases with the common constraints to find at most k number of locations to build new facilities
within the given budget B to maximise the revenues,

max
xlr

ν(xlr) (20)

subject to :
∑
l∈L̃

∑R
r=1

clrxlr ≤ B (21a)

∑
l∈L̃

∑R
r=1

xlr ≤ k (21b)

∑R
r=1

xlr ≤ 1 for l ∈ L̃ (21c)

xlr ∈ {0, 1}, for r = 1. . .R; l ∈ L̃, (21d)

where constraint (21a) is an upper limit for the total cost, (21b) limits the maximum number of
facilities, and (21c) ensures multiple designs are not used for the same store. Since the objective
function in all three cases is a sum of ratios with binary variables, the optimisation problem is iden-
tified as an integer nonlinear programming problem. The problem is related to the family of
multiple-choice knapsack problem (MCKP) with generalised upper bound constraints, which is
proven to be NP-hard (Kellerer et al., 2004), hence our problem is NP-hard. The MCKP problem
selects at most one item to pack into a knapsack from disjoint classes to maximise the sum of prof-
its similar to our problem but differs by the objective function where we use a sum of ratios. These
types of problems are known as combinatorial optimisation problems, where the aim is to select a
subset of the items to maximise the profit (Wolsey & Nemhauser, 1999). We solve the optimisa-
tion problem using constraint programming with the CP optimiser on IBM ILOG CPLEX studio
20.1.

2.3 Hierarchical search

In establishing a new facility, it is tedious for planners to provide an exhaustive set of candidate
locations or this set is so large that it is computationally expensive. We propose a hierarchical
search algorithm to start with potential locations from a broader region and narrow it down to
explore neighbourhood locations. The algorithm executes a sequence of actions at several levels.
The pseudo-code of the algorithm is presented in Algorithm 1.
We present three options to generate the initial set of candidate locations for the hierarchical

search algorithm, as discussed in the following sections. We split the potential facility locations
into random samples in the first level before executing the optimisation algorithm.
Decomposing the larger matrix into smaller samples improves computational complexity in opti-
misation algorithms. Additionally, partitioning improves efficiency significantly in distributed
computing environments. The solution at the first level contains optimal locations selected inde-
pendently from each list. Subsequently, these optimal sites become the new potential locations
for the next level. In addition to these sites, the neighbourhood locations are produced using
the quadtree method, which is a tree data structure. The cells where the optimal locations were
found are subdivided into four quadrants and use the midpoint as their neighbourhood locations.
In the second level, we search for the optimal locations and calculate its objective value. If the im-
provement of the objective value is larger than the given threshold, then the new optimal locations
are recursively further decomposed and optimised with the new set of candidate locations until the
improvement is smaller than the threshold.
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We propose three sampling methods to generate the initial set of potential locations. The first
method, the regular grid sampling approach, does not account for spatial variability. In contrast,
the other two are density-based sampling methods; inhomogeneous Poisson point process and
multiresolution accounts for spatial variability of customers and facilities.

2.3.1 Regular grid sampling
The regular grid samplingmethod does not account for the customer and facilities’ spatial variabil-
ity; thus, the candidate locations are distributed at regular distance in space. The potential sites are
generated using themidpoints of grid cells with a given resolution in a bounded region. The dimen-
sions of the regular grids are a compromise between representation efficiency and computation
overhead. We create a set of random samples to execute the hierarchical search parallelly using
a stratified sampling approach. The data points are split into sub-regions or use statistical geo-
graphical boundaries and then sample from the subgroups independently.

2.3.2 Density-based sampling
We propose a density-based sampling method to create the initial candidate locations to overcome
sampling errors in regular grid sampling. We adopt a non-parametric approach, kernel density es-
timation, for estimating the probability density function (Bishop, 2006). Given the existing facility
locations ls ∈ R2, the density estimate at a point x ∈ R2 is given by

fs(x) =
1
Sh

∑S
s=1

K
x − ls
h

( )
, (22)

whereK(·) is a kernel function, we choose Gaussian kernel with band-width parameter h, optimal-
ly selected according to Silverman (1986). The spending power gn (equation 7) is unevenly distrib-
uted at customer locations mn. Hence, we consider a weighted kernel density estimator to model
customer spending capacity (Gisbert, 2003). The spending capacity gn at each customer location
mn is normalised and denoted bywn, so they add up to one. The weighed density estimate function
is given by:

fn(x) =
1
Nh

∑N
n=1

wnK
x −mn

h

( )
(23)

Algorithm 1: Hierarchical search

load L̃ ; // Load set of potential locations

initialise L ; // Create matrix L to save optimal locations L∗

τ � threshold;

for samples in L̃ do

L∗, ν � findOptimalLocs(samples, B, k);
save L∗ in L;

∣∣∣∣∣
end

Δν � τ;

ν � 1;

while Δν ≥ τ do

ν0 � ν;

L∗, ν � findOptimalLocs(L, B, k);
L � getQuadtree(L∗);
Δν � (ν − ν0)/ν0;

∣∣∣∣∣∣∣∣∣∣
end
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We calculate a ratio fr(x) between the density estimates, which provides an indicator of how dense
the area is in terms of customers spending power compared to the available facilities,

fr(x) =
fn(x)
fs(x)

. (24)

We propose two sampling methods using the estimated density ratio.
Sampling with inhomogeneous Poisson point process
We simulate the potential set of locations using the inhomogeneous Poisson points process

(IPPP) to have many locations in the sample from regions with high intensity of the ratio fr(x).
In a homogeneous Poisson process with intensity λ, the number of events η in any bounded region
A is Poisson distributed with mean λ|A|, where |A| denotes the area of A (Cressie, 1994). In con-
trast, the intensity function of an inhomogeneous Poisson process is a nonconstant function λ(x) of
spatial location x ∈ R2.
We simulate IPPP through Lewis and Shedler (1979) thinning algorithm. First, we obtain a ran-

dom number η∗ from a Poisson distribution with mean μ(A) = ∫A λ(x) dx. Next, we simulate a
homogeneous Poisson point process with intensity value λ∗ which is an upper bound of the inten-
sity function λ(x). For this, we use the maximum of the ratio between the density estimates,
λ∗ =maxfr(x). Finally, points x∗ of the homogeneous process is thinned according to fr(x∗)/λ∗

[i.e., , each point x∗ is deleted independently if a uniform(0,1) random number is greater than
fr(x∗)/λ∗] which results in a IPPP forming the candidate locations for the hierarchical search.
The second level of the hierarchical search does not continue recursively since we are not using
the grids to generate data, unlike the other two proposed methods.
Sampling with Multiresolution grid structure
Themultiresolution depth grid is created in the proposed approach based on the estimated density

ratio fr(x). First, we estimate fr(x) on a fine meshgrid created in the study region. Next, create a regu-
lar grid and calculate the average μr of fr(x) within each cell. Compute the q-quantiles of the μr and
assign towhich quantile each cell resides. This represents the number of iterations to decompose each
cell into four smaller sub-blocks. The midpoint of sub-blocks is used as the candidate locations. The
dimension of the regular grid and depth of resolution (q) is a compromise between representation ef-
ficiency and computation overhead. The pseudo-code of the method is presented in Algorithm 2.

3 Simulation study

We design a simulation study to experiment with the optimisation problem using the three object-
ive functions introduced and compare the performance using the three sampling methods pro-
posed in the Section 2. We also compare the computational performance of the methods by
observing the run time of each optimisation problem. All the experiments are executed on a
Intel Core i5 CPU (2.3 GHz Dual-Core and 8 GB of RAM). Furthermore, a simulation study is
presented in the Supplementary Material to examine the inferences obtained for BSIM under dif-
ferent synthetic settings characterised by an increasing number of stores and customers.
First, we simulate the data from a spatial process that closely matches the extended BSIM frame-

work introduced in Section 2 with the dummy facilities. The process is defined as

ys | β, λ, σ2 ∼ N (rs, σ2), (25)

where we assume the reasonable distance a customer is willing to travel is half of the maximum
extent prepared to travel (dD = dT/2). The locations of stores and customers are simulated within
a square. Customer budgeted spending is generated, with a strong spatial correlation where rich
and poor areas are demonstrated to reflect the real-world scenario closely, as shown in
Figure 3a. The customers’ satisfied demand (pn) from the existing stores are shown
in Figure 3b. The store locations are randomly sampled, and their current revenue is displayed
in Figure 3c. We assume two possible designs (r = 2), say small and large facility structures, are
available for development. Suppose the cost of a large building is six times the smaller facility,
and the cost of each design (clr) remains unchanged despite the locations.
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3.1 Demonstration of the optimal facility location with varying objective functions

Given the above synthetic setting, we solve the optimisation problem to find the optimal location
for one new facility with a budget of ten(B = 10) for the three objective functions discussed in
Section 2. We use a regular grid sampling approach to generate the potential facility locations,
as presented in Figure 3c. The results of the optimisation problem with the objective function in
case I (equation 17), a company entering the market for the first time, the new facility is to be lo-
cated in the area with the wealthiest customers generating the highest revenue compared to all the
facilities (Figure 4a). In case II (equation 18), a franchise opening a new facility, the optimal loca-
tionmoves away from the other facilities in the chain as displayed in Figure 4b. Revenue of the new
facility reduces compared to the case I, but the total sales of the chain facilities are increased, as
shown in Table 1. Finally, in case III (equation 19), when opening a new facility in a monopolistic
market, the new store locates away from all the existing facilities (Figure 4c) to gain additional
sales to maximise the total revenue of all the facilities. Total revenue shows the highest while
the sales at the new facility show the lowest compared to other cases (Table 1). In all three cases,
the optimal facility design is large size.

3.2 Evaluation of sampling methods for the hierarchical search

We experiment with the hierarchical search using the three sampling methods proposed in Section
2. The synthetic setting remains as described above. Experiments are performed with the objective
function where a new company is entering the market (equation 17) and looking to establish two
facilities with a budget of 10. The threshold of the hierarchical search for the recursive stage is set
to 0.01, meaning the objective function should increase by more than 1% to continue the search.

3.2.1 Regular grid sampling
We use a regular grid with dimensions of 15 × 15 to generate the initial candidate locations. The
locations are split into four samples using the stratified sampling method. The optimisation

Algorithm 2: Multiresoltion grid structure

x � constructPointsMeshgrid(region);

grid � decompose(region, m) ; // decompose region into m sub-blocks

foreach ci in grid do // for each cell ci in the grid

μr � mean(fr(x)) ; // Mean of fr(x) of points in cell ci

save μr in ci;

end
q̂ � max(μr)/q ; // q denotes the depth of resolution

foreach ci in grid do

points � midpoint(ci) ; // Midpoints of cell ci

save points in out;

for j = 1 to q do

if (j − 1) × q̂ ≥ μr ≤ j × q̂ then

for g = 1 to j do

ci �decompose(ci, 4) ; // Decompose ci into 4 square

submatrices and repeat recursively

points � midpoint(ci);

save points in out;

end

exit

end

end

end
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problem is solved independently for each sample to identify two optimal sites forming eight in to-
tal, as shown in Figure 5a. For the next level of the hierarchical search, the neighbourhood loca-
tions are produced using the quadtree method forming 40 potential sites as reported in Figure 5b.
The recursive algorithm stops after two iterations producing two locations to establish the new
facilities with the two designs.

3.2.2 Density-based sampling
The initial step for the density-based sampling method is to fit the kernel density functions for cus-
tomer spending budget and the store locations. Figure 6 demonstrates the density contour plot
generated for customer purchasing power, store locations, and the ratio of the two density esti-
mates in the area. We use a 100 × 100 meshgrid to estimate the density and calculate the ratio.

Figure 3. (a) Simulated customer locations (N = 1, 000) and budgeted spending (colour gradient). (b) Satisfied
customer demand (colour gradient) and the existing stores (red). (c) Revenue of the existing stores (colour gradient)
and potential store locations (grey).

Figure 4. The experiment is to find the optimal location for a new facility under three different objectives. (a)
Maximise the revenue of the new facility (equation 17). (b) Maximise the revenue of all facilities owned by the
franchise (equation 18). Square indicates the existing facilities owned by the franchise. (c) Maximise the revenue of
all facilities in the market (equation 19). Hexagons indicate that all facilities owned by the same company. The
optimal location is shown within the red colour dashed circle, square, and hexagon.

Table 1. Revenue of the existing and optimal facilities

Optimisation

Existing Case I Case II Case III

Total revenue of all stores 204.3 210.8 209.9 213.6

Total revenue of chain stores 55.4 70.3 77.7 75.9

Revenue of new store 27.6 23.5 20.4
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Sampling with inhomogeneous Poisson point process: We use the maximum estimated ratio
from the meshgrid as the λ∗ for the IPPP. Four random samples are generated from IPPP and
solved the optimisation problem independently to identify eight optimal facilities as displayed
in Figure 7. These eight locations become the potential sites for the final iteration to find the
optimal facilities.
Multiresolution sampling: We create a regular grid of 5 × 5 and calculate the average within

each cell using the estimated density ratios from the meshgrid. The resolution depth is chosen to
be three and calculate three-quantiles of the average values to decide the resolution of each cell.
Figure 8a presents the multiresolution samples used as the potential locations. The set of
candidates are split into four random samples and solve the optimisation problem independent-
ly. The algorithm stops after two iterations providing the optimal facilities, as shown in
Figure 8c.

3.2.3 Comparison between sampling methods
We compare the results in terms of the final objective values and the run time of the hierarchical
search for the setup described above. All three methods show consistent results, whereas themulti-
resolution approach showsmarginally higher optimal revenue as reported in Table 2. The optimal
locations for all three methods are in the same regions, whereas the large store is located on the left
and the small store on the right side.
We extend the comparison by simulating the experiment 1,000 times. We create 1,000 datasets

by generating random store locations while keeping the same setup for the customers described in
the simulation study. The initial number of candidate locations for the three samplingmethods are

Figure 5. Visual progression for regular grid sampling for hierarchical search. (a) Initial candidate locations generated
from 15 × 15 regular grid. Eight optimal locations are found from each sample producing one small and large design
facilities. (b) Neighbourhood locations for the optimal locations generated from the previous step and the new
optimal locations. (c) Final optimal locations are derived from 10 potential locations.

Figure 6. Demonstrates the density contour plot generated for (a) customer spending, (b) store locations, and (c)
ratio of the two density estimates in the area.
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experimented at two levels to demonstrate the behaviour based on the initial sample size.We com-
pare the performance in Table 3.
The average of the objective value for each samplingmethod is marginally improved as the start-

ing number of candidate locations for the hierarchical search increases. The multiresolution sam-
pling method has obtained the highest objective values 55% and 60% of the time with the varying
sample sizes. With the increase in the starting number of candidate locations, the comparison

Figure 7. Visual progression for IPPP sampling for hierarchical search.(a) Random samples are generated from the
IPPP as the potential locations for the optimisation problem. Eight optimal facilities are found, with each sample
producing one small and large facility location. (b) The optimal locations of the previous stage becomes the candidate
sites for the second level from which the optimal locations are identified.

Figure 8. The progression of the multiresolution sampling method to find the optimal locations. (a) Multiresolution
samples for 5 × 5 grids with a depth of three. (b) Neighbourhood locations for the optimal sites generated from the
previous step and the new optimal locations. (c) Final optimal locations are derived from 10 potential sites.

Table 2. Results of the hierarchical search with the sampling methods

Sampling method Starting number of locations Objective value Run time (s)

Regular grid 225 (grids = 15 × 15) 53.83 231

IPPP 271 (samples = 4) 53.78 240

Multiresolution 217 (depth = 3) 53.85 275
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between the regular grid andmultiresolutionmethods is broadened. IPPP has performed compara-
tively poorly with only less than 2% of the experiments obtaining the best objective function. This
could be because the IPPP approach does not recursively evaluate neighbouring locations. Since
IPPP run time is higher than the other methods, we have not considered developing a method to
explore the neighbouring sites. We can conclude that the multiresolution sampling method could
produce better results with a low number of starting locations while being efficient.

4 Geospatial dataset of supermarkets in Greater London

We develop a large scale geospatial dataset for supermarket chains in the UK using multiple data
sources. To the best of our knowledge, this is the first study utilising these datasets together to cre-
ate a granular level supermarket dataset with its characteristics. Additionally, we use the customer
level and pubs datasets introduced by Perera et al. (2021).
First, we filter the properties owned by the leading supermarket chains (Asda, Co-op Food,

Iceland, Lidl, Marks & Spencer, Morrisons, Sainsbury’s, Tesco, Waitrose) from the commercial
and corporate ownership data byHMLand Registry (2020b). The ownership dataset provides de-
tails on registered titles in England andWales owned by UK companies. However, the filtered data
contain other types of businesses owned by the respective supermarket chains, such as their ware-
houses. ValuationOffice Agency (2019) data provide the categorisation of the non-domestic prop-
erties along with their rateable values and floor sizes. We filter the VOA dataset to extract the
properties representing supermarket or food store categories. Since there is no direct link between
the two datasets, we join the VOA data with the Ordnance Survey (2019) Addressbase data using
the cross-reference to obtain the geo-coordinates of the properties. Next, we join the filtered

Table 3. Performance comparison between sample methods

Sampling
method

Starting number of
locations

Number of times with best
Objective value

Average objective
value

Average run
time

Regular grid 64 (grids = 8 × 8) 434 59.76 33

225 (grids = 15 × 15) 390 59.85 252

IPPP 76 (samples = 1) 13 58.84 57

262 (samples = 4) 12 59.62 288

Multiresolution 73 (depth = 2) 553 59.81 38

217 (depth = 3) 598 58.89 241

(a) (b) (c) (d)

Figure 9. The flow diagram presents the steps in developing a dataset of supermarkets in the UK with their
geo-location coordinates. (a) Themap shows title polygons. (b) Filter only the titles owned by supermarket chains. (c)
Spatially join to identify the data from OS. (b) Finally, join with VOA data to get only the supermarkets and their
rateable values.

J R Stat Soc Series C: Applied Statistics, 2023, Vol. 00, No. 0 15

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/advance-article/doi/10.1093/jrsssc/qlad003/7033342 by guest on 20 February 2023



ownership data with the National polygons dataset (HM Land Registry, 2020a) to identify each
properties title polygon. Finally, we spatially join the two datasets to obtain a dataset of
Supermarkets in the UK with their geo-location coordinates. The flow diagram of the process is
demonstrated such that it is visually easy to read Figure 9. The spatial distribution of supermarkets
in Greater London is shown in Figure 10.
In addition to the supermarket floor space, we calculate the Euclidean distance to the closest

public transport access points (Department for Transport, 2014), tourist attractions (Historic
England, 2014) to describe the store characteristics. The customer rating given for each supermar-
ket store is accessed using the Google place API (Google, 2020). We extract the annual revenue
generated by supermarkets using the annual statements published by the companies. Since the in-
dividual revenues at each store are not published, we calculate a revenue proxy using the reported
annual revenues.

5 Case studies: optimal locations for supermarkets and pubs in London

In this section, we illustrate our proposed optimisation algorithm with the hierarchical search us-
ing two real-world datasets. Initially, we demonstrate the BSIM bymodelling the revenue of super-
markets and subsequently find the optimal locations for supermarkets and pubs in Greater
London.

5.1 The supermarkets in London

The first case study is centred on the seven largest supermarket chains in the UK. We construct a
complete dataset for S = 1, 079 supermarkets located within Greater London. We use the derived
store features for each supermarket store: floorspace, customer rating on Google, number of users
rated, an indicator to show if the supermarket is in amajor town and distance to the nearest metro,
train station, bus stop, park, popular attractions, sports facility. The postcode level data represents
customer locations and their characteristics: population, the proportion of males, and deprivation
scores.

5.1.1 Estimating revenues using the BSIM
We estimate the BSIM parameters under four truncated radii for the Gaussian distribution and
summarise the performance in Table 4 with standard metrics.

(a) The normalised Root-Mean-Squared Error (NRMSE), which measures the differences be-
tween the values predicted by a model (Ŷ) and the values observed (Y),

NRMSE =
������������
E[Y − Ŷ]2

√
/E[Y].

Figure 10. (a) Visualisation of the supermarket locationswith their respective supermarket chains name. (b) Greater
London is split into equal size grids of hexagons (size of each side is 0.5 km) and number of supermarkets within
each hexagon is displayed.
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(b) The R-squared, which is the ratio of the variance of the residuals (SSres) and he variance of the
observed Y (SStot), R2 = 1 − SSres/SStot.

We assume the reasonable distance a customer is willing to travel is half the maximum extent
that would travel (dD = dT/2). The results demonstrate that R2 increased to 0.89 while increasing
the truncated radius to 20km. However, R2 decrease significantly as it reaches a 25km radius that
covers the whole of London. The results from the best-fitted model are demonstrated in Figure 11.
The scatter plot with the actual log revenue against the predicted log revenue in Figure 11a shows

Table 4. R2, σ2, and NRMSE for the fitted BSIM for revenues of supermarkets in London under four different radii of
the truncated Gaussian distribution

Truncated radius (km)

Performance metric 10 15 20 25

R2 0.38 0.64 0.89 0.1

σ2 0.64 0.5 0.31 0.72

NRMSE 0.07 0.05 0.03 0.09

Figure 11. The results of the best-performed experiment for the BSIM with the supermarkets’ revenue. (a) Actual
against predicted revenue. (b) Predicted revenue at each store. (c) Residuals against the supermarket chain. (d)
Spatial distribution of the residuals.
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that there are predicted values with large deviance from the actual in tails of the distribution. The
spatial distribution of the predicted values are shown in Figure 11b.We explore the residual values
for each supermarket chain in Figure 11c. Tesco and Sainsbury’s, the two chains with the highest
number of stores, 353 and 277, respectively, show larger variance for residual values. The spatial
distribution of the residuals exhibits to be randomly distributed, as shown in Figure 11d.

5.1.2 Optimal location
We use the parameter estimates from the best-fitted BSIM to calculate the objective function of the
optimisation problem. There are four types of supermarket storeswith varying floorspace: Express
(278 sqm),Metro (1,021 sqm), Superstores (3,251 sqm), and Extra (5,574 sqm).We use these sizes
as the possible designs to structure the new facilities. Additionally, we calculate the other charac-
teristics at each potential facility, and for Google ratings, it is assumed to have the average ratings
of the existing stores for each chain. The cost of each design is calculated based on the ratios be-
tween the sizes: 1, 4, 12, and 20 for constructing Express, Metro, Superstores, and Extra stores,
respectively. We search for optimal locations to build at most two supermarkets using a budget
of 35. The optimal locations are demonstrated for the largest supermarket chain in UK, Tesco.
The supermarket chains search for optimal locations not just to optimise the revenue at the new
facility but to have less impact on the revenues generated at their existing facilities. Hence, we
use equation 18 as the objective function. The multiresolution sampling method is used with 5 ×
5 grids with a depth of three to generate the initial set of candidate locations. The generated po-
tential locations are split into four random samples and executed the optimisation algorithm par-
allelly. Four different optimal sets of locations are detected with varying facility designs as
displayed in Figure 12a. The search algorithm continued for two iterations evaluating the neigh-
bourhood locations produced from quadtree. The optimal locations for Tesco supermarket are de-
tected to be in Croydon and Bromley with designs of a Superstore and Extra, respectively, as
shown in Figure 12b. No new facility is to be located in the same area as one of the competitors.
The median and 50% credible interval (CI) of the estimated revenue for the two optimal supermar-
kets are reported in Table 5. Both the facilities are predicted to generate more revenue than the
average revenue produced by the existing supermarkets in their respective Boroughs. The

Figure 12. Optimal locations to establish two Tesco supermarkets. (a) The initial set of candidate locations is
generated from multiresolution sampling with 5 × 5 grids with a depth of three and optimal locations from four
independent samples. (b) All the potential locations that were evaluated at different stages and the final optimal
locations. (c) Existing Tesco and other supermarkets and new optimal stores.

Table 5. Monthly revenue estimations of the optimal stores reported in millions

Estimated revenue

Supermarket Borough Average revenue in the Borough Median 50% CI

1 Croydon 1.3 2.7 (2.2, 3.5)

2 Bromley 1.6 6.7 (5.3, 8.4)
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recommended new supermarket in Bromley is located in a less dense area as shown in Figure 12c.
There is only one Tesco and 16 other supermarkets in a 5 km radius (Table 6), compared to the
average of 40 Tesco and 59 other supermarket chains found around the existing Tesco supermar-
kets in London. Significantly, high predicted revenue and less competitive location demonstrate an
ideal site for a new Tesco store.
The experiment is extended to find the optimal locationwith a budget of 40 that would assess all

possible combinations of supermarket types. The optimal locations remain the same as the

Table 6. Characteristics of the two optimal supermarkets

Stores in 5 km
radius †

Distance to the nearest (m)

Supermarket Design Floor size (sqm) Tesco Others Rail Bus Sports facility

1 Superstore 3,251 18 43 1,144 200 791

2 Extra 5,574 1 16 309 57 631

† On average, there are 40 Tesco and 59 other supermarket chains around 5km radius of the existing Tesco supermarkets
in Greater London.

Figure 13. Optimal sites to establish two pubs in London. (a) Optimal locations from four independent samples. (b)
All the potential locations that were eventuated at different stages and the final optimal locations. (c) Existing pubs
and new optimal facility location.

Table 7. Monthly revenue† estimations of the two optimal pubs reported in millions

Estimated Revenue

Pub Borough Average revenue in the Borough Median 50% CI

1 Redbridge 0.62 1.25 (0.75, 1.88)

2 Bromley 0.54 4.26 (2.52,10.67)

†Revenue at the existing pubs are derived using the business rateable values.

Table 8. Characteristics of the two optimal pubs

Distance to the nearest (m)

Pub Design Floor size (sqm) Metro Rail Bus Parks Attractions Sports facility

1 Small 175 836 2,136 533 312 224 678

2 Large 1,275 3,521 4,564 733 6,206 4,285 718
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previous setting, but both supermarkets are recommended to be of Extra type. The estimated rev-
enue of the store in Croydon is marginally increased to 3.2 million (2.8, 4.3)1 .

5.2 Optimal locations to enter the pubs market in London

In our next real-world case study, we use the data and parameter estimates evaluated in the spatial
interactions study by Perera et al. (2021). Optimisation problem considers three sizes of pub de-
signs with total floor size: 175 sqm, 500 sqm, and 1,275 sqm. The cost of each design is calculated
based on the ratios between the sizes: 1, 3, and 7 are the costs of constructing small, medium, and
large size pubs, respectively. We search for optimal locations to build at most two pubs using a
budget of nine. The same sampling approach is used to generate the initial set of potential locations
as described for the supermarket experiment. Two optimal locations for a new company entering
the pubs market is detected to be in Redbridge and Bromley with small and large structures, re-
spectively, Figure 13b.
The median and 50% credible interval (CI) of the estimated revenue for the two locations are

displayed in Table 7. The monthly estimated sales of both the pubs are higher than the average
revenue generated by the existing pubs within their respective boroughs. Distance between the op-
timal locations and the public transport access points and key venues are presented in Table 8.
New sites are located near sports facilities and closer to bus stops. Revenue at the small pub is ex-
pected to be driven by the customers attracted to the area with key venues.
The experiment is extended to find the optimal locationwith a budget of 14 that would assess all

possible combinations of designs. The two optimal sites are detected in Bromley with large-sized
pubs. The pubs are estimated to generate monthly revenue of 3.7 million (2.2, 8.8) and 3.6 million
(2.2, 7.9). We explore the area of the facility for a small pub identified in the first experiment with
an eagle view in Figure 14. A park, monument, and gymnastics centre are located near the optimal
location, meaning a busy area with more people interactions. There is only one pub within the 1
km radius, indicating less competition for the new pub. A bus stop is located within walking dis-
tance, offering people easy accessibility to the location. However, there is no main road access to
the site, thus including distance to the main road as a store feature could provide more realistic
results.

Figure 14. Eagle view of the optimal pub location with the small design. The dashed squares indicate some of the
key venues in the surrounding of 1 km radius.

1 50% CI of estimated revenue
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6 Discussion

We have formulated a mathematical modelling framework to simultaneously identify optimal facil-
ity locations and corresponding designs in a competitive environment. This formulation consider-
ably improves the existing competitive models based on classical utility models as it considers
model uncertainty via a Bayesian approach and provides probability density estimates of the revenue
at new stores. In estimating the revenue, we extend the recently introduced BSIM by lifting the as-
sumption of fixed demand by introducing dummy facilities to make more realistic estimations.
We proposed a hierarchical search algorithm to overcome the challenge of providing exhaustive

sets of potential locations to solve the optimisation problem in large geographical regions. The al-
gorithm starts from an extensive collection of possible sites from a broad area and identifies the
optimal facilities, then recursively explores the neighbouring locations until the objective value im-
provement is small. The first stage of the hierarchy can be executed in parallel to improve algo-
rithm efficiency, but this could under-represent the true combinations of optimal locations
when searching for more than one facility. The initial candidate locations created with the multi-
resolution grid structure that accounts for density between customer spending and existing facil-
ities reported the best and most efficient results. The optimisation framework and the applications
in this study assume that the company owns the chain of facilities, and the objective is to maximise
the total revenue. However, in the case of a franchise system, cannibalisation of existing chain out-
lets is minimised so as not to gain market share at the expense of member outlets (Drezner, 2011;
Pelegrín et al., 2016). The proposed optimisation framework can be modified by adding a con-
straint to account for cannibalisation.
Unique to this paper, we present a fully integrated large-scale, real-world application by first esti-

mating the spatial interactions and subsequently locating the optimal sites for the largest supermarket
chain in UK to expand their presence in the market. The optimal locations identified from the model
demonstrate higher revenues than existing facilities while locating in less competitive areas, providing
valuable insights for planning and decision-making.Althoughwe present ourmethodology for super-
markets and pubs, it can also apply to any facility in the retail sector and other industries such as hos-
pitality and healthcare. In the applications, we assume that the cost of locating is constant across the
region, but considering spatial variation for the cost may produce more realistic results.
The proposed methodology can be extended and improved in future research in multiple direc-

tions. Extending the framework to include temporal dynamics could provide better recommenda-
tions to place the new facilities by accounting for the changes in the urban systems. Also, one could
extend the framework to deal with uncertainty in the data of the optimisation problem by applying
robust optimisation (Berger et al., 1994).The sampling method for generating potential locations
can be advanced by applying determinantal point process (Loonis&Mary, 2019)where the kernel
matrix is computed using the store locations to capture the competition among the existing stores
and combine with self-exciting point process (Mohler et al., 2011) to cluster stores where the
spending capacity of the population is higher. Furthermore, considering industry-led cost func-
tions for placement or risk exposure is an interesting extension of our work that could be studied
under Bayesian decision theory (Berger, 2013).
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