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Abstract
We present a data-parallel software package for fitting Gaussian approximation potentials (GAPs)
on multiple nodes using the ScaLAPACK library with MPI and OpenMP. Until now the maximum
training set size for GAP models has been limited by the available memory on a single compute
node. In our new implementation, descriptor evaluation is carried out in parallel with no
communication requirement. The subsequent linear solve required to determine the model
coefficients is parallelised with ScaLAPACK. Our approach scales to thousands of cores, lifting the
memory limitation and also delivering substantial speedups. This development expands the
applicability of the GAP approach to more complex systems as well as opening up opportunities
for efficiently embedding GAP model fitting within higher-level workflows such as committee
models or hyperparameter optimisation.

1. Introduction

Computational materials and molecular modelling have proved to be an invaluable tool in predicting new
materials and processes and interpreting experimental phenomena on the microscopic level. The predictive
performance of atomistic simulations strongly depends on the accuracy of the employed atomic interaction
model, of which those based on solving the Schrödinger equation are generally regarded as the most reliable.
However, many problems of interest remain intractable, even when using approximate solutions of the
quantum mechanical problem, such as density functional theory (DFT), due to the high computational cost
and its scaling with respect to system size. While interatomic potentials based on simple analytical forms
open up access to significantly larger system sizes and longer simulation times, their parameterisation is often
insufficiently accurate for predictive modelling. Surrogate models for quantum mechanical calculations,
based on highly flexible functional forms provided by machine learning methods which are fitted using
high-quality ab initio reference data emerged in the last two decades [1–7]. These machine learning
interatomic potentials (MLIPs) reproduce the ab initio potential energy surface to a high accuracy in a
computationally efficient way, allowing access to large time and length scale simulations [8].

In this work, we focus on the fitting aspect of MLIPs, i.e. the process that determines the model
parameters based on a set of reference data points. Even though fitting is typically a one-off operation, and
its computational cost leaves the cost of a subsequent simulation using the MLIP largely or completely
unaffected, it can use significant resources and can be a limiting factor in applying ever increasing data bases
or exploring the space of model hyperparameters. Depending on the regression method, some MLIPs are
based on solving a linear system to obtain the model weights. Here we present a set of application principles
that can be used to distribute the workload among multiple processes when fitting such models, allowing
efficient utilisation of massively parallel computer resources. We have implemented these in the Gaussian
approximation potential (GAP) framework and demonstrated excellent scaling in both memory and
computational efficiency up to thousands of cores. We note that similar efforts have been made to parallelise
the fitSNAP code used for fitting Spectral Neighbour Analysis Potential [3] linear models [9]. Other MLIP
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implementations which are based on kernel methods [10] or linear regression, such as the Linear Machine
Learning [11] and Atomic Cluster Expansion [4] approaches, would also benefit from similar developments.

2. Theory

We provide a brief overview of the GAP framework, and for more details we refer the reader to a more
comprehensive review [12] of the method. GAP is a Bayesian regression method that aims to create surrogate
models for the quantum mechanical interactions by using a reference database consisting of atomic
configurations and associated microscopic properties obtained from ab initio calculations. Strategies to
create such databases are discussed elsewhere [13, 14]; here we start from a set of configurations, each
consisting of Cartesian coordinates with the corresponding atomic species information, and for ab initio data
we use total energies, forces and virial stress components. As Cartesian coordinates do not transform in an
invariant fashion when applying energy-conserving symmetry operations to the atomic positions, such as
rotations, translations, inversion and permutation of the indices of identical atomic species, it is beneficial to
first transform the Cartesian coordinates to descriptors, which form the input vectors xi of length d to the
regression method.

In general, GAP approximates the total energy of a configuration A as a sum of local terms

EA =

NA∑
i=1

ε(xi), (1)

where the local energy term ε is in the form of a sparse Gaussian process (GP) [15, 16]

ε(xi) =
M∑
j

cjk(xi,xj), (2)

where the sum is over a set of representative descriptor vectors, or sparse pointsM. The kernel function
k(xi,xj) evaluates the similarity of descriptors xi and xj, and cj are the regression weights that need to be
fitted such that predicted properties match the ab initio values as closely as possible. Forces and virial stress
components can be obtained by differentiating this expression with respect to atomic coordinates or lattice
deformations, which is a trivial, but rather tedious operation and we omit it from here for brevity. Denoting
the N ab initio reference properties by y and predicted properties by ỹ, we formulate the regression problem
as minimising the loss function

L= (y− ỹ)TΣ−1(y− ỹ)+ cTKMMc (3)

with respect to the weights c. We note that elements of y may be total energies or their derivatives, such as
force and stress components, but here we only review the case for total energies. The matrixΣ is diagonal
and its elements are inversely related to the importance of each data point. While the first term is responsible
for achieving a close fit to the data points, the second term is controlling overfitting via a Tikhonov
regularising expression, which forces the elements of c to remain small. The elements of the matrix KMM are
built from the kernel function values Kij = k(xi,xj) between the sparse point set {xi}Mi=1 where we typically
useM≪ N. The minimum of the loss function in equation (3) can be determined analytically as a solution
of the linear system

(KMM +KMNΣ
−1KNM)c= KMNΣ

−1y (4)

for c, or equivalently

c= (KMM +KMNΣ
−1KNM)

−1KMNΣ
−1y. (5)

The elements of KMN are given by

Kij =

Nj∑
α=1

k(xi,xα) (6)

where xi is a descriptor vector from the sparse set, and j denotes a target total energy and the sum includes all
descriptors that correspond to local energy terms contributing to yj. For convenience, we use the notation
KT
MN ≡ KNM. Elements of KMN corresponding to derivative observations are calculated similarly, using the
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appropriate gradients of the kernel function k, for which further details may be found in the review article by
Deringer et al [12].

The complexity of solving equation (4) scales withO(M2N), which is significantly more favourable than
theO(N3) scaling of a full GP implementation. However, Foster et al have shown [17] that the solution may
lead to numerically unstable results at large data sets, i.e. uncertainties in the input lead to disproportionate
errors in the output. Following their suggestions, we first define the (N+M)×Mmatrix

A=

[
Σ−1/2KNM

LTMM

]
(7)

where the lower triangular matrix LMM is the result of the Cholesky decomposition of KMM such that
KMM = LMMLTMM. Introducing b by padding the vector of target properties y by anM-long vector of zeros

b=

[
y
0

]
(8)

we rewrite equation (4) as the solution of the least-squares problem

min
c
(Ac− b)T(Ac− b) (9)

that leads to the solution in the form of

c= (ATA)−1ATb. (10)

A numerically stable solution can be obtained by first carrying out a QR factorisation of A=QR where Q is
orthogonal, namely, it is formed by orthonormal column vectors:

QTQ= I, (11)

while R is an upper triangular matrix. Substituting the factorised form of A into equation (10) results in

c= (RTQTQR)−1RTQTb= R−1QTb. (12)

The computational complexity of creating A is determined by the cost of creating its two constituent blocks.
The calculation of the upper block scales asO(MN), due toΣ being diagonal, while the Cholesky
factorisation resulting in the lower block scales asO(M3), resulting in an overall scalingO(MN), as N≫M.
The QR factorisation of A requiresO(M2N) floating point operations, hence dominating the overall cost of
evaluating equation (10). We note that multiplying by R−1 can be implemented as a series of back
substitution operations, due to the upper triangular matrix form of R.

3. Implementation

The workflow of obtaining the sparse or representative points and associated vector of weights c from a set of
reference ab initio configurations is implemented in the gap_fit program, and distributed as part of the
software package QuantumMechanics and Interatomic Potentials (QUIP), which is a Fortran package
implementing atomistic simulation tools, including low-level functions to manipulate atomic
configurations, a selection of interatomic potentials, tight-binding models and the GAP framework. The
source code is publicly available on Github [18].

3.1. Program structure
The gap_fit program is controlled via a set of command line arguments consisting of key-value pairs,
which can also be passed as a configuration file. The program also requires a set of reference configurations
in the extended XYZ format [19], containing any combination of total energies, forces and virial stresses, and
optionally, the definition of a baseline potential model. The major steps of the fitting process are outlined in
figure 1. After initialisation and reading of the command line arguments, the training structures are parsed
for the number of target properties: total energies, forces and virial stress components, to determine the
value of N. Based on the descriptors, the amount of storage space needed for the descriptor arrays x and their
derivatives x ′ with respect to Cartesian coordinates are calculated and then allocated.

From the descriptor vectors,M are chosen as a representative (sparse) set. The procedure for choosing
can be controlled by command line arguments, including selecting a random subset, clustering and
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Figure 1. Schema of gap_fit using serial/thread-parallel (black arrows) and data-parallel (blue arrows) execution code paths.

CUR-based approaches [20]. It is also possible to provide the chosen representative points via files, an option
we make use of for the parallel version (see section 3.2).

After setting the sparse points, the covariance matrices KMN and KMM are calculated. From these, matrix
A is constructed and equation (10) is solved via QR decomposition using linear algebra routines from the
Linear Algebra Package (LAPACK) library for single node applications.

The intermediate processing, such as the computation of the elements of covariance matrices had already
been augmented by Open Multiprocessing (OpenMP) directives along the target data dimension N, which
leads to a thread-based parallelisation on a single process. This, however, restricts the program to the
memory and processing resources of a single node, and performance is further limited by the fact that the
speed a computational core can access an arbitrary memory region is inhomogeneous due to the physical
layout of the memory. That results in a decrease of efficiency when additional threads are employed, leading
to a degradation of performance which prevents full utilisation of all available cores in a node. We present the
parallel scalability of a test problem in figure 2, where we varied the size of contiguous subsets of OpenMP
loops, referred to as chunks. These calculations were run on the Avon cluster at the University of Warwick
(specifications: Intel Xeon Platinum 8268 (Cascade Lake) processors (2.9 GHz), 48 Cores).

As an example of the limitations imposed by the OpenMP implementation of gap_fit, the practical
problem of fitting a GAP for carbon [21]—one of the largest single-element training datasets assembled to
date—took more than 6 days on a single node and required more than 1 TB memory to accommodate the
design and covariance matrices [22]. This restricted the ability of practitioners to build complete training
sets or to experiment with choices of hyperparameters.

3.2. Multi-process parallelisation
To go beyond the limitations posed by the shared memory requirement, poor parallel performance, and
specialist hardware, we propose a multi-process framework with data distribution and inter-node
communication. We have established in section 2 that both the memory requirement and the computational
effort scale linearly with the number of target properties N, therefore it is convenient to distribute memory
and tasks along this dimension of the problem.
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Figure 2. Scaling of computing time of a non-MPI gap_fit calculation with the number of OpenMP threads for different chunk
sizes. The reference time is 659 s, error bars depict twice the standard error.

The two most memory intensive operations are the calculation of the descriptor vectors together with
their gradients, and the covariance matrices. The ratio of these depends strongly on the particulars of the
fitting problem, especially the dimensionality d of descriptor vectors and the number of sparse pointsM. In
our parallel scheme, we distribute atomic configurations across independent processes, such that the number
of target properties are as even as possible. We note that the size of individual atomic configurations may be
highly inhomogeneous, therefore the number of forces per configuration can vary substantially across the
database, necessitating an extra step that determines the optimal spread of data. We have employed an
algorithm that first collects configurations in a list and sorts them by descending number of target properties.
We then assign the largest (by target property) unassigned configuration to the process which currently has
the least total number of target properties. This process repeats until the list is exhausted.

With the configurations allotted to Message Passing Interface (MPI) processes, the descriptor calculations
may proceed locally, and once completed, individual portions of KMN, denoted as KMn can be evaluated. For
this, local copies of the sparse set ofM descriptor values need to be present locally, the particulars of which
we discuss later in section 3.3. The naïve solution of the linear system represented by equation (4) may be
adapted trivially to a distributed KMN: the terms KMNΣ

−1KNM and KMNΣ
−1y can be calculated locally and

reduced across processes as

KMNΣ
−1KNM =

∑
n∈N

KMnΣ
−1
n KnM (13)

and

KMNΣ
−1y=

∑
n∈N

KMnΣ
−1
n yn (14)

where we denote distributed blocks of Σ and y byΣn and yn, respectively. The rest of the calculation only
involves matrices up the size ofM×M. However, the direct solution, as described in section 2 is numerically
unstable, therefore we need to adapt the solution based on the QR-factorisation.

The Scalable Linear Algebra Package (ScaLAPACK) library provides some of the linear algebra features of
the LAPACK library for distributed matrices, most commonly leveraging the MPI framework for
communication between nodes, which is widely available on computing clusters. We chose to leverage the
ScaLAPACK implementation, therefore we need to take ScaLAPACK’s data distributing principles in
consideration. The procedure names are the same as for LAPACK but with a prefix p, e.g. the
QR-factorisation subroutine is pdgeqrf instead of dgeqrf. For the rest of our discussion, we will use the
prefixed names.

ScaLAPACK asserts that matrices are block-cyclicly distributed on a 2D processor grid. This is a
generalisation of cyclic and block distribution, both of which can be used as special cases. Considering a
matrix AR×C with R rows and C columns, we can cut it into blocks ar×c. The last blocks in each row or
column may have fewer columns or rows. The blocks are then distributed in a round-robin fashion amongst
the processors in the p× q processors grid, wrapping around the grid until all blocks have been assigned.
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Figure 3. Serial (left) and distributed (right) solution of Ac= b. The input training data is distributed across the MPI processes
P1, P2, P3 to balance load (but the original order of rows is preserved on each). The rows of the LTMM matrix (yellow) in the serial
implementation are distributed in the parallel implementation. Each local Ai is filled with zero rows (white) to adjust to uniform
matrix size, which is a multiple of the block size.

For our use-case we start by considering a block distribution along the rows for a processor grid of p× 1.
This entails a row block size equal to the local number of rows for each process (ar×C and br×1 with
r= ⌈R/p⌉). We fill these blocks by assigning each structure (i.e. several rows of a) to a single process, thereby
each atomic configuration is local on exactly one process. The solution to Ac= b is invariant to swapping
rows of A as long as the corresponding entries in b are swapped accordingly. This allows us to choose the row
block size freely while arriving at the same result irrespective of the assignment of atomic configurations to
processes. The column block size is unrestricted, since each row is fully assigned to a single process.

Our algorithm, as described above and presented in figure 3, distributes atomic configurations and rows
of LTMM such that each local An block is as equal in size as possible. ScaLAPACK requires that all processes use
a uniform block factor for all their blocks. To fill the gaps left by the distribution a padding of zero rows
(i.e. rows filled with zeroes) is inserted into both A and b. The distribution strategy and the block size
settings of ScaLAPACK should ensure that the number of padding rows are kept to a minimum to prevent
afflicting memory and efficiency penalties.

Solving the linear system via QR decomposition with ScaLAPACK is split into three steps. First, A is
converted using pdgeqrf into the upper triangular matrix R and the Householder reflectorsH, which
occupy the remaining lower triangular elements of A. The latter is accompanied by an array τ of weights.
Reflectors and weights are then used by pdormqr to perform the multiplication QTb. Finally, the linear
system represented by the upper triangle matrix R is solved by pdtrtrs, utilising the backsubstitution
algorithm, to give c= R−1QTb.

We note that there is a requirement in pdtrtrs that the row and column block sizes must be equal.
Setting the column block size (c) to the generally much larger row block size (r) is formally possible, but this
drastically increases the size of the working arrays the ScaLAPACK routines require, which scale with the
square of the column block size (∝ c2 + rc). Setting instead the row block size (r) to the column block size (c)
implies adding additional zero rows for padding the local matrices to maintain the divisibility by the block
factor and thus the assignment of the configurations to the processes. Both of these approaches result in
increased memory requirements and a deterioration of computational efficiency.

However, it is possible to exploit the fact that our distribution strategy relies on a single processor column
(q= 1), so changing the column block size does not affect the distribution of the data. We can therefore use
one column block size for the first two calls (pdgeqrf, pdormqr) and then change that value for the third
call (pdtrtrs) to fulfill its requirement without decreasing the efficiency of the former calls.

Being able to control both block sizes independently revealed that a moderate column block size of about
100 is optimal for both memory usage and efficiency. For such a setting, the row block size does not have a
significant impact on parallel efficiency.

3.3. Sparse point selection
In gap_fit, the set ofM sparse points are typically determined as a subset of all descriptor values, although
for low-dimensional descriptors such as bond length it is convenient to use a uniform grid. Depending on
the method, the selection of sparse points may depend on the values of descriptor vectors calculated from the
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Figure 4. Schematic memory usage during gap_fit run over time. Descriptors (five shown) x and their derivatives x ′ constitute
the majority of the first peak. The memory associated with them is released after each processing, leading to a step-wise decline.
Matrices KMM and A and working arrays for solving the latter make up the second peak, which can be more shallow than depicted
here.

entire training data set. If the descriptors are distributed, clustering or CUR-based methods require
fine-tuned communication between the processes and for simplicity, we suggest a two-step workflow. Since
the calculation of descriptor vectors—without their gradients—is not computationally expensive and
memory storage is not a concern, sparse point selection can be performed using serial execution.

We first run gap_fit on a single process, optionally using OpenMP threading, to select sparse points
which are written into files, and terminating the run, which can be achieved by the command line argument
sparsify_only_no_fit=T. The output is converted to input via a helper script for the subsequent run
using MPI processes. This step can be skipped if the sparse points file has been provided by external means or
can be reused from an earlier calculation.

3.4. Peak memory usage
One of the pitfalls of running a formerly serial program in parallel with distributed data is that duplicate data
may accumulate unnecessarily, especially if multiple processes are run on the same node, and therefore
shared memory can be utilised. For example, it is convenient to calculate the matrix KMM on each process
because it only depends on the sparse points, and its size does not depend on the training set. However, each
process requires only a small part of the resulting matrix LMM, and storing multiple copies of KMM adds an
unnecessary constant overhead to the memory requirements. To prevent the allocation of possibly several GB
memory per process, KMM is only calculated on a single process, then converted to LMM, and only the
necessary rows are distributed via mpi_scatterv calls to independent MPI processes.

It is also important to avoid inadvertent duplication of data when converting between data structures
used by different parts of the program. This can be alleviated by performing calculations directly on the data
memory as LAPACK does. For user-defined types we use pointers to the original matrices to prevent copying
of data. Further, source data of relevant size is deallocated after final usage. This decreases the memory
overhead per MPI process and therefore also the peak memory requirement of the program.

Figure 4 shows schematically how the memory usage of gap_fit run changes over time. For our
program there are two parts of the execution which may lead to peak memory usage. The main one is after
allocating the descriptors, especially the derivatives x ′. After the covariance calculation of each descriptor, we
deallocate the corresponding source data. This is reflected by the step-wise decline of the memory.

The other peak manifests towards the end of a program run when the matrices KMM and then A are
assembled and the linear system is subsequently solved. ScaLAPACK requires additional work arrays for some
of its routines depending on the block sizes of the distributed matrices, especially the column block size.

4. Practical examples

Initial proof-of-principle fitting runs of a silicon dataset [23] showed that the fitting weights from an MPI
run are comparable to those from serial runs when using the same representative set. The difference can be
attributed to numerical uncertainties noting that even two runs initiated with identical parameters may differ
to the same magnitude. The difference can be attributed to the fact that the order of numerical operations is
no n-deterministic and the floating point arithmetic is neither associative nor distributive, leading to small
differences in covariance matrices in different executions. Ill-conditioning of matrix A amplifies the noise
due to the different order of operations, leading to only a few comparable significant digits in the resulting
weights. We have therefore tested the accuracy of the predictions with the resulting potential models using
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Figure 5. Upper: Adjusted speedup (reference time/current time) and total memory requirements (inset), and lower: Partial times
for calculating the covariance matrix (dark) and solving the linear system (light); vs cores (72 per node) with different splits
between MPI tasks per node vs OpenMP threads per task (T:C). Fitting times are shown for the HEA model (left, 396 178 target
properties) and the SiC model (right, 2 482 085 target properties), both models used 20 300 representative (sparse) points. For
visual guidance horizontal black lines indicate ideal expected partial timings, extrapolated from the partial times of the reference
runs. The data can be found in tables 1–4 in the Appendix.

the∆metric suggested to compare DFT packages [24]. We found that equivalent GAP models differ only up
to 1µeV, indicating excellent reproducibility despite the differences in the weights.

We then applied the implementation with varying proportions of MPI processes and OpenMP threads
on two example training sets, consisting of an high-entropy alloy (HEA) and silicon carbide (SiC) datasets.

These calculations were performed on the Raven cluster of the Max Planck Computing and Data Facility.
Each node has 72 cores and either 256 GB or 512 GB of RAM. For single-node calculations we used
high-memory nodes with 2048 GB of RAM. The specifications are: Intel Xeon IceLake-SP processors (2.4
GHz), 72 Cores (2 NUMA domains), Mellanox HDR InfiniBand network (100 Gbit/s, pruned fat-tree
topology) [25].

In both cases we combined two-body descriptors with Smooth Overlap of Atomic Positions (SOAP)
descriptors [26]. We assigned separate two-body descriptors for each pair of species, and separate SOAP
descriptors for each species.

The upper part of figure 5 depicts the inverse time relation with respect to the number of cores for
different MPI to OpenMP ratios (T:C), e.g. ‘36:2’ means that 36 MPI processes were used per node (with 72
cores), each with two OpenMP threads. This resembles Amdahl’s law

S(n) = t(1)/t(n) = 1/[(1− p)+ p/n], (15)

where the speedup S describes the relative time for a serial run t(1) versus a parallelised one t(n). It depends
on the number of cores n and the relative time p spent in portions that benefit from multiple cores. Our
training systems were too large to be run on a single core within the maximum wall-time limit, so we used
the highest time available instead for our adjusted speedup (S∗). Because of this, the values are only
comparable within the same training set. Note that these timings may contain some random noise due to
other calculations on the cluster (albeit not on the same nodes) and generally unpredictable behavior of
interconnect, network, hardware or the operating system in general. The insets show the total memory
required for these calculations across all nodes, estimated from the average resident set size (AveRSS) as
queried from the queueing system.

The lower part of figure 5 shows the absolute times for the calculation of the covariance matrix, and for
preparing and solving the linear system. As a visual guide horizontal lines indicate the ideal time extrapolated
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from the respective partial times of the (longest) reference calculation. The remaining time to the total run
time is small and not depicted for readability.

4.1. High-entropy alloy
The high-entropy MoNbTaVW alloy (HEA) training set [27] consists of 2329 configurations—each
containing an uneven number of atoms—with 2329 total energies, 383 739 forces, and 10 110 virials for a
total of N= 396178 target properties. With 20 sparse points per two-body descriptor (15) and 4000 per
SOAP descriptor (5) the total number of sparse points isM= 20300. Thus, A consists of nA = 8454503400
elements and occupies about 67.6 GB.

Looking at figure 5, the speedups for ratios between 4:18 and 12:6 do not differ much in our timings.
Calculations with more MPI processes lose efficiency with increasing number of cores.

For example, omitting OpenMP (72:1) decreases the speedup gain around 500 cores, staying at constant
time between 864 and 1152 cores. The same happens for 36:2 ratio between 1728 and 2304 cores, and for
24:3 between 2304 and 3456 cores. This behaviour stems from the choice of our implementation: it splits the
training set along the structures, which cannot be done arbitrarily for a finite set. For these 2329
configurations, the limit is at about two structures per MPI process.

The reference time for this set is 13 815 s (3.8 h), obtained from the single (high-memory) node
calculation with a 4:18 split of cores. Other ratios improve only a little on top of that, the highest being 12:6,
24:3, and 36:2 with a speedup of 1.13 each. The 72:1 run does not achieve that (1.06). Using six nodes (432
cores) increases the speedup to between 5.49 (9:8) and 4.42 (72:1), which translates to relative increases
between 5.09 and 4.17 compared to a single node. As mentioned before, the benefits dwindle fast for the 72:1
split from factor 1.31 (total 5.78) despite doubling (twelve nodes) to the constant speedup around 16 nodes
of ca. 7.10. The 36:2 ratio achieves a speedup of 13.45 at its best but decreases to about 13.0 beyond that. The
same happens, less pronounced, for 24:3, from a maximum of 17.44 at 48 cores down to 17.25. The highest
speedup in this set is 28.96 (4:18 on 64 nodes). The most efficient w.r.t. to the used resources is 18:4 on a
single node.

Using more MPI processes also comes at the cost of a memory overhead, which increases approximately
linearly with the number of cores. The higher the portion of MPI usage, the steeper this overhead is. In fact,
the graphs coincide if they are plotted against the number of MPI processes (not shown): in that case the
slope ranges between 0.9 and 1.5 GB per MPI process. For 72:1 this results in 2.17 TB on 16 nodes and 7.63
TB on 64. The former is comparable to the 2.20 GB 18:4 uses on 64 nodes, since both apply 1152 MPI
processes.

Looking at the partial timings, solving the covariance is close to the ideal performance when increasing
the number of nodes. The reference times are 3.2 h for covariance and 0.6 h for the QR preparation and solve
from the 4:18 ratio on one node. Calculations with a higher number of MPI tasks per node needs less time
for a smaller number of nodes up to the point of saturation when this time stays constant. Solving of the
linear system takes less time than the covariance but does not benefit as much from an increasing number of
nodes. This is to be expected as more inter-node communication slows down the computation, while no
communication is needed for the covariance. Using all cores for MPI results in a severe penalty on the solving
time. The remaining runtime is negligible (up to 3 min).

4.2. Silicon carbide
The 4865 silicon carbide (SiC) systems of this training set contain 4865 energies, 2448 030 forces, 29 190
virials for a total of N= 2482085 target properties. With 100 sparse points per two-body descriptor (3) and
10 000 per SOAP descriptor (2) the total number of sparse points isM= 20300. Thus, A consist of
nA = 50798415500 elements and occupies 406.4 GB.

Due to the much larger training set, not all node configurations from the HEA set were viable, especially
for lower node numbers. The reference time is 20 472 s (5.7 h) for a 24:3 run on a single node. The trend of
an equal split between MPI and OpenMP being the preferred choice also holds for this set but the processes
are not saturated as rapidly as in the case of the HEA systems. This effect may start between 3456 and 4608
cores for the full MPI run (72:1), which is later than in the HEA set even taking the structure numbers into
account because of the proportionally lower number of small structures in this larger set of only two species.
The highest speedup of 38.99 is achieved by 12:6 on 64 nodes, similarly the 18:4 split reaches the best value of
12.80 on 16 nodes whereas 36:2 gives 10.84 and 4:18 only 10.31.

Our method of querying the queueing system underestimates the average memory usage for some of the
calculations. The general trend is, however, relatable to the HEA case, as shown by a similar values for high
core numbers. The memory overhead per MPI process is nominally between 0.3 and 1.8 GB. On 16 nodes
the memory usage for 72:1 is given as 2.22 TB, on 64 nodes as 8.85 TB.
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For the partial timings we have similar trends as in the HEA case. The reference times are 5.1 h for
covariance and 0.6 h for the QR preparation and solve from the 24:3 ratio on one node. Strikingly, the 72:1
covariance times are much higher than for other splits. The other times are quite similar between different
ratios, in agreement with the total speedup. The remaining runtime takes up to 1 min.

5. Conclusion and outlook

The recent addition of MPI parallelisation to our program gap_fit by using the ScaLAPACK library makes
it possible to split the training data evenly into batches to be processed independently up to the solving of the
linear system. It alleviates the need for high-memory nodes so commodity HPC nodes may be used for
arbitrarily large fitting problems. The efficiency of the MPI parallelisation is comparable to that of OpenMP
for all parallelisation strategies except fully MPI, effectively extending the previous efficiency to multiple
nodes. Thus larger training sets do not impede the computation and more sparse points can be used,
increasing the accuracy of the model.

We showed the time scaling and memory requirements for varying proportions of MPI processes vs
OpenMP threads in two example training sets, consisting of an high-entropy alloy (HEA) and silicon carbide
(SiC). It is generally advisable to use at least some cores on each node for MPI processes, so even on a single
node benefits from this new feature. It is especially effective for larger training sets while the sparse points are
covered by the OpenMP threads. One should keep the total number of MPI processes below some fraction of
the total number of structures, e.g. 0.5 so that an even distribution is still possible. Analysing the partial times
of calculating the covariance matrix and solving the linear system confirmed that the benefit stems from the
almost perfectly parallel covariance part due to the splitting of configurations. The inter-node
communication of the ScaLAPACK routines prevents the solving part to benefit as much from a larger
number of nodes.

The memory overhead due to the parallelisation has been reduced but is still significant. Depending on
the available memory resources, a higher share of OpenMP threads is preferable, coinciding with the
conclusion from the efficiency evaluation. An even smaller memory footprint may be achieved in a further
development, albeit the impact is not as severe since the recommended number of MPI processes is moderate.

The highest impact on both MPI and non-MPI memory requirements would be to fully restructure the
descriptor processing loop so that each descriptor is processed fully before the next one.

In practical tests we have seen that the parallel gap_fit code can decrease the time required to fit
potentials from days to tens of minutes. We anticipate this will be an important step to enable potential
fitting to be embedded within other higher-level workflows such as active learning [13, 14], committee
models [28] as well as enabling model hyperparameters to be tuned or optimised, known to be important for
improved uncertainty quantification [14].
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Appendix. gap_fit options and timings

The following input is split into separate entries here for readability. It needs to be expanded for use.
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For the HEA set:
at_file=data.xyz gap=GAP default_sigma={0.005 0.2 0.05 0.0}

energy_parameter_name=dft_energy force_parameter_name=dft_forces
sparse_jitter=1.0E-8 gp_file=gap.xml rnd_seed=999

GAP={SUBGAP1:SUBGAP2}
SUBGAP1={distance_2b cutoff=4.5 delta=10.0 covariance_type=ard_se

theta_uniform=0.75 n_sparse=20 sparse_method=uniform}
SUBGAP2={soap l_max=4 n_max=8 atom_sigma=0.5 zeta=2 cutoff=3.5

cutoff_transition_width=0.5 central_weight=1.0 n_sparse=4000 delta=0.1
covariance_type=dot_product sparse_method=cur_points}

For the SiC set: rnd_seed=84616238, n_sparse=100, and n_sparse=10000, respectively.
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Table 1. Time t (in s), partial times tcov for covariance matrix and tQR for the QR solve, adjusted speedup S∗, and estimated memory (in
TB) in the HEA training set. N: nodes, T: MPI tasks per node, C: OpenMP threads per task.

N T C tcov tQR t S∗ Mem

1 4 18 11545.54 2090.22 13815 1.00 1.02
1 6 12 11461.97 1450.42 13052 1.06 1.02
1 8 9 11580.61 998.30 12699 1.09 1.03
1 9 8 11324.90 1316.42 12757 1.08 1.03
1 12 6 11515.25 756.68 12376 1.12 1.03
1 18 4 11042.48 1072.07 12208 1.13 1.04
1 24 3 11613.63 562.52 12262 1.13 1.04
1 36 2 11571.76 596.12 12248 1.13 1.05
1 72 1 11128.19 1798.22 13002 1.06 1.09
6 4 18 2136.17 454.57 2706 5.11 1.05
6 6 12 2134.75 338.10 2540 5.44 1.06
6 8 9 2003.19 549.59 2618 5.28 1.07
6 9 8 2019.54 431.06 2516 5.49 1.08
6 12 6 1955.56 512.57 2529 5.46 1.10
6 18 4 1910.88 762.27 2734 5.05 1.14
6 24 3 1804.70 789.55 2653 5.21 1.18
6 36 2 1753.38 963.17 2775 4.98 1.26
6 72 1 1341.73 1724.40 3126 4.42 1.42
8 4 18 1692.67 330.79 2093 6.60 1.06
8 6 12 1522.45 506.49 2098 6.58 1.08
8 8 9 1457.35 472.29 1993 6.93 1.09
8 9 8 1458.57 506.79 2028 6.81 1.10
8 12 6 1423.03 511.80 1995 6.92 1.13
8 18 4 1293.30 696.93 2048 6.75 1.18
8 24 3 1360.67 777.20 2196 6.29 1.22
8 36 2 1287.31 929.63 2274 6.08 1.30
8 72 1 1211.06 1506.51 2779 4.97 1.54
12 4 18 1094.36 377.24 1536 8.99 1.08
12 6 12 1043.46 331.62 1440 9.59 1.10
12 8 9 1004.06 366.18 1428 9.67 1.13
12 9 8 974.53 467.68 1501 9.20 1.15
12 12 6 915.00 444.80 1417 9.75 1.19
12 18 4 876.25 546.52 1480 9.33 1.26
12 24 3 891.94 660.54 1609 8.59 1.30
12 36 2 696.66 908.88 1661 8.32 1.42
12 72 1 1076.56 1255.26 2392 5.78 1.85
16 4 18 831.71 293.98 1187 11.64 1.10
16 6 12 766.59 320.15 1145 12.07 1.13
16 8 9 731.07 343.83 1131 12.21 1.17
16 9 8 695.14 438.43 1192 11.59 1.19
16 12 6 696.03 425.87 1178 11.73 1.22
16 18 4 666.86 499.93 1222 11.31 1.30
16 24 3 702.33 574.44 1333 10.36 1.38
16 36 2 619.84 782.44 1459 9.47 1.57
16 72 1 1070.94 807.78 1939 7.12 2.17
24 4 18 575.69 268.59 902 15.32 1.14
24 6 12 504.06 329.16 889 15.54 1.19
24 8 9 485.88 358.45 900 15.35 1.24
24 9 8 478.54 319.92 854 16.18 1.27
24 12 6 469.10 381.74 905 15.27 1.30
24 18 4 344.33 519.75 920 15.02 1.43
24 24 3 445.16 555.32 1058 13.06 1.55
24 36 2 555.51 647.66 1260 10.96 1.86
24 72 1 1090.61 783.59 1936 7.14 2.99
32 4 18 407.57 299.81 763 18.11 1.17
32 6 12 407.41 262.24 725 19.06 1.24
32 8 9 421.34 231.88 707 19.54 1.31
32 9 8 374.51 309.80 743 18.59 1.30
32 12 6 373.78 311.40 740 18.67 1.38

(Continued.)
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Table 1. (Continued.)

N T C tcov tQR t S∗ Mem

32 18 4 310.40 443.29 808 17.10 1.55
32 24 3 420.02 444.83 924 14.95 1.74
32 36 2 557.74 414.69 1027 13.45 2.20
32 72 1 1081.61 820.29 1961 7.04 3.93
48 4 18 298.81 216.20 571 24.19 1.25
48 6 12 289.29 219.85 563 24.54 1.31
48 8 9 273.59 270.72 599 23.06 1.39
48 9 8 213.21 299.95 568 24.32 1.43
48 12 6 228.32 322.18 605 22.83 1.55
48 18 4 295.86 359.62 712 19.40 1.87
48 24 3 403.50 332.40 792 17.44 2.21
48 36 2 548.22 467.59 1072 12.89 3.01
48 72 1 1067.96 825.62 1952 7.08 5.77
64 4 18 248.17 171.94 477 28.96 1.32
64 6 12 234.53 197.51 485 28.48 1.39
64 8 9 175.12 293.97 523 26.41 1.51
64 9 8 177.17 283.84 516 26.77 1.56
64 12 6 230.36 255.08 540 25.58 1.74
64 18 4 296.01 254.14 606 22.80 2.20
64 24 3 411.00 335.30 801 17.25 2.70
64 36 2 545.20 454.38 1056 13.08 3.94
64 72 1 1072.27 784.67 1916 7.21 7.63

Table 2. Pivot table of the adjusted speedups for the HEA training set.

T

t 4 6 8 9 12 18 24 36 72

1 1.00 1.06 1.09 1.08 1.12 1.13 1.13 1.13 1.06
6 5.11 5.44 5.28 5.49 5.46 5.05 5.21 4.98 4.42
8 6.60 6.58 6.93 6.81 6.92 6.75 6.29 6.08 4.97
12 8.99 9.59 9.67 9.20 9.75 9.33 8.59 8.32 5.78
16 11.64 12.07 12.21 11.59 11.73 11.31 10.36 9.47 7.12
24 15.32 15.54 15.35 16.18 15.27 15.02 13.06 10.96 7.14
32 18.11 19.06 19.54 18.59 18.67 17.10 14.95 13.45 7.04
48 24.19 24.54 23.06 24.32 22.83 19.40 17.44 12.89 7.08
64 28.96 28.48 26.41 26.77 25.58 22.80 17.25 13.08 7.21
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Table 3. Time t (in s), partial times tcov for covariance matrix and tQR for the QR solve, adjusted speedup S∗, and estimated memory (in
TB) in the SiC training set. N: nodes, T: MPI tasks per node, C: OpenMP threads per task.

N T C tcov tQR t S∗ Mem

1 24 3 18185.23 2232.89 20472 1.00 1.03
1 36 2 18124.19 1736.61 19911 1.03 1.04
1 72 1 18551.53 1667.12 20265 1.01 1.05
3 36 2 6247.50 780.98 7067 2.90 1.08
12 36 2 1796.59 200.76 2035 10.06 1.18
16 4 18 1198.94 746.59 1986 10.31 1.06
16 6 12 1175.45 565.38 1776 11.53 1.08
16 8 9 1160.58 485.56 1681 12.18 1.10
16 9 8 1198.35 442.01 1677 12.21 1.11
16 12 6 1162.79 437.15 1634 12.53 1.13
16 18 4 1229.67 322.71 1592 12.86 1.14
16 24 3 1212.87 422.35 1674 12.23 1.17
16 36 2 1317.43 532.71 1889 10.84 1.23
16 72 1 1583.19 374.91 1998 10.25 2.22
24 4 18 785.98 568.33 1390 14.73 1.09
24 6 12 820.59 367.30 1222 16.75 1.11
24 8 9 806.53 345.81 1184 17.29 1.14
24 9 8 837.33 300.58 1172 17.47 1.15
24 12 6 824.66 274.41 1131 18.10 1.14
24 18 4 913.24 168.86 1115 18.36 1.18
24 24 3 869.64 375.20 1279 16.01 1.23
24 36 2 1058.73 168.08 1261 16.23 1.35
24 72 1 1315.80 342.81 1695 12.08 3.32
32 4 18 614.76 411.59 1062 19.28 1.10
32 6 12 607.02 325.76 967 21.17 1.14
32 8 9 640.56 232.78 908 22.55 1.17
32 9 8 627.46 275.51 937 21.85 1.15
32 12 6 602.28 291.93 928 22.06 1.17
32 18 4 665.32 312.82 1011 20.25 1.23
32 24 3 682.36 228.29 944 21.69 1.28
32 36 2 802.91 241.16 1077 19.01 1.39
32 72 1 908.52 358.63 1301 15.74 3.74
48 4 18 413.15 314.09 765 26.76 1.14
48 6 12 424.74 228.41 687 29.80 1.15
48 8 9 423.08 237.51 694 29.50 1.18
48 9 8 471.31 166.77 672 30.46 1.19
48 12 6 446.73 244.14 724 28.28 1.24
48 18 4 519.34 142.77 697 29.37 1.66
48 24 3 540.43 178.59 753 27.19 1.45
48 36 2 653.71 220.68 909 22.52 3.32
48 72 1 917.48 129.88 1083 18.90 6.63
64 4 18 340.06 230.36 605 33.84 1.18
64 6 12 319.72 214.31 568 36.04 1.18
64 8 9 376.70 155.10 565 36.23 1.22
64 9 8 353.46 228.42 615 33.29 1.24
64 12 6 350.17 141.57 525 38.99 1.29
64 18 4 395.85 167.28 598 34.23 2.22
64 24 3 456.60 189.24 680 30.11 2.95
64 36 2 447.39 217.53 702 29.16 4.43
64 72 1 576.34 331.77 945 21.66 8.85
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Table 4. Pivot table of the adjusted speedups for the SiC training set. N: nodes, T: MPI processes per node.

T

N 4 6 8 9 12 18 24 36 72

1 1.00 1.03 1.01
3 2.90
12 10.06
16 10.31 11.53 12.18 12.21 12.53 12.86 12.23 10.84 10.25
24 14.73 16.75 17.29 17.47 18.10 18.36 16.01 16.23 12.08
32 19.28 21.17 22.55 21.85 22.06 20.25 21.69 19.01 15.74
48 26.76 29.80 29.50 30.46 28.28 29.37 27.19 22.52 18.90
64 33.84 36.04 36.23 33.29 38.99 34.23 30.11 29.16 21.66
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