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Abstract

Approximately 85% of tuberculosis (TB) related deaths occur in low- and middle-income

countries where health resources are scarce. Effective priority setting is required to maxi-

mise the impact of limited budgets. The Optima TB tool has been developed to support ana-

lytical capacity and inform evidence-based priority setting processes for TB health benefits

package design. This paper outlines the Optima TB framework and how it was applied in

Belarus, an upper-middle income country in Eastern Europe with a relatively high burden of

TB. Optima TB is a population-based disease transmission model, with programmatic cost

functions and an optimisation algorithm. Modelled populations include age-differentiated

general populations and higher-risk populations such as people living with HIV. Populations

and prospective interventions are defined in consultation with local stakeholders. In partner-

ship with the latter, demographic, epidemiological, programmatic, as well as cost and

spending data for these populations and interventions are then collated. An optimisation

analysis of TB spending was conducted in Belarus, using program objectives and con-

straints defined in collaboration with local stakeholders, which included experts, decision

makers, funders and organisations involved in service delivery, support and technical assis-

tance. These analyses show that it is possible to improve health impact by redistributing cur-

rent TB spending in Belarus. Specifically, shifting funding from inpatient- to outpatient-

focused care models, and from mass screening to active case finding strategies, could

reduce TB prevalence and mortality by up to 45% and 50%, respectively, by 2035. In addi-

tion, an optimised allocation of TB spending could lead to a reduction in drug-resistant TB

infections by 40% over this period. This would support progress towards national TB targets

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009255 September 27, 2021 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Goscé L, Abou Jaoude GJ, Kedziora DJ,

Benedikt C, Hussain A, Jarvis S, et al. (2021)

Optima TB: A tool to help optimally allocate

tuberculosis spending. PLoS Comput Biol 17(9):

e1009255. https://doi.org/10.1371/journal.

pcbi.1009255

Editor: Roger Dimitri Kouyos, University of Zurich,

SWITZERLAND

Received: December 3, 2020

Accepted: July 7, 2021

Published: September 27, 2021

Copyright: © 2021 Goscé et al. This is an open
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without additional financial resources. The case study in Belarus demonstrates how reallo-

cations of spending across existing and new interventions could have a substantial impact

on TB outcomes. This highlights the potential for Optima TB and similar modelling tools to

support evidence-based priority setting.

Author summary

Tuberculosis (TB) remains a leading global cause of death and morbidity, and 85% of

deaths occur in countries where resources for TB care and control are limited. Many

countries cannot finance all TB interventions or technologies, which means difficult deci-

sions on what to prioritise and publically finance. Modelling tools can help decision-mak-

ers set priorities based on evidence, in a systematic and transparent way. This study

presents Optima TB, a tool that estimates which allocations of spending across interven-

tions will most likely maximise specified objectives—such as minimising TB deaths, prev-

alence and incidence. In partnership with local decision-makers and stakeholders,

Optima TB was applied in Belarus. Recommendations from the model findings include

focussing investment on outpatient rather than inpatient care and actively finding people

with TB (e.g. through contact tracing) rather than mass testing of the population. The rec-

ommended reallocations of spending could reduce TB prevalence and deaths by up to

45% and 50%, respectively, by 2035 for the same amount of spending. Key stakeholders

were engaged throughout the analysis and findings and uncertainty around the results

were clearly communicated with decision-makers. The timeliness of the results helped

inform national dialogue on TB care reform, among other key policy discussions.

Introduction

The past decade has seen global improvements in key TB indicators, including incidence and

notifications reported by National Tuberculosis Programmes (NTPs). However, while global

active TB incidence has decreased at an annual rate of 1.5–1.8%, this fell short of the 4–5%

decline required by 2020 to meet the End TB strategy milestones [1, 2]. Furthermore, to meet

the End TB 2035 targets of treating at least 90% of all incident cases [3], the rate of active TB

notification (estimated at 69% of incidence in 2018) [4] must increase substantially. Diagnosed

people must then be linked to effective care and treatment.

Approximately 85% of TB-related deaths occur in low- and middle-income countries,

where available resources for TB programmes are scarce [4]. The emergence of new drugs and

technologies, such as bedaquiline, GeneXpert tests and geospatial mapping to inform targeted

screening, offer additional options in the TB response. However, governments and NTPs are

not able to fully finance all available interventions. As such choices must be made regarding

which interventions to prioritise and at what level of coverage for populations in need.

Best practice for priority setting involves evidence-based, systematic and transparent deci-

sions that reflect trade-offs, with a high level of stakeholder involvement [5, 6]. When setting

priorities, governments of low- and middle-income countries are faced with significant chal-

lenges including financial barriers and limited experience with decision-science [6–8]. Model-

ling tools can support analytical capacity to inform evidence-based decision-making [9, 10].

Allocative-efficiency modelling tools in particular enable the health impact of different inter-

ventions or packages of services to be estimated for a given level of spending [10, 11]. In
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addition, such analyses can support transparent decision making, provided they are carried

out with appropriate consultation [10]. Common objectives for TB responses include minimis-

ing new TB infections, TB-related deaths, disability-adjusted life years (DALYs), and current

and future TB-related costs.

A number of tools currently provide evidence on allocative efficiency for TB responses,

including TIME Impact, AuTuMN, SEARO and EMOD [12–16]. These have already been

applied in a range of countries and typically simulate (a) TB transmission within and between

population groups, (b) TB disease progression, (c) the effects of TB prevention, testing and

treatment programmes, and (d) the economic effects of policy choices. However, if developed

to enable linking with cost functions, which represent the relationship between intervention

spending and corresponding coverage levels, and an optimisation algorithm, mathematical

modelling tools can be helpful in determining an optimised resource allocation for defined

objectives [17]. Resource optimisation models can also be used to estimate the minimal

amount of resources required to achieve specific targets.

This paper presents Optima TB, an open-source tool to support and inform decision-mak-

ing to improve the TB response. Optima TB is part of the modelling suite of the Optima Con-

sortium for Decision Science (OCDS) [18–20], which has developed and applied disease-

specific resource optimisation models in collaboration with governments in over 60 countries,

the World Bank, non-governmental organisations, local stakeholders and academic institu-

tions. Optima TB draws on this experience and builds on existing interdisciplinary dialogues

between modelers, epidemiologists and government officials. The paper describes how Optima

TB was specifically designed to support countries in prioritising available resources for TB

control through allocative efficiency analyses. To illustrate the use of Optima TB in country

decision-making, a case study in Belarus is presented.

Belarus has the highest proportion of TB drug-resistance worldwide, comprising 38% and

67% of new and retreated cases, respectively. Globally, the median cost of treating drug-resis-

tant TB (DR-TB) is often at least six times higher than treating drug-susceptible TB (DS-TB),

and treatment outcomes are less successful (at a rate of 55%) compared with those for DS-TB

(82%) [21]. At the time of analysis, the provision of TB treatment in Belarus relied on an ageing

infrastructure of costly tertiary care facilities, and ineffective practices such as population-wide

mass-screening using chest X-rays [22]. There was thus a need to investigate the cost and

impact of the TB response in Belarus, and to revisit the package of services provided by the

NTP. These TB care practices and challenges are common elsewhere in Eastern Europe and as

such, the findings of this case study will have relevance to other countries [23–27].

The following sections describe how the Optima TB tool was used to determine a recom-

mended package of priority interventions and associated spending allocations, as well as esti-

mate the potential impact on key TB indicators if there were to be a change in policy based on

these recommendations.

Methods

Optima TB methodology

The Optima TB incorporates four main components: (a) an underlying epidemiological

dynamic disease transmission model to which intervention outcomes are linked; (b) cost-func-

tions that combine data on intervention expenditure and coverage to estimate and project

intervention outcomes; (c) objective functions often reflecting national strategic targets, along-

side constraints to reflect logistic, ethical, political and financial considerations; and (d) a

mathematical optimisation algorithm that combines (a)-(c) to identify the most efficient allo-

cation of resources. These components are depicted schematically in Fig 1.
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The epidemiological model at the core of the Optima TB tool is represented in Fig 2 and

is described below. The mathematical optimisation algorithm used is detailed elsewhere

[28]. The version of Optima TB code used for the Belarus analysis is open source and open

access (https://github.com/optimamodel/optima-tb). The latest epidemiological model is

implemented within the open access Atomica tool (https://github.com/atomicateam/

atomica). The user interface and webserver components are written using Sciris (https://

github.com/sciris/sciris). The tool is available as part of the “Atomica Applications”

suite (https://github.com/sciris/atomica_apps). The interface itself is available at http://tb.

ocds.co.

Model overview. The model is a compartmental model of disease transmission. While

individual based models (IBMs) are best at capturing factors that influence infection on a per-

son-by-person base, this structure was chosen because of the advantages it offers when study-

ing disease transmission in a population on a large scale. Furthermore, although infection

progression towards TB disease is a heterogeneous process [29] where the 10% lifetime risk of

disease following infection [30] can vary according to age and co-infections [31], Optima TB is

able to capture these differences.

Specifically, Optima TB allows for several populations to be defined, each population with

its respective structure shown in Fig 2 and each with distinct parameter values. These popula-

tion structures are then simulated to interact. This includes people with co-morbidities; these

populations are modelled with modified parameters for TB disease progression, mortality risk,

and co-morbidity treatment coverage such as antiretroviral therapy for people living with

HIV.

Accordingly, Optima TB is able to readily capture the following aspects with deterministic

modelling:

• Development of TB disease and its severity is age dependent. Children aged under 5 and

those infected with latent TB are at higher risk of progressing to active TB [32–34].

• Incidence of TB is higher in individuals with impaired immunity [35]. Consequently, co-

morbidities with other illnesses that suppress immunity (e.g. HIV infection, diabetes etc.)

often entail a higher probability of developing active TB [36–39].

• TB transmission is much higher in closed and crowded environments such as prisons [40]

and mines [41, 42].

Fig 1. Schematic of an Optima TB analysis (source: OCDS).

https://doi.org/10.1371/journal.pcbi.1009255.g001
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Equations and parameters. The model structure is depicted in Fig 2 and this section pro-

vides mathematical labels for the number of people in each compartment. All individuals are

born susceptible, S; some of them (usually children) get vaccinated and move into the vacci-

nated compartment V. People who get infected with Mycobacterium Tuberculosis first move

into the early latent untreated compartment, Lu
e . If they do not develop active TB in the first 5

years after infection, they move into the late latent untreated compartment, Lu
l . The model also

considers treatment for latent tuberculosis, represented by the early latent on-treatment and

late latent on-treatment compartments, Lt
e and Lt

l , respectively, along with those successfully

treated from latency, J. People who received preventive treatment (in the form of vaccination

or latency treatment) once reinfected move to their own latency pathway, Lp
e and Lp

l , where

they do not generally have the possibility of getting treated again (except for cases such as peo-

ple living with HIV (PLHIV) and specific scenarios). This is the ‘diagnosis restricted’ pathway

in Fig 2.

If active TB arises, people move into the undiagnosed active disease set of compartments,

Du (via a single intermediate subclinical compartment, Du
e ; see Eq A in S1 File). There are six

undiagnosed compartments; the active TB pathway is divided by smear, SP for positive and

SN for negative, as well as by strain type, i.e. drug sensitive (DS), multi drug resistant (MDR)

and extensively drug resistant (XDR). A proportion of these individuals get tested and move

into a diagnosed compartment set, Dd, similarly divided by SP/SN and DS/MDR/XDR. Those

that start treatment move into active-disease on-treatment compartments, subdivided in the

same way. Last, individuals who complete active TB treatment move into compartment R,

Fig 2. Structure of the epidemiological model at the core of Optima TB. Square boxes in the figure represent

compartments, or population sizes, at a given point in time. Ellipses represent junctions, which unlike compartments

do not represent population sizes, and only enable the ‘filtering’ of flows of latent activations into either smear-positive

or smear-negative, and subsequently into drug-susceptible or a form of drug-resistant TB. Solid lines between boxes

and ellipses represent transition rates, or the probability of moving from one compartment to another, within a given

timeframe. Dashed lines represent specific transition rates relating to the probability of interrupted treatment or

developing multi-drug resistant or extensively drug-resistant TB while on-treatment.

https://doi.org/10.1371/journal.pcbi.1009255.g002
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where they remain for two years. If they experience relapse, they move back to compartments

Du, otherwise they move to compartment J from which reinfection is possible.

The epidemiological motivations behind this modelling design, as well as its equations and

parameter definitions, are provided in S1 File, where in-depth discussions about vaccination,

latency, reactivation, drug-resistance and TB recurrence can be found.

Naturally, data are not always available to inform the compartment sizes and the transition

rates for specific country contexts. Assumptions can be made, but these can arguably lead to

more uncertainty and spurious claims than would have arisen if a dynamic feature were

entirely excluded. Optima TB was designed from the start to circumvent rigidity; coded in

Python and leveraging its object-oriented paradigm, it is easy to include or exclude compart-

ments and transitions as required. For instance, the model uses parameters δ1 and δ2 to include

the possibility of assuming different fitness for MDR and XDR strains respectively, and also six

parameters t̂i to study the possible escalation of drug-resistance following incomplete treat-

ment or treatment with non-protocol based regimens. Moreover, the standard form of our TB

model treats latency far more comprehensively than is commonly done in other models

because of the scarcity of data on latent infections. However, estimates of disease progression

from latent to active TB and of untreated active TB outcomes are calculated from very old

studies, for which reproducibility would be impossible nowadays, and they are therefore sub-

ject to adaptation through calibration (more details are available in S1 File).

Calibration is a multi-step, iterative process. First the model is calibrated against population

demographics. Afterwards model estimations are compared with existing data, including esti-

mations of incidence and prevalence from World Health Organisation (WHO) or national

data sources [21] disaggregated by sub-populations such as age groups, smear status and/or

drug sensitivity.

Cost and impact. Optima TB accommodates interventions that directly or indirectly tar-

get TB. The former includes prevention, diagnosis and treatment interventions and the latter

includes interventions such as behavioural change and awareness campaigns. To include an

intervention in an Optima TB analysis, the following must be specified or informed by data:

(a) populations served; (b) intervention impact (e.g. diagnostic yield, or probability of success-

fully completing treatment); (c) unit cost; and (d) intervention coverage. Non-targeted TB

programmes, for which a direct impact cannot be assigned, such as management and adminis-

tration activities, are still costed and included in the analyses but are not included within the

optimisation process.

National expenditure on TB is rarely tracked and reported by intervention, but there is

often an estimate of total spending on TB and occasionally a disaggregation by broad interven-

tion category such as prevention, diagnosis or treatment. Intervention spending is therefore

often estimated using either a top-down approach or a bottom-up calculation, using unit costs

and program coverage. By default, the number of people that can be covered by a program can

be defined either to scale linearly with expenditure, with a capacity constraint for the maxi-

mum number of people that can be covered in a year, or with a saturation value to represent

demand constraints such as hard to reach populations. The scaling to reach this saturation

value as a percentage of the target population is non-linear, with the marginal unit cost

increasing as coverage approaches saturation.

Optimisation. Optimisation aims to identify the combination of funded interventions

(investments) that achieves the best possible outcome with respect to the optimisation objec-

tives and subject to the optimisation constraints. The objective for optimisation can be to min-

imize TB-related DALYs, TB-related deaths, total new active TB infections, the prevalence of

DS-TB, MDR-TB, or XDR-TB, or any (user-specified) weighted combination thereof. For

each intervention, minimum and maximum spending constraints can be specified.
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Optimisation can be performed using one of three built-in optimisation algorithms. By

default, Optima TB uses Adaptive Stochastic Descent (ASD) [28] implemented by the “Sciris”

Python package; this is a gradient-based descent algorithm, which makes stochastic downhill

steps in parameter space from an initial starting point, choosing future step sizes and direc-

tions based on the outcome of previous steps. Other optimisation algorithms available in

Optima TB are particle swarm optimisation [43] via the “Pyswarm” package, which is more

computationally expensive but is better able to find global minima if parameter space is com-

plex, and a sequential model-based optimisation algorithm via the “Hyperopt” package [44],

which balances the exploration of global and local minima.

Application in Belarus

This section details the process of applying Optima TB in Belarus, including data collation,

model calibration, interventions modelled, and an optimisation analysis of TB spending.

A request for technical support to prioritise TB interventions was made by the Ministry of

Health of the Republic Belarus to the World Bank. In addition, an NTP review had found that

the Belarus TB response required further alignment with WHO recommendations and guide-

lines [45]. Following discussions with relevant stakeholders, an allocative efficiency analysis

was selected as the preferred approach to inform national priority setting and TB reform pro-

cesses. A group of key stakeholders was then formed, alongside a smaller working group of

local experts from The Republican Research and Practical Centre for Pulmonology and TB. A

full list of the stakeholders involved, is included in S2 File. Stakeholders were kept informed

throughout the process and reviewed optimisation objectives and results, while the expert

working group provided input throughout the analysis, generated and validated assumptions,

and reviewed results. Results were presented in a dissemination workshop and an application

report was generated and validated by the national team, funders, and stakeholders. The appli-

cation report for Belarus is posted on the funder’s website (https://openknowledge.worldbank.

org/handle/10986/27475) and on the Optima Consortium for Decision Science website

(http://ocds.co/tb/applications.html).

Data collation, calibration, and validation. Six populations were defined for Belarus as

follows: (1) people age 0–4 years, (2) 5–14 years, (3) 15–64 years (without HIV), (4) 65+ years

(without HIV), (5) people living with HIV aged 15 years or more, and (6) inmates aged 15

years or more. For Belarus, United Nations (UN) Population Division World Prospects data,

local census data and national reports were used to inform population sizes, migration rates,

birth rates and non-TB death rates [46–49]. Data on the number of notified TB infections were

obtained from the National TB Programme database [50], and other epidemiological data

were compiled from local and international publications or reports [51–54]. Key population

statistics are provided in Table 1. Intervention cost and expenditure data were sourced from

the Belarus TB sub-accounts within the WHO National Health Accounts and other secondary

sources [22, 55–57]. Data on the coverage and impact of interventions were sourced from the

National TB Programme dataset, and a comprehensive review of local and international litera-

ture provided additional data where required [50, 52, 58–71]. Local stakeholders and experts

were consulted throughout the analysis to provide input on missing or inconsistent data as

well as on epidemic projections.

Subsequently, the model was calibrated through manual fitting to match closely to the

annual numbers of notified TB infections, as well as estimates of key TB indicators such as

active TB incidence/prevalence (Fig 3) and latent TB prevalence. Parameters with the greatest

uncertainty were selected for adjustment during the calibration process. These were the:

(1) transmission rate, (2) probability of progressing from early- or late-latent TB to active TB,
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(3) re-infection rate of people recovered from active TB, and (4) the proportion of early- versus

late-latent TB infection. Model inputs, calibration parameter values, and epidemic projections

were compared against peer-reviewed publications, parameter values used in other modelling

studies, and secondary data and estimates and epidemic projections as part of the calibration

process. Further details on the process as well as the estimates used, are contained in the pub-

lished report [72].

Interventions modelled. Different types of interventions can be included in Optima TB,

such as preventative therapy, screening and diagnosis, active TB treatment, and other TB-

related activities such as management, procurement, or human resources. Table 2 details the

interventions modelled in the Belarus analysis. To derive the unit costs for each intervention

listed in Table 2, a mixture of top-down and bottom-up costing was undertaken using a calcu-

lated average cost per diem of inpatient or outpatient visits (see S2 File). National drug pro-

curement records for 2016 and other secondary data were consulted, as well as expert opinion

in cases such as mass-screening [22, 55–57]. Coverage and impact data were then used to gen-

erate a cost-function for each intervention, with the exception of non-targeted interventions

not considered in the optimisation analysis such as management or procurement activities.

Interventions that were not targeted in the optimisation analysis either do not have a direct

Table 1. Key population statistics.

Population 2005 2010 2015

Population Sizes

0–4 429,281 509,595 577,740

5–14 1,007,770 865,489 921,333

15–64 6,718,570 6,660,400 6,393,500

65+ 1,414,080 1,306,960 1,318,510

PLHIV (15+) 15,013 21,040 34,089

Prisoners (15+) 36,948 37,352 33,388

TB Prevalence

0–4 0.03% 0.01% 0.01%

5–14 0.06% 0.06% 0.04%

15–64 0.18% 0.16% 0.15%

65+ 0.15% 0.15% 0.14%

PLHIV (15+) 2.34% 2.00% 1.31%

Prisoners (15+) 1.41% 0.70% 0.41%

TB Incidence

0–4 50 24 13

5–14 241 177 138

15–64 3,223 2,980 2,730

65+ 594 547 554

PLHIV (15+) 97 110 155

Prisoners (15+) 142 73 42

TB-related mortality

0–4 16 9 4

5–14 62 49 33

15–64 1,131 1,128 884

65+ 192 189 165

PLHIV (15+) 59 72 71

Prisoners (15+) 56 29 14

https://doi.org/10.1371/journal.pcbi.1009255.t001
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measurable impact on the epidemic (non-targeted interventions), such as procurement activi-

ties, or did not have sufficient data at the time as was the case for alcohol interventions and pal-

liative care.

Optimisation analysis. After extensive consultation with a TB working group of stake-

holders in Belarus, three key output indicators were identified for the optimisation analysis:

(1) TB-related deaths, (2) all TB infections (i.e. prevalence), and (3) new TB infections (i.e.

incidence). To determine the optimised allocation of resources, the working group agreed to

define an objective function for the ASD model algorithm to minimise these three key output

indicators, given the local epidemic parameters and data, cost of delivering services, and sub-

ject to defined constraints. Before running the optimisation analysis, constraints shown in

Table 3 were therefore defined by key stakeholders and local experts to reflect logistic, ethical,

political, and financial barriers for scaling-up or defunding specific interventions. Addition-

ally, time-dependent constraints were included to reflect realistic timings for changes in the

implementation of interventions. Changes in intervention spending between 2015 and target

spending levels were capped either at a maximum change of 30% per year for existing inter-

ventions, or at a maximum of US$1M for new interventions for the first year and 30% in sub-

sequent years, until the optimised level of spending on an intervention is reached.

Interventions for which data on impact were not available, in the form of yields and sensi-

tivities for screening or diagnosis and relative risks for treatment outcomes, were treated as

Fig 3. Calibration output graphs. (a) Datapoints are UN Population Division estimates (2000–2015) [49], (b) and (c)

datapoints are WHO active TB prevalence upper-bound estimates disaggregated by population group (2000–2014)

[53] and (d) shaded area represents confidence intervals of WHO active TB prevalence estimates for total population

(2000–2014) [53].

https://doi.org/10.1371/journal.pcbi.1009255.g003
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Table 2. Interventions included in the Belarus analysis.

Intervention Population(s) targeted Description Unit cost� (US

$, 2015)

Spending (US$,

2015)

Screening and diagnosis interventions

Active Case Finding 15–64; 65+; PLHIV Screening of high-risk groups that are considered at high risk of

developing active TB (e.g. PLHIV, homeless, people who inject

drugs etc.) with chest X-ray or fluorography

$1.00 $942,159

Incentivised Active Case

Finding

15–64; 65+; PLHIV Active case finding with subsided transportation for healthcare

workers and incentives for each case identified

$5.20 Prospective

intervention

Contact Tracing All populations (contacts of

people with active TB)

Tracing of household contacts of people diagnosed with active TB,

and screening using symptomatic questionnaire, smear-sputum

microscopy, and GeneXpert

$1.00 $7,046

Incentivised Contactı̀

Tracing

All populations (contacts of

people with active TB)

Contact tracing with subsided transportation for healthcare workers

and incentives for each case identified

$5.20 Prospective

intervention

Symptomatic Diagnosis

(including Xpert)

All populations screen questions followed by smear-sputum microscopy, Gene

Xpert and liquid culture for patients that present at a health facility

with symptoms of TB

$39.98 $770,489

Mass-Screening All populations Yearly general population-wide mass-screening using chest X-rays

and fluorography

$1.00 $9,758,596

Treatment for active TB

Hospital Focused DS-TB People receiving treatment for

DS-TB

Treatment for DS-TB with hospitalisation for 60 days out of a total

treatment duration of 180 days

$2,609.72 $7,283,723

Hospital Focused

MDR-TB

People receiving treatment for

MDR-TB

Standardised treatment regimen for multidrug-resistant TB

(MDR-TB), with hospitalisation for 180 days out of a total

treatment duration of 540 days

$14,158.05 $12,884,772

Hospital Focused

XDR-TB

People receiving treatment for

XDR-TB

Treatment for extensively drug-resistant TB (XDR-TB) with

available second and third-line drugs, with hospitalisation for 240

days out of a total treatment duration of 660 days

$20,483.19 $7,445,214

Ambulatory DS-TB People receiving treatment for

DS-TB

WHO recommended outpatient service delivery, with

hospitalisation only during the intensive phase of a given regimen

or until smear conversion. Involves hospitalisation for 14 days out

of a total treatment duration of 180 days

$1,877.83 Prospective

intervention

Ambulatory MDR-TB People receiving treatment for

MDR-TB

WHO recommended outpatient service delivery, with

hospitalisation only during the intensive phase of a given regimen

or until smear conversion. Standardised MDR-TB regimen with

hospitalisation for 45 days out of a total treatment duration of 540

days

$10,196.29 Prospective

intervention

Ambulatory MDR-TB

Short-Course

People receiving treatment for

MDR-TB

Short-course MDR-TB regimen. Involves hospitalisation for 30

days, out of a total treatment duration of 315 days

$4,520.46 Prospective

intervention

Ambulatory XDR-TB People receiving treatment for

XDR-TB

WHO recommended outpatient service delivery, with

hospitalisation only during the intensive phase of a given regimen

or until smear conversion. Treatment for XDR-TB with available

second and third-line drugs, with hospitalisation for 60 days out of a

total treatment duration of 660 days

$15,440.95 Prospective

intervention

Incentivised Ambulatory

DS-TB

People receiving treatment for

DS-TB

Similar to the ambulatory DS-TB intervention, but incorporates

financial incentives (food packages, outcome-based financing)

based on the Mogilev District pilot project

$2,215.36 Prospective

intervention

Incentivised Ambulatory

MDR-TB

People receiving treatment for

MDR-TB

Similar to the ambulatory MDR-TB intervention, but incorporates

financial incentives (food packages, outcome-based financing)

based on the Mogilev District pilot project

$11,324.79 Prospective

intervention

Incentivised Ambulatory

MDR-TB Short-Course

People receiving treatment for

MDR-TB

Similar to the ambulatory MDR-TB short-course intervention, but

incorporates financial incentives (food packages, outcome-based

financing) based on the Mogilev District pilot project

$5,099.96 Prospective

intervention

Incentivised Ambulatory

New Drugs MDR-TB

People receiving treatment for

MDR-TB

Similar to the ambulatory MDR-TB intervention but with new and

repurposed drugs, including bedaquiline and linezolid, added to the

background regimen. Incorporates financial incentives (food

packages, outcome-based financing) based on the Mogilev District

pilot project

$14,797.00 Prospective

intervention

Incentivised Ambulatory

XDR-TB

People receiving treatment for

XDR-TB

Similar to the ambulatory XDR-TB intervention, but incorporates

financial incentives (food packages, outcome-based financing)

based on the Mogilev District pilot project

$16,782.95 Prospective

intervention

(Continued)
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fixed costs and excluded from the optimisation analysis. To achieve the optimisation objective

under set constraints, the optimisation analysis aimed to address the following two questions:

1. What is the optimised allocation of TB spending and associated programme coverage levels,

to minimise TB mortality, prevalence, and incidence in Belarus between 2017 and 2035?

2. How much progress will be made toward national and international targets under opti-

mised resource allocations in Belarus compared with continuation of the 2015 response?

Results

Optimised TB spending allocation in Belarus

In 2015, an estimated US$61.8 million was spent on the TB programme and TB-related activi-

ties in Belarus. The distribution of total TB spending across the various TB interventions in

2015 is shown in Fig 4. Annual population-wide mass-screening with chest X-rays accounted

Table 2. (Continued)

Intervention Population(s) targeted Description Unit cost� (US

$, 2015)

Spending (US$,

2015)

Incentivised Ambulatory

New Drugs XDR-TB

People receiving treatment for

XDR-TB

Similar to the ambulatory XDR-TB intervention but with new and

repurposed drugs, including bedaquiline and linezolid, added to the

background regimen. Incorporates financial incentives (food

packages, outcome-based financing) based on the Mogilev District

pilot project

$23,036.00 Prospective

intervention

Involuntary Isolation

MDR-TB

People receiving treatment for

MDR-TB

Treatment for people with MDR-TB with a history of adherence

problems in a dedicated facility monitored by police

$45,588.00 $10,895,532

Involuntary Isolation

XDR-TB

People receiving treatment for

XDR-TB

Treatment for people with XDR-TB with a history of adherence

problems in a dedicated facility monitored by police

$45,588.00 $5,698,500

Preventative interventions

IPT for General

Population

All populations (contacts of

people with active TB)

Treatment of latent TB Infections with 6-months Isoniazid therapy

in general population TB-contacts

$11.52 $10,575

IPT for PLHIV PLHIV Treatment of latent TB Infections with 6-months Isoniazid in

PLHIV

$11.52 $2,477

BCG Vaccination 0–4 years Bacillus Calmette–Guérin (BCG) vaccination for newborns $1.32 $528,000

Interventions or activities not included in the optimisation analysis (spending fixed)

Solid Culture People with MDR- or XDR-TB Cost of solid culture testing to identify and confirm resistance types

of MDR-TB and XDR-TB

$1.43 $362,108

Line Probe Assay People with MDR- or XDR-TB Cost of line probe assay (LPA) testing to identify and confirm

resistance types of MDR-TB and XDR-TB

$16.16 $78,938

Tuberculin Skin Test 0–4 years; PLHIV; contacts of

people with active TB

Cost of conducting a tuberculin skin test (TST) test to diagnose

latent TB infections

$4.32 $475,200

Palliative Care MDR/

XDR

People receiving treatment for

MDR- and XDR-TB

Palliative care for MDR-TB and XDR-TB patients with a history of

non-adherence, repeated treatment failure, and adverse reactions

$5,108.00 $2,894,426

Alcohol Intervention People receiving treatment for

active TB with problems of

alcohol abuse

Cost of alcohol programmes to support adherence to TB treatment

regimens

n/a $210,000

Management (Including

HR)

n/a Administrative costs n/a $892,061

Procurement Costs n/a As per TB sub-accounts of NHA n/a $649,349

Other Costs n/a As per TB sub-accounts of NHA n/a $255,055

� Annualised treatment costs are used in the tool.

Note: All unit costs include the cost of service delivery in addition to medicine, test kits, etc. All treatment unit costs are per DS-TB, MDR-TB or XDR-TB case.

https://doi.org/10.1371/journal.pcbi.1009255.t002
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for one-sixth of total TB spending (US$9.8 million), with little investment in contact-tracing

and other targeted active case finding interventions. Approximately 45% of total TB spending

was invested in hospital-focused interventions (US$27.6 million), of which 74% was on

DR-TB treatment (US$20.3 million). Another significant portion of total TB spending

(approximately 25%) was on involuntary isolation facilities for drug-resistant treatment of

patients at high-risk of loss-to-follow up, with a unit cost of US$45,588.

The mathematically optimised allocation of TB spending that would simultaneously mini-

mise active TB incidence and prevalence and TB-related mortality in Belarus according to our

model is shown in Fig 2. Overall, recommendations from the analyses are that spending be

shifted from hospital-focused interventions to outpatient treatment. Similarly, investment in

annual mass-screening should be de-prioritised in order to prioritise targeted active case find-

ing strategies. Spending on hospital focused treatment and involuntary isolation is reduced by

60% in the optimised budget compared with the 2015 spending allocation. In turn, spending

on more cost-effective outpatient treatment interventions is increased to 40% of the optimised

spending on treatment, equivalent to 20% of the total targeted TB budget. These reallocations

could save around 30% of total treatment expenditure for re-investment in other interventions,

while treatment coverage for people diagnosed with TB would increase from 81% to 90%. Sav-

ings from the use of more cost effective outpatient treatment and reduced spending on mass

screening, should ideally be reinvested to expand targeted screening and diagnosis. Rapid diag-

nostic testing, targeted active case finding, and contact-tracing interventions are recom-

mended for prioritisation, comprising 30% of total TB spending or 80% of spending on

screening and diagnosis.

Projected impact of optimised spending on the TB epidemic in Belarus

Epidemiological projections are shown in Fig 5, where the grey lines assume that the amount

and allocation of TB spending across interventions in 2015 is maintained until 2035. The prev-

alence of TB is projected to decrease rapidly among HIV-negative populations aged 15–64

years, before stabilising around 2023. TB-related deaths are also estimated to decrease,

although steadily. While there is a projected gradual decrease in the prevalence of TB among

people living with HIV, the number of new TB infections and TB-related deaths are projected

Table 3. Interventions with defined constraints in the optimisation analysis.

Intervention name Minimum budget constraint relative

to 2015 intervention spending

Maximum budget constraint relative

to 2015 intervention spending

BCG vaccination 100% 100%

Testing: TST1, LPA2, and solid

culture testing

100% 100%

Mass-screening (including X-

ray)

50% -

Active case finding for key

populations

100% -

Hospital-based treatments for

DS-, MDR- and XDR-TB

30% -

Palliative care 40% 40%

Involuntary isolation for MDR-

and XDR-TB

20% -

1 Tuberculin Skin Test: TST.
2 Line Probe Assay: LPA.

https://doi.org/10.1371/journal.pcbi.1009255.t003
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to increase over this period—driven by a projected increase in the number of people living

with HIV. In line with the projected overall decrease in TB infections, the number of people

with DR-TB is estimated to decrease rapidly, reducing by 50% by 2035 compared with 2015

levels.

An optimised allocation of national TB spending could yield significant improvements in

key TB indicators, as shown in Fig 5. Among HIV-negative populations, the model estimates

that an optimised allocation of spending could lead to a 45% reduction in adult TB prevalence

by 2035 compared with the existing allocation. Similarly, an optimised allocation of spending

is estimated to reduce TB-related deaths by 50% by 2035 compared with non-optimised spend-

ing allocations, and by 70% compared with 2015 levels. In addition, an estimated 40% of all

DR-TB infections in Belarus can be averted by 2035 through optimised reallocations in spend-

ing. Among people living with HIV, between a 30% and 45% reduction in new infections,

prevalence, and mortality could be realised by 2035, though the number people living with

HIV with active TB is very small.

Fig 4. National TB spending in Belarus in 2015 compared with optimised annual budget to minimise active TB

prevalence and incidence and TB-related mortality by 2035.

https://doi.org/10.1371/journal.pcbi.1009255.g004
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Progress toward national and international TB targets

The estimated progress of 2015 and optimised allocations of spending toward national and

international targets is shown in Fig 6. The year 2015 is considered as the baseline at 100%,

while different targets and milestones are indicated by the dashed lines. Under 2015 spending

allocations, it is estimated that no milestones or targets will be met aside from the 2020

National Strategic Plan (NSP) target for incidence. The national NSP target of a 35% reduction

in TB-related deaths by 2020 will likely be missed, with the necessary reduction achieved only

by 2030. If programmatic spending is reprioritised optimally, projections suggest that 2020

NSP targets for both incidence and TB-related deaths could be met. While neither global mile-

stones nor targets are met under an optimised combination of interventions with 2015 spend-

ing levels, more significant progress will likely be made towards mortality targets relative to

incidence.

Fig 5. Projected impact of 2015 and optimised allocations of national TB spending on key TB indicators among

HIV-negative adults and people living with HIV from 2015 to 2035.

https://doi.org/10.1371/journal.pcbi.1009255.g005

Fig 6. Progress toward national and global TB targets for (a) TB mortality and (b) new TB infections in the 15–64

age group, under 2015 and optimised allocations of national TB spending.

https://doi.org/10.1371/journal.pcbi.1009255.g006
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Discussion

Optima TB is an open-access tool for allocative efficiency modelling, designed to inform prior-

ity setting for TB responses. Grounded in available data, it enables different populations and

co-morbidities to be defined to capture epidemic heterogeneities. This paper illustrates the

potential of Optima TB analysis findings to inform NTP discussions on priority setting and TB

response reform via a case study in Belarus. An optimised allocation of TB spending in Belarus

was estimated to reduce TB prevalence and mortality by up to 50%, compared with prior pro-

gramme approaches. The main factors behind the gains are shifts from annual population-

wide mass-screening and inpatient focused care, to active case finding strategies and outpa-

tient focused care. Savings from these reallocations could be reinvested in screening and diag-

nosis, prioritising higher-yield interventions needed in Belarus such as contact tracing and

rapid diagnostic testing [50, 59, 61, 73]. In addition, transitioning to cheaper outpatient care

could reduce overall treatment spending by 30% for reallocations to other intervention, with

no estimated reduction in the number of people on treatment. The average unit cost of an

inpatient day is three or four times more than that of an ambulatory day for DS-TB or DR-TB

care, respectively (see Table A in S2 File), driven by greater staff, overhead and capital costs.

Shifts in spending from inpatient to outpatient focused care are therefore recommended, in

line with findings from local literature and WHO guidelines [22, 74–76], which would offset

reductions in total treatment spending and enable the NTP to cover approximately 90% of all

people diagnosed with active TB. As well as reductions in prevalence and mortality, scaling up

care for people with active TB through these reallocations may result in modest gains in inci-

dence over time, as overall levels of infectiousness are reduced through increased diagnosis

and treatment in the model.

A central focus of the Belarus NTP is to provide appropriate care for people with DR-TB

and to address the significant burden of drug-resistance in the country. Existing practices

involve lengthy inpatient stays of 180 days (six months) on average before discharge following

smear conversion. An optimised shift in spending from inpatient-focused care to outpatient

DR-TB treatment, and to drug-regimens comprised of new and repurposed drugs such as

bedaquiline and linezolid, is estimated to reduce the number of DR-TB infections by around

40%. Reduced prioritisation of inpatient care would enable the NTP to provide DR-TB services

to a greater number of those in need, and free up funds that can be invested in newer drug reg-

imens with proven efficacy [77]. Furthermore, it is important to note that the estimated gains

in this analysis from prioritising outpatient care do not include considerations from the patient

perspective. Many studies have highlighted the substantial indirect costs and loss of earnings

experienced by patients due to hospitalisation [78, 79].

While it is estimated that 2020 NSP targets for incidence and mortality could be met under

optimised allocations of spending,progress would still fall significantly short of meeting the

global 2025 TB milestones and 2035 End TB Strategy targets. Other modelling studies have

also estimated that countries may fall short of global milestones and targets [80]. To meet

global targets in Belarus, as in other countries, new technologies and interventions will likely

be required as well as substantial increases in cost-effective investment. Overall, the TB

response in Belarus is largely focused on curative rather than preventative interventions

(Table 2). Only the latter can reduce vulnerability to TB and the rate at which the large pool of

people with latent TB progress to active TB each year through the pathways shown in Fig 2

[81, 82]. The insufficient progress towards global targets for reductions in TB incidence esti-

mated in this analysis supports a large body of existing literature advocating for a more holistic

response to the global burden of TB, which is based on an understanding that social determi-

nants of disease such as living conditions and nutritional status significantly impact disease
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progression to active TB [81, 83–87]. A recent modelling study suggests that the expansion of

social protection programmes would yield significant accelerated progress toward global TB

targets [88].

Overall, baseline projections in this analysis based on 2015 TB spending allocations appear

to be largely in line with recent estimates of key TB indicators for Belarus. For example, the

3400 incident active cases projected in this analysis for 2018 (see Figs A-C in S1 File) falls

within the active TB incidence estimates by the WHO for 2018 (between 2300 and 3700) [89].

However, while modelled annual TB-mortality at the time of analysis (1200) for 2014 was

higher than the upper-bound of WHO estimates (870), [90] the latter have recently been

revised and reduced by approximately a third for 2014 (580) [91]. Mortality projections from

the analysis are therefore no longer in line with recent estimates.

In addition, while this analysis was carried out before the publication of guidance for coun-

try-level TB modelling [92], the analysis followed the principles listed in the guidance docu-

ment (see S3 File for details). The timeliness of the Belarus analysis helped inform dialogue on

national TB care, including a round-table consultation organised by the WHO country office

in Minsk in 2017 and a regional reform meeting in Bishkek, during which cornerstones of

reform were agreed [93]. This analysis has informed ongoing activities for TB financing and

planning by the WHO Regional Office for Europe and Ministry of Health [94], and the find-

ings have helped advocate for more and better quality ambulatory care. Recently, a national

primary healthcare workers scheme has been introduced, which involves bonus payments for

the provision of TB services (such as bonus payments of US $5 per day for visits made to TB

patients’ homes by nurses for treatment observations [95]). That said, impact assessments are

required to establish whether this Optima TB application influenced actual reallocations in

spending and improved TB control because of any changes in decision making.

Strengths and limitations

A number of TB epidemiological modelling tools exist to support country-level decision-mak-

ing, including TIME Impact, AuTuMN, SEARO, VI, and EMOD among others [12–14, 16,

96]. While most comprehensive models nowadays include the study of MDR-TB cases [12–14,

16, 96], only a few have an explicit structure able to capture co-morbidities or high-risk groups

[12, 14, 96] and, of them, only Optima TB and AuTuMN [12] explicitly analyse XDR cases.

More specifically, TIME and AuTuMN enable users to run a variety of epidemic scenarios,

and TIME Impact can be combined with the OneHealth Tool to produce detailed costings of

TB interventions and guide NTP implementation by assessing health system components such

as infrastructure or human resource needs. In addition, linking to OneHealth allows for pri-

vate sector considerations to be incorporated within a TIME model analysis, which is key in

certain contexts, such as in India [97]. However, efforts to develop tools that can estimate a

mathematically optimised allocation of spending across a number of interventions to maxi-

mise a set of desired objectives have only recently begun [12]. The Optima TB tool draws on

existing epidemiological tools and research in allocative efficiency. Other Optima tools have

been applied in over 60 countries, and follow-up impact assessments have shown that Optima

HIV studies have influenced actual allocations in HIV spending in some countries such as

Sudan and led to improvements in disease control [10, 11, 98–100].

There are several additional characteristics particular to the Optima TB tool. First, the

explicit care-cascade structure allows for the model to be directly initialised and parametrised

using country-provided data such as notified cases, number of people initiated on treatment,

and TB-related deaths without solely relying on incidence estimations. This means that the

modelling output can more accurately represent the setting specific TB epidemic. Another
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novel aspect that, to our knowledge, is unique in comparison to other TB tools, is a secondary

latency pathway. This has multiple advantages as it not only allows individuals who had a pre-

vious history of infection to be distinguished, it also allows to study different preventive strate-

gies that confer partial protection against reactivation and disaggregate these individuals from

the general population. Currently, the implementation of preventive strategies such as treat-

ment of LTBI, is generally limited to only direct contacts of active cases and HIV positive indi-

viduals, the model structure includes detailed capture of TB latency allowing for the testing of

new strategies and their impact on the entire population. Key populations can also be flexibly

defined and targeted in Optima TB.

One of the strongest design goals of Optima TB has been to ensure that all available epi-

demic data and estimates for TB for a given setting can be fully utilised by the model, while

also maintaining an accessible interface that requires a minimum of data input. Ongoing work

will continue to focus on updating default global values for model parameters to represent TB

transmission, progression, and treatment efficacy, to incorporate future TB research findings

and WHO recommendations. Future model development is ongoing and may also include an

additional pre-reactivation compartment for latent TB if a setting is using or plans to imple-

ment new diagnostic techniques capable of identifying people at higher risk of latent TB reacti-

vation with a high degree of sensitivity [101].

As with any deterministic model, there are limitations to our approach. These are mainly

related to the limited individual-level detail typical of population-level models and the homo-

geneity between individuals belonging to the same sub-population. Moreover, as is the case

with any modelling framework, the quality of the modelling output is tightly connected to the

amount and quality of data informing it, particularly so here because of the use of country-

informed data. Also, calibration plays a strong role in obviating the paucity of information on

epidemic parameters related to infection progression.

Several key limitations to the case study must be considered when interpreting the results.

First, model projections are only as reliable as the data that informs them. For Belarus, as for

other countries, there are gaps, errors and inconsistencies in and between different datasets,

with diminishing quality when data are disaggregated by sub-population. Commonly missing

values for TB prevalence or intervention spending means that these values must be estimated,

and assumptions have to be made, as informed by local experts. In addition, determining a

mathematically optimised allocation of spending is dependent on the availability of estimates

on the effectiveness of individual interventions. Optima TB aims to inform resource allocation

across interventions based on the defined cost-coverage relationship for a given intervention.

If a given intervention can be delivered more efficiently for example through lower costs for

the same treatment regimen, this would affect the underlying ranking of the cost-effectiveness

of the interventions and thus resource allocation decisions. Although some effectiveness

parameters were informed by national data, others were sourced through a review of global lit-

erature. Effectiveness can vary across different countries and settings and the latter, therefore,

may not be contextually representative. Due to a lack of data, TB interventions for inmates are

not included in estimates of national TB spending or within the optimisation analysis.

At the time of this analysis, the capacity for comprehensive uncertainty analyses was not

included in the Optima TB model. The updated Optima TB model allows uncertainty intervals

to be specified for every input parameter, including key calibration parameters such as trans-

mission and progression rates for a given setting in addition to epidemiological inputs. Uncer-

tainty in model outputs is then generated by sampling from the distributions for each input

parameter, resulting in a distribution of values for each output. In its most basic form, these

can be used to produce confidence intervals for each output, but the full distributions allow

covariance and higher order statistics to be analysed as well.
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In addition, our assumption about the nature of the relationship between intervention

spending and coverage in Belarus did not consider the possibility of diminishing marginal

returns. Last, projections generated by the model use parameter values from the most recent

year for which data are available. Intervention impacts were assumed not to change with time

and simulations also did not assess varying allocations of resources over time. Despite this, the

optimised allocation is based on the time horizon from 2017 to 2035 in order to ensure that

immediate gains do not come at the expense of adverse impacts later on and to gauge progress

toward international targets with optimised allocations. In practice, however, optimised alloca-

tions should be revisited for timelines longer than three to five years.

Conclusions

The Optima TB tool was applied in Belarus to determine an optimised allocation of national

TB spending across TB interventions to best address defined objectives. A shift in program-

matic priorities could reduce TB prevalence and mortality by 50% by 2035, compared with a

continuation of the 2015 response. Similar reductions of around 40% in the number of people

with drug-resistant TB could be achieved, which is a key priority of the national TB pro-

gramme. These gains would be achieved through shifts from annual population-wide mass-

screening and inpatient focused care, to active case finding strategies and outpatient focused

care. Optima TB applications aim to use existing country data to help initiate or support dia-

logue between national TB programme managers and Ministries of Health and Finance, to

generate evidence-based findings to inform decisions and to reduce the burden of TB. Follow-

up impact assessments will be required to determine whether this Optima TB application

influenced future TB resource reallocations in Belarus, and whether there is evidence of

improved TB control because of any changes in decision making.
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