Northumbria Research Link

Citation: Smallman-Raynor, M. R., Cliff, A. D., Bashton, Matthew, Smith, Darren, Nelson, Andrew, Young, Greg, McCann, Clare and The (COG-UK) Consortium, (2022) Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021. Epidemiology and Infection, 150. e145. ISSN 0950-2688

Published by: Cambridge University Press

URL: https://doi.org/10.1017/S0950268822001285 <https://doi.org/10.1017/S0950268822001285>

This version was downloaded from Northumbria Research Link: https://nrl.northumbria.ac.uk/id/eprint/51463/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

cambridge.org/hyg

Original Paper

†Full list of consortium names and affiliations are in the appendix

Cite this article: Smallman-Raynor MR, Cliff AD, The COVID-19 Genomics UK (COG-UK) Consortium (2022). Spatial growth rate of emerging SARS-COV-2 lineages in England, September 2020-December 2021. *Epidemiology and Infection* **150**, e145, 1–13. https://doi.org/10.1017/S0950268822001285

Received: 30 January 2022 Revised: 4 May 2022 Accepted: 14 July 2022

Key words:

COVD-19; England; geography; SARS-CoV-2; spatial analysis

Author for correspondence:

M. R. Smallman-Raynor, E-mail: matthew.smallman-raynor@ nottingham.ac.uk

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

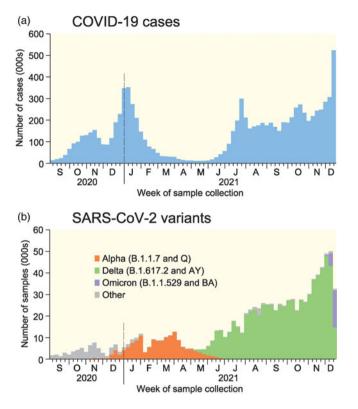
Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020–December 2021

CrossMark

M. R. Smallman-Raynor¹, A. D. Cliff² and The COVID-19 Genomics UK (COG-UK) Consortium^{3,}

¹School of Geography, University of Nottingham, Nottingham, UK; ²Department of Geography, University of Cambridge, Cambridge, UK and ³https://www.cogconsortium.uk

Abstract


This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020–December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be $2.81 \times$ faster than the Delta (B.1.617.2 and AY) variant and $3.76 \times$ faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population.

Introduction

Emerging lineages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have the potential to place significant pressure on public health systems due to increased infectivity, transmissibility, virulence, immune escape or other fitness advantage [1, 2]. Global genomic surveillance has identified >1700 SARS-CoV-2 lineages since the beginning of the COVID-19 pandemic [3, 4], of which Alpha (B.1.1.7 and Q), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) have been designated as variants of concern by the World Health Organization (WHO) on account of their global public health significance [5]. Additional lineages are currently classified on the basis of properties that are suggestive of an emerging (variants of interest) or possible future (variants under monitoring) risk to global public health [5]. The risk is well illustrated by the recent and rapid emergence of Omicron as the dominant variant in the UK, South Africa and the USA, among other countries, in late November and December 2021 [6–8].

One important epidemiological facet of an emerging SARS-CoV-2 lineage is its propensity to grow in a defined population [9]. There are well-established methods for assessing the rate of temporal growth by, for example, examining the trajectory of case doubling times or estimating the basic reproduction number, R_0 , of the agent in question [10, 11]. Viewed from a geographical perspective, these measures are essentially aspatial in that they provide very little information on the geographical growth, or spatial expansion, of the associated infection wave. To extend the examination of SARS-CoV-2 growth rates into the spatial domain, the present paper applies a robust method of spatial epidemiological analysis that is known as the *swash-backwash model of the single epidemic wave* [12] to the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium [13]. Using the spatial sequence of detection of sample variants as a proxy for the spatial wave front of infection, our examination yields estimates of the spatial growth rate of multiple SARS-CoV-2 lineages in the local authority areas of England, September 2020–December 2021.

For a total of 37 sample lineages under investigation, we present evidence of a substantial (7.6-fold) difference in the average rate of spatial growth, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Whilst the overall results for the Alpha, Delta and Omicron variants are consistent with the documented growth advantages for these lineages, several emergent Delta sublineages (AY.4.2, AY.43, AY.98 and AY.120) are found to have had a statistically significant growth advantage over the parent lineage. To our knowledge, this is the first comparative study of the spatial growth rate of multiple emerging SARS-CoV-2 lineages at the national level. It is also the first report of a spatial growth advantage for the Delta AY.43, AY.98

Fig. 1. COVID-19 cases in England, September 2020–December 2021. (a) Positive COVID-19 test specimens as recorded by the UK Government. (b) Number of sample genomes of SARS-CoV-2 in the COG-UK database by variant to 18 December 2021. All data are plotted by week of sample collection. Sources: data from GOV.UK Coronavirus (COVID-19) in the UK [17] and COVID-19 Genomics UK (COG-UK) Consortium [18].

and AY.120 lineages, and the first to document an apparently reduced spatial growth rate for a substantial number of other AY lineages that emerged in the spring and summer of 2021. The modelling of spatial growth rates is equally applicable to the analysis of RT-PCR gene target data, and we suggest it to be a potentially valuable adjunct to outbreak response procedures for SARS-CoV-2 variants in a defined population.

Data and methods

Since September 2020, successive waves of SARS-CoV-2 infection with emerging lineages of the Alpha (September 2020 onset), Delta (March 2021 onset) and Omicron (November 2021 onset) variants have been recorded in England [14–16]. The weekly record of COVID-19 cases to mid-December 2021 is plotted in Figure 1a, whilst the underpinning sequence of variants is depicted in Figure 1b. As Figure 1b shows, Alpha, Delta and Omicron achieved the status of dominant variants in December 2020, May 2021 and December 2021, respectively.

Data

We draw on the integrated national-level SARS-CoV-2 genomic surveillance records of the COG-UK Consortium [13]. These records are based on unselected (random sample) sequencing of positive SARS-CoV-2 test samples that have been identified through standard ('pillar 2') diagnostic pathways in the UK. Lineages are assigned using the Phylogenetic Assignment of Named Global Outbreak Lineages (pangolin) tool, with lineage counts made available by local authority area and week of sample collection. For further information on the data under examination, see COG-UK Consortium, COVID-19 Genomic Surveillance [18].

Lineage counts for England were accessed from the COG-UK website [18] for a 68-week period, September 2020 (epidemiological week 36, ending 5 September) to December 2021 (epidemiological week 50, ending 18 December) (Fig. 1b). The data set included geo-coded information on 979075 SARS-CoV-2 samples assigned to the 309 Lower Tier Local Authority (LTLA) divisions of England. Here, we define the 309 LTLAs according to their most recent (May 2021) status. Information on the lineage of 20 655 samples (2.1%) was either suppressed (1105) or not recorded (19 550). Of the remaining 958 420 samples, the majority (93.8%) were classified as belonging to the B.1.1.7 and Q (Alpha, 153 405 samples), B.1.617.2 and AY (Delta, 722 133 samples) and B.1.1.529 and BA (Omicron, 23 137 samples) lineages (Table 1). Samples belonging to these lineages form the basis of all our analysis.

Methods

To assess the spatial growth rate of a given SARS-CoV-2 lineage, we draw on the *swash-backwash model of the single epidemic wave* [12]. In essence, the model represents a spatial derivative of the generic *SIR* mass action models of infectious disease transmission [19]. Using the binary (presence/absence) of a disease, the model (i) allows the disaggregation of an infection wave into phases of spatial expansion and retreat and (ii) provides a means of measuring the phase transitions of geographical units from susceptible *S*, through infective *I* to recovered *R* status. See, for example, Smallman-Raynor and Cliff [20] and Smallman-Raynor *et al.* [21].

Measuring the spatial growth rate

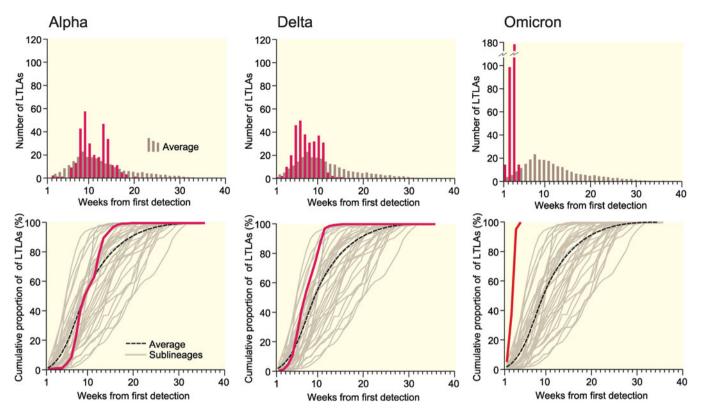
Full details of the modelling procedure are outlined by Cliff and Haggett [12]. For the purposes of the present analysis, we focus on the spatial expansion phase (i.e. the change of state from *S* to *I* across a set geographical units) for a given SARS-CoV-2 lineage. Specifically, let the first week in which the lineage was detected in England be coded as t = 1. Subsequent weeks were then coded serially as t = 2, 3, ..., T, where *T* is the number of weekly periods from the beginning to the end of the detected occurrence of the lineage. For any given geographical unit, we refer to the first week in which the lineage was detected as the *leading edge* (*LE*) of the infection wave. The average time (in weeks) to the detection of the lineage across the set of units can then be defined by a time-weighted mean, \bar{t}_{LE} , of the form

$$\bar{t}_{LE} = \frac{1}{N} \sum_{t=1}^{T} t n_t.$$
⁽¹⁾

Here, n_t is the number of units whose leading edge, *LE*, occurred in week *t* and $N = \sum n_t$. Formed in this manner, SARS-CoV-2 lineages with relatively *high* rates of spatial expansion (or rapidly developing *LE*) take on relatively *low* values of \bar{t}_{LE} (i.e. short average times to detection). Conversely, lineages with relatively *low* rates of spatial expansion (or slowly developing *LE*) take on relatively *high* values of \bar{t}_{LE} (i.e. long average times to detection).

Table 1. Estimated rate of spatial growth (\bar{t}_{LE}) of sample SARS-CoV-2 lineages in England, September 2020–December 2021

Variant/lineage	LTLAs (n)	Number of detections ^a	Earliest detection ^b ($t = 1$)	\overline{t}_{LE} (95% CI) (week
Alpha (B.1.1.7 and Q)	307	153 405	39/2020 (26 Sept.)	9.90 (9.56–10.23)
Delta (B.1.617.2 and AY)	307	722 133	12/2021 (27 March)	7.40 (7.12–7.68)
B.1.617.2	307	17 504	13/2021 (3 April)	9.11 (8.48–9.74)
AY.3	168	620	27/2021 (10 July)	14.12 (13.26–14.98
AY.4	307	547 403	12/2021 (27 March)	9.45 (9.24–9.66)
AY.4.1	133	416	25/2021 (26 June)	9.50 (8.61–10.40)
AY.4.2	307	77 391	25/2021 (26 June)	6.21 (5.86–6.57)
AY.4.2.1	307	11 541	29/2021 (24 July)	9.43 (8.91–9.94)
AY.4.3	188	781	19/2021 (15 May)	19.93 (18.92–20.93
AY.4.5	158	742	24/2021 (19 June)	15.06 (13.76–16.3
AY.5	307	26 111	15/2021 (17 April)	9.83 (9.38-10.28)
AY.6	306	17 405	17/2021 (1 May)	8.88 (8.48-9.27)
AY.7	276	3627	18/2021 (8 May)	9.02 (8.39–9.65)
AY.8	141	1241	16/2021 (24 April)	8.60 (7.90-9.29)
AY.9	304	10 136	14/2021 (10 April)	10.88 (10.33–11.4
AY.9.2	251	1990	28/2021 (17 July)	10.44 (9.70–11.17
AY.10	118	683	15/2021 (17 April)	8.50 (7.96–9.04)
AY.25	130	486	31/2021 (7 Aug.)	13.02 (12.26–13.7
AY.33	105	319	25/2021 (26 June)	17.84 (16.63–19.0
AY.34	268	3088	30/2021 (31 July)	10.88 (10.19–11.5
AY.36	256	1999	28/2021 (17 July)	12.69 (12.05–13.3
AY.42	115	338	27/2021 (10 July)	10.08 (8.81-11.34
AY.43	307	23 068	27/2021 (10 July)	5.56 (5.27-5.86)
AY.46	305	9461	21/2021 (29 May)	11.23 (10.72-11.7
AY.46.5	304	8649	23/2021 (12 June)	10.13 (9.66-10.61
AY.87	172	688	20/2021 (22 May)	10.28 (9.28-11.29
AY.89	173	544	21/2021 (29 May)	13.97 (13.17–14.7
AY.90	218	1202	21/2021 (29 May)	13.52 (12.54–14.5
AY.98	307	22 465	22/2021 (5 June)	6.34 (5.99–6.70)
AY.98.1	172	621	25/2021 (26 June)	15.77 (14.80–16.7
AY.109	116	441	25/2021 (26 June)	17.59 (16.67–18.5
AY.111	296	4649	21/2021 (29 May)	15.25 (14.46–16.0
AY.120	306	18 400	20/2021 (22 May)	6.56 (6.16-6.97)
AY.122	302	5018	21/2021 (29 May)	13.80 (13.07–14.5
AY.124	119	424	25/2021 (26 June)	12.99 (11.93-14.0
AY.125	162	534	26/2021 (3 July)	16.65 (15.79–17.5
Omicron (B.1.1.529 and BA)	304	23 137	47/2021 (27 Nov.) ^c	2.63 (2.56–2.71) ^c
Average	233	46 450		11.27 (10.03-12.50


aExcludes 1105 detections for which lineage data are suppressed and 19 550 detections for which lineage data are not available. ^bEpidemiological week/year, with the last day of the week given in parentheses.

^cExcludes a lone detection in week 43 (30 October).

^dIndexed to week 47; \bar{t}_{LE} = 6.62 (6.53, 6.70) when indexed to week 43.

Application of the model

Equation (1) was used to estimate the spatial growth rate of sample SARS-CoV-2 lineages for which the earliest detection in England occurred in the time period covered by the dataset (September 2020-December 2021) and for which substantial geographical spread had been documented. To ensure the inclusion

Fig. 2. Spatial leading edges (*LE*) of the Alpha (B.1.1.7 and Q), Delta (B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) variants in England, September 2020–December 2021. The graphs plot, on a weekly basis, the non-cumulative count (upper) and cumulative proportion (lower) of LTLAs in which each of the three variants was first detected. The horizontal (time) axes are indexed to the epidemiological week of first detection (t=1) of the corresponding variant. Average curves, formed across the set of sample lineages in Table 1, are plotted for reference.

of sufficient observations for geographical analysis, the sample was limited to lineages that had been detected in at least one-third of the 309 LTLAs by December 2021. Based on these criteria, the sample consisted of 37 lineages. Summary details of the sample, including the number of LTLAs in which each lineage was detected, the total count of detections over the study period and the earliest date of detection, are provided in Table 1.

For each lineage, equation (1) was fitted with t = 1 set to the week of earliest detection in Table 1. In the instance of Omicron, retrospective analysis has identified a lone detection of the BA.1 lineage in epidemiological week 43 of 2021 (week ending 30 October), 4 weeks prior to the subsequent detection and apparent onset of widespread transmission of the variant in epidemiological week 47 (week ending 27 November). For the purposes of the present analysis, we set week 47 as t = 1 for Omicron, but we also report the computed value of \bar{t}_{LE} based on the earlier detection in week 43. Finally, we exclude two LTLAs (City of London and Isles of Scilly) from all analysis on account of the suppression of lineage data due to their small populations. Data analysis was performed in Minitab[®]17 (Minitab Inc., Pennsylvania, USA) and data mapping in QGIS 3.10.14-A Coruña (QGIS.org) using Local Authority Districts (May 2021) UK and Regions (December 2020) EN shapefiles from the Office for National Statistics (ONS) [22].

Results

Table 1 confirms that the 37 sample lineages were geographically extensive in their transmission, with 29 having been detected in >150 LTLAs, 21 in >250 LTLAs, 16 in >300 LTLAs and nine

in the complete set of 307 LTLAs under examination. The majority (23) were associated with >1000 detections, 13 with >10 000 detections and three with >100 000 detections. Delta (B.1.617.2 and AY) was the most common lineage (722 133 detections) and AY.4 the most common sublineage (547 403 detections), with AY lineages accounting for 33 of the spread events under examination. In turn, the majority of lineages emerged (as judged by the date of earliest detections) in the spring and summer of 2021, as the Delta infection wave was evolving both domestically and internationally.

Spatial growth curves and leading edge (LE) maps

The upper graphs in Figure 2 plot the count of LTLAs by week of earliest detection of the Alpha (B.1.1.7 and Q), Delta (B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) variants, where weeks are indexed to the earliest detection of the respective variants (Table 1). The lower graphs are spatial growth curves, formed by replotting the information in the upper graphs as a cumulative proportion of LTLAs. Average curves for the set of sample lineages in Table 1 are shown for reference.

Together, the graphs in Figure 2 portray the temporal development of the spatial leading edges (*LE*) for each variant. The geographical expression of these *LE* is captured by the choropleth maps in Figure 3 which plot the week of earliest detection of each variant in the set of LTLAs. The sequentially more rapid spatial growth of the variants (Alpha \rightarrow Delta \rightarrow Omicron) is evidenced by the sequentially steeper spatial growth curves (Fig. 2) and the sequentially shorter periods to earliest detection (Fig. 3). The latter feature is emphasised when earliest detections are formed as regional averages in Figure 4.

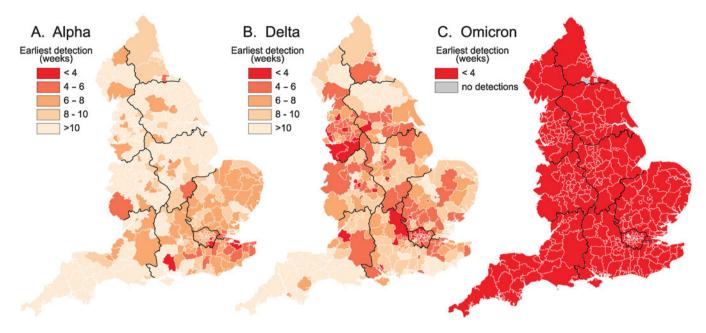
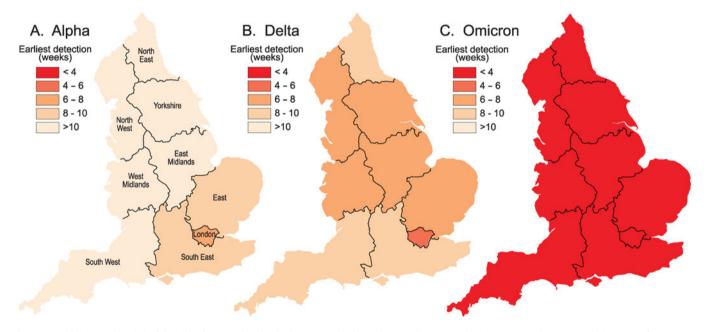



Fig. 3. Spatial leading edges (*LE*) of the Alpha (B.1.1.7 and Q), Delta (B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) variants in the LTLAs of England, September 2020–December 2021. Maps are indexed to the epidemiological week of first detection (= week 1) of the corresponding variant and plot the number of weeks to first detection in each LTLA.

Fig. 4. Spatial leadings edges (*LE*) of the Alpha (B.1.1.7 and Q), Delta (B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) variants in the nine standard regions of England, September 2020-December 2021. Maps plot the average time (in weeks) to first detection of a given variant in each regional subset of LTLAs.

Rates of spatial growth (t_{LE})

The right-hand column in Table 1 summarises the results of the application of equation (1) to each of the sample lineages. Computed values of \bar{t}_{LE} and associated 95% confidence intervals (95% CI) are given, along with an overall average value of \bar{t}_{LE} for the entire sample. As noted above, lineages with relatively *high* rates of spatial expansion (or rapidly developing *LE*) are represented by relatively *low* values of \bar{t}_{LE} (i.e. short average times to detection), while lineages with relatively *low* rates of spatial expansion (or slowly developing *LE*) take on relatively *high* values of \bar{t}_{LE} (i.e. long average times to detection). In this manner, the

table confirms the sequential increase in the spatial growth rate for Alpha, Delta and Omicron. On average, the earliest detection of the Alpha variant in a given LTLA occurred at $\bar{t}_{LE} = 9.90$ (95% CI 9.56–10.23) weeks after the earliest sampled detection in England. This reduced to 7.40 (95% CI 7.12–7.68) weeks for Delta and 2.63 (95% CI 2.56–2.71) weeks for Omicron.

Delta AY lineages

Figure 5 is based on the information in Table 1 and plots the values of \bar{t}_{LE} for B.1.617.2 and AY lineages in order, from the lowest (left, high values of \bar{t}_{LE}) to the highest (right, low values of

2

4

6

8

10

12

14

16

weeks

 \overline{t}_{LE}

95% C

Average

95% CI

September 2020–December 2021. The graph plots values of \bar{t}_{LE} and associated 95% CI from Table 1. Values are ordered from the lowest (left, high values of \bar{t}_{LF}) to the highest (right, low values of \bar{t}_{LE}) rates of spatial growth. Values are plotted on an inverted vertical scale to facilitate interpretation. The average value of \bar{t}_{IF}

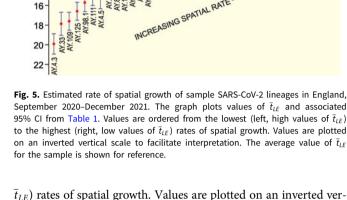
Alpha

Omicron

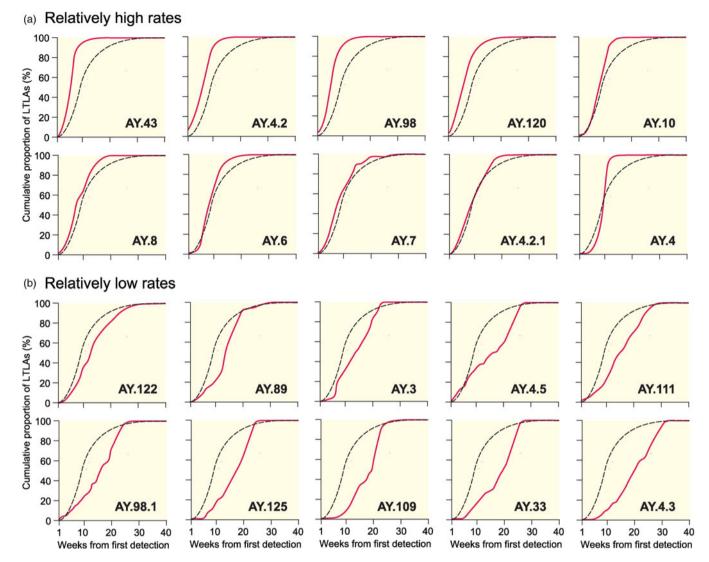
 \bar{t}_{LE}) rates of spatial growth. Values are plotted on an inverted vertical scale to facilitate interpretation. The average value of \bar{t}_{LE} , formed across the sample set of lineages in Table 1, is indicated for reference as are the \overline{t}_{LE} for the Alpha (B.1.1.7 and Q), Delta (B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) variants. Spatial growth curves, formed in the manner of Figure 2, are plotted for a sample of 20 AY lineages with relatively high and low rates of spatial growth in Figure 6.

There is a 7.6-fold difference in the range of values of \bar{t}_{LE} in Figure 5, from Delta AY.4.3 with the lowest spatial growth rate (19.93 weeks) to Omicron with the highest (2.63 weeks). A group of four AY lineages (AY.4.2, AY.43, AY.98 and AY.120), first detected in the period from mid-May to mid-July 2021, are positioned between Delta and Omicron in Figure 5 and display rates of spatial growth that are significantly higher (as judged by 95% CI) than the aggregate rate for the Delta variant. In contrast, the overwhelming majority of AY lineages display statistically lower - in many instances substantially lower - spatial growth rates (as judged by 95% CI) than the aggregate rate for the Delta variant.

Discussion


Recent experience has underscored the importance of the ongoing tracking, monitoring and analysis of emerging SARS-CoV-2 lineages with a view to mitigating the impacts of the COVID-19 pandemic [23]. We have used a robust model of spatial epidemiological analysis to estimate the rate of spatial growth of multiple lineages of the virus in England over a 68-week period, September 2020-December 2021. We have shown that the Alpha, Delta and Omicron variants took an average of 9.90, 7.40 and 2.63 weeks, respectively, to reach the set of LTLAs under examination (Table 1 and Fig. 5). Expressed in relative terms, the leading spatial edges were 1.34× faster (Delta vs. Alpha), 2.81× faster (Omicron vs. Delta) and 3.76× faster (Omicron vs. Alpha). Our estimates scale to the approximate length of time that Alpha (12 weeks), Delta (8 weeks) and Omicron (3 weeks) took to establish themselves as the dominant variants in England [18], and are consistent with evidence for the fitness advantage of Delta over Alpha and Omicron over Delta [11, 24, 25].

Of the 121 Delta AY lineages detected in England to December 2021 and included in the genomic surveillance records of the COG-UK Consortium, 33 lineages met the geographical criterion for inclusion in the current analysis. In interpreting the results for these lineages, we note that AY designations are phylogenetically defined and do not necessarily denote any fundamental biological differences between the lineages [26]. Moreover, results of the type documented in this paper are context dependent and cannot be interpreted as evidence of a change in biological transmissibility, immune escape or other fitness advantage. Subject to these caveats, we have identified four AY lineages (AY.4.2, AY.43, AY.98 and AY.120) for which the rate of spatial growth exceeded the aggregate rate for the Delta variant. These lineages had been detected in all (AY.4.2, AY.43 and AY.98) or most (AY.120) of the local authority areas under investigation, and each had been associated with considerably more than 10 000 detections (Table 1). Table 2 summarises the global status of these four lineages as of 9 January 2022. With the exception of the AY.43 lineage, which was prevalent in a number of European countries and associated with >267 000 detections worldwide, the majority of detections of these lineages originated from the UK.


Our findings for the AY.4.2 and AY.43 lineages are consistent with their respective designations by the UK Health Security Agency as a distinct variant under investigation (VUI-210CT-01) and a variant of concern [32, 33]. Preliminary investigations indicated the AY.4.2 lineage to be associated with a higher growth rate and a higher household secondary attack rate, but with no significant reduction in vaccine effectiveness, as compared to the parent lineage [32, 34]. Although the factors underpinning the higher growth rate of AY.4.2 remain to be established [32, 35, 36], we observe that this lineage accounted for a maximum of 24.4% of all detections (week ending 4 December 2021) before being outcompeted by Omicron [18]. Similarly, the status of the AY.43 lineage in terms of transmission advantage and/or immune escape remains to be determined, although further investigation is merited as new AY.43 sublineages have recently been reported from Brazil [37]. Finally, our identification of a rapid rate of spatial growth for the AY.98 and AY.120 lineages, approximating the estimated rates for AY.4.2 and AY.43, is noteworthy. Whilst very little has been documented on the epidemiological facets of these lineages, both have been identified in a number of countries in Europe and elsewhere (Table 2) and would seem to merit further investigation on the basis of the findings presented here.

With the foregoing exceptions, our analysis has shown that many emerging AY lineages in England in the spring and summer of 2021 were associated with spatial growth rates that were lower (in some instances, substantially lower) than the aggregate rate for the Delta variant (Table 1 and Fig. 5). Multiple biological (e.g. reduced infectivity or transmissibility) and contextual (e.g. progressive expansion of the national COVID-19 vaccination programme) factors may account for this observation. Importantly, there is no evidence of a temporal trend in the observed rates of spatial growth that would be suggestive of either (i) a biological selection pressure in favour of a growth advantage of emerging lineages or (ii) a progressive contextual effect in the form of, for example, increasing levels of vaccination coverage or natural immunity that would serve to retard growth rates.

It is important to emphasise the broader societal and epidemiological context to the spread of SARS-CoV-2 lineages that will have influenced our estimates of \bar{t}_{LE} in Table 1 and

Fig. 6. Spatial growth curves for sample Delta sublineages in England, March-December 2021. Curves have been formed in the manner of the lower graphs in Figure 2, with the average curve plotted for reference. Lineages are ordered according to the values of \bar{t}_{LE} in Table 1 and are defined as having relatively high (i.e. low values of \bar{t}_{LE} ; upper graphs, a) and relatively low (i.e. high values of \bar{t}_{LE} ; lower graphs, b) rates of spatial growth.

Table 2. Worldwide detection of sar	nple Delta AY lineages with relatively	high estimated rates of spatial	growth (status: 9 January 2022)
-------------------------------------	--	---------------------------------	---------------------------------

Variant	Countries	Global prevalence (%)	Number of detections	Predominant countries (proportion of global detections)
AY.4.2	52	1	82 038	UK (90%), Denmark (4%), Germany (1%), Poland (1%), France (1%)
AY.43	128	4	267 426	Germany (15%), UK (13%), Denmark (13%), France (12%), Belgium (5%)
AY.98	66	1	41 507	UK (91%), USA (2%), Germany (1%), Denmark (1%), Ireland (1%)
AY.120	74	1	30 320	UK (85%), India (3%), USA (3%), Germany (2%), France (1%)

Sources: data from cov-lineages.org [27] and Latif et al. [28-31].

Figure 5. For the time period covered by the present study, non-pharmaceutical interventions (NPIs) included: a tier system of local lockdown in October 2020; two periods of national lockdown (November–December 2020 and January–March 2021); a phased lifting of national restrictions in the period to July 2021; and the implementation of 'Plan B' control guidelines against the Omicron variant in December 2021 [38]. Whilst the phases

of national lockdown had significant impacts on population mobility, mixing and associated opportunities for SARS-CoV-2 transmission [39], it is noteworthy that the majority (27) of lineages included in the present analysis were first detected in the period from May to July 2021 (Table 1). This corresponded with the final steps in the Government's four-stage roadmap for the lifting of lockdown measures and was marked by a substantial easing and eventual removal of restrictions on social mixing [38]. To set against this easing of restrictions, lineage growth rates will have been retarded to an unknown extent by the immunity afforded by prior infection with antigenically similar SARS-CoV-2 variants (B.1.617.2 and AY sublineages, in particular) and by the phased rollout of the national COVID-19 vaccination programme [40].

The results we have presented are subject to the limitations of the available lineage data. Although the COG-UK Consortium genomic surveillance data are recognised for their extent and reliability [41], the data are formed as a sample of positive SARS-CoV-2 test results and are subject to the limitations and biases of sample data. In this context, we note that the cumulative coverage of the COG-UK records for England was estimated at 13.7% of people with positive SARS-CoV-2 test results to October 2021 [42]. We also note that the sample test data are derived from a laboratory system with testing capabilities that vary by region and time period [9]. Such space-time variations have potentially important implications for analyses, of the type outlined in the present paper, that are dependent on the dates of first detection of SARS-CoV-2 lineages in a multi-region setting.

Our results are also subject to the underpinning assumptions of the analytical procedure. In particular, the computation of \overline{t}_{LE} is dependent on the specification of the index week (i.e. the week that a given lineage was first detected in England) and the degree to which this reflects the date of actual emergence of the lineage in England. The extent to which the sample data accurately track the spatial expansion of the LE for a given lineage, the variable contributions of international travel- and community-related transmission to the development of the LE, and the geographical starting point(s) of a given lineage in the national transmission network, will also have influenced our results in unknown ways. For example, the early involvement and high degree of geographical connectivity of London and the South East may have served to accelerate the spatial transmission of the Alpha variant in the latter months of 2020 [14]. The observed rapid spread of the Delta variant may reflect international importations and onwards transmission from multiple different geographical locations in the spring of 2021 [15, 43], whilst early cases of the Omicron variant were observed in highly connected regions at a time of reduced NPIs in November and December 2021 [44].

For the purposes of the present analysis, our application of the swash-backwash model has utilised genomic surveillance data. We note, however, that the modelling approach is equally applicable to the analysis of RT-PCR gene target data. As such, the approach may be used to facilitate timely assessments of the spatial growth of emerging SARS-CoV-2 variants and thereby contribute to rapid outbreak responses [9, 45].

Further insights into the spatial growth and decay of SARS-CoV-2 lineages may be gained by application of the full swash-backwash model, but this is dependent on the substantial spatial retreat of any given lineage from the population. Here we note that, with the exception of AY.10 (last detected in July 2021) and AY.8 and Alpha (B.1.1.7 and Q) (both last detected in August/September 2021), there is evidence of the circulation of all the lineages included in Table 1 in the weeks to December 2021.

We have demonstrated, for the first time, a robust method for assessing and comparing the rate of spatial growth of multiple SARS-CoV-2 lineages in a set of geographical areas. We suggest that this approach represents a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population.

Acknowledgements. COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) [grant code: MC_PC_19027], and Genome Research Limited, operating as the Wellcome Sanger Institute. The authors acknowledge use of data generated through the COVID-19 Genomics Programme funded by the Department of Health and Social Care. The views expressed are those of the author and not necessarily those of the Department of Health and Social Care or PHE or UKHSA.

Conflict of interest. None.

Data availability statement. The data that support the findings of this study are available at Wellcome Sanger Institute COVID-19 Genomic Surveillance (https://covid19.sanger.ac.uk/lineages/raw).

References

- 1. Dubey A et al. (2021) Emerging SARS-CoV-2 variants: genetic variability and clinical implications. *Current Microbiology* **79**, 20.
- 2. Mukherjee R and Satardekar R (2021) Why are some coronavirus variants more infectious? *Journal of Biosciences* 46, 101.
- O'Toole Á et al. (2021) Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. *Virus Evolution* 7, veab064.
- 4. **GISAID**. Available at https://www.gisaid.org/hcov19-variants (Accessed 11 January 2022).
- World Health Organization. Tracking SARS-CoV-2 variants. Available at https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (Accessed 11 January 2022).
- UK Health Security Agency. Variants of concern or under investigation: data up to 22 December 2021. Available at https://www.gov.uk/ government/publications/covid-19-variants-genomically-confirmed-casenumbers/variants-distribution-of-case-data-23-december-2021 (Accessed 11 January 2022).
- Centers for Disease Control and Prevention. COVID data tracker. Available at https://covid.cdc.gov/covid-data-tracker/#nowcast-heading (Accessed 11 January 2022).
- Latif AA et al. (2022) BA.1 Lineage Report. Outbreak.info. Available at https://outbreak.info/situation-reports?pango=BA.1 (Accessed 11 January 2022).
- Ward T et al. (2021) Growth, reproduction numbers and factors affecting the spread of SARS-CoV-2 novel variants of concern in the UK from October 2020 to July 2021: a modelling analysis. BMJ Open 11, e056636.
- UK Health Security Agency (2021) SARS-CoV-2 Variants of Concern and Variants under Investigation in England Technical Briefing 31. London: UK Health Security Agency, p. 43.
- UK Health Security Agency (2021) SARS-CoV-2 Variants of Concern and Variants under Investigation in England Technical Briefing 33. London: UK Health Security Agency, p. 42.
- Cliff AD and Haggett P (2006) A swash-backwash model of the single epidemic wave. *Journal of Geographical Systems* 8, 227–252.
- COVID-19 Genomics UK (COG-UK) Consortium (2020) An integrated national scale SARS-CoV-2 genomic surveillance network. *Lancet Microbe* 1, e99–e100.
- Davies NG et al. (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055.
- Mishra S et al. (2021) Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England. EClinicalMedicine 39, 101064.
- UK Health Security Agency (2021) SARS-CoV-2 Variants of Concern and Variants under Investigation in England Technical Briefing: Update on Hospitalisation and Vaccine Effectiveness for Omicron VOC-21NOV-01 (B.1.1.529). London: UK Health Security Agency, p. 17.
- GOV.UK. Coronavirus (COVID-19) in the UK. Available at https://coronavirus.data.gov.uk/ (Accessed 11 January 2022).

- COVID-19 Genomics UK (COG-UK) Consortium. COVID-19 Genomic Surveillance. Available at https://covid19.sanger.ac.uk/lineages/raw (Accessed 11 January 2022).
- 19. Anderson RM and May R (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press, p. 757.
- Smallman-Raynor MR and Cliff AD (2014) Abrupt transition to heightened poliomyelitis epidemicity in England and Wales, 1947–1957, associated with a pronounced increase in the geographical rate of disease propagation. *Epidemiology and Infection* 142, 577–591.
- Smallman-Raynor MR, Cliff AD and Stickler PJ (2022) Meningococcal meningitis and coal mining in provincial England: geographical perspectives on a major epidemic, 1929–33. *Geographical Analysis* 54, 197–216. doi: 10.1111/gean.12272.
- 22. Office for National Statistics (ONS). Open geography portal. Available at https://geoportal.statistics.gov.uk/ (Accessed 11 January 2022).
- Angeletti S et al. (2022) SARS-CoV-2 AY.4.2 variant circulating in Italy: genomic preliminary insight. *Journal of Medical Virology* 94, 1689–1692. doi: 10.1002/jmv.27451.
- 24. He X et al. (2021) The challenges of COVID-19 Delta variant: prevention and vaccine development. *MedComm* (2020) 2, 846–854.
- Mahase E (2021) Covid-19: do vaccines work against omicron-and other questions answered. British Medical Journal 375, n3062.
- Public Health England (2021) SARS-CoV-2 Variants of Concern and Variants under Investigation in England Technical Briefing 23. London: Public Health England, p. 61.
- cov.lineages.org. PANGO lineages: latest epidemiological lineages of SARS-CoV-2. Available at https://cov-lineages.org/ (Accessed 11 January 2022).
- Latif AA et al. (2022) AY.4.2 Lineage Report. Outbreak.info. Available at https://outbreak.info/situation-reports?pango=BA.1 (Accessed 11 January 2022).
- Latif AA et al. (2022) AY.43 Lineage Report. Outbreak.info. Available at https://outbreak.info/situation-reports?pango=BA.1 (Accessed 11 January 2022).
- Latif AA et al. (2022) AY.98 Lineage Report. Outbreak.info. Available at https://outbreak.info/situation-reports?pango=BA.1 (Accessed 11 January 2022).
- Latif AA et al. (2022) AY.120 Lineage Report. Outbreak.info. Available at https://outbreak.info/situation-reports?pango=BA.1 (Accessed 11 January 2022).
- UK Health Security Agency (2021) SARS-CoV-2 Variants of Concern and Variants under Investigation in England Technical Briefing 27. London: UK Health Security Agency, p. 63.
- UK Health Security Agency (2021) SARS-CoV-2 Variants of Concern and Variants under Investigation in England Technical Briefing 29. London: UK Health Security Agency, p. 45.
- 34. Le Page M (2021) New variant gains ground. New Scientist 252, 8.
- UK Health Security Agency (2021) SARS-CoV-2 Variants of Concern and Variants under Investigation in England Technical Briefing 26. London: UK Health Security Agency, p. 31.
- 36. UK Health Security Agency. Variants of concern or under investigation: data up to 5 January 2022. Available at https://www.gov.uk/government/ publications/covid-19-variants-genomically-confirmed-case-numbers/ variants-distribution-of-case-data-7-january-2022 (Accessed 11 January 2022).
- Lima ARJ et al. (2021) SARS-CoV-2 genomic monitoring in the São Paulo State unveils new sublineages of the AY.43 strain. medRxiv. https://doi.org/10.1101/2021.11.29.21266819.
- Brown J and Kirk-Wade E (2021) Coronavirus: A History of 'Lockdown Laws' in England. London: House of Commons Library, p. 44.
- Shepherd HER et al. (2021) Domestic and international mobility trends in the United Kingdom during the COVID-19 pandemic: an analysis of Facebook data. International Journal of Health Geographics 20, 46.
- NHS England. COVID-19 vaccinations archive. Available at https://www. england.nhs.uk/statistics/statistical-work-areas/covid-19-vaccinations/ covid-19-vaccinations-archive/ (Accessed 11 January 2022).
- 41. Robishaw JD et al. (2021) Genomic surveillance to combat COVID-19: challenges and opportunities. Lancet Microbe 2, e481–e484.

- COVID-19 Genomics UK (COG-UK) Consortium (2020) Coverage reports. Available at https://www.cogconsortium.uk/news-reports/coverage-reports/ (Accessed 11 January 2022).
- McCrone JT et al. (2021) Context-specific emergence and growth of the SARS-CoV-2 Delta variant. medRxiv. doi:10.1101/2021.12.14.21267606.
- 44. UK Health Security Agency (2021) SARS-CoV-2 Variants of Concern and Variants under Investigation in England. Variant of Concern: Omicron, VOC21NOV-01 (B.1.1.529) Technical Briefing 30. London: UK Health Security Agency, p. 40.
- 45. European Centre for Disease Prevention and Control/World Health Organization Regional Office for Europe (2021) Methods for the detection and characterisation of SARS-CoV-2 variants – first update. Available at https://www.ecdc.europa.eu/sites/default/files/documents/Methods-forthe-detection-and-characterisation-of-SARS-CoV-2-variants-first-update. pdf (Accessed 23 April 2022).

Appendix: The COVID-19 Genomics UK (COG-UK) Consortium

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation: Samuel C Robson ^{13, 84}

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools:

Thomas R Connor^{11, 74} and Nicholas J Loman⁴³

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, Software and analysis tools, and Visualisation: Tanya Golubchik⁵

Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation: Rocio T Martinez Nunez⁴⁶

Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools:

David Bonsall ⁵

Funding acquisition, Leadership and supervision, Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation: Andrew Rambaut ¹⁰⁴

Funding acquisition, Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools: Luke B Snell ¹²

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, Software and analysis tools, and Visualisation: Rich Livett ¹¹⁶

Funding acquisition, Leadership and supervision, Metadata curation, Project administration, and Samples and logistics: Catherine Ludden $^{20,\ 70}$

Funding acquisition, Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis: Sally Corden ⁷⁴ and Eleni Nastouli ^{96, 95, 30}

Funding acquisition, Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools: Gaia Nebbia¹²

Funding acquisition, Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis: Ian Johnston ¹¹⁶ Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis: Katrina Lythgoe ⁵, M. Estee Torok ^{19, 20} and Ian G Goodfellow ²⁴

Leadership and supervision, Metadata curation, Project administration, Samples and logistics, and Visualisation: Jacqui A Prieto ^{97, 82} and Kordo Saeed ^{97, 83}

Leadership and supervision, Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools: David K Jackson 116

Leadership and supervision, Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation: Catherine Houlihan 96, 9

Leadership and supervision, Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation: Dan Frampton ^{94, 95}

Metadata curation, Project administration, Samples and logistics, Sequencing and analysis, and Software and analysis tools: William L Hamilton 19 and Adam A Witney 4

Funding acquisition, Samples and logistics, Sequencing and analysis, and Visualisation: Giselda Bucca ¹⁰¹

Funding acquisition, Leadership and supervision, Metadata curation, and **Project administration:** Cassie F Pope 40, 41

Funding acquisition, Leadership and supervision, Metadata curation, and Samples and logistics: Catherine Moore 74

Funding acquisition, Leadership and supervision, Metadata curation, and Sequencing and analysis: Emma C Thomson 5

Funding acquisition, Leadership and supervision, Project administration, and Samples and logistics: Ewan M Harrison 116, 102

Funding acquisition, Leadership and supervision, Sequencing and analysis, and Visualisation: Colin P Smith 101

Leadership and supervision, Metadata curation, Project administration, and Sequencing and analysis: Fiona Rogan 77

Leadership and supervision, Metadata curation, Project administration, and Samples and logistics:

Shaun M Beckwith ⁶, Abigail Murray ⁶, Dawn Singleton ⁶, Kirstine Eastick ³⁷, Liz A Sheridan ⁹⁸, Paul Randell ⁹⁹, Leigh M Jackson ¹⁰⁵, Cristina V Ariani ¹¹⁶ and Sónia Goncalves 116

Leadership and supervision, Metadata curation, Samples and logistics, and Sequencing and analysis:

Derek J Fairley ^{3, 77}, Matthew W Loose ¹⁸ and Joanne Watkins ⁷⁴

Leadership and supervision, Metadata curation, Samples and logistics, and Visualisation: Samuel Moses 25, 106

Leadership and supervision, Metadata curation, Sequencing and analysis, and Software and analysis tools: Sam Nicholls 43, Matthew Bull 74 and Roberto Amato 116

Leadership and supervision, Project administration, Samples and logistics, and Sequencing and analysis: Darren L Smith 36, 65, 6

Leadership and supervision, Sequencing and analysis, Software and analysis tools, and Visualisation: David M Aanensen^{14, 116} and Jeffrey C Barrett¹¹⁶

Metadata curation, Project administration, Samples and logistics, and Sequencing and analysis: Dinesh Aggarwal ^{20, 116, 70}, James G Shepherd ⁵³, Martin D Curran ⁷¹ and Surendra Parmar ⁷¹

Metadata curation, Project administration, Sequencing and analysis, and Software and analysis tools: Matthew D Parker 109

Metadata curation, Samples and logistics, Sequencing and analysis, and Software and analysis tools: Catryn Williams 74

Metadata curation, Samples and logistics, Sequencing and analysis, and Visualisation: Sharon Glaysher ⁶⁸

Metadata curation, Sequencing and analysis, Software and analysis tools, and Visualisation:

Anthony P Underwood 14, 116, Matthew Bashton 36, 65, Nicole Pacchiarini 74, Katie F Loveson⁸⁴ and Matthew Byott^{95, 96}

Project administration, Sequencing and analysis, Software and analysis tools, and Visualisation: Alessandro M Carabelli²⁰

Funding acquisition, Leadership and supervision, and Metadata curation: Kate E Templeton 56, 104

Funding acquisition, Leadership and supervision, and Project administration: Thushan I de Silva ¹⁰⁹, Dennis Wang ¹⁰⁹, Cordelia F Langford ¹¹⁶ and John Sillitoe 116

Funding acquisition, Leadership and supervision, and Samples and logistics:

Rory N Gunson 55

Funding acquisition, Leadership and supervision, and Sequencing and analysis:

Simon Cottrell ⁷⁴, Justin O'Grady ^{75, 103} and Dominic Kwiatkowski ^{116, 108}

Leadership and supervision, Metadata curation, and Project administration: Patrick J Lillie 37

Leadership and supervision, Metadata curation, and Samples and logistics: Nicholas Cortes ³³, Nathan Moore ³³, Claire Thomas ³³, Phillipa J Burns ³⁷, Tabitha W Mahungu 80 and Steven Liggett 86

Leadership and supervision, Metadata curation, and Sequencing and analysis:

Angela H Beckett 13, 81 and Matthew TG Holden 73

Leadership and supervision, Project administration, and Samples and logistics:

Lisa J Levett ³⁴, Husam Osman ^{70, 35} and Mohammed O Hassan-Ibrahim ⁹⁹

Leadership and supervision, Project administration, and Sequencing and analysis:

David A Simpson 77

Leadership and supervision, Samples and logistics, and Sequencing and analysis:

Meera Chand ⁷², Ravi K Gupta ¹⁰², Alistair C Darby ¹⁰⁷ and Steve Paterson ¹⁰⁷

Leadership and supervision, Sequencing and analysis, and Software and analysis tools:

Oliver G Pybus ²³, Erik M Volz ³⁹, Daniela de Angelis ⁵², David L Robertson ⁵³, Andrew J Page 75 and Inigo Martincorena 116

Leadership and supervision, Sequencing and analysis, and Visualisation: Louise Aigrain ¹¹⁶ and Andrew R Bassett ¹¹⁶

Nick Wong ⁵⁰, Yusri Taha ⁸⁹, Michelle J Erkiert ⁹⁹ and Michael H Spencer Chapman ^{116, 102}

Metadata curation, Project administration, and Sequencing and analysis: Rebecca Dewar⁵⁶ and Martin P McHugh^{56, 111}

Metadata curation, Project administration, and Software and analysis tools: Siddharth Mookerjee 38, 57

Metadata curation, Project administration, and Visualisation:

Stephen Aplin⁹⁷, Matthew Harvey⁹⁷, Thea Sass⁹⁷, Helen Umpleby⁹⁷ and Helen Wheeler 97

Metadata curation, Samples and logistics, and Sequencing and analysis: James P McKenna³, Ben Warne⁹, Joshua F Taylor²², Yasmin Chaudhry²⁴, Rhys

Izuagbe ²⁴, Aminu S Jahun ²⁴, Gregory R Young ^{36, 65}, Claire McMurray ⁴ Clare M McCann^{65, 66}, Andrew Nelson^{65, 66} and Scott Elliott⁶⁸

Metadata curation, Samples and logistics, and Visualisation: Hannah Lowe²⁵

Metadata curation, Sequencing and analysis, and Software and analysis tools

Anna Price ¹¹, Matthew R Crown ⁶⁵, Sara Rey ⁷⁴, Sunando Roy ⁹⁶ and Ben Temperton 105

Metadata curation, Sequencing and analysis, and Visualisation: Sharif Shaaban⁷³ and Andrew R Hesketh¹⁰¹

Project administration, Samples and logistics, and Sequencing and analysis: Kenneth G Laing⁴¹, Irene M Monahan⁴¹ and Judith Heaney

Project administration, Samples and logistics, and Visualisation: Emanuela Pelosi 97, Siona Silviera 97 and Eleri Wilson-Davies 97

Samples and logistics, Software and analysis tools, and Visualisation: Helen Fryer 5

Sequencing and analysis, Software and analysis tools, and Visualization: Helen Adams⁴, Louis du Plessis²³, Rob Johnson³⁹, William T Harvey^{53, 42}, Joseph Hughes ⁵³, Richard J Orton ⁵³, Lewis G Spurgin ⁵⁹, Yann Bourgeois ⁸¹, Chris Ruis¹⁰², Áine O'Toole¹⁰⁴, Marina Gourtovaia¹¹⁶ and Theo Sanderson¹¹⁶

Funding acquisition, and Leadership and supervision:

Christophe Fraser ⁵, Jonathan Edgeworth ¹², Judith Breuer ^{96, 29}, Stephen L Michell ¹⁰⁵ and John A Todd ¹¹⁵

Funding acquisition, and Project administration:

Michaela John¹⁰ and David Buck¹¹⁵

Leadership and supervision, and Metadata curation: Kavitha Gajee 37 and Gemma L Kay 75

Leadership and supervision, and Project administration:

Sharon J Peacock 20, 70 and David Heyburn 74

Leadership and supervision, and Samples and logistics:

Katie Kitchman ³⁷, Alan McNally ⁴³, ⁹³, David T Pritchard ⁵⁰, Samir Dervisevic ⁵⁸, Peter Muir ⁷⁰, Esther Robinson ⁷⁰, ³⁵, Barry B Vipond ⁷⁰, Newara A Ramadan ⁷⁸, Christopher Jeanes ⁹⁰, Danni Weldon ¹¹⁶, Jana Catalan ¹¹⁸ and Neil Jones 118

Leadership and supervision, and Sequencing and analysis:

Ana da Silva Filipe ⁵³, Chris Williams ⁷⁴, Marc Fuchs ⁷⁷, Julia Miskelly ⁷⁷, Aaron R Jeffries ¹⁰⁵, Karen Oliver ¹¹⁶ and Naomi R Park ¹¹⁶

Metadata curation, and Samples and logistics:

Amy Ash¹, Cherian Koshy¹, Magdalena Barrow⁷, Sarah L Buchan⁷, Anna Mantzouratou⁷, Gemma Clark¹⁵, Christopher W Holmes¹⁶, Sharon Campbell ¹⁷, Thomas Davis ²¹, Ngee Keong Tan ²², Julianne R Brown ²⁹, Kathryn A Harris^{29, 2}, Stephen P Kidd ³³, Paul R Grant ³⁴, Li Xu-McCrae ³⁵, Alison Cox ^{38, 63}, Pinglawathee Madona ^{38, 63}, Marcus Pond ^{38, 63}, Paul A Randell ^{38, 63}, Karen T Withell ⁴⁸, Cheryl Williams ⁵¹, Clive Graham ⁶⁰, Rebecca Denton-Smith ⁶², Emma Swindells ⁶², Robyn Turnbull ⁶², Tim J Sloan ⁶⁷, Andrew Bosworth ^{70, 35}, Stephanie Hutchings ⁷⁰, Hannah M Sloan , Andrew Bosworth , Stephane Futchings , Halman M Pymont ⁷⁰, Anna Casey ⁷⁶, Liz Ratcliffe ⁷⁶, Christopher R Jones ^{79, 105}, Bridget A Knight ^{79, 105}, Tanzina Haque ⁸⁰, Jennifer Hart ⁸⁰, Dianne Irish-Tavares ⁸⁰, Eric Witele ⁸⁰, Craig Mower ⁸⁶, Louisa K Watson ⁸⁶, Jennifer Collins⁸⁹, Gary Eltringham⁸⁹, Dorian Crudgington⁹⁸, Ben Macklin⁹⁸, Miren Iturriza-Gomara¹⁰⁷, Anita O Lucaci¹⁰⁷ and Patrick C McClure¹¹³

Metadata curation, and Sequencing and analysis:

Matthew Carlile¹⁸, Nadine Holmes¹⁸, Christopher Moore¹⁸, Nathaniel Storey²⁹, Stefan Rooke ⁷³, Gonzalo Yebra ⁷³, Noel Craine ⁷⁴, Malorie Perry ⁷⁴, Nabil-Fareed Alikhan ⁷⁵, Stephen Bridgett ⁷⁷, Kate F Cook ⁸⁴, Christopher Fearn ⁸⁴, Salman Goudarzi ⁸⁴, Ronan A Lyons ⁸⁸, Thomas Williams ¹⁰⁴, Sam T Haldenby ¹⁰⁷, Jillian Durham ¹¹⁶ and Steven Leonard ¹¹⁶

Metadata curation, and Software and analysis tools:

Robert M Davies 116

Project administration, and Samples and logistics:

Rahul Batra¹², Beth Blane²⁰, Moira J Spyer^{30, 95, 96}, Perminder Smith^{32, 112}, Mehmet Yavus ^{85, 109}, Rachel J Williams ⁹⁶, Adhyana IK Mahanama ⁹⁷, Buddhini Samaraweera ⁹⁷, Sophia T Girgis ¹⁰², Samantha E Hansford ¹⁰⁹, Angie Green ¹¹⁵, Charlotte Beaver ¹¹⁶, Katherine L Bellis ¹¹⁶, ¹⁰², Matthew J Dorman¹¹⁶, Sally Kay¹¹⁶, Liam Prestwood¹¹⁶ and Shavanthi Rajatileka¹¹⁶

Project administration, and Sequencing and analysis: Joshua Quick 4

Project administration, and Software and analysis tools: Radoslaw Poplawski 43

Samples and logistics, and Sequencing and analysis:

Samples and logistics, and sequencing and analysis: Nicola Reynolds ⁸, Andrew Mack ¹¹, Arthur Morriss ¹¹, Thomas Whalley ¹¹, Bindi Patel ¹², Iliana Georgana ²⁴, Myra Hosmillo ²⁴, Malte L Pinckert ²⁴, Joanne Stockton ⁴³, John H Henderson ⁶⁵, Amy Hollis ⁶⁵, William Stanley ⁶⁵, Wen C Yew ⁶⁵, Richard Myers ⁷², Alicia Thornton ⁷², Alexander Adams ⁷⁴, Tara Annett ⁷⁴, Hibo Asad ⁷⁴, Alec Birchley ⁷⁴, Jason Coombes ⁷⁴, Isharathan M Energy ⁷⁴, Lein ⁷⁴, Park Carl Market, ⁷⁴, ⁷⁴ Johnathan M Evans ⁷⁴, Laia Fina ⁷⁴, Bree Gatica-Wilcox ⁷⁴, Lauren Gilbert ⁷⁴, Lee Graham ⁷⁴, Jessica Hey ⁷⁴, Ember Hilvers ⁷⁴, Sophie Jones ⁷⁴, Hannah Jones 74, Sara Kumziene-Summerhayes 74, Caoimhe McKerr 74, Jessica Powell 74, Georgia Pugh 74, Sarah Taylor 74, Alexander J Trotter 75, Charlotte A Williams ⁹⁶, Leanne M Kermack ¹⁰², Benjamin H Foulkes ¹⁰⁹, Marta Gallis ¹⁰⁹, Hailey R Hornsby ¹⁰⁹, Stavroula F Louka ¹⁰⁹, Manoj Pohare ¹⁰⁹, Paige Wolverson ¹⁰⁹, Peijun Zhang ¹⁰⁹, George MacIntyre-Cockett ¹¹⁵, Amy Trebes ¹¹⁵, Robin J Moll ¹¹⁶, Lynne Ferguson ¹¹⁷, Emily J Goldstein ¹¹⁷, Alasdair Maclean ¹¹⁷ and Rachael Tomb ¹¹⁷

Samples and logistics, and Software and analysis tools: Igor Starinskij

Sequencing and analysis, and Software and analysis tools:

Laura Thomson ⁵, Joel Southgate ^{11, 74}, Moritz UG Kraemer ²³, Jayna Raghwani ²³, Alex E Zarebski ²³, Olivia Boyd ³⁹, Lily Geidelberg ³⁹, Chris J Illingworth ⁵², Chris Jackson ⁵², David Pascall ⁵², Sreenu Vattipally ⁵³, Timothy M Freeman ¹⁰⁹, Sharon N Hsu ¹⁰⁹, Benjamin B Lindsey ¹⁰⁹, Keith James ¹¹⁶, Kevin Lewis ¹¹⁶, Gerry Tonkin-Hill ¹¹⁶ and Jaime M Tovar-Corona 116

Sequencing and analysis, and Visualisation:

MacGregor Cox ²⁰

Software and analysis tools, and Visualisation:

Khalil Abudahab 14, 116, Mirko Menegazzo 14, Ben EW Taylor MEng 14, 116, Corin A Yeats ¹⁴, Afrida Mukaddas ⁵³, Derek W Wright ⁵³, Leonardo de Oliveira Martins ⁷⁵, Rachel Colquhoun ¹⁰⁴, Verity Hill ¹⁰⁴, Ben Jackson ¹⁰⁴, JT McCrone ¹⁰⁴, Nathan Medd ¹⁰⁴, Emily Scher ¹⁰⁴ and Jon-Paul Keatley ¹¹⁶

Leadership and supervision:

Tanya Curran ³, Sian Morgan ¹⁰, Patrick Maxwell ²⁰, Ken Smith ²⁰, Sahar Eldirdiri ²¹, Anita Kenyon ²¹, Alison H Holmes ^{38, 57}, James R Price ^{38, 57}, Tim Wyatt ⁶⁹, Alison E Mather ⁷⁵, Timofey Skvortsov ⁷⁷ and John A Hartley ⁹⁶

Metadata curation:

Martyn Guest¹¹, Christine Kitchen¹¹, Ian Merrick¹¹, Robert Munn¹¹, Beatrice Bertolusso³³, Jessica Lynch³³, Gabrielle Vernet³³, Stuart Kirk³⁴, Elizabeth Wastnedge⁵⁶, Rachael Stanley⁵⁸, Giles Idle⁶⁴, Declan T Bradley^{69, 77}, Jennifer Poyner⁷⁹ and Matilde Mori¹¹⁰

Project administration:

Owen Jones ¹¹, Victoria Wright ¹⁸, Ellena Brooks ²⁰, Carol M Churcher ²⁰, Mireille Fragakis ²⁰, Katerina Galai ^{20, 70}, Andrew Jermy ²⁰, Sarah Judges ²⁰, Georgina M McManus ²⁰, Kim S Smith ²⁰, Elaine Westwick ²⁰, Stephen W Attwood ²³, Frances Bolt ^{38, 57}, Alisha Davies ⁷⁴, Elen De Lacy ⁷⁴, Fatima Downing ⁷⁴, Sue Edwards ⁷⁴, Lizzie Meadows ⁷⁵, Sarah Jeremiah ⁹⁷, Nikki Smith ¹⁰⁹ and Luke Foulser ¹¹⁶

Samples and logistics:

Themoula Charalampous ^{12, 46}, Amita Patel ¹², Louise Berry ¹⁵, Tim Boswell ¹⁵, Vicki M Fleming ¹⁵, Hannah C Howson-Wells ¹⁵, Amelia Joseph ¹⁵, Manjinder Khakh ¹⁵, Michelle M Lister ¹⁵, Paul W Bird ¹⁶, Karlie Fallon ¹⁶, Thomas Helmer ¹⁶, Claire L McMurray ¹⁶, Nina Odedra ¹⁶, Jessica Shaw ¹⁶, Julian W Tang ¹⁶, Nicholas J Willford ¹⁶, Victoria Blakey ¹⁷, Veena Raviprakash ¹⁷, Nicola Sheriff ¹⁷, Lesley-Anne Williams ¹⁷, Theresa Feltwell ²⁰, Luke Bedford ²⁶, James S Cargill ²⁷, Warwick Hughes ²⁷, Jonathan Moore ²⁸, Susanne Stonehouse ²⁸, Laura Atkinson ²⁹, Jack CD Lee ²⁹, Dr Divya Shah ²⁹, Adela Alcolea-Medina ^{32, 112}, Natasha Ohemeng-Kumi ^{32, 112}, John Ramble ^{32, 112}, Javeen Sehmi ^{32, 112}, Rebecca Williams ³³, Wendy Chatterton ³⁴, Monika Pusok ³⁴, William Everson ³⁷, Anibolina Castigador ⁴⁴, Emily Macnaughton ⁴⁴, Kate El Bouzidi ⁴⁵, Temi Lampejo ⁴⁵, Malur Sudharva ⁴⁵, Cassie Breen ⁴⁷, Graciela Sluga ⁴⁸, Shazad SY Ahmad ^{49, 70}, Ryan P George ⁴⁹, Nicholas W Machin ^{49, 70}, Debbie Binns ⁵⁰, Victoria James ⁵⁰, Rachel Blacow ⁵⁵, Lindsay Coupland ⁵⁸, Louise Smith ⁵⁹, Edward Barton ⁶⁰, Debra Padgett ⁶⁰, Garren Scott ⁶⁰, Aidan Cross ⁶¹, Mariyam Mirfenderesky ⁶¹, Jane Greenaway ⁶², Kevin Cole ⁶⁴, Phillip Clarke ⁶⁷, Nichola Duckworth ⁶⁷, Sarah Walsh ⁶⁷, Kelly Bicknell ⁶⁸, Robert Impey ⁶⁸, Sarah Wyllie ⁶⁸, Richard Hopes ⁷⁰, Chloe Bishop ⁷², Vicki Chalker ⁷², Ian Harrison ⁷², Laura Gifford ⁷⁴, Zoltan Molnar ⁷⁷, Cressida Auckland ⁷⁹, Cariad Evans ^{85, 109}, Paul Baker ⁸⁶, Stephen Bonner ⁸⁶, Sarah Essex ⁸⁶, Leanne J Murray ⁸⁶, Andrew I Lawton ⁸⁷, Shirelle Burton-Fanning ⁸⁹, Brendan AI Payne ⁸⁹, Sheila Waugh ⁸⁹, Andrea N Gomes ⁹¹, Maimuna Kimuli ⁹¹, Darren R Murray ⁹¹, Paula Ashfield ⁹², Donald Dobie ⁹², Fiona Ashford ⁹³, Angus Best ⁹³, Liam Crawford ⁹³, Icola Cumley ⁹³, Begna Mayhew ⁹³, Oliver Megram ⁹³, Jeremy Mirza ⁹³, Emma Moles-Garcia ⁹³, Be

Sequencing and analysis:

Safah Affif ¹⁰, Robert Beer ¹⁰, Joshua Maksimovic ¹⁰, Kathryn McCluggage ¹⁰, Karla Spellman ¹⁰, Catherine Bresner ¹¹, William Fuller ¹¹, Angela Marchbank ¹¹, Trudy Workman ¹¹, Ekaterina Shelest ^{13, 81}, Johnny Debebe ¹⁸, Fei Sang ¹⁸, Marina Escalera Zamudio ²³, Sarah Francois ²³, Bernardo Gutierrez ²³, Tetyana I Vasylyeva ²³, Flavia Flaviani ³¹, Manon Ragonnet-Cronin ³⁹, Katherine L Smollett ⁴², Alice Broos ⁵³, Daniel Mair ⁵³, Jenna Nichols ⁵³, Kyriaki Nomikou ⁵³, Lily Tong ⁵³, Ioulia Tsatsani ⁵³, Sarah O'Brien ⁵⁴, Steven Rushton ⁵⁴, Roy Sanderson ⁵⁴, Jon Perkins ⁵⁵, Seb Cotton ⁵⁶,

Abbie Gallagher ⁵⁶, Elias Allara ^{70, 102}, Clare Pearson ^{70, 102}, David Bibby ⁷², Gavin Dabrera ⁷², Nicholas Ellaby ⁷², Eileen Gallagher ⁷², Jonathan Hubb ⁷², Angie Lackenby ⁷², David Lee ⁷², Nikos Manesis ⁷², Tamyo Mbisa ⁷², Steven Platt ⁷², Katherine A Twohig ⁷², Mari Morgan ⁷⁴, Alp Aydin ⁷⁵, David J Baker ⁷⁵, Ebenezer Foster-Nyarko ⁷⁵, Sophie J Prosolek ⁷⁵, Steven Rudder ⁷⁵, Chris Baxter ⁷⁷, Sílvia F Carvalho ⁷⁷, Deborah Lavin ⁷⁷, Arun Mariappan ⁷⁷, Clara Radulescu ⁷⁷, Aditi Singh ⁷⁷, Miao Tang ⁷⁷, Helen Morcrette ⁷⁹, Nadua Bayzid ⁹⁶, Marius Cotic ⁹⁶, Carlos E Balcazar ¹⁰⁴, Michael D Gallagher ¹⁰⁴, Daniel Maloney ¹⁰⁵, Michelle L Michelsen ¹⁰⁵, Christine M Sambles ¹⁰⁵, David J Studholme ¹⁰⁵, Joanna Warwick-Dugdale ¹⁰⁵, Richard Eccles ¹⁰⁷, Marthew Gemmell ¹⁰⁷, Richard Gregory ¹⁰⁷, Margaret Hughes ¹⁰⁷, Charlotte Nelson ¹⁰⁷, Lucille Rainbow ¹⁰⁷, Edith E Vamos ¹⁰⁷, Hermione J Webster ¹⁰⁷, Mark Whitehead ¹⁰⁷, Claudia Wierzbicki ¹⁰⁷, Adrienn Angyal ¹⁰⁹, Luke R Green ¹⁰⁹, Max Whiteley ¹⁰⁹, Emma Betteridge ¹¹⁶, Iraad F Bronner ¹¹⁶, Ben W Farr ¹¹⁶, Scott Goodwin ¹¹⁶, Stefanie V Lensing ¹¹⁶, Shane A McCarthy ¹¹⁶, ¹⁰², Michael A Quail ¹¹⁶, Diana Rajan ¹¹⁶, Nicholas M Redshaw ¹¹⁶, Carol Scott ¹¹⁶, Lesley Shirley ¹¹⁶ and Scott AJ Thurston ¹¹⁶

Software and analysis tools:

Will Rowe 43 , Amy Gaskin 74 , Thanh Le-Viet 75 , James Bonfield 116 , Jennifier Liddle 116 and Andrew Whitwham 116

1 Barking, Havering and Redbridge University Hospitals NHS Trust, 2 Barts Health NHS Trust, 3 Belfast Health & Social Care Trust, 4 Betsi Cadwaladr University Health Board, 5 Big Data Institute, Nuffield Department of Medicine, University of Oxford, 6 Blackpool Teaching Hospitals NHS Foundation Trust, 7 Bournemouth University, 8 Cambridge Stem Cell Institute, University of Cambridge, 9 Cambridge University Hospitals NHS Foundation Trust, 10 Cardiff and Vale University Health Board, 11 Cardiff University, 12 Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, 13 Centre for Enzyme Innovation, University of Portsmouth, 14 Centre for Genomic Pathogen Surveillance, University of Oxford, 15 Clinical Microbiology Department, Queens Medical Centre, Nottingham University Hospitals NHS Trust, 16 Clinical Microbiology, University Hospitals of Leicester NHS Trust, 17 County Durham and Darlington NHS Foundation Trust, 18 Deep Seq, School of Life Sciences, Queens Medical Centre, University of Nottingham, 19 Department of Infectious Diseases and Microbiology, Cambridge University Hospitals NHS Foundation Trust, 20 Department of Medicine, University of Cambridge, 21 Department of Microbiology, Kettering General Hospital, 22 Department of Microbiology, South West London Pathology, 23 Department of Zoology, University of Oxford, 24 Division of Virology, Department of Pathology, University of Cambridge, 25 East Kent Hospitals University NHS Foundation Trust, 26 East Suffolk and North Essex NHS Foundation Trust, 27 East Sussex Healthcare NHS Trust, 28 Gateshead Health NHS Foundation Trust, 29 Great Ormond Street Hospital for Children NHS Foundation Trust, 30 Great Ormond Street Institute of Child Health (GOS ICH), University College London (UCL), 31 Guy's and St. Thomas' Biomedical Research Centre, 32 Guy's and St. Thomas' NHS Foundation Trust, 33 Hampshire Hospitals NHS Foundation Trust, 34 Health Services Laboratories, 35 Heartlands Hospital, Birmingham, 36 Hub for Biotechnology in the Built Environment, Northumbria University, 37 Hull University Teaching Hospitals NHS Trust, 38 Imperial College Healthcare NHS Trust, 39 Imperial College London, 40 Infection Care Group, St George's University Hospitals NHS Foundation Trust, 41 Institute for Infection and Immunity, St George's University of London, 42 Institute of Biodiversity, Animal Health & Comparative Medicine, 43 Institute of Microbiology and Infection, University of Birmingham, 44 Isle of Wight NHS Trust, 45 King's College Hospital NHS Foundation Trust, 46 King's College London, 47 Liverpool Clinical Laboratories, 48 Maidstone and Tunbridge Wells NHS Trust, 49 Manchester University NHS Foundation Trust, 50 Microbiology Department, Buckinghamshire Healthcare NHS Trust, 51 Microbiology, Royal Oldham Hospital, 52 MRC Biostatistics Unit, University of Cambridge, 53 MRC-University of Glasgow Centre for Virus Research, 54 Newcastle University, 55 NHS Greater Glasgow and Clyde, 56 NHS Lothian, 57 NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, 58 Norfolk and Norwich University Hospitals NHS Foundation Trust, 59 Norfolk County Council, 60 North Cumbria Integrated Care NHS Foundation Trust, 61 North Middlesex University Hospital NHS Trust, 62 North Tees and Hartlepool NHS Foundation Trust, 63 North West London Pathology, 64 Northumbria Healthcare NHS Foundation Trust, 65 Northumbria University, 66 NU-OMICS, Northumbria University, 67 Path Links, Northern Lincolnshire and Goole NHS Foundation Trust, 68 Portsmouth Hospitals University NHS Trust, 69 Public Health Agency, Northern Ireland, 70 Public Health England, 71 Public Health England, Cambridge, 72 Public Health England, Colindale, 73 Public Health Scotland, 74 Public Health Wales, 75 Quadram Institute Bioscience, 76 Queen Elizabeth Hospital, Birmingham, 77 Queen's University Belfast, 78 Royal Brompton and Harefield Hospitals, 79 Royal Devon and Exeter NHS Foundation Trust, 80 Royal Free London NHS Foundation Trust, 81 School of Biological Sciences, University of Portsmouth, 82 School of Health Sciences, University of Southampton, 83 School of Medicine, University of Southampton, 84 School of Pharmacy & Biomedical Sciences, University of Portsmouth, 85 Sheffield Teaching Hospitals NHS Foundation Trust, 86 South Tees Hospitals NHS Foundation Trust, 87 Southwest Pathology Services, 88 Swansea University, 89 The Newcastle upon Tyne Hospitals NHS

Foundation Trust, 90 The Oueen Elizabeth Hospital King's Lvnn NHS Foundation Trust, 91 The Royal Marsden NHS Foundation Trust, 92 The Royal Wolverhampton NHS Trust, 93 Turnkey Laboratory, University of Birmingham, 94 University College London Division of Infection and Immunity, 95 University College London Hospital Advanced Pathogen Diagnostics Unit, 96 University College London Hospitals NHS Foundation Trust, 97 University Hospital Southampton NHS Foundation Trust, 98 University Hospitals Dorset NHS Foundation Trust, 99 University Hospitals Sussex NHS Foundation Trust, 100 University of Birmingham, 101 University of Brighton, 102 University of Cambridge, 103 University of East Anglia, 104 University of Edinburgh, 105 University of Exeter, 106 University of Kent, 107 University of Liverpool, 108 University of Oxford, 109 University of Sheffield, 110 University of Southampton, 111 University of St Andrews, 112 Viapath, Guy's and St Thomas' NHS Foundation Trust, and King's College Hospital NHS Foundation Trust, 113 Virology, School of Life Sciences, Queens Medical Centre, University of Nottingham, 114 Watford General Hospital, 115 Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, 116 Wellcome Sanger Institute, 117 West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, 118 Whittington Health NHS Trust.