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Real-Time Gait Phase Detection on Wearable 
Devices for Real-World Free-Living Gait

Jiaen Wu, Barna Becsek, Alessandro Schaer, Henrik Maurenbrecher, George Chatzipirpiridis, 
Olgac Ergeneman, Salvador Pané, Hamdi Torun, Bradley J. Nelson

Abstract— Detecting gait phases with wearables unob-
trusively and reliably in real-time is important for clinical 
gait rehabilitation and early diagnosis of neurological dis-
eases. Due to hardware limitations of microcontrollers in 
wearable devices (e.g., memory and computation power),
reliable real-time gait phase detection on the microcon-
trollers remains a challenge, especially for long-term real-
world free-living gait. In this work, a novel algorithm based
on a reduced support vector machine (RSVM) and a finite
state machine (FSM) is developed to address this. The
RSVM is developed by exploiting the cascaded K-means
clustering to reduce the model size and computation time
of a standard SVM by 88% and a factor of 36, with only
minor degradation in gait phase prediction accuracy of
around 4%. For each gait phase prediction from the RSVM,
the FSM is designed to validate the prediction and cor-
rect misclassifications. The developed algorithm is imple-
mented on a microcontroller of a wearable device and its
real-time (on the fly) classification performance is evaluated
by twenty healthy subjects walking along a predefined
real-world route with uncontrolled free-living gait. It shows
a promising real-time performance with an accuracy of
91.51%, a sensitivity of 91.70%, and a specificity of 95.77%.
The algorithm also demonstrates its robustness with vary-
ing walking conditions.

Index Terms— Real-time gait phase detection, embedded 
system algorithms, wearable sensors, gait rehabilitation, 
real-world free-living walking.

I. INTRODUCTION

G
AIT characteristics (e.g., gait speed), considered as the
sixth vital sign, can be used as a digital biomarker for

personalized health monitoring and assessment [1], [2]. Prob-
ing and evaluating gait characteristics such as the gait cycle
is essential for clinical applications, including but not limited
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J. Wu, S. Pané, B. J. Nelson are with the Multi-Scale Robotics Lab,
ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland (e-mail:
wujiae@ethz.ch; vidalp@ethz.ch; bnelson@ethz.ch).

J. Wu, B. Becsek, A. Schaer, H. Maurenbrecher, G. Chatzipirpiridis,
O. Ergeneman are with Magnes AG, Selnaustrasse 5, 8001 Zurich,
Switzerland. (e-mail: barna@magnes.ch; aschaer@magnes.ch; hen-
rikm@magnes.ch; chgeorge@magnes.ch; oergeneman@magnes.ch).

H. Torun is with the Department of Mathematics, Physics and Elec-
trical Engineering, Northumbria University, Newcastle upon Tyne, UK.
(e-mail: hamdi.torun@northumbria.ac.uk).

to estimating the risk of falls [3], measuring the efficacy of
interventions and rehabilitation [2], and early diagnosis of
various neurological diseases [4]–[6].

A gait cycle is characterized by different gait phases. Robust
intra-stride gait phase detection (i.e., detecting phases within
one stride) is the basis for mobile gait analysis, as most
gait characteristics, including inter-stride gait features (i.e.,
changes between different strides), are derived from the intra-
stride temporal gait phases [7]. Real-time gait phase detection
can be utilized for closed-loop real-time feedback, which is
essential for clinical gait rehabilitation as it enables patients
to recognize their walking abnormalities through the real-time
feedback and make conscious corrections immediately, and
also help patients with spinal cord injury or brain trauma to
restore the walking function [8], [9]. It can also be utilized for
many clinical rehabilitation applications, such as controlling
the timing of stimulation sequences for functional electrical
stimulation (FES) [9], [10] and epidural electrical stimulation
(EES) [11], [12]. As shown in [11], the real-time gait analysis
by visual observation can be used to enable EES during
walking, which can significantly improve the walking ability
of impaired patients when compared to continuous EES that
is not based on gait patterns. Another study has shown that
the real-time detection of the swing phase based on a doctor’s
observation can be utilized to trigger FES to compensate for
the foot-drop problem [10].

Though various computational technologies have been de-
veloped for offline gait phase detection as reviewed in [13],
[14], only a very small number of works on online gait phase
detection have been published [7], [15]–[17]. Among those
online algorithms, rule-based approaches have been mostly
reported due to their intuitiveness, and low computational
complexity [7]. However, those approaches usually involve
rule and threshold setting, as well as signal peak detection.
The rules and thresholds are determined empirically based on
preliminary data, thus they need to be recalibrated continu-
ously for different people. The presence of a signal peak can
only be confirmed after both the rising and falling signal edges
have appeared, which may cause a significant delay, on the
order of hundreds of milliseconds [7].

Machine learning techniques for gait analysis have grown
in prominence in recent years due to their high accuracy
and automated nature. Mannini et al. placed an IMU on the
foot instep and detected gait phases in real-time by using
Hidden Markov Model [16]. However, their algorithm was
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Fig. 1. A schematic illustration of the wearable gait analysis system. A. The wearable gait analysis system consists of an actuator, an inertial
sensor, a Wi-Fi and Bluetooth module, a battery, and a microcontroller. The system is embedded in a pair of shoes at the location under the heel. B.
The motion of the foot is captured by the sensing system during human walking. Only gyroscope signals are used for real-time gait phase detection.
A hybrid algorithm of RSVM and FSM is developed to process raw motion signals on the local microcontrollers and output the gait phases in
real-time. C. An illustration of gait phases considered in this paper. P1: HO–TO, P2: TO–HS, P3: HS–HO.

only validated with offline treadmill walking data by a leave-
one-subject-out method. Chen et al. used a standard support
vector machine (SVM) for detecting gait phases, i.e., flat foot
(FF), heel off (HO), toe off (TO), and swing, based on seven
force-sensitive resistors (FSR) and an accelerometer placed on
shoes [17]. The algorithm was validated on treadmill walking
data and achieved an overall accuracy of 94.08%. In this work,
the sensor data were transferred to a remote computer via
Bluetooth and the online algorithm was executed on the com-
puter instead of a local microcontroller on shoes. This limits
the use of this device to lab environments. A continuous full
day free-living walking assessment is not possible with this
system. Besides, the readout of FSR sensors are dependent on
the user’s body weight. Therefore, the system needs calibration
for different users. Vu et al. proposed a deep learning algorithm
based on IMU data to detect the gait cycle percentage [18],
which is defined as the percentage of the current sample in
the gait cycle. The algorithm’s performance was only assessed
on the offline testing data from seven healthy subjects, no
real-time validation experiments were conducted. This deep
learning algorithm also runs on a remote computer.

Most of the state-of-the-art real-time gait phase estimation
studies reported in the literatures [19] have only validated
their algorithms offline with healthy subjects walking in the
laboratory. Few studies have implemented their algorithms in
systems to demonstrate their real-time estimation capabilities,
not to mention their real-time performance on a real-world
uncontrolled free-living gait. Of the few studies that have
shown the real-time demonstration, most have implemented
their algorithms on remote systems [17], [18], [20], such
as mobile phones. With an online phase detection algorithm
running on a remote device, users can only walk in a confined
environment. If users are not in the sensor range, the gait
phases cannot be detected. This also limits the use of real-
time closed-loop functionalities such as FES. Most impor-
tantly, the aforementioned automatic online algorithms are
validated using walking data collected under controlled and
supervised conditions, e.g., in a laboratory or a hospital [21].
The variability across those in-lab walking strides is quite low.
However, the uncontrolled and unsupervised free-living gait,
i.e., walking in the real world, is more complex and irregular,
which often incorporates dynamic walking speed, varying
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walking surface, and inclinations [22]. A recent study from 
Khandelwal et al. has shown that the published gait event de-
tection algorithms that perform well for walking in a controlled 
indoor environment exhibit significantly degraded performance 
when evaluated with a less controlled outdoor walking, with 
a combined median F1 score decreased from 0.98, 0.94 to 
0.82, 0.53 for heel strike (HS) and TO, respectively [22]. 
Reliable real-time gait phase detection for uncontrolled free-
living walking in the real-world still remains a big challenge, 
especially for memory and computation-limited embedded 
systems (microcontrollers on wearable devices) that require 
low power operation.

In this paper, a robust algorithm incorporating reduced 
support vector machine (RSVM) and finite-state machine 
(FSM) is proposed for real-time (on the fly) reliable gait phase 
detection on uncontrolled free-living gait in the real-world, 
with resource-limited microcontrollers (Fig. 1A-B). Compared 
to the standard support vector machine (SVM), we use a 
cascaded k-means clustering approach to reduce the model size 
and increase the computational speed that fits t he embedded 
environment while still keeping the high classification accu-
racy. An FSM is designed to model the sequential property 
of gait phases and complement the RSVM with contextual 
information about a logical temporal sequence of gait phases. 
This algorithm is implemented on a microcontroller of a
miniature wearable device that is embedded in a shoe and
used to further trigger real-time haptic feedback provided by
an actuator (Fig. 1A). The real-time (on the fly) effectiveness
of the proposed algorithm is validated with long-term fully
uncontrolled and unsupervised free-living gait performed in
the real-world by twenty healthy subjects, who are guided to
wear the sensor-embedded shoes with the proposed algorithm
running online, and walk around the predefined paths on a
busy street at three different walking speeds.

The proposed algorithm exploits only the gyroscope signals,
avoiding the need for additional sensors. No prior calibration is
required for different people with different walking conditions,
such as walking speeds and walking surfaces. We demonstrate
its capability to identify gait phases in real-time (on the fly) on
a source-limited microcontroller for both indoor and outdoor
(real-world uncontrolled and unsupervised free-living) walk-
ing.

II. DATA COLLECTION

A. Subjects of the Study

Two groups of healthy subjects were recruited in this study.
The first group consisted of four healthy subjects. They were
instructed to walk on a treadmill. The datasets collected
from these subjects were separated into training and testing
datasets for training and optimizing the proposed algorithm
offline. This study was conducted in accordance with Good
Clinical Practice guidelines and the Declaration of Helsinki
after receiving a declaration of clearance from the local ethics
committee (BASEC Nr Req-2019-00715).

The second group consisted of twenty healthy subjects
(distinct from the first group subjects) ranging in age from
24 to 41 years old, with an average age, 29.75 ± 3.39 years,

wearing European shoe sizes from 38 to 47. They were
instructed to perform outdoor walking. The datasets collected
from these subjects were used to validate the performance of
the trained model in real-life conditions, running in real-time
on the embedded electronics. The research protocol for this
study was approved by grant (EK 2021-N-198) from the Ethics
Commission of the ETH Zurich.

All subjects were able to walk normally with no known
injuries or abnormalities that would affect their gait. Written
informed consents were provided by all subjects before the
experiment.

B. Data Collection System

All walking data were collected by the wearable gait anal-
ysis system Nushu developed by Magnes AG [23]. It consists
of a pair of shoes and a mobile (iOS) application. The shoes
are equipped with a low-power system on custom–developed
electronics including on-board inertial sensors (LSM6DSM,
STMicroelectronics, Geneva, Switzerland) and a dual-core
microcontroller unit (ESP32, Espressif Systems Co., Ltd,
Shanghai, China) with integrated WiFi and Bluetooth modules
for wireless communication. The gyroscope data acquisition
frequency is set to 100 Hz. The range of gyroscope is set to
±2000DPS.

C. Data Acquisition

The first group of healthy subjects was instructed to wear
the sensor-embedded shoes and walk on a treadmill with a
normal gait. Each subject was asked to walk three times on the
treadmill with three different treadmill speeds set at 0.53 m/s,
0.86 m/s, and 1.11 m/s. Note that the average walking speed
of each subject is not necessarily equal to the treadmill speed.
During each trial, the subject performed around 50 strides for
each side of the left and right foot.

The second group of healthy subjects was instructed to
wear the sensor-equipped shoes and walk in a real-world
environment outside the laboratory freely along the selected
path on the street, as shown in Fig. 2. The selected walking
path is on a busy street includes turns (white arrow), uphill
(pink arrow), downhill (green arrow), straight lines (red ar-
row), curved lines/crossings (blue arrow), and crossings of
the roadway (yellow arrow), with fluctuating road surface and
inclinations. It has a total of approximately 500 m walkway
for each bout. In the validation walking experiment, there
were constantly pedestrians walking around, the walking route
was thus affected and cannot be kept straight. Each subject
was asked to walk three times at three different speeds, i.e.,
slow speed, normal speed, and fast speed. Each subject was
free to interpret what “slow”, “normal” and “fast” meant
for them. During these experiments, the real-time gait phase
detection algorithm was running on the microcontroller of
the shoe system along with the sensors during each subject’s
walking experiment. The gait phase prediction results were
logged together with raw sensor data. The total number of free
walking strides collected for real-time algorithm validation is
around 50000.
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Fig. 2. Top view of the selected street path utilized for the outdoor
real-world uncontrolled free-living walking experiments. The arrows with
different colors show the closed-loop path defined for the experiments.
The solid white arrow represents the turns, the solid yellow arrow repre-
sents the crossing of the road, the solid blue arrow represents the curved
crossing of the road, the dotted green arrow represents the downhill, the
dotted pink arrow represents the uphill, and the solid red arrow repre-
sents the straight line. The bouts started and stopped where the human
stick figure is depicted.

Gait phases were labeled by an offline rule-based detection 
algorithm, which has been validated with the motion capture 
system and shows high accuracy [24]. Most importantly, unlike 
labeling data manually from optical motion capture systems, 
this labeling method is not constrained by the laboratory 
environment, and can label outdoor walking data offline at any 
time and anywhere for further real-time algorithm validation.

III. REAL-TIME GAIT PHASE DETECTION ALGORITHM

A. Gait Phases

Human gait can be divided into a series of repetitive phases
and events related to its cyclic nature. Each gait cycle can
be divided into two main phases i.e., stance phase and swing
phase [25]. These two main phases can further be divided into
sub-phases by three gait events, which are HO, TO, and HS.
As shown in Fig. 1C, three gait phases P1, P2, P3 that are
delimited by HO, TO, and HS for each foot are considered in
this paper for real-time phase detection. They are denoted as
P1: HO–TO, P2: TO–HS, P3: HS–HO.

B. Feature Selection

Contrary to accelerometers, gyroscopes do not carry a
constant offset due to gravity. They are more immune to
vibrations and environmental noises than accelerometers [16],
[26]. Moreover, it has been shown that the angular velocity
patterns are not affected significantly by inter–subjects or
intra–subjects variability and different walking conditions,
such as walking speed, or walking slope, unless the foot-
ground contact occurs at the toes rather than the heels that
mostly in pathological gait [16]. Therefore, the data from
a single gyroscope sensor are used for real-time gait phase
detection.

By observing the signal distributions of angular velocity
for different gait phases, angular velocity along the pronation
axis, !z , angular-acceleration !̇y and -velocity !y along the
mediolateral axis, which is the most prominent movement, are
selected as three input features. Fig. 1A depicts the reference
frame for the coordinate axis. Due to the symmetric ankle
rotation of the left and right feet, the angular velocity along
the pronation axis for the right foot is flipped as �!z . The
angular acceleration, which is approximated by the discrete
time derivative of the angular velocity, is computed as:

!̇y(k) ⇡
!y(k)� !y(k � 1)

t(k)� t(k � 1)
, (1)

where !̇y(0) = 0, t is the continuous time of the motion
signal, k 2 N denotes the discrete time step. This first-order
derivative is included as one of the input features to provide
temporal dependence information to the algorithm. Higher-
order time derivatives are discarded because they can introduce
an amplification of high-frequency noise and degrade the
signal-to-noise ratio [27], [28]. All signals are normalized with
respect to the sample means and sample standard deviations
that are obtained from the training data (constants). The
normalized input feature vector x(k) can be denoted as:

x(k) = (!̄z(k), ¯̇!y(k), !̄y(k)) . (2)

The bar indicates the normalization, i.e. !̄z(k) =
!z(k)�µ!z

�!z
,

where µ!z and �!z are the constant sample mean and sam-
ple standard deviation calculated from the training data. The
normalized ¯̇!y(k) and !̄y(k) are defined in the same way.

C. Reduced SVM for Real-Time Gait-Phase Detection

SVM has advantages in that it usually does not require
a large number of training samples to construct a model
compared to alternative classifiers and is usually less affected
by the appearance of outliers [29]. Besides, with a clear
geometrical interpretation, SVM training can always find the
global optimum of the cost function [29]. Therefore, SVM
is employed in this work as a nonlinear approach to classify
walking data into different gait phases.

SVMs have been shown to be a promising classification
model for gait phase detection, while the number of sup-
port vectors (SVs) increases with the size of the training
dataset [30]. An SVM classifier is constructed by a linear
combination of kernel evaluation of SVs, which are the
training samples lying within the soft margin of the decision
boundaries [31]. Therefore, the memory usage of an SVM
model and the computation time of each SVM prediction is
proportional to the number of SVs. To implement this algo-
rithm in an embedded environment that has limited memory
and computational capabilities in real-time, the number of
SVs should be as small as possible. To reduce the SVM
model size and the execution time while keeping the superior
SVM performance, a cascaded k–means clustering method
is proposed. The cascaded k-means clustering reduces the
number of SVs by selecting a small portion of the most
informative learning feature vectors that are close to the
decision boundaries in the feature space. The rationale behind
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this strategy is the following: feature vectors close to the 
decision boundaries are more likely to become SVs of the 
final s eparation h yperplane, w hile f eature v ectors l ying far 
from the decision boundaries have less effect on building 
the final separation hyperplane [31], hence removing the SVs 
“far away” from the decision hyperplane has a low impact 
on the performance of the SVM. After removing the feature 
vectors with fewer contributions from the learning samples, 
the SVM classifier i s c onstructed o n t he r emaining samples. 
It has a much-reduced number of SVs and is referred to 
as RSVM for reduced SVM. Compared to other reduction
techniques (e.g., decomposition [32], [33] and geometric
[34], [35] techniques), clustering methods do not require a
long processing time for reduction, and it also significantly
reduces SVM training and testing time.

To distinguish the two boundaries of the feature space and
the mapped feature space, in this paper, the decision bound-
ary refers to the class boundary in the original feature space,
the separation hyperplane refers to the class boundary in the
mapped feature space.

To identify this small subset of most informative feature
vectors that can be used as the training samples instead of the
entire training data set, an iterative data selection procedure
is proposed as shown in Algorithm 1. Consider a training
dataset D composed of N feature-class pairs

�
xi, yi

�
, i.e.,

D =
��

xi, yi
�
|1  i  N,xi 2 R3, yi 2 {P1, P2, P3}

 
,

where xi is the feature vector obtained from (2) for all subjects
and walking trials, and yi is its corresponding class label. For
each iteration number d, given the selected data Dd from
the previous iteration, consider its subset Dd

l of data with
gait phase l. For each gait phase l, an unsupervised k–means
clustering technique is applied to the selected samples Dd

l to
identify the predefined cdl number of clusters C. cdl is chosen
to be

⌅
⌘1Nd

l

⇧
and is updated at each iteration, where b·c is the

floor function, ⌘1 2 (0, 1), and Nd
l is the number of samples

in gait phase l at iteration d. In each cluster, the samples
that are far from the cluster boundary are more likely to be
far from the decision boundaries of SVM, and thus are more
likely to become insignificant SVs, i.e., SVs with small weight.
Therefore, those samples are removed for further iterations.
To this end, for each cluster, the Euclidean distances from
the cluster centroid to the samples are calculated and sorted
from closest to furthest for further sample removal. To prevent
excessive removal of samples that may become SVs around
the cluster boundaries, a safety region close to the cluster
boundaries is defined by the cluster radius, i.e., the distance
between the cluster centroid and the furthest data point of
the cluster, and the number of samples within the cluster as
follows. If the cluster radius is smaller than the predefined
radius threshold ⇢, i.e., the cluster centroid is closer to the
cluster boundary, we remove ⌘d2 · 100% percent of samples
with a smaller distance to the centroid, i.e., samples whose
distances to the cluster centroid are below ⌘d2–th percentile
of the ordered list are removed; If the cluster radius is larger
than ⇢, i.e., the cluster centroid is further from the cluster
boundary, we remove ⌘d3 · 100% percent of samples with a
smaller distance to the centroid, where 0 < ⌘d2 < ⌘d3 < 1

(samples whose distances to the cluster centroid are below
⌘d3–th percentile of the ordered list are removed). The samples
within this safety region will be kept. The samples within
the cluster but outside the safety region will be removed.
The remaining samples within the safety regions from all
clusters are collected into Dd+1 and used for SVM training.
After training, the number of the obtained SVs Nd+1

SV is
compared to the expected value of the SV number �, which is
required by the embedded memory and CPU, but with small
performance degradation. Sample reduction threshold, ⌘d2 , ⌘d3 ,
will be decreased after each iteration d by a factor of 1 � ",
where 0 < " < 1. We iterate d until the number of SVs, Nd

SV ,
satisfies the requirement of the embedded environment, which
leads to a reduced dataset D⇤ = {(xi, yi)|1  i  m, }, where
i denotes the sample index of the reduced dataset, m represents
the number of the remaining samples. All the thresholds and
rules are determined empirically based on the training data.

D. Finite State Machine

The SVM and RSVM show good performance for gait phase
classification, while it does not consider the temporal sequence
of the gait phases. Therefore, some illogical misclassifications
occur between the successive gait phases, especially close to
the phase transition point. To address this issue, an FSM is
designed to post-process the decision from the RSVM by
considering the temporal gait phase sequence and making full
use of the past information.

Fig. 3. A schematic illustration of algorithm FSM. P1, P2, P3 corre-
spond to the three gait phases HO-TO, TO-HS, HS-HO, respectively.
They are considered as three states of FSM. T1, T2, T3 are the state
duration for three gait phases. ⌧ is a predefined time constant. The
blue arrows represent valid transitions, the green arrows represent no
transition, the red arrows represent forbidden transitions.

As illustrated in Fig. 3, each gait phase of HO-TO, TO-
HS, and HS-HO is considered as a state {P1, P2, P3} in the
FSM. As gait phases occur in a repetitive temporal sequence
during walking, there are only three allowed state transitions
i.e., P1 ! P2, P2 ! P3, and P3 ! P1. Among those
three state transitions, only the transition, with the previous
state duration longer than a predefined time threshold ⌧ , is
considered as a valid transition. Other state transitions, e.g.,
P1 ! P3, P2 ! P1, and P3 ! P2, which cannot happen
in (normal) walking, are considered as a forbidden transition
and are rejected by the FSM. The procedure of the FSM
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Algorithm 1: Iterative training data reduction proce-
dure for RSVM based on k-means clustering.
Input: learning dataset D

1 initialize:

2 d 0, D0 = D, N0
SV  30964, �  3800,

⌘1  0.004, ⌘02  0.7, ⌘03  0.8, ⇢ 1.0,
" 0.2;

3 end

4 while Nd
SV > � do

5 for l = P1, P2, P3 do

6 let set Dd
l contain the samples in Dd with gait

phase l, and Nd
l = |Dd

l |;
7 Set cdl  

⌅
⌘1Nd

l

⇧
;

8 identify a set C of cdl clusters using k–means
clustering on samples Dd

l ;
9 for each cluster 2 C do

10 create an ordered list (sorted from least to
greatest) that contains the Euclidean
distances from the cluster centroid to each
sample in the cluster;

11 if cluster radius > ⇢ then

12 remove samples whose distances to the
cluster centroid are below ⌘d2–th
percentile of the ordered list;

13 else

14 remove samples whose distances to the
cluster centroid are below ⌘d3–th
percentile of the ordered list;

15 end if

16 end for

17 end for

18 update ⌘d+1
2  (1� ") · ⌘d2 ;

19 update ⌘d+1
3  (1� ") · ⌘d3 ;

20 update Dd+1 by collecting all the remaining
samples of all the clusters from all three gait
phases;

21 update Nd+1
SV by SVM trained on Dd+1;

22 update d d+ 1 ;
23 end while

Output: reduced data set D⇤.
24

is shown in Algorithm 2. P (k) 2 {P1, P2, P3} denotes the
RSVM predicted gait phase at time step k. PE is the allowed
transition state from the previous state. T represents the time
counter, and �t is the sampling time. Pv(k) represents the
valid gait phase at time step k.

E. System Implementation

The kernel function used in this paper is the radial basis
function (RBF) [36], which is:

 (xi,xj) = exp
⇣
�� kxi � xjk2

⌘
= exp (x̂ij) , (3)

where x̂ij = �� kxi � xjk2  0, 8 xi,xj 2 D, 8 � > 0. The
rationales behind this choice are as follows. First, RBF kernel

Algorithm 2: Pseudocode of FSM for real-time gait
phase detection.

Input: gait phase at previous time step P (k � 1),
current time step gait phase P (k).

1 initialize:

2 T  0;
3 end

4 begin

5 if P (k) == P (k � 1) then

6 no state transition;
7 set Pv(k) P (k);
8 update T  T +�t;
9 else if P (k) == PE then

10 if T > ⌧ then

11 valid state transition;
12 set Pv(k) P (k);
13 reset T  0;
14 else

15 invalid state transition;
16 set Pv(k) P (k � 1);
17 update T  T +�t;
18 end if

19 else

20 forbidden state transition;
21 set Pv(k) P (k � 1);
22 update T  T +�t;
23 end if

24 end

Output: valid gait phase at current state, Pv(k).
25

is translation invariant, i.e.,  (xi,yi) =  (xi + h,yi + h),
where h is any arbitrary vector. This property allows the data
points to maintain the same similarity, when the entire data set
is shifted without changing the relative positions of the data
points. Second, unlike linear, polynomial, and sigmoid kernels
which are functions of inner products of the data points, the
RBF kernel is a function of the Euclidean distance between the
data points. Third, the RBF kernel is the normalized kernel,
which holds the property that (xi,xj) = 1, when xi = xj .
In practice, the evaluation of the exponential function is an

expensive operation, which is a matter of concern in particular
on resource-limited platforms such as microcontrollers. To
decrease the computational complexity, we approximate the
RBF kernel function by another function g(x̂ij) defined as
follows:

exp (x̂ij) ⇡ g(x̂ij) :=

8
><

>:

0 if x̂ij  �1

exp (x̂ij) if �1 < x̂ij < �2

1 +
P8

n=1
(x̂ij)

n

n! if �2  x̂ij

(4)

where �1 and �2 are the non-positive constants that determine
the region of the approximation. When the exponent x̂ij is
small, the kernel is close to zero and thus is approximated to
0 in (4). When x̂ij is close to zero, the Taylor series expansion
of the exponential function is a good approximation with low
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TABLE I
THE COMPARISON OF THE OFFLINE CLASSIFICATION PERFORMANCE
METRICS FOR SVM AND RSVM BASED ON THE TESTING DATASET

COLLECTED ON A TREADMILL.

Gait Phase
Sensitivity Specificity Accuracy

SVM RSVM SVM RSVM SVM RSVM

P1 91.67% 90.75% 99.03% 95.89%

96.11% 91.26%P2 97.20% 93.51% 98.74% 96.14%

P3 97.82% 90.05% 96.02% 94.74%

Overall 95.56% 91.44% 97.93% 95.59%

computation cost as considered in (4). The degree of the Taylor 
series expansion, i.e., 8, is chosen by a trade-off between 
the approximation precision and the calculation speed. The 
constants �1 and �2 in (4) are determined such that the relative 
error between g(x̂ij ) and exp(x̂ij ) is less than 10% for any 
x̂ij 2 (�1, 0]. The values of the �1 and �2 used in this 
paper are -7.596, -2.205.

Both SVM and RSVM are constructed using Python library 
sklearn 1 on the first d ataset a cquired f rom treadmill 
walking. The hyperparameters of these models are optimized 
by the grid search approach with cross–validation [37]. After 
training with optimized hyperparameters, the RSVM model 
is transposed to C using sklearn-porter 2 in order to 
implement it on the MCU. The final, compiled model s ize of 
the RSVM is 180 KB.

IV. RESULTS AND DISCUSSION

The gait phase detection model is trained and optimized 
using training data containing 75% samples of the first dataset 
that were collected from treadmill walking. To evaluate the 
performance of the classifiers f or g ait p hase d etection, three 
metrics are employed: accuracy, sensitivity, and specificity.

A. Offline Performance of Gait Phase Detection

The offline performance of RSVM is first assessed using
the testing data containing 25% samples of the first dataset,
which were collected on a treadmill at three different walking
speeds: 0.53 m/s, 0.86 m/s, 1.11 m/s. The classification results
are compared to the SVM as stated in Table I. The performance
metrics of the classification for each gait phase are calculated
by gathering all walking data from all subjects. It can be
observed that as the number of SVs is reduced as a result
of k–means clustering, sensitivity, specificity, and accuracy of
RSVM are decreased by roughly 4%, 2%, and 5%, respectively
when compared to SVM. However, the model size of RSVM
and the computation time running on the microcontroller for
each prediction of RSVM are significantly reduced by 88%
and 97%, as shown in Table II and Fig. 4.

1https://github.com/scikit-learn/scikit-learn
2https://github.com/nok/sklearn-porter

TABLE II
THE COMPARISON OF THE NUMBER OF SVS, THE MODEL SIZE AND THE

COMPUTATION TIME FOR EACH PREDICTION ON MICROCONTROLLER
BETWEEN SVM AND RSVM.

Classifier NSV Model Size Computation
Time

SVM 30964 1.5 MB 557367µs

RSVM 3793 180 KB 15348µs

88% 88% 36×

Fig. 4. The comparison of RSVM and SVM model property.

The SVM has a total of 30964 SVs, and it takes up about
1.5 MB of memory on the embedded system. After reducing
the model size of the SVM, the number of the SVs for RSVM
is 3793. The RSVM only takes up 180 KB of memory on the
embedded system. To evaluate the computational efficiency of
the real-time algorithm implementation, a timing experiment
for 100 gait phase predictions running on the microcontroller
is conducted. The average execution time for each phase
prediction is 557367µs and 15348µs for SVM and RSVM,
respectively. Hence, with a small degradation in the classi-
fication performance when comparing RSVM to SVM, the
number of SVs and the model size are reduced by about
88%, and the computation speed for each prediction on the
microcontroller is increased by 36 times. RSVM’s model size
and computational speed satisfy our requirements for real-time
gait phase prediction on the microcontroller, i.e., the model
size is less than 200 KB, and the prediction frequency is greater
than 25 Hz.

In Fig. 5, an example of gait phase detection results for
offline RSVM is illustrated, and recall that the true phases
in Fig. 5(a)–(b) are labeled by the rule-based algorithm.
Though RSVM shows good classification performance for
the gait phase detection, as shown in Fig. 5(a), there are
systematic misclassifications for P2 ! P3, and P3 ! P1

transitions. This phenomenon is discussed in Section III-D.
To address this issue, the developed FSM is incorporated into
the RSVM, which leads to the results illustrated in Fig. 5(b).
Fig. 5 provides a clear visualization of the comparison results
between the classification performance of RSVM incorporated
with and without FSM. We can see that using the FSM can
eliminate almost all the misclassifications of RSVM. The
detailed performance metrics of RSVM–FSM based on testing
data from the first dataset are listed in Table III. Compared to



8

TABLE III
THE OFFLINE CLASSIFICATION PERFORMANCE METRICS OF

RSVM–FSM BASED ON THE TESTING DATASET COLLECTED FROM
TREADMILL.

Gait Phase
Sensitivity Specificity Accuracy

RSVM–FSM RSVM–FSM RSVM–FSM

P1 91.22% 97.14%

92.35%P2 93.05% 94.83%

P3 90.27% 96.23%

Overall 92.12% 96.23%

the RSVM in Table I, RSVM-FSM shows improved overall
performance, but for P2 gait phase, the values of sensitivity
and specificity are slightly reduced. Since the intention of the
FSM design is to correct the illogical gait phase transitions in
the temporal sequence, such slight performance degradation
is acceptable from an application perspective. Therefore, 
the RSVM–FSM model is employed for real-time gait phase 
detection on the microcontroller.

B. Inter-subject Real-Time Performance for Gait Phase 
Detection

Attributed to the high computational efficiency o f t he real-
time RSVM-FSM algorithm, the entire process within one 
sampling interval on the microcontroller, including sensor 
data reading, gait phase prediction, and prediction results log-
ging, can be completed within 20 ms. Considering that other 
processing such as wireless communication also occupied 
the microcontroller, the sampling time for the real-time gait 
phase prediction and prediction result logging is set to 30 ms 
(33.33 Hz). While as stated in Section II-C, raw sensor data 
are still logged at 100 Hz.

To assess the inter-subject real-time performance of RSVM-
FSM for gait phase detection, the recorded real-time (on the 
fly) p rediction r esults a re c ompared t o t he b enchmark, i.e., 
labels identified by the reference algorithm applied to the raw 
sensor data. Fig. 6 presents the confusion matrix of the real-
time RSVM-FSM classified r esults b y g athering a ll walking 
data from twenty subjects. Table IV summarizes the three 
performance metrics calculated from gathering all walking 
data from all twenty subjects’ walking trials and three different 
walking speeds. We can see that the real-time RSVM-FSM 
algorithm achieves promising gait phase detection results with 
the sensitivity, specificity, a nd a ccuracy v alues o f 91.74%, 
95.79%, 91.55%, respectively. Fig. 7 presents an intuitive 
comparison of the gait phases detected by real-time RSVM-
FSM and benchmarks that are obtained by the offline reference 
algorithm. In Fig. 9, a violin plot of walking speed for offline 
model training and real-time model testing is presented. Each 
dot represents a walking bout with an average speed at the 
dot.

TABLE IV
THE REAL-TIME CLASSIFICATION PERFORMANCE METRICS OF

RSVM–FSM FOR LONG-TERM FREE WALKING.

Gait Phase
Sensitivity Specificity Accuracy

RSVM–FSM RSVM–FSM RSVM–FSM

P1 91.80% 96.13%

91.55%P2 94.79% 94.35%

P3 88.64% 96.88%

Overall 91.74% 95.79%

To compare the performance of RSVM-FSM and SVM-
FSM, the raw sensor data are fed into the offline SVM-
FSM classifier. The classified gait phases of SVM-FSM are
compared to the benchmark. The three performance metrics
are calculated by averaging the walking bouts over all twenty
subjects and three different walking speeds for both RSVM-
FSM and SVM-FSM. The box plot of the performance metrics
of different subjects is shown in Fig. 8. Comparing to offline
performance of SVM-FSM with an accuracy of 91.55% ±
2.23%, a sensitivity of 91.16% ± 2.15%, a specificity of
95.73% ± 0.98%, the performance of real-time RSVM-FSM
presents an insignificant degradation, which are 91.39% ±
1.67%, 91.59% ± 1.59%, 95.67% ± 0.78% for accuracy,
sensitivity, and specificity, respectively.

To assess the robustness of the real-time RSVM-FSM
algorithm with varying gait parameters, the real-time classifi-
cation performance is analyzed under different walking speeds,
cadences, and stride lengths. The results of the generalizability
analysis are shown in Fig. 11. Note that the exact stride
velocity, cadence and stride length of each data set for each
subject are calculated using the offline reference algorithm
after the walking experiment. In the left subplot of Fig. 11,
the three performance metrics for three different walking speed
levels are presented. The walking speed vw for each walking
bout of every subject is calculated from the raw sensor data
after the experiment. After ordering all walking bouts’ walking
speeds from slowest to fastest, the walking bouts are divided
into three categories, i.e., low, medium, high walking speeds.
The low walking speed category contains the walking bouts
whose walking speed is slower than the first 3-quantile (vw 
1.21m/s) of the ordered list. The medium walking speed
category contains the walking bouts whose walking speed is
between the first and the second 3-quantile (1.21m/s < vw
 1.43m/s). The high walking speed category contains the
remaining walking bouts (vw > 1.43m/s). All three quantiles
of cadence and stride length are defined in the same way.
The cadence quantile bounds are found to be 104.84 SPM
(steps per minute) and 115.10 SPM. The stride-length quantile
bounds are found to be 1.37m and 1.54m.

C. Discussion

When comparing the offline classification performance of
SVM and RSVM as shown in Table I, SVM shows a slightly
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Fig. 5. Performance illustration of RSVM and RSVM–FSM for offline gait phase detection. (a) Gait phases detection results from RSVM. (b) Gait
phases detection results from RSVM–FSM.

Fig. 6. Confusion matrix of real-time RSVM-FSM results for gait phase
classification of twenty subjects.

better performance in the gait phase detection than RSVM.
This is because the RSVM hyperplane is constructed only
using potential SV data points. Due to the lower density
of boundary data points in smaller training datasets, it may
not be enough to provide sufficient separation information of
the training dataset, resulting in a slight performance drop in
RSVM classification. In addition, this slight performance drop
of RSVM is also due to the significant reduction of the number
of SVs, which is decreased by 88% in total. While comparing
to the SVM, the execution time of RSVM has reduced more
than 36 times as the result of a considerable reduction in the
number of SVs, as shown in Table II.

From Fig. 5(a) we can see that many illogical gait phase

transitions are misclassified, especially near the transitions
from one phase to the next. This is due to the fact that
despite gait being a periodic motion, the RSVM processes
the continuous gait signal in sections, neglecting the implicit
information carried by the gyroscope as a whole, and thus
ignoring the temporal sequence of gait phases. The developed
FSM provides the RSVM classifier with a logical temporal
sequence. After applying the FSM, the misclassified illogical
gait phase transitions in Fig. 5(a) are corrected into a regular
sequence of gait phase as shown in Fig. 5(b). These results
demonstrate the advantages and the effectiveness of the de-
veloped FSM, which leads to a solid temporal sequence of
sub-gait phases.

The algorithm’s real-time (on the fly) performance is eval-
uated with long-term real-world free-living walking on the
street, as opposed to the supervised walking environment for
model training data, in which subjects walked on a treadmill in
a laboratory. In the daily living environment, the human gait
is very dynamic, involving irregular gait speeds, fluctuating
surface, and varying surface inclinations. Fig. 9 shows the
walking speeds of the datasets for offline algorithm training
and online algorithm testing, respectively. Each dot represents
a walking bout with an average walking speed at that dot.
The walking speed of each data set is calculated using the
offline post-processing algorithm [23]. We can see that the
walking speeds of datasets used for algorithm training are
lying closely around the treadmill speeds that were set at
0.53 m/s, 0.86 m/s, and 1.11 m/s. However, the walking speeds
for real-time testing range from 0.81 m/s to 1.80 m/s. There
is only a small overlap between the walking speed of training
and testing data, which shows the excellent performance of
the model when encountering unseen data. Compared to the
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Fig. 7. An intuitive comparison of the gait phases detected by real-time RSVM-FSM and the benchmark.

Fig. 8. Performance comparison of real-time RSVM-FSM and offline
SVM-FSM gait phase detection for twenty subjects.

Fig. 9. The violin plot for walking speed distribution of offline training
and real-time testing. Each dot represents one walking bout. The width
represents the density of the data size. Wider areas of the violin
plot constitute a higher density of data taking a given walking speed,
whereas the thinner areas correspond to a lower density.

prediction results of RSVM-FSM shown in Table III, which
is intra-subject supervised walking, there is only a minor
performance degradation of 0.42%, 0.46%, 0.84% in the inter-
subject real-world uncontrolled free-living walking real-time
prediction results shown in Table IV, for sensitivity, specificity,

0.42 0.46 0.84

Fig. 10. The performance comparison of real-time RSVM-FSM for
outdoor free-living walking and offline SVM-FSM for indoor treadmill
walking.

and accuracy. When comparing the real-time phase detection
performance of outdoor walking to the offline phase detection
performance of indoor walking, there is only a slight perfor-
mance degradation of less than 1%, as shown in Fig. 10. This
is more robust than the offline algorithms reviewed in [22],
which exhibit a performance degradation of more than 15%
when transfer walking from laboratory to the real-world. These
results exhibit the superior capability of the proposed RSVM-
FSM algorithm to identify gait phases in real-time (on the fly)
both indoor and outdoor (real-world free-living walking), as
well as the wide range of walking speeds it can recognize. The
results also show that the algorithm’s promising performance
is consistent with different walking subjects, changing walking
speeds, and varying walking environments, including less
controlled walking scenarios. It demonstrates the robustness
and generalizability of the classifier for both intra-subject and
inter-subject walking, and both indoor (controlled) and outdoor
(real-world uncontrolled) free-living walking conditions.

The prediction results in Fig. 11 demonstrate a promising
generalization performance of the real-time RSVM-FSM al-
gorithm for varying gait parameters, i.e., gait speed, cadence,
and stride length. As shown in the left subplot of Fig. 11, the
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Fig. 11. The RSVM-FSM’s performance of real-time gait phase detection in relation to various gait parameters, i.e., gait speed, cadence, stride
length.

RSVM-FSM classifier performs well at all walking speeds.
The minor performance degradation when the walking speeds
increase may be due to the fact that the walking speeds in the
training data are slow, ranging from 0.53m/s to 1.11m/s,
whereas the walking speeds in the medium and high category
for real-time testing are higher than 1.21m/s. In terms of
the generalization of the proposed algorithm regarding varied
walking cadences, the classifier also shows consistent perfor-
mance as demonstrated in the middle subplot of Fig. 11. It
can be observed that the performance distributions among the
three cadence groups are overlapping. No obvious performance
decrease is observed when increasing the walking cadence.
A similar performance level is obtained for classifying gait
phases among different stride length groups, indicating that the
proposed RSVM-FSM is robust to the various stride length,
as well as the gait cadence. The slight performance drop of
the high stride length group could be explained by the fact
that the classifier is constructed by the data collected from the
treadmill, where stride length is limited by the walking surface
of the belt.

In addition, the algorithm only uses three signals to classify
the gait phases, all of which come from a single gyroscope
only. This reduces the amount of information used to char-
acterize the gait cycle compared to the studies that use both
gyroscope and accelerometers [24], and thus saves the energy
and the cost of the wearable device. Moreover, no prior
calibration is required for the sensor data, which is a significant
improvement compared to the studies that need additional
calibration procedures [38].

The limitation of this study is that we assume the input ac-
tivity data only contains walking rather than other activities, as
the algorithm only classifies the walking data into predefined
three gait phases. Hence, currently, the RSVM-FSM algorithm
presented herein will output a gait phase even when the
subject is not walking. The authors are currently working on a
new algorithm for human activity recognition to filter out the
walking data while rejecting other activity data in real-time.
The new algorithm will detect the initiation and termination of

walking among different human activities. By combining the
two algorithms, it will be possible to monitor human activities
and provide instant haptic feedback in long-term daily life.
Another limitation of this study is that the proposed real-time
algorithm was validated on twenty healthy subjects walking in
a real-world scenario. A quantitative validation on the elderly
and subjects with gait disorders should be considered in future
work to provide more insights into the algorithm’s ability to
generalize to a wider range of gait patterns.

In the follow-up study, the actuator of the system will be
exploited to deliver real-time vibrotactile feedback based on
users’ gait patterns by using the real-time algorithm proposed
in this work. The clinical effect of real-time vibrotactile feed-
back on gait will also be investigated in the follow-up clinical
study. Variations of the FSM, such as introducing a another du-
ration constraint to allow the back transition of the gait phase,
can also be investigated.

V. CONCLUSIONS

In this paper, we propose a real-time algorithm that can
identify gait phase detection in real-time on memory- and
computation-limited microcontrollers of wearable devices for
both indoor and outdoor free-living walking. We developed
a cascaded k-means clustering approach that reduces the
model size of the standard SVM classifier by 88% and to
increase the computational speed of gait phase prediction on
microcontrollers (ESP32) by a factor of 36 with negligible
degradation in SVM performance. The proposed algorithm
was implemented on a microcontroller of a wearable device
and was validated in real-time (on the fly) by real-world free-
living walking performed by twenty healthy subjects in their
daily living environment. The algorithm shows a promising
real-time gait phase detection performance, with a total accu-
racy of 91.51%, a sensitivity of 91.70%, and a specificity of
95.77%. It does not require any prior calibration for the sensor
data and shows a good generalization performance for different
walking environments, speeds, cadences, and stride lengths.
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It demonstrates great potential for real-time rehabilitation 
applications, such as FES/EES, and haptic feedback systems.
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