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Abstract—A novel side-polished long-period fiber grating 
(LPFG) sensor was proposed and experimentally validated. 
Side-polished can provide a stronger evanescent field than 
traditional grating and bring superior sensitivity. The greater the 
side-polished depth, the higher the refractive index (RI) 
sensitivity. When d = 44 μm, the refractive index sensitivity 
reached 466.85 nm/RIU in the range of 1.3330 - 1.3580, which 
is four-fold higher than LPFG prepared by electric-arc 
discharge (EAD) method. A graphene oxide (GO) nano-film is 
coated on the LPFG to make it realize high sensitivity relative 
humidity (RH) sensing. Humidity sensitivity reached -0.193 
nm/%RH in the range of 40 - 80% RH. In addition, side-
polished breaks the symmetry of the distribution of the cross-
sectional light field, which determines the ability to achieve 
vector curvature measurement. It shows good sensing 
performance in the same/opposite bending direction as the side 
polished surface. When the input light polarization is 90°, the 
average sensitivity reaches 5.03 and -5.9 nm/m-1 in the range of 
0 - 19.67 m-1, respectively. This strongly indicates that the 
fabricated sensors show high sensitivity, low-cost materials, 
and robust performance and break the limitations of the EDA 
method to prepare gratings, which have good application 
potential for biomedicine and the field of construction.  
 
Keywords: Long-period fiber grating, side-polished, relative 
humidity sensing, vector curvature sensing. 

I. INTRODUCTION 

Fiber grating is an optical fiber microstructure formed by 
periodically modulating the refractive index (RI) of the optical 
fiber [1,2]. It has the characteristics of small size, good 
wavelength selectivity, corrosion resistance, and strong anti- 
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interference performance, and is widely used in various sensor 
designs [3-7]. At present, it has been maturely applied in 
aerospace, medicine, geological survey, power system, and 
other fields. 

The period of long-period fiber grating (LPFG) is usually 
tens to hundreds of microns, so its requirements for fabrication 
equipment are much lower than that of fiber Bragg grating 
(FBG) [8]. Currently commonly used writing methods include 
ultraviolet or femtosecond laser irradiation fabrication [9,10], 
mechanical induction [11], chemical etching [12], ion beam 
implantation [13], and thermal application generation through 
spatial periodicity [14-16]. Among them, the electric-arc 
discharge (EAD) method is to melt and deform the optical fiber 
through the periodic discharge of the electrode, so that the RI 
of the optical fiber is periodically modulated to form a fiber 
grating. The preparation mechanism of this method is similar to 
that of a CO2 laser, and gratings can be directly prepared on any 
type of optical fiber, without the need for the optical fiber to 
have photosensitivity or other hydrogen-carrying sensitization 
treatments. It has the advantages of simple manufacture, low 
cost, and good stability. And the amplitude of the current and 
the discharge time can be freely adjusted to control the 
amplitude of the RI modulation. However, the surrounding 
refractive index (SRI) sensitivity of LPFG is usually lower until 
further optimization is applied [17]. Thus, LPFGs need further 
optimization for better performance. To overcome this 
limitation, modified methods have been proposed. For example, 
in 2017, Du et al. [18] fabricated an LPFG sensor using EAD 
technology. The RI sensitivity was optimized by etching the 
cladding with a hydrofluoric acid solution, and the sensitivity 
reached 214 nm/RIU in the range of 1.3333 - 1.3931. The 
drawback of this method is that the use of hydrofluoric acid (HF) 
will weaken the mechanical strength of the sensor and HF are 
hazardous, corrosive, and toxic. In 2020, Luo et al. [19] 
fabricated an LPFG on a thin-clad fiber (TCF) using EAD 
technology, and the sensitivity could reach -51.72 nm/RIU in 
the RI range of 1.3406 - 1.4096. However, limited ability to 
improve RI sensitivity by TCF. In 2014, L. Coelho et al. [20] 
studied a new type of optical fiber RI sensor based on an LPFG 
coated with a titanium dioxide (TiO2) film, and the average 
sensitivity obtained in the range of 1.444~1.456 was 5250 
nm/RIU. However, this method has high costs (including high 
consumables and expensive coating equipment). In 2021, Y. 
Zhou et al. [21] studied the sensing properties of double-clad 
fiber (DCF) long-period fiber grating (LPFG) to the SRI. The 
numerical simulation results show that the SRI sensitivity is 
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greatly improved, reaching 3484.0 nm/RIU in the range of SRI 
1.33-1.37. Apart from the above, the arc discharge method has 
certain limitations compared to the CO2 laser irradiation 
method. The CO2 laser irradiation method can achieve LPFGs 
with arbitrary patterns [22], but the LPFGs fabricated by EAD 
technology have structural symmetry, which makes their 
application in curvature sensing generally independent of 
orientation. Similarly, researchers have also proposed some 
methods. For example, in 2018, Yang et al. fabricated an LPFG 
in Dual Side Hole Fiber (DSHF) by using the automatic EAD 
technique. The presence of DSHF makes the cladding modes, 
regardless of the polarization state, concentrated in the region 
perpendicular to the connection of the two holes, which makes 
DSHF-based LPFG suitable for biaxial bending measurements 
[23]. However, this type of method is limited by the type of 
optical fiber and does not have universal applicability. To 
further expand the application range of LPFG, it is necessary to 
try to improve the grating fabrication based on the EAD 
technology, improve the interaction between the evanescent 
wave and the surrounding medium, and optimize the 
performance of the fiber grating.  

As a result, we propose and fabricate a novel side-polished 
LPFG and conducted a comprehensive study of its sensors. The 
introduction of side-polished will not only increase the 
evanescent field of the LPFG and thus improve RI sensitivity, 
but also break the symmetry of the intensity distribution of the 
cross-section light field, which makes it to be more suitable for 
sensing in different bending directions. By functionalization of 
a thin layer of GO layer on the side-polished region of the fiber, 
the sensor can measure RH with high sensitivity. Therefore, 
based on further optimization, it is expected to greatly improve 
the performance of LPFG. 

II. PRINCIPLE 
The schematic diagram of side-polished LPFG is presented in 
Fig. 1(a). To analyze the fabricating parameters of the side-
polished LPFG, the structural characterization of the samples 
was performed using an electron microscope (AO-UV200), as 
shown in Figs. 1(b)-(d). 

 

Fig. 1. (a) Schematic diagram of the side-polished LPFG; (b) optical microscope image of the side-polished fiber; (c) optical 
image microscope of the LPFG; (d) optical microscope image of the end-face of the side-polished fiber. 

The resonant wavelength is defined by the phase-matching 
condition [24]: 

Λ−= ）（ n
cleffcoeff

n
res nn ,,λ

           
(1) 

Where con ，eff  and 
n

cln ，eff  are the effective RI of the core 
fundamental mode and the nth order cladding modes, and Λ is 
the grating period. The essence of LPFG is that the light 
generated from the core mode is coupled to the cladding mode 
whose wavelength satisfies the phase matching condition. 

Once the light is coupled into the cladding mode, it 
immediately attenuates due to scattering losses, thus leaving a 
lossy band in the core mode observed at the output. When light 
travels in the cladding mode, it experiences high losses, which 
provide an attenuation band at the resonant wavelength in the 
transmission spectrum. The minimum transmission in the 
attenuation band is expressed by the formula: 

𝑇𝑇𝑚𝑚 = 1 − 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜅𝜅𝑚𝑚𝐿𝐿)
            

(2) 
where 𝜅𝜅𝑚𝑚 is the coupling coefficient of the mth cladding mode, 
and L is the length of the LPFG. The coupling coefficient is 
determined by the integral overlap of the core and cladding 
modes and the periodic modulation amplitude of the mode 
propagation constants. The number of cladding modes depends 
on the radius of the cladding. 

III. MANUFACTURE OF SENSOR  
 An autonomous built system is used to fabricate the polished 

surface shown in Fig. 2(a). The optical fiber is fixed by two 
three-dimensional translation stages, and the polished unit is a 
motor of high rotating speed. The maximum speed of the motor 
is 12,000 revolutions per minute (RPM), and to ensure the 
mechanical stability of the fiber during side throwing, the 
rotational speed is limited to no more than 5000 RPM/min. A 
piece of sandpaper is firmly wound around the exposed shaft of 
the DC motor, about 3 cm in diameter, and used as a polished 
machine [25]. During polished, use 400, 600, and 800 grit 
sandpaper once each, and finish with 800 grit paper (minimize 
topographic effects by fine polished the surface of the sample). 
The side-polished depth is proportional to time, and the side-
polished length is controlled by adjusting the angle between the 
fiber and the grinding wheel through a three-dimensional 
translation stage. Then, use the EAD (FSM-80c, Fujikura) to 
high-temperature fused-taper (the discharge time and power are 
2000 ms and 12.7 mA respectively) on the polished area and 
pulled a Λ distance by attaching the other end with a weight 
(Fig. 2(b)). During discharge, the polished side is facing straight 
up, and the electrodes are discharged from the left and right 
sides perpendicular to the fiber. Spectral changes were detected 
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by a light source (BBS, ASE-C-30-B) and a spectrometer (OSA, 
YOKOG AWA AQ6370D). 

The experimental results of the spectrum evolution of the 
side-polished LPFG with a pitch of 550 µm and the number of 
cycles increased from 0 to 11 are shown in Fig. 2 (c). Where 

there is a resonance peak at 1510 nm, and the resonance 
intensity is about 10 - 15 dB when the number of periods is 15. 
The main features of this method are its simple production and 
lower cost. Therefore, with this stability setting, high-quality 
and repeatable gratings can be easily manufactured. 

 

Fig. 2. (a) Side-polished fiber production platform; (b) LPFG production platform; (c) LPFG transmission spectrum change. 

IV. RI SENSING PERFORMANCE  
When the surrounding RI of the side-polished LPFG changes, 

the effective RI of the cladding mode of the fiber will change, 
resulting in the change in the phase-matching wavelength of the 
LPFG [26]: 
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Where 𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is effective RI of the medium. The term 
𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒,𝑐𝑐𝑐𝑐

𝑛𝑛 /dnmedium is different for different cladding modes. The 
experimental setup for investigating the RI measurement 

capability of the fabricated side-polished LPFGs is shown in 
Fig. 3. The liquid with different RI (dimethyl sulfoxide mix 
with water, which has been calibrated using an Abbe 
refractometer) was dropped into the U-shape groove container, 
and the change in the transmission signal from side-polished 
LPFGs was detected by OSA. Rinse the sensor with deionized 
water at least three times and air dry before each RI solution 
change. Before the measurement, the sensor was calibrated to 
assure that the results were both accurate and reliable. The 
entire experimental process was conducted at room temperature 
(22±2 ℃) and room humidity (55±5 %). 

 

Fig. 3. RI performance detection device. 
To obtain optimized sensitivity, we prepared several side-

polished LPFGs with different depths (0, 23, 34, and 41 μm) 
and the same period. Figures 4(a)-(c) show the spectral 
responses of the LPFG structures with different side-polished 
depths vs. RI at the range of 1.333. As RI increases, the 
effective RI of the cladding increases, while the effective RI of 

the core fundamental mode remains unchanged. Combined with 
equation (3), the attenuation peaks produced by LPFGs are red-
shifted, which may indicate that such LPFGs may have 
inflection points for a given set of cladding modes [27]. For the 
resonance wavelength of the positive dispersion point (𝑑𝑑𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛 /
𝑑𝑑𝛬𝛬 < 0), a red-shift occurs with increasing RI sensitivity. The 
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fitted linear sensitivity is 120.31, 262.74, 391.75, and 466.85 
nm/RIU, respectively, corresponding to depths of 0, 23, 34, and 
41 μm [Fig. 4(d)]. The deeper the side-polished depth, the 
stronger the surface evanescent field and the higher the sensor 
sensitivity. A series of optimal values are obtained at about 41 
μm, and the sensitivity is all greater than 423 nm/RIU. However, 
the side-polished depth should not be too deep, so there will be 
a balance between structural stability and high sensitivity. At 
the same time, we studied the reproducibility of the proposed 
structure. Figure. 4(e) shows that the RI sensitivity of five 
typical gratings in all LPFGs manufactured with Λ = 550 μm 
and d ≈ 41 μm are 456.47, 423.69, 465.59, 435.14, and 424.85 

nm/RIU. It can be seen that this manufacturing technology 
guarantees the reproduction of high RI sensitivity. 

By changing the temperature, the effect of temperature on the 
RI sensing was further investigated. The effect of temperature 
on sensor measurements stems from the temperature-dependent 
response of the sensor itself and the temperature-dependence of 
the medium. The RI sensitivity of the same sensor was 
measured at 25, 35, and 45 °C, and assay sensitivity was 466.85, 
469.49, and 471.40 nm/RIU, respectively. The results show that 
the temperature has little effect on the RI sensing within a 
certain range (Fig. 4(f)).

 

Fig. 4. (a)-(c) The recorded transmission spectra of the LPFG sensor; (d) the RI sensitivity of the LPFG structure with different 
d; (e) the sensor repeatability was studied by using five sensors in the same test/condition; (f) sensors as a function of RI at 25, 

35 and 45 ◦C. 

V. HUMIDITY SENSING PERFORMANCE  
Graphene and its derivatives, as a two-dimensional material 

to be exfoliated, has been widely researched in the LPFGs 
sensing applications owing to its superior optical and 
optoelectronic properties [28-30]. In our trial, the humidity 
sensing capability of side-polished LPFG is achieved by 
applying a GO nano-film material coating [31]. GO is a highly 
oxidized material with various oxygen functional groups on its 
surface, as shown in Fig. 5 (b). It can change the effective RI 
by absorbing water molecules. The greater the humidity, the 
more water molecules will be absorbed, which increases the 
interlayer distance of GO and causes swelling. When water 
penetrates the GO, the hydrophilic group can maintain the 
relative interlayer distance. Therefore, as more water molecules 

are absorbed, the effective RI of GO decreases [31], [32]. This 
may change the effective RI of the propagating mode is altered, 
thereby affecting the wavelength shift. 

In this study, the ultrasonically treated GO suspension was 
coated on the surface of the side-polished LPFG using the 
dipping method. Then the coated fiber is heated to 70 °C in a 
drying oven to induce evaporation so that the GO is more firmly 
placed on the fiber surface shown in Fig. 5(a). Humidity sensing 
experiments were carried out using side-polished LPFG sensors 
with GO concentrations of 0.01, 0.05, and 0.1 mg/ml and a fiber 
period of 550 μm. The sensor was placed in a humidity control 
box (Xiamen Yeshishi Instrument Co. Ltd. ST-80L), as shown 
in Fig. 5(c). Change the humidity of the internal environment 
and analyze the wavelength drift of the sensor when the 
humidity changes. The temperature (25 °C) and the stress in the 
test specimen were held constant during the experiment. 
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Fig. 5. (a) GO molecular water absorption model; (b) physical map of the humidity detection device; (c) physical map of the 
humidity detection device. 

 

Fig. 6. SEM images of films formed by different concentrations of GO. plan view: (a) 0.01 mg/ml, (b) 0.05 mg/ml and (c) 0.1 
mg/ml; cross-sectional view: (d) 0.01 mg/ml, (e) 0.05 mg/ml and (f) 0.1 mg/ml.

Figures 7(a)-(c) shows the RH spectral responses of GO 
coated with different concentrations in the range of 40%-80%. 
Combined with equation (3), the attenuation peak of LPFG is 
blue-shifted with the increase in humidity. This is because as 
RH grows large, the RI of the GO coating decreases, and the RI 
of the surrounding environment of the sensor structure 
decreases, the effective RI of the cladding decreases, while the 
effective RI of the core fundamental mode remains unchanged. 
The RH sensitivity of the LPFG coated with three different GO 
concentrations (0.01, 0.05 and 0.1 mg/ml) is -0.116, -0.193 and 
-0.133 nm/%RH, respectively (Fig. 7(d)). The coating 
thicknesses obtained after coating with different concentrations 
of GO were different, and the surface morphological feature 
was characterized via SEM, as shown in Fig. 6(a)-(f). The RH 

sensitivity was maximal within a range of GO concentrations 
(about 0.05 mg/ml) and much reduced for both thinner (0.01 
mg/ml) and thicker (0.1 mg/ml). When it is thinner, the GO 
layer is difficult to cause changes in RI, when it is thicker, the 
permeability of water molecules will be blocked [31, 33].  

The effect of temperature on humidity sensing was further 
investigated by changing the temperature. Mainly due to the 
increase in absolute vapor pressure with increasing temperature, 
resulting in the adsorption of more water molecules by GO. The 
RH sensitivity of the same sensor was measured at 25, 35, and 
45 °C, and the detection sensitivities were -0.193, -0.223, and -
0.269 nm/%RH, respectively. The results showed that the 
humidity sensitivity increased with the increase in temperature 
(Fig. 7(e)). 
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Fig. 7. (a)-(c) The recorded transmission spectra of the LPFG sensor; (d) the RH sensitivity of the LPFG structure with different 
GO concentrations; (e) sensors as a function of RH at 25, 35, and 45 ◦C. 

VI. VECTOR CURVATURE SENSING PERFORMANCE 
When the fiber is bent by the external environment, based on 

the elastic effect of the fiber, the effective RI change of the 
LPFG will affect the optical path difference between the fiber 
core mode and the cladding mode, resulting in a wavelength 
shift. In contrast to traditional LPFG, the side-polished fibers 
result in asymmetrical light field intensity distribution in the 
cross-section, thereby realizing curvature vector sense. 

The experimental device for curvature characteristics is 
shown in Fig. 8. The LPFG is fixed between the two translation 
stages and remains horizontal without applied torsion. Two 

translation stage was used to vary the distance between the two 
ends of the translation stage to control the bending curvature. 
Due to the fiber length being much larger than translating stage 
stepping length (100 mm >> 0.5 mm). Estimate the bending 
fiber as a curved arc of a circle, and the curvature was measured 
by approximating the bending evolution to a circumference 
function, as previously report described [34]: 

)(
21

22 Ld
d

R
C

+
⋅

==                              (4)
 

Where R, d, and L are respectively the radius of curvature, 
bending displacement, and half of the distance between the two 
stages. 

 

Fig. 8. Experimental setup of curvature sensing. 
Figures 9(a), (b), (d), (e), (g) and (h) show the spectral 

responses for different bending directions. When the LPFG and 
the side polished surfaces are bent in the same direction, the 
core is subjected to expansion strain, causing the LPFG peak to 

shift to longer wavelengths. When the LPFG and side polished 
surfaces are bent in opposite directions, the core is subjected to 
compressive strain, causing the LPFG peak to shift to shorter 
wavelengths. Since the linearity of the linear fit is not high, try 
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to fit a quadratic polynomial equation. The average bending 
sensitivities for different polarizations (with input light 
polarization angles of 90°, 45° and 0° degrees selected as 
representative examples of bending measurements) were 
calculated to be: 5.03 and -5.9 nm/m-1 (Fig. 9(c)), 3.92 and -
5.43 nm/m-1 (Fig. 9(f)), and 3.05 and -4.37 nm/m-1 (Fig. 9(i)), 
respectively. The experimental results show that the bending 
sensitivities of the three different input polarized lights of the 

sensor have certain differences, which may depend on the 
influence of the input light with different polarization angles on 
the wavelength and transmission coefficient of the cladding 
mode during the bending process. These new LPFGs have a 
well-structured high mechanical strength sufficient to withstand 
relatively large bending processes (from 0 to 19.67 m-1). The 
above results show that the proposed side-polished LPFG can 
achieve vector sensing of curvature direction and radius.

 

Fig. 9. The influence of the bending radius of LPFG fiber on the spectral response under the boundary conditions of three input 
light polarization angles: (a), (d), and (g) the same direction bending; (b), (e) and (h) reverse bending; polynomial fitting of dip 

wavelength shift with curvature: (c) 90°; (f) 45°; (i) 0°. 

The proposed sensor is compared with some of the latest 
methods reported in table Ⅰ. The table compares the materials, 
manufacturing methods, and sensing performance (RI, 

humidity, curvature) of these sensors. In contrast, the sensor 
reported in this article has superior performance in many 
aspects, which is a significant result of such a simple and 
inexpensive sensor manufacturing process.

TABLE Ⅰ 

COMPARISON TABLE 

Structure and material Production Method RI Humidity Curvature Ref. 

LPFG (B/Ge co-doped 
photosensitive fiber) and GO 

Excimer laser and 
dip-coating 

17 - 55 
dB/RIU 

0.15 dB 
/%RH - [35] (2018) 

LPFG (dual side-hole fiber) EAD -60.19 nm/RIU - 21.03 nm/m-1  
15.77 dB/m-1 [21] (2018) 
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Arch-Shaped  
LPFG (single-mode fiber) 

High-frequency 
CO2-laser - - 22.120 nm/m-1 

-18.626 nm/m-1  [36] (2018) 

LPFG (single-mode fiber) 
and Polyvinyl alcohol 

Etched by HF and 
coating - 0.094 

nm/%RH - [37] (2019) 

LPFG CO2 laser glass 
processing - - -42.488 nm/m-1 [38] (2019) 

LPFG (pure silica core 
optical fibers) EAD 37.94 nm/RIU 

-98.47 nm/RIU  - - [39] (2020) 

LPFG (thin-cladding fiber) EAD -51.72 nm/RIU - - [19] (2020) 

LPFG (single mode fiber) 
and WS2 

Hydrogen oxygen 
flame heating and 

natural evaporation 
- 0.0373 

nm/%RH - [40] (2021) 

Sied-polished LPFG (single-
mode fiber) and GO 

Sied-polished, 
EAD, and dip-

coating 

466.85 
nm/RIU  

0.193 
nm/%RH 

5.03 nm/m-1  
-5.9 nm/m-1 This work 

VII. CONCLUSION 
The characteristics of the LPFG sensor based on side-polished 
have been studied in this article experimentally. The RI 
characteristics of the LPFG sensor show that the side-polished 
can effectively enhance the evanescent field of LPFG and 
significantly increase sensitivity. The greater the depth, the 
more pronounced the increased sensitivity. And by coating a 
layer of GO film on the sensor surface, high-sensitivity 
humidity sensing is realized. Moreover, the break of symmetry 
of the optical fiber structure, and the vector curvature 
measurement is implemented. The experimental results show 
that the use of side-polished LPFG sensors will lead to better 
detection performance, and may provide better experimental 
design and potential applications for the preparation of LPFG 
sensors by EDA technology. 
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